CRITERION 3. STUDENT OUTCOMES

3.A Student Outcomes

There are 13 student outcomes for the B.S. degree in the ME program at the University of Iowa. The student outcomes (a) through (k) were repeated verbatim as stated in the Section "General Criteria for Baccalaureate Level Programs" of the ABET Criteria for Accrediting Engineering Programs. For criteria that are specific to the ME program, the program's faculty discussed and unanimously adopted two additional outcomes, i.e., (I) and (m). These outcomes are published on MIE's departmental website.

- Outcome (a): an ability to apply knowledge of mathematics, science, and engineering.
- Outcome (b): an ability to design and conduct experiments, as well as to analyze and interpret data.
- Outcome (c): an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- Outcome (d): an ability to function on multidisciplinary teams.
- Outcome (e): an ability to identify, formulate, and solve engineering problems.
- Outcome (f): an understanding of professional and ethical responsibility.
- Outcome (g): an ability to communicate effectively.
- Outcome (h): the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- Outcome (i): a recognition of the need for, and an ability to engage in life-long learning.
- Outcome (j): a knowledge of contemporary issues.
- Outcome (1), an ability to use the techniques skills and modern and
- Outcome (k): an ability to use the techniques, skills, and modem engineering tools necessary for engineering practice.
- Outcome (1): an ability to work professionally in either thermal or fluid systems engineering, including the design and realization of such systems.
- Outcome (m): an ability to work professionally in mechanical systems engineering, including the design and realization of such systems.

3.B Relationship of Student Outcomes to Program Educational Objectives

Table 3.1 presents the relationship between the student outcomes and the program educational objectives. The relationship was first discussed by the ME ABET committee and then presented to ME faculty members for discussion and approval.

Table 3.1. Relationship between the Student Outcomes and the Program Educational Objectives with a Scale of (1, 2, 3) = (Slightly, Moderate, Strong) Relationship

Bussiens Educational Objections					Stu	ıden	õ	tcon	les				
r i ograni Extitational Objectives	a	.	Ĉ	(d	ē	3	Ð	Ð	Ξ	Ð	F	Э	Ð
1. Will have successful careers in engineering and													
beyond and will have assumed professional roles of	ω	ω	ω	з	ω	ω	ω	ω	ω	ω	ω	ω	ω
increasing responsibility and impact.													
2. Will have acquired new knowledge and expertise													
through professional development opportunities or	2	2	2	2	2	-	2	2	ω	2	2	2	2
advanced education.													
3. Will be engaged in workplace, professional, and civic													
communities.	-	-	-	3	-	2	ω	ω	-	2	-	-	-

CRITERION 4. CONTINUOUS IMPROVEMENT

4.A Student Outcomes

Based on the feedback from the 2008-2009 ABET review of the ME Program, the ME faculty decided to use rubrics as the primary assessment tool for each student outcome. A rubric describes a set of performance indicators and their degrees of achievement to facilitate a means of evaluating student outcome. It also contains quantitative elements that allow the instructor to evaluate the extent to which the student has met the expectations, as outlined in the rubric. During the academic year (AY) 2009-2010, the ME faculty designed rubrics and assessment instruments for each student outcome. Several faculty meetings were held to discuss the rubrics and instruments. The rubrics were implemented in AY 2010-2011. The assessment results and corresponding continuous improvement actions based on the rubrics are discussed by the ME faculty each semester. Please refer to the documented minutes of faculty meetings. The following subsections provide details on the assessment process, the frequency of the assessments, the expected level of attainment, and summary and analysis of the assessment results for each student outcome.

4.A.1 Outcome (a): an ability to apply knowledge of mathematics, science, and engineering

(1) Assessment Process

<u>Rubric used for Assessment</u>: Table 4.1 presents the rubric used for assessing outcome (a). The rubric utilizes three performance indicators that examine students' abilities to (1) apply fundamental principles of science and engineering to solve basic problems; (2) apply engineering and mathematical models to solve open-ended problems; and (3) apply advanced mathematical principles to solve problems. Four degrees of achievement, i.e., unsatisfactory (0), marginal (1), satisfactory (2), and exemplary (3) are specified, where the parenthetical values represent the associated numerical scores.

Course used for Assessment: ME:3045 (58:045) Heat Transfer (three credit hours)

ME3045 (58:045), 'Heat Transfer' is a required course offered in the spring semester of the junior year. The application of mathematics in this course is representative of the highest level expected of students in the ME program and includes multi-variate calculus and differential equations. Students must also apply fundamental principles of physics (e.g., conservation laws and heat transfer rate equations) as well as engineering models (e.g., heat transfer correlations) to solve problems. Students' abilities to apply their knowledge of mathematics, science, and engineering are evaluated in homework and exam problems and in an open-ended design project, which each student completes individually.

Table 4.1. Rubric for Outcome (a)

1		Degree of	Achievement	
r eriorinance	Unsatisfactory	Marginal	Satisfactory	Exemplary
шикати	(0)	(1)	(2)	(3)
1. Application	Cannot identify or	Is able to write	Is able to write	Can correctly write
of	write appropriate	appropriate	relevant equations,	and use applicable
fundamental	conservation or	equations and	uses dimensionless	equations and
principles of	rate equation(s), or	parameter	parameters properly,	parameters to
science and	apply appropriate	definitions but does	and displays a general	correctly and
engineering	dimensionless	not exhibit a clear	understanding of how	concisely solve the
	parameters or heat	comprehension of	to use to solve the	problem.
	transfer	how to use them to	problem, but with	
	correlations.	solve the problem.	some omissions,	
			minor	
			misconceptions, or	
			calculation errors.	
2. Use of	Cannot identify	Identifies the	Identifies the relevant	Identifies the
engineering	relevant physical	relevant physical	physical processes,	relevant physical
and	process(es)	processes, and	selects models that	processes, selects
mathematical	occurring in a	selects models that	are appropriate for the	models that are
models to solve	given open-ended	describe these	problem, and uses	appropriate for the
open-ended	problem; cannot	processes but does	them correctly	problem, justifying
problems	propose and justify	not use them	(possibly with minor	why they are the
	the use of a	properly to solve the	calculation errors).	best choice of those
	particular model(s)	problem.		available, uses them
	to describe the			correctly, and
	process(es).			clearly explains the
				limitations of the
				model for the given
3. Annlication	Does not recognize	Correctly identifies	Correctly identifies	Correctly identifies
of advanced	the type of	the appropriate	the appropriate	the appropriate
mathematical	mathematical	mathematical	mathematical model	mathematical model,
principles to	equation to be	method to be	and solves with minor	solves correctly and
solve Problems	solved.	employed, but	errors or omissions.	completely, and uses
		cannot effectively	Uses the solution to	the solution to
		select or set up the	provide an answer to	provide an answer to
		appropriate	the problem.	the problem.
		mathematical		
		equation.		

<u>Assessment Instruments</u>: Table 4.2 describes the assessment instruments pertaining to each performance indicator defined in the rubric of outcome (a).

Table 4.2. Assessment Instruments for Outcome (a)

Performance Indicator	Assessment Instrument
 Application of 	Examination questions: Students will be given a problem similar to those in the textbook.
undamental	The problem will have idealized geometry, boundary conditions, and properties, such
principles of	that the models discussed in the course will perfectly fit the problem. Students will be
rience and	required to solve the problem by appropriately applying energy conservation rate

-

engmeering	equations, unitensionness parameters, near unanset corretations, appropriate solutions to the heat conduction equation, etc., and substituting appropriate values to compute the solution (temperature distribution, heat flux, etc.).
2. Use of engineering and mathematical models to solve open-ended problems	<i>Term projects</i> : The term project is an open-ended design problem in which students will encounter geometries and boundary conditions which do not conform exactly to the idealized cases studied in class. Students work individually and are required to make judgments about the relevant processes to model and the appropriate models to use. Assessment will address the appropriate and accurate use of mathematical and engineering models, as well as the student's justification of the use of the selected models and their understanding of the applicability of the selected model to the problem.
3. Application of advanced mathematical principles to solve problems	Examination questions: Students will be tested on their ability to set up and solve advanced mathematical equations to solve a problem. Likely examples involve the heat equation (e.g., selection of the appropriate form, simplification, solution, application of appropriate boundary conditions) or integration of spectral or directional surface properties over a specified range of wavelengths or solid angle.

(2) Frequency of Assessment

Outcome (a) is assessed once per year (every spring semester).

(3) Expected Level of Attainment

The ME Program faculty consider that outcome (a) is attained if the following two dimensions of the performance measure are met for each performance indicator: (1) the average numerical score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal to two indicates satisfactory performance. The threshold value of 84% is calculated based on the probability. $P[Z \leq I] = 0.84$, where Z follows the standard normal distribution.

(4) Summary of Evaluation Results and Extent of Outcome Attainment

Table 4.3 presents the assessment results for outcome (a) in terms of both the average scores and percentages of students with scores equal to or greater than 2. The results are broken down for each performance indicator, as described in Table 4.1, and the outcome is assessed for each semester. The numerical results indicate the following:

- (i) Both dimensions of the performance measure were mostly met for the first two performance indicators, "application of fundamental principles of science and engineering" and "use of engineering and mathematical models to solve open-ended problems," in the spring semesters of 2011, 2012, 2013, and 2014.
- (ii) The average scores and percentages of students with scores ≥ 2 for the third performance indicator, "*application of advanced mathematical principles to solve problems*," were 1.8 and 77.8%, respectively, in the spring of 2011 and 1.3 and 45.7%, respectively, in the spring of 2012. They were significantly lower than the respective target thresholds of 2 and 84% in the spring of 2012. After taking corrective actions in the springs of 2013 and 2014, the re-assessment of the third performance indicator

showed a great improvement from 45.7% in the spring 2012 to 74.1% and 92.7% in the springs of 2013 and 2014, respectively. Thus, both dimensions of the performance measure were met for all performance indicators.

Continuous improvements and action plans are described in Section 4.B.1.1.

Table 4.3. Assessment Results for Outcome (a)

			Performance Indic	ator	
Semester	Course Number	Application of fundamental principles of science and engineering	Use of engineering and mathematical models to solve open- ended problems	Application of advanced mathematical principles to solve problems	Average
		(a) 4	Average scores		
Spring 2011	ME3045	2.2	2	1.8	2
Spring 2012	ME3045	2.4	2.4	1.3	2
Spring 2013	ME3045	2.1	2.7	2.0	2.3
Spring 2014	ME3045	2.4	2.6	2.0	2.3
		(b) Percentag	es of scores exceeding 2		
Spring 2011	ME3045	79.4	88.9	77.8	60.3
Spring 2012	ME3045	84	98.8	45.7	67.9
Spring 2013	ME3045	87.1	92.9	74.1	82.4
Spring 2014	ME3045	90.2	93.5	92.7	90.2

4.A.2 Outcome (b): an ability to design and conduct experiments, as well as to analyze and interpret data

(1) Assessment Process

<u>Rubric used for Assessment</u>: Table 4.4 presents the rubric used for assessing outcome (b). The rubric utilizes six performance indicators that examine students' abilities related to (1) laboratory safety; (2) instrumentation usage; (3) experimental procedures; (4) error analysis; (5) data analysis; and (6) experimental design. Four degrees of achievement, i.e., unsatisfactory (0), marginal (1), satisfactory (2), and exemplary (3) are specified, with the the parenthetical values representing the associated numerical scores.

Course used for Assessment: ME:4080 (58:080), 'Experimental Engineering' (four credit hours).

ME:4080 (58:080), 'Experimental Engineering,' covers instrumentation and sensors, calibration, data acquisition, data reduction, error analysis, and overall experimental design. Error analysis includes identification of elemental errors, evaluation of precision and bias errors, instrument dynamic errors, and error propagation. The course is well suited to assess the ability of students to design and conduct experiments and to analyze and interpret experimental results.

[able 4.4
Rubric
for
Outcome
€

_

		Transfer of A	сшетелнени	
Performance Indicator	Unsatisfactory (0)	Marginal (1)	Satisfactory (2)	Exemplary (3)
1. Laboratory	No appreciation of	Unsafe lab procedures	Unsafe lab procedures	Observes good lab
safety	safety guidelines.	frequent.	infrequent.	safety procedures.
2. Instrumenta-	Does not understand	Has minimal understanding of how	Has mostly a basic	Has an understanding of how instruments
	work. Cannot select	instruments operate.	instruments operate.	operate. Can select the
	appropriate	Needs significant	Needs some guidance to	proper equipment and
	instrumentation to	supervision to select the	select the proper	instruments and is able
	Is unable to operate the	instruments and to	instruments and to	equipment.
	instrumentation provided	operate equipment.	operate equipment.	
3.	Cannot follow	Has problems following	Mostly understands the	Understands the logic
Experimental	experimental	the logic of the	logic of the procedures in	of the procedures in
procedures	procedures. Unable to	procedures in pre-set	with midance is able to	pre-set experiments.
	avnerimental plan. Data	eignificant emergicion	will guiualce, is able to	improves on what is
	documentation is poor	to develop and	experimental procedures.	develop and
	leading to loss of data.	implement experimental	Follows standards of data	implement sound
		procedures. Is aware of	collection and	experimental
		collection and	occasional oversight can	anod standards of data
		documentation, but has	cause loss of efficiency	collection and
		problems following them	or data.	documentation.
4. Error	Is unaware of the	Is aware of	Is aware of measurement	Defines and estimates
analysis	importance of error	measurement errors but	errors and can estimate	elemental errors.
	analysis. Cannot compute errors.	the theory and requires	help to achieve a final	statistical estimates of
		significant help to	result.	precision errors and
		achieve a final result.		evaluation of bias
				errors and propagates to final result.
5. Data analysis	Cannot relate data to	Attempts analysis of the	Most of the time	Uses appropriate
	theory.	data but does so with	analyzes the data	data and extract
			have grasp of the	information from it.
			underlying theory.	Identifies features in
			not included in the write-	interest or that deviate
			ups.	from the theory or
				expected outcome.
6. Experiment	Unable to design an	Needs considerable	Can mostly design	Able to design an
design	experiment.	guidance and	adequate experiments.	experiment that will
		supervision to design an	designs procedures	produce the desired
		experiment, rias	acquirae data parforme	instrumentation
		providing optimities	analysis and obtains	design procedures.
		meaningful results.	meaningful results with	acquire the data,
			some help.	perform analysis and
				obtain meaningful
				results without neip.

Assessment Instruments: Table 4.5 describes the assessment instruments pertaining to each performance indicator defined in the rubric of outcome (b).

Table 4.5. Assessment Instruments for Outcome (b)

Performance Indicator	Assessment Instrument
1. Laboratory safety	Laboratory observation throughout the semester (graded daily by TAs). Lab
	safety guidelines are provided in the course syllabus and one lecture on lab
	safety is given at the beginning of the semester.
2. Instrumentation usage	Individual log book and Exam II.
3. Experimental procedures	"Experimental considerations" section in Individual Technical Report (ITR).
4. Error analysis	Exam I and "Error Analysis" section in ITR.
5. Data analysis	"Results and discussion" section in Individual Technical Report.
6. Experiment design	Individual lab logbook in Independent Group Project. In the log book, the
	selection of instrumentation, design of lab procedures, data acquisition and
	analysis are used to assess "Experiment Design."

(2) Frequency of Assessment

Outcome (b) is assessed twice per year (fall and spring semesters).

(3) Expected Level of Attainment

The ME Program faculty consider that outcome (b) is attained if the following two dimensions of the performance measure are met for each performance indicator: (1) the average numerical score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal to two indicates satisfactory performance. The threshold value of 84% is calculated based on the probability, $P[Z \leq I] = 0.84$, where Z follows the standard normal distribution.

(4) Summary of Evaluation Results and Extent of Outcome Attainment

Table 4.6 presents the assessment results for outcome (b) in terms of both the average scores and percentages of students with scores equal to or greater than 2. The results are broken down for each performance indicator, as described in Table 4.44.4, and the outcome is assessed for each semester. The numerical results indicated the following:

- (i) The average scores for all six performance indicators, obtained from 2010 to 2014, were mostly greater than 2 except for the indicators, "*instrumentation usage*" in the spring of 2012 (1.9) and "*error analysis*" in the fall of 2010 (1.8). The scores improved after the fall of 2012, when part of the contents previously taught in ME:4080 (58:080), "Experimental Engineering," were moved to the new course ME:3351 (58:051), "Engineering Instrumentation," Overall, based on the first dimension of the performance measure, outcome (b) was achieved.
- (ii) The percentages of students with scores ≥ 2 for some performance indicators were below the target value of 84%. Corrective actions undertaken in the fall semester of

the percentage scores for the indicators "*experimental procedures*" and "*experiment design*" were still below 84% in the fall of 2012. After taking corrective action in the performance indicators in the fall semester of 2013 and the spring semester of 2014. 2012 yielded significantly better results where improvements were required. Even so, percentage scores. Thus, both dimensions of the performance measure were met for all spring of 2013, the re-assessment of the two indicators showed improvement in the

Continuous improvement actions are described in Section 4.B.1.2.

Table 4.6. Assessment Results for Outcome (b)

	2			LELI	DILITATICE THO	ICAUOT		
Semester	Number	Lab	Instrum.	Exp.	Error	Data	Exp.	Amorono
	TATTION	safety	usage	proced.	analysis	analysis	design	AVELAGE
			(a) /	Average scor	es			
Fall 2010	ME:4080	2.7	2.2	2.1	1.8	2.5	2.2	2.3
Spring 2011	ME:4080	3	2.1	2.5	2.1	2.6	2.7	2.5
Fall 2011	ME:4080	ω	2.1	2.4	2.7	2.5	2.9	2.6
Spring 2012	ME:4080	3	1.9	2.8	2.7	2	2.3	2.5
Fall 2012	ME:4080	3	2.6	2.3	2.8	2.4	2.4	2.6
Spring 2013	ME:4080	2.9	2.6	2.6	2.7	2.0	2.3	2.5
Fall 2013	ME:4080	2.6	2.4	2.9	2.6	2.3	2.6	2.5
Spring 2014	ME:4080	2.9	2.4	2.5	2.7	2.3	2.9	2.6
			(b) Percentage	es of scores	exceeding 2			
Fall 2010	ME:4080	100	73.3	60	46.7	93.3	86.7	86.7
Spring 2011	ME:4080	100	73.3	95	75.0	96.7	96.7	88.3
Fall 2011	ME:4080	100	91.7	91.7	100	100	100	91.7
Spring 2012	ME:4080	100	72.9	97.9	100	83.3	83.3	93.8
Fall 2012	ME:4080	100	100	80	100	100	70	100
Spring 2013	ME:4080	98.5	91.0	92.5	98.5	89.6	86.6	92.5
Fall 2013	ME:4080	93.3	86.7	100.0	93.3	86.7	86.7	93.3
Spring 2014	ME:4080	98.5	95.6	85.3	95.6	85.3	98.5	94.1

political, ethical, health and safety, manufacturability, and sustainability 4.A.3 Outcome (c): an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social,

(1) Assessment Process

achievement, i.e., unsatisfactory (0), marginal (1), satisfactory (2), and exemplary (3) are specified, with the parenthetical values representing the associated numerical scores. implementation; and (4) demonstration of design skills and design innovation. Four degrees of and objectives; (2) resources, issues, and constraints; (3) design solution and process rubric utilizes four performance indicators that examine students' abilities related to (1) goals Rubric used for Assessment: Table 4.7 presents the rubric used for assessing outcome (c). The

Courses used for Assessment: ME:4086 (58:086), 'Mechanical Engineering Design Project'

(three credit hours) and ME:4186 (58:186), 'Enhanced Design Experience' (three credit hours).

an ability to design a system, component, or process to meet desired needs within realistic constraints, such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. The capstone design course is well suited to assess student design course for the Design EFA and both are offered during the senior year. A common ME:4086 (58:086) is a required capstone design course, and ME:4186 (58:186) is a required outcome (c). principal goal of these courses is to integrate engineering and science coursework by developing

Table 4.7 Rubric for Outcome (c)

Deferments		Degree of	Achievement	
rentormance	Unsatisfactory	Marginal	Satisfactory	Exemplary
IIIUICALUI	(0)	(1)	(2)	(3)
1. Goals and	No understanding	Has some	Recognizes goals and	Demonstrates
objectives	of design goals or	understanding of	shows understanding	understanding of
	objectives;	objectives but unclear	of these to design	overall goals; knows
	objectives are	about the 'big	objectives; narrow	that the design may
	absent or poorly	picture;' has	focus on design.	be a subset of a
	formulated.	formulated some		larger system
		design objectives.		design.
2. Resources,	Unaware of	Has some	Well-documented	In addition to (2),
issues, and	design issues and	understanding of	design issues and	has developed
constraints	constraints,	design issues and	constraints; has	alternative plans for
	including	constraints and has	addressed resources	resources; has
	economic,	addressed resources.	needed to complete	alternative methods
	environmental,		design or system.	of meeting design
	social, political,			issues and
	emical, nearm and			constraints.
	satety,			
	and enstainability:			
	no resources			
	identified.			
3. Design	Tasks identified,	Tasks identified and	Well defined	Has worked out a
solution and	but no evidence of	progression is listed;	progression; critical	systematic and
process	progression from	demonstrates some	tasks identified and	detailed list of tasks
implementation	one task to the	understanding of	methods to address	with logical
	next; time critical	time-sensitive tasks;	them are adequate;	schedule; attention
	tasks or schedule	has considered how	process development	is paid to time
	not identified;	to address these	follows defined tasks	critical tasks; has
	implementation of	tasks; process follows	and meets schedule.	provided schedule
	process ignored.	a specified plan and		for time critical
		orderly		tasks; detailed
		implementation.		schedule according
				to plan is provided.
4. Demonstration	Progress is almost	Progress is adequate	Good progress with	Progress according
of design skills	non-existent; no	and shows design	good design skills;	to schedule; good
and design	skills shown and	skills; hardly any	limited design	design skills; design
innovation	concept of	design innovation;	innovation;	has many
	innovation is non-	limited variations.	alternatives	innovations and
	existent.		considered.	alternatives.

32

<u>Assessment Instruments</u>: Table 4.8 describes the assessment instruments pertaining to each performance indicator defined in the rubric of outcome (c).

Table 4.8. Assessment Instruments for Outcome (c)

n		Assessmen	t Instrument	
Indicator	Design Review Meetings	Project Proposal	Final Team Presentation	Final Team Report
1. Goals and	Student	Goals and	Student	Executive Summary
objectives	performance when	Objectives section	performance	and Introduction
	chairing review		describing project	section describing
	meetings		objectives	goals and objectives
2. Resources,	Student	Resources and	Student	Procedure section
issues, and	performance when	Constraints	performance	describing resources,
constraints	chairing review	section	describing use of	issues, and
	meetings		resources and	constraints
			constraints	
3. Design solution	Student	Expected Results	Student	Results and
and process	performance when	and Outcomes	performance	Discussion section
implementation	chairing review	section	discussing design	describing design
	meetings		decisions	solution and process
				implementation
4. Demonstration	Student	Expected Results	Student	Results and
of design skills and	performance when	and Outcomes	performance	Discussion and
design innovation	chairing review	section	describing	Conclusion sections
	meetings		effectiveness of	describing design
			design solutions	skills and innovation

(2) Frequency of Assessment

Outcome (c) is assessed twice per year (fall and spring semesters).

(3) Expected Level of Attainment

The ME Program faculty consider that outcome (c) is attained if the following two dimensions of the performance measure are met for each performance indicator: (1) the average numerical score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal to two indicates satisfactory performance. The threshold value of 84% is calculated based on the probability, $P[Z \leq I] = 0.84$, where Z follows the standard normal distribution.

(4) Summary of Evaluation Results and Extent of Outcome Attainment

Table 4.9 presents the assessment results for outcome (c) in terms of both the average scores and percentages of students with scores equal to or greater than 2. The results are broken down for each performance indicator, as described in Table 4.7, and the outcome is assessed for each semester. The numerical results indicate the following:

(i) Both dimensions of the performance measure assessed via ME:4086 (58:086) were met

33

for all four performance indicators in the fall semester of 2010, the spring and fall semesters of 2012 and 2013, and the spring semester of 2014. The data for the fall and spring semesters of 2011 were not collected and this outcome could not be assessed for those semesters. Based on the available data from 2010 and 2012-2014, outcome (c) was achieved.

(ii) Beginning in the spring of 2013, ME:4186 (58:186) and ME:4086 (58:086) were used for the assessment of outcome (c). Both dimensions of the performance measure based on ME:4186 (58:186) data were met for all performance indicators.

Continuous improvements and action plans are described in Section 4.B.1.3.

Table 4.9. Assessment Results for Outcome (c)

				Performance inci	cator	
Comester	Course	Coole and	Resources,	Design solution	Demonstration of	
DETTESTET	Number	obientives	issues, and	and process	design skills and	Average
		onlectives	constraints	implementation	design innovation	
			(a) Averag	e scores		
Fall 2010	ME:4086	2.8	2.8	2.8	2.8	2.8
Spring 2011	ME:4086	NA	NA	NA	NA	NA
Fall 2011	ME:4086	NA	NA	NA	NA	NA
Spring 2012	ME:4086	2.7	2.6	2.6	2.6	2.6
Fall 2012	ME:4086	2.8	2.7	2.7	2.7	2.7
Spring 2013	ME:4086	2.8	2.7	2.5	2.2	2.6
Spring 2013	ME:4186	2.6	2.6	2.6	2.6	2.6
Fall 2013	ME:4086	2.7	2.5	2.6	2.5	2.6
Spring 2014	ME:4086	2.6	2.4	2.5	2.3	2.6
Spring 2014	ME:4186	2.7	2.7	2.6	2.7	2.7
		(b) P	ercentages of s	cores exceeding 2		
Fall 2010	ME:4086	100	100	100.0	100	100
Spring 2011	ME:4086	NA	NA	NA	NA	NA
Fall 2011	ME:4086	NA	NA	NA	NA	NA
Spring 2012	ME:4086	100	100	96.3	100	100
Fall 2012	ME:4086	100	100	100	100	100
Spring 2013	ME:4086	100	100	100	90	100
Spring 2013	ME:4186	100	100	100	100	100
Fall 2013	ME:4086	100	100	100	100	100
Spring 2014	ME:4086	100	100	100	84	100
Spring 2014	ME:4186	100	91.7	91.7	100	91.7

4.A.4 Outcome (d): an ability to function on multidisciplinary teams

(1) Assessment Process

<u>Rubric used for Assessment</u>: Table 4.10 presents the rubric used for assessing outcome (d). The rubric utilizes five performance indicators that examine students' abilities related to (1) initiative; (2) responsibility; (3) contribution to team work or project; (4) multi-disciplinary interaction; and (5) intra-team communication skills. Four degrees of achievement, i.e., unsatisfactory (0),

represent the associated numerical scores. marginal (1), satisfactory (2), and exemplary (3) are specified for which the parenthetical values

ENGR:2760 (57:021), 'Design for Manufacturing' (three credit hours) <u>Courses used for Assessment</u>: ME:4086 (58:086), 'Mechanical Engineering Design Project' (three credit hours); ME:4186 (58:186), 'Enhanced Design Experience' (three credit hours); and

courses are to integrate engineering and science coursework, while concurrently developing written communication, oral communication, and multi-disciplinary teamwork skills. This suited for assessing the ability of students to work effectively on multi-disciplinary teams. sound, raises awareness of contemporary issues, and develops appreciation of the economic, global, societal and ethical contexts of engineering work. These courses were found to be wellintegration is accomplished by having the students work on a design project, which is technically design course for the Design EFA; both are offered during the senior year. The goals of these ME:4086 (58:086) is a required capstone design course, and ME:4186 (58:186) is a required

addition to students' peer evaluation. assistants. The evaluation is performed by a panel consisting of the instructor and the TAs in applying them on a real-world project, e.g., the "Electric Car Project." Student teams work in the 'Design for Manufacturing Laboratory' under the close supervision of the instructor and teaching experience with the machine tools in the 'Design for Manufacturing Laboratory' followed by help the students learn about various manufacturing processes and provide them hands-on they develop against the products of other student groups. This course includes this activity to requires student teams to follow a formal design process and manufacture and test the product ENGR:2760 (57:021) is a required course offered during the sophomore year. The course

Table 4.10. Rubric for Outcome (d)

Deufeumenee		Degree of	f achievement	
Indicator	Unsatisfactory	Marginal	Satisfactory	Exemplary
Innicator	(0)	(I)	(2)	(3)
1. Initiative	Does not show	Shows some interest in	Exhibits interest in work	Generates
	interest in work.	work. Participates in	as evidenced by in-depth	opportunities to enrich
	Passive at team	team meetings, but	study of assigned tasks	project outcomes,
	meetings. Does not	unable to lead a	and active participation	while exhibiting
	initiate cooperation/	discussion.	in project discussions.	systematic and
	interaction with	Occasionally initiates	Assumes leadership	rigorous approach to
	teammates and/or	cooperation with	roles. Initiates	work. Leads most of
	professionals from	teammates, but unable	cooperation with	the discussions at team
	other disciplines.	to be in charge of the	teammates and	meetings. Recognized
		project tasks.	professionals from other	as a team leader by the
			disciplines.	teammates. Effectively
				engages in
				collaboration with
				professionals from
				other disciplines to
				benefit the project.
2. Responsibility	Does not do	Does some of the	Performs all assigned	Performs all assigned
	assigned work.	assigned work. Attends	work. Acts	work. Acts
	Misses team	team meetings, but	professionally. Viewed	professionally at all
	meetings. Ignores	often is late or	as reliable and	times. Has a strong
	deadlines. Lacks	unprepared. Aware of	responsible by	sense of personal
	personal	the importance of	teammates. Has positive	responsibility and

5. Intra-team communication skills	4. Multi- disciplinary interaction	3. Contribution to team work or project	
Does not talk to other team members. Does not reply to emails or requests for help from other team members.	Refuses to engage in dialog with team members from other disciplines; Does not bother to learn vocabulary required to communicate with team members from other disciplines	Desn't contribute to team project, no useful suggestion to address team's needs; doesn't collect any useful information needed for the project or work.	responsibility. Viewed as unreliable and irresponsible by other teammates.
Is slow to reply to emails. Doesn't provide needed information to others. Doesn't request needed materials.	If pressured, will engage in dialog with team members from other disciplines. Is poorly prepared and spends lintle time learning basic vocabulary of other disciplines and applies vocabulary with other team members only as a last resort.	Tries to offer some ideas but not well- thought out or developed; collects information when pushed to do so but often late; contributes liftle to team's work or project.	individual's responsibility in the team success, but often is reluctant to exercise it.
Replies to emails in a reasonable amount of time. Discusses tasks, goals, and provides information as needed.	Occasionally engages in dialog with team members from other disciplines. Is moderately well prepared and spends some time learning basic vocabulary of other disciplines and applies vocabulary with other team members as needed to accomplish project tasks.	Collects useful, basic information; usually offers good ideas to meet team's needs	impact on team dynamics by ensuring individual and team discipline and accountability.
ls pro-active about identifying information and communicating it to team-members. Helps other to locate information and share among all parties involved.	Actively engages in dialog with team members from other disciplines and encourages other team members to do the same. Is well prepared and spends time learning basic and some advanced some advanced some advanced some advanced some advanced some advanced rocabulary of other disciplines and applies vocabulary of other team nembers as needed to accomplish project tasks.	Offers well-developed and clearly expressed ideas to help term in its project; performs all tasks effectively and in a timely manner; goes well beyond expectations to help the team complete the project.	expects the same from others. Has a strong impact on team dynamics by fostering individual and team discipline and accountability.

<u>Assessment Instruments</u>: Table 4.11 describes the assessment instruments pertaining to each performance indicator defined in the rubric of outcome (d).

Table 4.11. Assessment Instruments for Outcome (d)

		Assessment In	strument	
Performance Indicator	Final team report from ME:4086/ME:4186 ^(a)	Individual student's essay from ME:4086 and ME:4186 ^(a)	Student peer evaluations from ME:4086 and ME:4186 ^(a)	Laboratory observations from ENGR:2760
 Initiative 		Student essay on	Student peer	
		promoting	evaluation forms	
		interaction with	grading initiative	

35

		other professionals	assigned work	
2. Responsibility			Student peer	Laboratory
			evaluation forms	observations
			grading	evaluating
			responsibility in	students'
			performing	responsibility,
			assigned work	including
				participation in the
				assigned work
3. Contribution			Student peer	Laboratory
to team work or			evaluation forms	observations
project			grading	evaluating
			contribution to	students'
			team work or	contribution to
			project	team work or
				project
4. Multi-	Results and Discussion	Student essay	Student peer	Laboratory
disciplinary	section explaining	describing	evaluation forms	observations
interaction	interaction with vendors	effective	grading	evaluating
	and collaborators and	integration of work	contribution to	students'
	describing effective	from different	multi-disciplinary	interactions on
	integration of work from	disciplines	interaction	multi-disciplinary
	different disciplines			teams
5. Intra-team			The assessment of	
communication			this performance	
skills			indicator is based	
			on 1) idea sharing	
			and exchanging	
			between team	
			members and 2)	
			the support	
			between subtasks	

(a) ME:4086 is used for both fall and spring semesters, whereas ME:4186 is used only for spring semesters

(2) Frequency of Assessment

Outcome (d) is assessed twice per year.

(3) Expected Level of Attainment

probability, $P[Z \le 1] = 0.84$, where Z follows the standard normal distribution. to two indicates satisfactory performance. The threshold value of 84% is calculated based on the score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal of the performance measure are met for each performance indicator: (1) the average numerical

(4) Summary of Evaluation Results and Extent of Outcome Attainment

The ME Program faculty consider that outcome (d) is attained if the following two dimensions

semester. The numerical results indicate the following: for each performance indicator, as described in Table 4.10, and the outcome is assessed for each and percentages of students with scores equal to or greater than 2. The results are broken down Table 4.12 presents the assessment results for outcome (d) in terms of both the average scores

- Ξ of 2010, the spring and fall semesters of 2012, the spring and fall semesters of 2013, achieved. when there were 96 ME students taking the course. Therefore, outcome (d) was low enrollment of ME students (thus, a small sample of 23) in ENGR:2760 (57:021) in spring of 2013, but it was 82.6% in the fall of 2013. This can be explained by the very target value of 84%. However, this percentage score was improved to 97.9% in the performance indicator, "contribution to teamwork or project" in the fall semester of mostly met for all performance indicators. The only exception was that, for the third and the spring semester of 2014, both dimensions of the performance measure were of 2012, and the outcomes were not assessed. With the data collected in fall semester Data were not collected in the spring and fall semesters of 2011 or in the spring semester fall semester of 2013. The percentage increased back to 96.9% in the spring of 2014, 2012 semester, the score of 80% using ENGR:2760 (57:021) was slightly below the
- Ξ or project," and "knowledge transfer" was replaced by "multi-disciplinary interaction." outcome (d) were amended by replacing "cooperation" with "contribution to team work Based on the initial data and faculty discussions, the performance indicators for The revised rubric provides an improved description of outcome (d)

Continuous improvements and action plans are described in Section 4.B.1.4.

Spring 2013 Spring 2013 Spring 2013 Spring 2012 Spring 2012 Spring 201 1 Spring 2012 Spring 2011 Fall 2013 Fall 2013 Semester Fall 2012 Fall 2012 Fall 2011 Fall 2010 ENGR:2760 ME:4086 ENGR:2760 ME:4186 ENGR:2760 ENGR:2760 ME:4086 ME:4186 ME:4086 ME:4086 ME:4086 ME:4086 ME:4086 ME:4186 Number Course Initiative © NA (e) 2.6NA NA 2.6 NA © 2.6 6 Responsibility NA 2.6 NA 2.72.72.72.72.82.82.82.82.8<u>NA</u> NA (a) Average scores 7 2.8^(c) teamwork or Contribution project Performance Indicator NA 2.4 2.6^(c) NA 2.6^(c) NA NA 5 2.62.72.72.72.72.62.8disciplinary interaction^(b) Multi- $2.6^{(d)}$ NA NA 2.6^(d) 2.7(d 2.62.92.22.22.52.7 2.7 Communication skills⁽¹⁾ Intra-team 2.9 2.8 Average NA NA 2.6 NA 2.9 2.6 2.6 2.6

Table 4.12. Assessment Results for Outcome (d)

38

Spring 2014 Spring 2014

ME:4186 ME:4086

 $\frac{2.6}{2.5}$

 $\frac{2.6}{2.7}$

2.8

2.16		90.9	90.9	97.9	1	ENGK:2700	opring 2014
91./	91./	100	97.8 8.CV	91./	C./8	MIE:4186	Spring 2014
95.7	95.7	95.7	91.3	95.7	91.3	ME:4086	Spring 2014
787	0	91.3	82.6	87	(e)	ENGR:2760	Fall 2013
95.7	95.7	91.3	87.0	91.3	95.7	ME:4086	Fall 2013
98.6		98.9	97.9	98.9	(e)	ENGR:2760	Spring 2013
100	100	100	100	100	100	ME:4186	Spring 2013
96.6	93.1	96.6	89.7	96.6	93.1	ME:4086	Spring 2013
95		95	80	85	- (e)	ENGR:2760	Fall 2012
92		96 ^(d)	$100^{(c)}$	88	92	ME:4086	Fall 2012
93.8		98.4	90.1	93.8	(e)	ENGR:2760	Spring 2012
NA		NA	NA	NA	NA	ME:4186	Spring 2012
96.3		$100^{(d)}$	$100^{(c)}$	96.3	96.3	ME:4086	Spring 2012
NA		NA	NA	NA	NA	ME:4086	Fall 2011
NA		NA	NA	NA	NA	ME:4186	Spring 2011
NA		NA	NA	NA	NA	ME:4086	Spring 2011
94.1		97.1 ^(d)	97.1 ^(c)	91.2	94.1	ME:4086	Fall 2010
		2	f scores exceeding '	(b) Percentages of			
2.1		2.1	2.1	2.0	- 3	ENGK:2700	spring 2014

(a) The indicator "Contribution to teamwork or project" is a revised version of the indicator "Cooperation.

The indicator "Multi-disciplinary interaction" is a revised version of the indicator "Knowledge transfer." The revised version was adopted in the spring of 2013.

€ The revised version was adopted in the spring of 2013.

The scores are based on the previously used indicator "Cooperation."

G @ @ @ The scores are based on the previously used indicator "Knowledge transfer."

Not assessed.

The indicator "Intra-team communication skills" was added in the spring of 2013.

4.A.5 Outcome (e): an ability to identify, formulate, and solve engineering problems

(1) Assessment Process

exemplary (3) for which the parenthetical values represent the associated numerical scores. degrees of achievement were specified, i.e., unsatisfactory (0), marginal (1), satisfactory (2), and engineering solution methods; and (3) the analysis and interpretation of problem solutions. Four identifying and formulating an engineering problem; (2) the selection and use of proper rubric utilizes three performance indicators that examine students' abilities related to (1) Rubric used for Assessment: Table 4.13 presents the rubric used for assessing outcome (e). The

Course used for Assessment: ME:3052 (58:052), 'Mechanical Systems' (four credit hours)

to assess the rubric criteria. The course has been found to be well-suited to assessing the ability model using appropriate analytical and computational techniques. A written project report is used problem in the project narrative, formulate an appropriate engineering model, and solve this The goal of the project is to develop an engineering solution to an open-ended problem that is described using non-technical language. Students are expected to identify an engineering ME:3052 (58:052) is a required course during the junior year in the Mechanical Engineering Program. The course requires each student to complete a project and prepare a written report.

39

of students to identify, formulate, and solve engineering problems.

Table 4.13. Rubric for Outcome (e)

Daufannana		Degree of	Achievement	
Indicator	Unsatisfactory (0)	Marginal (1)	Satisfactory (2)	Exemplary (3)
1. Ability to	Unable to	Recognizes	Recognizes	Recognizes
identify and	recognize	engineering aspects	engineering aspects of	engineering aspects
formulate	engineering	of the problem at a	the problem. Able to	of the problem, their
engineering	aspects of the	superficial level. The	generate adequate and	complexity, and
problem	problem. Cannot	formulated	correctly formulated	relative importance.
	formulate an	engineering model	engineering models.	Formulates clear and
	engineering	has deficiencies.	Solid technical	precise engineering
	model. Lack of	Shaky technical	reasoning; good	models and the
	technical	reasoning; occasional	command of	underlying
	reasoning; does	use of non-standard	terminology.	assumptions.
	not use	or inappropriate		Rigorous and deep
	appropriate	terminology.		technical reasoning.
	technical			
	terminology.			
2. Selection and	Lacks knowledge	Has some knowledge	Has good knowledge	Has full knowledge
use of	of the necessary	of the appropriate	of appropriate	and understanding
appropriate	engineering	engineering	engineering	of engineering
analytical and	methods and	techniques. The	techniques. The	techniques; applies
computational	tools. The	selected methods are	selected tools are	concurrent methods
tools	selected methods	adequate, but not	adequate and efficient;	throughout solution
	are inadequate for	utilized to their full	demonstrates	procedures.
	solving the	capability and/or	proficiency in using	Meticulous and
	problem; incorrect	utilized with some	these solution	creative approach to
	use of the solution	errors.	methods.	standard solution
	techniques.			methods.
3. Analysis and	No solution or	The constructed	The constructed	A comprehensive set
interpretation of	only a partial	solution has some	solution is technically	of solutions that
the solutions to	solution is	weaknesses; its	sound and complete. A	depend on various
problems	constructed. No	analysis and	detailed analysis of the	assumptions or
	analysis of the	interpretation are	solution as to its	conditions is
	solution and its	incomplete and may	engineering feasibility	developed. An in-
	engineering	miss important	is conducted,	depth and thorough
	feasibility is	implications of the	including sensitivity	solution analysis,
	conducted.	solution's	studies and other	which determines
		engineering	appropriate	limits of its
		feasibility.	considerations	applicability,
				illustrates it on case
				studies is conducted.

performance indicator defined in the rubric of outcome (e). Assessment Instruments: Table 4.14 describes the assessment instruments pertaining to each

Table 4.14. Assessment Instruments for Outcome (e)

Performance Indicator 1. Ability to identify and formulate engineering problem	Assessment instrument Project report This performance indicator is evaluated using the Problem formulation section the project report. Students are required to identify technical aspects of the problem: to generate and formulate an engineering model; and to provide a cle and concise description of the hypotheses, assumptions, and methodologies to t used to solve the problem. This performance indicator is evaluated using the Solution procedure section of
 Ability to identify and formulate engineering problem Selection and use of appropriate analytical and computational tools 	In speriormance indicator is evaluated using the <i>Project report</i> . Students are required to identify technical aspects of the problem; to generate and formulate an engineering model; and to provide and concise description of the hypotheses, assumptions, and methodologi used to solve the problem. This performance indicator is evaluated using the <i>Solution procedure</i> see project report. Students are required to provide a detailed description of t analytical and computational methods used to solve the problem. These r (e.g., elementary beam theory, failure theories, solid modeling, and for related courses (i.e., 57:019, 'Mechanics of Deformable Bodies' and EN('Design for Manufacturing').
3. Analysis and interpretation of the solutions to problems	This performance indicator is evaluated using the <i>Results and Discussion</i> the project report. Students are required to provide detailed analysis of the they obtained using at least two different solution methods (analytical vs. computational): validate the results: discuss the innect of various hypothe assumptions in the problem formulation on the results; discuss limitations solution methods and how they impact the results; discuss design implicat the searches.

(2) Frequency of Assessment

Outcome (e) is assessed once per year (spring semester).

(3) Expected Level of Attainment

to two indicates satisfactory performance. The threshold value of 84% is calculated based on the probability, $\ P[Z \leq 1] = 0.84$, where Z follows the standard normal distribution score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal of the performance measure are met for each performance indicator: (1) the average numerical The ME Program faculty consider that outcome (e) is attained if the following two dimensions

(4) Summary of Evaluation Results and Extent of Outcome Attainment

Table 4.15 presents the assessment results for outcome (e) in terms of both the average scores and percentages of students with scores equal to or greater than 2. The results are broken down for each performance indicator, as described in Table 4.13, and for each semester the outcome is assessed. The numerical results indicate the following:

Ξ The average scores for all three performance indicators, obtained in the spring semesters of 2011, 2012, and 2013, are equal to or greater than 2, thereby satisfying the first dimension of the performance measure.

41

Ξ However, the percentages of students with scores ≥ 2 for a few performance indicators dimension of the performance measure. Thus, outcome (e) was achieved. were slightly less than the target value of 84% in the spring semesters of 2011 and 2012. The corrective actions that were undertaken in the spring of 2013 improved the second

Continuous improvement actions are described in Section 4.B.1.5.

Table 4.15. Assessment Results for Outcome (e)

Spring 2014 ME:2052 08.5 08.5 03.8	Spring 2013 ME:3052 100.0 100.0 92.0	Spring 2012 ME:3052 82.6 85.2 76.5	Spring 2011 ME:3052 78.5 90.8 76.9	(b) Percentages of scores exceeding 2	Spring 2014 ME:3052 2.8 2.9 2.6	Spring 2013 ME:3052 2.7 2.8 2.6	Spring 2012 ME:3052 2.2 2.2 2.2 2.2	Spring 2011 ME:3052 2 2 2	(a) Average scores	Course Ability to identify Selection and use of Analysis an Semester Analysis and formulate appropriate interpretation Number engineering analytical and the solutions problem computational tools problems
93.8	92.0	76.5	76.9		2.6	2.6	2.2	2		icator Analysis and interpretation of the solutions to problems
96.9	98.3	84.6	64.6		2.7	2.7	2.2	2		Average

4.A.6 Outcome (f): an understanding of professional and ethical responsibility

(1) Assessment Process

ethics; (2) ethical considerations in engineering practice; and (3) professional considerations in (1), satisfactory (2), and exemplary (3) for which the parenthetical values represent the associated engineering practice. Four degrees of achievement are specified, i.e., unsatisfactory (0), marginal knowledge of the National Society of Professional Engineers' (NSPE's) code of engineering rubric utilizes three performance indicators that examine students' abilities related to (1) numerical scores. Rubric used for Assessment: Tanle 4.16 presents the rubric used for assessing outcome (f). The

Courses used for Assessment: ME:4055 (58:055), 'Mechanical Systems Design' (four credit hours) and ME:0099 (58:091), 'ME Professional Seminar' (no credit hours)

understanding of professional and ethical responsibility. complete written assignments on Product Liability, Standards, and Engineering Ethics Quiz. product liability, and ethics in design. The course ME:4055 (58:055) requires each student to These written assignments and final exam questions are used to assess the student's durability of mechanical elements; safe-life, fail-safe, damage-tolerant design; and standards, include design considerations for mechanical engineering systems; strength, deformation, and ME:4055 (58:055) is a required, four-credit course offered during the senior year. Course topics

ME:0099 (58:091) is a required 0-credit course offered during the junior and senior years. This course introduces students to the practical aspects of being a mechanical engineer in the workplace, community, and the world. Professionals from various engineering environments (e.g., industry, consulting, government, education, and graduate study) are invited to discuss the field of mechanical engineering with students. Various topics are discussed depending on the expertise and experience of the speakers, including, but not limited to, the technical aspects of a career in engineering, professional development, professional conduct, ethics, lifelong learning, and global and societal issues related to the engineering profession. Two lectures are provided on ethics. This course was added to the curriculum in the fall of 2013 to assess the performance indicator, "*Ethical considerations in engineering practice*."

Table 4.16. Rubric for Outcome (f)

n		10 aargaci	Achievement	
Tedicotor	Unsatisfactory	Marginal	Satisfactory	Exemplary
Indicator	0	(1)	(2)	(3)
1. Knowledge of	Unaware of NSPE	Knows that the NSPE	Knowledgeable about	Very knowledgeable
the NSPE code of	code of	code of engineering	the NSPE code of	about the NSPE
engineering	engineering ethics	ethics exists. Knows	engineering ethics.	code of ethics.
ethics	or other	of many NSPE	Knows that safety is	Knows that safety is
	engineering ethics	statements, but does	paramount in	paramount in
	codes formed by	not emphasize that	engineering practice	engineering practice
	professional	safety is paramount		
	engineering	in engineering		
	organizations	practice		
2. Ethical	Does not	Unable to formulate	Can formulate	Can formulate
considerations in	understand the	adequate ideas	adequate ideas related	excellent ideas in the
engineering	ethical aspects of	related to ethical	to the ethical practice	ethical practice of
practice	engineering	practices in	of engineering	engineering
		engineering		
3. Professional	Does not	Minimal	Understands	Complete
considerations in	understand	understanding of	professional aspects	understanding of
engineering	professional	professional aspects	including written	professional aspects
practice	aspects including	including products'	communication of	including written
	products' liability	liability	products' liability	communications of
				products' liability

<u>Assessment Instruments</u>: Tanle 4.17 describes the assessment instruments pertaining to each performance indicator defined in the rubric of outcome (f).

Table 4.17. Assessment Instruments for Outcome (f)

					Performance Indicator
Exam	Final				
	Product Liability			ME:4055, 'Mechar	
	Standards			nical Systems Design	Assessment Instrun
Ethics Quiz	Engineering				nents
Written Assignment	Ethics	Seminar'	Professional	ME:0099, 'ME	

	Problem 1	Written Assignment	Written Assignment		
NSPE code of gineering ethics owledge	Х			х	
Ethical nsiderations in gineering actice				Х	Х
Professional nsiderations in gineering actice		x	×		

рг со 3. рг со 2. <u>к</u> са 1. рг со 3. г

(2) Frequency of Assessment

Outcome (f) is assessed once per year (fall semester).

(3) Expected Level of Attainment

The ME Program faculty consider that outcome (f) is attained if the following two dimensions of the performance measure are met for each performance indicator: (1) the average numerical score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal to two indicates satisfactory performance. The threshold value of 84% is calculated based on the probability, $P[Z \leq I] = 0.84$, where Z follows the standard normal distribution.

(4) Summary of Evaluation Results and Extent of Outcome Attainment

Table 4.18 presents the assessment results for outcome (f) in terms of both the average scores and percentages of students with scores equal to or greater than 2. The results are broken down for each performance indicator, as described in Table 4.16 and the outcome is assessed for each semester. The numerical results indicate the following:

 Both dimensions of the performance measure were met for all three performance indicators in the fall semesters of 2010, 2011, 2012, and 2013. Therefore, outcome (f) was fully achieved.

Continuous improvements and action plans are described in Section 4.B.1.6.

Table 4.18. Assessment Results for Outcome (f)

Fall 2013	Fall 2013	Fall 2013	Fall 2012	Fall 2011	Fall 2010		Fall 2013	Fall 2013	Fall 2013	Fall 2012	Fall 2011	Fall 2010		Semester	
ME:0099	ME:4055:02	ME:4055:01	ME:4055	ME:4055	ME:4055		ME:0099	ME:4055:02	ME:4055:01	ME:4055	ME:4055	ME:4055		Course Number	
	100	97	92.8	84.5	79.2	(b) Percenta;		2.8	2.4	2.7	2.7	2.5	(a)	Knowledge of NSPE's code of engineering ethics	
89.5	100	96	94	84.5	91.7	ges of scores exceeding 2	2.67	2.96	2.78	2.7	2.5	2.6	Average scores	Ethical considerations in engineering practice	Performance In
	100	100	85.5	100	95.8			2.94	2.89	2.4	3.0	2.8		Professional considerations in engineering practice	dicators
89.5	100	100	95.2	96.5	95.8		2.67	2.9	2.69	2.6	2.7	2.6		Average	

4.A.7 Outcome (g): an ability to communicate effectively

(1) Assessment Process

<u>Rubric used for Assessment</u>: Table 4.19 presents the rubric used for assessing outcome (g). This nubric is used to assess the ability of a student to communicate effectively orally and in writing. It utilizes four performance indicators that examine students' abilities relative to (1) organization of writing, (2) writing skills, (3) organization of presentations, and (4) presentation skills. Four degrees of achievement are specified, i.e., unsatisfactory (0), marginal (1), susfactory (2), and exemplary (3) for which the parenthetical values represent the associated numerical scores.

Course used for Assessment: ME:4080 (58:080), 'Experimental Engineering,' (four credit hours); ME:4086 (58:086), 'Mechanical Engineering Design Project,' (three credit hours); ME:4186 (58:186), 'Enhanced Design Experience,' (three credit hours).

ME:4080 (58:080) is a required course offered in the senior year. Students are required to write an individual technical report about designing and conducting experiments and analyzing and interpreting data. This course is has ben found to be well-suited for assessing the ability of students to communicate effectively in writing.

ME:4086 (58:086) is a required capstone design course, and ME:4186 (58:186) is a required design course for the Design EFA, and both courses are offered during the senior year. The goal of these courses is to integrate engineering and science coursework, while concurrently developing written communication, oral communication, and multi-disciplinary teamwork skills. This integration is accomplished by having the students work on a design project that is

technically sound, raises awareness of contemporary issues, and develops appreciation of the economic, global, societal and ethical contexts of engineering work. These courses have been found to be well-suited for assessing the ability of students to communicate effectively in oral presentations.

Table 4.19. Rubric for Outcome (g)

1		Degree of /	Achievement	
Indicator	Unsatisfactory	Marginal	Satisfactory	Exemplary
1 Occupitation	(U)	(I)	(2)	A locial segments of
in writing	information No	information Some	of information is	information is used
	graphics. Poor	graphics but not	used. Some	Proper graphics are
	discussion and	referenced. Limited	graphics are used	used to explain and
	conclusions.	discussion and	to explain and	interpret the text.
	Poorly designed	conclusions. Unclear	interpret the text.	Thoughtful discussion
	contents.	content.	Proper discussion	and conclusions. Clear
			and conclusions.	and interesting writing.
			Clear content.	
2. Writing	Numerous	A few grammar	Hardly any	Error free. Appropriate
skills	grammar and	and/or spelling errors.	grammar and/or	and concise syntax and
	spelling errors.	Understandable	spelling errors.	sentences.
	Long and	sentences. Fair	Good syntax and	
	confusing	syntax.	sentences.	
	sentences. Poor			
	syntax.			
3. Organization	No sequence of	Poor sequence of	The student has	The student has wisely
in presentation	information. No	information. Limited	used a logical	used sequencing of
	graphics. Text	graphics that hardly	sequence of	information. Very good
	doesn't match	support the	information. Good	graphics with proper
	images. Poorly	presentation.	graphics that	text to support the
	designed layout.	Insufficient or	support the	presentation. Clear and
		excessive text for	presentation.	interesting layout.
		images. Unclear	Proper text for	
		materials and layout.	images. Clear	
			materials and	
			layout.	
4. Presentation	No eye contact	Limited eye contact	Good eye contact	Very good eye contact
skills	with the audience.	with the audience.	with the audience.	and body language.
	Poor body	Limited proper body	Good body	Talks with clarity.
	language.	language.	language and	Correct language usage
			movement.	in regard to both the
				materials and the
				audience.

<u>Assessment Instruments</u>: Table 4.20 describes the assessment instruments pertaining each performance indicator defined in the rubric of outcome (g).

Table 4.20. Assessment Instruments for Outcome (g)

Performance	Assessmen	t Instrument
Indicator	Individual technical reports in ME:4080	Final presentations in ME:4086(0186)
1. Organization	The assessment of this performance	
in writing	indicator is based on 1) the use of information in a logical sequence; 2)	
	usage and interpretation of graphics; 3)	
	discussion and conclusions; and 4) clarity of the content.	
2. Writing skills	The assessment of this performance indicator is based on 1) grammar and spelling errors; 2) sentence structure; and 3) syntax.	
3. Organization in presentation		The assessment of this performance indicator is based on 1) the use of information in a logical sequence during presentations; 2) usage and interpretation of graphics; and 3) clarity of layout.
4. Presentation skills		The assessment of this performance indicator is based on 1) eye contact and 2) proper body language.

(2) Frequency of Assessment

Outcome (g) is assessed twice per year (every semester).

(3) Expected Level of Attainment

to two indicates satisfactory performance. The threshold value of 84% is calculated based on the probability, $P[Z \le 1] = 0.84$, where Z follows the standard normal distribution. score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal of the performance measure are met for each performance indicator: (1) the average numerical The ME Program faculty consider that outcome (g) is attained if the following two dimensions

(4) Summary of Evaluation Results and Extent of Outcome Attainment

Table 4.21 presents the assessment results for outcome (g) in terms of both the average scores and percentages of students with scores equal to or greater than 2. The results are broken down for each performance indicator, as described in Table 4.19, and the outcome is assessed for each semester. The numerical results indicated the following:

Ξ were greater than 2. The first dimension of the performance measure was met The average scores for all four performance indicators, obtained from 2010 to 2014,

Ξ The percentages of students with scores ≥ 2 for all four performance indicators were

47

resulted in an average percentage of 79.4% was due, in part, to the use of a new grading scheme that allowed students to estimate their expected grade during the semester. Overall, the second dimension of the performance measure was met and outcome (g) was achieved. The faculty is considering measures to improve the percentage of 82.4% for the indicator, writing skills, in the spring of 2014 that following semesters for the indicator, "organization in writing." The slightly lower mostly greater than the target value of 84% except for the indicator, "organization in writing," in the fall semester of 2010 (73.3%) and the indicator, "writing skills," in the spring semester of 2014 (82.4%). However, there were improvements in the outcomes, e.g., providing comments on preliminary reports.

Continuous improvements and action plans are described in Section 4.B.1.7.

Table 4.21. Assessment Results for Outcome (g)

	Course		LIAL	IIIAIICE IIIUICA	TOL	WI
Semester	Number	Organization in	Writing skills	Organization in	Pre	sentation
		5111111	(a) Aver	age scores		000000
Fall 2010	ME:4080	2.1	2.2			
	ME:4086			2.5		2.0
Spring 2011	ME:4080	2.9	2.5			
	ME:4086			2.3		2.2
	(ME:4186)					
Fall 2011	ME:4080	2.7	2.9			
	ME:4086			3.0		2.5
Spring 2012	ME:4080	2.9	2.8			
	ME:4086			2.5		2.5
	(ME:4186)					
Fall 2012	ME:4080	2.8	2.8			
	ME:4086			2.5		2.5
Spring 2013	ME:4080	2.7	2.8			
	ME:4086			2.5		2.5
1 - 2012	(ME:4186)	2	5			
Fall 2013	ME:4080	5.0	2.1	2		
	ME:4086			2.5		2.4
Spring 2014	ME:4080	2.4	2.4			
	ME:4086 ^(a)			2.7		2.4
	ME:4186 ^(a)			2.7		2.4
			b) Percentages of	scores exceeding 2		
Fall 2010	ME:4080	73.3	86.7			
	ME:4086			94.1		91.2
Spring 2011	ME:4080	100.0	96.7			
	ME:4086			96.8		96.8
	(ME:4186)					
Fall 2011	ME:4080	100.0	100.0			
	ME:4086			100.0		100.0
Spring 2012	ME:4080	95.8	93.8			
	ME:4086			100.0		85.2
Fall 2012	(ME:4180)	100.0	100.0			
Fall 2012	ME:4080	100.0	100.0			

	11- 13	- 1 "D	in manufaction?	tom "Output in the second s	formano indiao	(a) Tha mar
	100.0	100.0			ME:4186 ^(a)	
	96.9	100.0			ME:4086 ^(a)	
			82.4	86.4	ME:4080	Spring 2014
-	87.0	100.0			ME:4086	
			93.3	100.0	ME:4080	Fall 2013
-	98.2	100.0			(ME:4186)	
	000	100.0			ME:4086	
			97.0	89.6	ME:4080	Spring 2013
-	90.0	100.0			ME:4086	

(a) The performance indicators, "Organization in presentation" and "Presentation skills," were assessed via ME:4086 and ME:4186, respectively. Before the spring semester of 2014, the scores were calculated by combining the scores from the two courses. Beginning with the spring of 2014, the faculty decided to present the data separately for clarity.

4.A.8 Outcome (h): the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

(1) Assessment Process

<u>Rubric used for Assessment</u>: Table 4.22 presents the rubric used for assessing outcome (h). The rubric utilizes three performance indicators, i.e., (1) social concerns; (2) impact of the solution; and (3) impact on the environment and culture. Four degrees of achievement were specified, i.e., unsatisfactory (0), marginal (1), satisfactory (2), and exemplary (3) with the numbers in parentheses representing the numerical scores.

Course used for Assessment: ME:4048 (58:048), 'Engineering Systems Design,' (four credit hours).

ME:4048 (58:048), 'Engineering Systems Design,' is a required design course offered during the senior year. The goal of this course is to integrate engineering and science coursework as it relates to thermo-fluid-related engineering problems, while concurrently developing written communication, oral communication, and multi-disciplinary teamwork skills. This integration is accomplished by having the students work on a design project, which is technically sound, raises awareness of contemporary issues, and develops appreciation of the economic, global, societal and ethical contexts of engineering work.

Table 4.22. Rubric for Outcome (h)

Deferment		Degree of	Achievement	
Indicator	Unsatisfactory	Marginal	Satisfactory	Exemplary
	(0)	(1)	(2)	(3)
1. Technical	Ignorant of link	Has some	Very conversant	Very aware of the
problem and	between the technical	knowledge about	about the link	social issues and trends
social	problem and social	the link between	between the	related to technical
concerns	issues and trends	the technical	technical problem	problems; knows latest
		problem and social	and social issues	development in the
		issues and trends	and trends.	subject area in a larger

				context.
2. Impact of	Could not care less	Is aware of the	Identifies how	Insights are offere
solution	about the impact of	impact of	technologies	address the impac
	technologies on	technologies on	address impacts on	technical solution
	society and its	society and social	society and social	society and social
	resources.	issues and trends	trends.	trends; constraints
				related to alternat
				solutions are disci
3. Impact on	Unaware of how the	Has some	Very aware of the	Is very aware of the
environment	technology, process,	knowledge about	impact of	impact of technole
and culture	or design will	how technology,	technology,	processes, and des
	influence	processes, and	processes, and	on the environme
	environment and	designs will impact	designs on the	culture; addresses
	culture locally or in a	the environment	environment and	to minimize adver
	larger context.	and culture.	culture.	impacts.

<u>Assessment Instruments</u>: Table 4.23 describes the assessment instruments pertaining to each performance indicator defined in the rubric of outcome (h).

Table 4.23. Assessment Instruments for Outcome (h)

Performance	Assessment Instrument
Indicator	ME:4048 Energy Systems Design
1. Technical	Quiz on the effects and causes of global warming. See sample student Quiz work.
problem and	
social concerns	
2. Impact of	The student will address the feasibility and potential impact of a solar panel system
solution	installed in the parking lot of a local mall from several angles that relate to sustainability.
	See sample student work on homework assignment #1 (Problem 3).
3. Impact on the	A PowerPoint presentation on the energy consumption profile of various cities across the
environment and	globe and their impact on the environment and quality of life indices. See sample
culture	student presentations.

(2) Frequency of Assessment

Outcome (h) is assessed once per year (fall semester)

(3) Expected Level of Attainment

The ME Program faculty consider that outcome (h) is attained if the following two dimensions of the performance measure are met for each performance indicator: (1) the average numerical score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal to two indicates satisfactory performance. The threshold value of 84% is calculated based on the probability, $P[Z \leq I] = 0.84$, where Z follows the standard normal distribution.

(4) Summary of Evaluation Results and Extent of Outcome Attainment

Table 4.24 presents the assessment results for outcome (h) in terms of both the average scores and percentages of students with scores equal to or greater than 2. The results are broken down for each performance indicator, as described in Table 4.22, and the outcome is assessed for each semester. The numerical results indicate the following:

 Both dimensions of the performance measure were met for all three performance indicators. Therefore, outcome (h) was fully achieved.

Continuous improvements and action plans are described in Section 4.B.1.8.

ື
ъ
2
ę,
4
ъ
\mathbf{F}
•
5
5
6
Ω.
2
Ξ.
Ξ.
2
Ξ.
-
≂
Ω
2
Ħ
5
-
5
Ħ
-
0
Ē
÷.
2
2
в.
Ð.
Ъ

	2		Performance Ind	licator	
Semester	No.	Technical problem	Impact of solution	Impact on environment	Average
		3)	 Average score 		
Fall 2010	ME:4048	2.55	2.85	2.86	2.75
Fall 2011	ME:4048	2.69	2.71	2.68	2.69
Fall 2012	ME:4048	2.53	2.78	2.70	2.67
Fall 2013	ME:4048	3.00	2.82	2.67	2.83
		(b) Percen	tages of scores exceeding	2	
Fall 2010	ME:4048	100.0	100.0	100.0	100.0
Fall 2011	ME:4048	100.0	100.0	100.0	100.0
Fall 2012	ME:4048	98.7	100.0	100.0	100.0
Fall 2013	ME:4048	98.8	100.0	100.0	100.0

4.A.9 Outcome (i): a recognition of the need for, and an ability to engage in life-long learning

(1) Assessment Process

<u>Rubric used for Assessment</u>: Table 4.25 presents the rubric used for assessing outcome (i). This rubric was used to assess the ability of students to recognize the need for and engage in life-long learning. The rubric utilizes four performance indicators, i.e., (1) curiosity; (2) responsibility; (3) knowledge translation; and (4) integration. Four degrees of achievement are specified, i.e., unsatisfactory (0), marginal (1), satisfactory (2), and exemplary (3), with the parenthetical values representing the associated numerical scores.

Course used for Assessment: ME:4048 (58:048), 'Energy Systems Design,' (four credit hours) and ME:4055 (58:055), 'Mechanical Systems Design' (four credit hours).

ME:4048 (58:048) is a required design course offered during the senior year. The goal of this course is to integrate engineering and science coursework as it relates to thermal systems and energy-related engineering problems, while concurrently developing written communication,

oral communication, and multi-disciplinary teamwork skills. This integration is accomplished by having the students work on open-ended design problems throughout the course. The students also learn about research issues related to contemporary global issues related to the availability, production, and utilization of energy and sustainable development.

ME:4055 (58:055) is a required design course offered during the senior year. Course topics include design considerations for mechanical engineering systems; strength, deformation, durability of mechanical elements; safe-life, fail-safe, damage-tolerant design; and standards, products' liability, and ethics in design. The course requires each student to complete a technical report on modern wind turbine systems. Various sections of the report are used to assess outcome (i), i.e., recognition of the need for and an ability to engage in life-long learning.

Table 4.25. Rubric for Outcome (i)

		Degree of /	Achievement	
remormance	Unsatisfactory	Marginal	Satisfactory	Exemplary
minicator	0	(1)	(2)	(3)
		Requires detailed or		
		step-by-step		Demonstrates ability
	Shows little or no	instructions to	These a sumber of	to learn independently.
I. Curiosity –	interest in outside	complete a task.	Uses a number of	Demonstrates
in the guing out	learning	Assumes that all	sources or	responsibility for
	resources.	learning takes place	IIIUIIIatiui.	creating learning
		within the confines		opportunities.
		of the classroom.		
				Demonstrates
				capability to think
			Collects ademate	independently. Goes
	Does not use	Collects adequate	information	beyond what is
2. Responsibility –	materiale outside	information about	about the	required in completing
gathering	of those available	the problem but not	nrohlem as well	an assignment and
information	in the classroom.	much about related	as related	brings information
		provicins.	problems.	nom a whice variety of
				outside sources mo
				assignments.
				Reflects on prior
		Recognizes		learning to gain new
3. Translation –	Does not use or	information as	Can recognize	insight. Applies the
applying	recall material	having been learned	and apply	full range of prior
previously learned	learned in earlier	previously, but has	previous material	experience to solve
information	coursework.	difficulty applying	to new situations.	novel and multi-
		it to new situations.		faceted problems.
	Restates	Has some trouble		Is able to understand,
	information	using materials and	Careful analysis	interpret, and apply
4 Knowledge	Provides claims	concents that are in	and supporting	learned materials and
integration	or statements	a different format	evidence for	concepts in a format
a	without support	from that taught in	conclusions.	different from that
	or evidence.	class.		taught in class (e.g.,

textbooks).	from different	understand equations	nomenclature,	

performance indicator defined in the rubric of outcome (i). Assessment Instruments: Table 4.26 describes the assessment instruments pertaining to each

Table 4.26. Assessment Instruments for Outcome (i)

and percentages of students with scores equal to or greater than 2. The results are broken down for each performance indicator, as described in Table 4.25, and the outcome is assessed for each semester. The numerical results indicate the following:

Table 4.27 presents the assessment results for outcome (i) in terms of both the average scores

probability, $P[Z \le 1] = 0.84$, where Z follows the standard normal distribution.

to two indicates satisfactory performance. The threshold value of 84% is calculated based on the score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal the performance measure are met for each performance indicator: (1) the average numerical The ME Program faculty consider that outcome (i) is attained if the following two dimensions of

(4) Summary of Evaluation Results and Extent of Outcome Attainment

Performance Indicator L. Curiosity – seeking out information	Assessmer ME:4048 Energy Systems Design Summarizing TED talks (by Amory Lovins and David MacKay) on solving the world's energy problems.	t Instrument ME:4055 Mechanical Systems Introduction section of the report Wind Turbine Systems. Students a required to describe energy-relate challenges faced by modern societ how these challenges can impact t as mechanical engineers; describe enclaname arabicat to mechanicat on section of
2. Responsibility – gathering information	PowerPoint presentation on energy options for various countries in the world. Students are expected to collect data from various sources, appropriately credit sources and collate information to present a coherent case for each country.	Problem Description section Modem Wind Turbine Syste are required to choose a me component of the wind turbing gears, shaft, rotors, blades, a describe loading conditions requirements related to the of component, describe materia manufacturing processes us component.
3. Translation – applying previously learned information	Final Project on designing home energy solutions to achieve LEED* certification for a home in various parts of the U.S.	Standards for Design and O of the report. Students are re describe standards, codes, a applicable to the chosen me component.
4. Knowledge integration	Final project on designing energy efficient homes for U.S. cities and evaluating their environmental impacts.	New Designs section of the are expected to describe nev could potentially overcome- technical challenges related the chosen component or rel

Continuous improvements and action plans are described in Section 4.B.1.9.

Table 4.27. Assessment Results for Outcome (i)

Performance Indicator Knowledge

Knowledge

indicators were fully achieved.

assessment conducted in the fall semester of 2013 showed that all four performance

target value of 84%. Thus, corrective actions were taken, and the results of the

However, the percentage of students with scores ≥ 2 for the performance indicator, "*Responsibility*," in ME:4055 (58:055) for the fall semester of 2012 was less than the are greater than 2. Thus, the first dimension of the performance measure was met. The average scores for all four performance indicators, obtained from 2010 to 2013,

Ξ

Ξ

Semester

Course Number

*LEED: Leadership in Energy and Environmental Design.

Outcome (i) is assessed once per year (fall semester).

(3) Expected Level of Attainment

53

(2) Frequency of Assessment

(1) Assessment Process

4.A.10 Outcome (j): a knowledge of contemporary issues

Semester	Number	Curiosity	Responsibility	now ledge Translation	Knowledge Integration	Average
			(a) Avei	age scores		
Fall 2010	ME:4048	2.94	2.55	2.64	2.65	2.69
Fall 2011	ME:4048	2.48	2.68	2.61	2.71	2.62
Fall 2012	ME:4048	2.86	2.7	2.79	2.79	2.79
Fall 2012	ME:4055	2.4	2.3	2.4	2.4	2.38
Fall 2013	ME:4048	2.82	2.67	2.74	2.46	2.68
Fall 2013	ME:4055	2.95	2.89	2.77	2.84	2.86
			(b) Percentages of	f scores exceeding 2		
Fall 2010	ME:4048	92.5	100.0	100.0	100.0	98.1
Fall 2011	ME:4048	84.1	100.0	100.0	100.0	96.0
Fall 2012	ME:4048	100.0	100.0	100.0	100.0	100.0
Fall 2012	ME:4055	85.5	79.5	84.3	85.5	85.5
Fall 2013	ME:4048	100.0	100.0	100.0	68	97.5
Fall 2013	ME:4055	98.5	98.5	98.5	98.5	98.5

<u>Rubric used for Assessment:</u> Table 4.28 presents the rubric used for assessing outcome (j). Contemporary issues are defined as topics that challenge modern society and occupy the attention of citizens who are well informed about heir nation and the world. Students should be "aware" of the large role that contemporary issues have in the engineering profession. Students should be especially cognizant of the relationships and interactions that occur between technological, social, economic, and political factors that can resolve or exacerbate the problems facing society. Students should also be able to use their knowledge of contemporary issues in solving engineering problems. Thus, the rubric utilizes three performance indicators that contemporary topics; and (3) ability to use their knowledge of contemporary issues in solving engineering problems. Four degrees of achievement are specified, i.e., unsatisfactory (0), marginal (1), satisfactory (2), and exemplary (3), with the numbers in parentheses representing the numerical scores.

<u>Course used for Assessment:</u> In the fall semester of 2010 and the spring semester of 2011, this outcome was assessed by ME:0099 (58:091), 'ME Professional Seminar,' (no credit hours). In the spring semester of 2011, the ME faculty suggested that the course used to assess this outcome be changed to ME:4048 (58:048), 'Energy Systems Design,' (four credit hours). Further, in the fall semester of 2012, the ME faculty suggested that ME:4055 (58:055), 'Mechanical Systems Design,' (four credit hours) also be included in the assessment of this outcome. Thus, beginning in the fall of 2012, both courses, totaling eight credit hours, are used together to assess this outcome.

ME:4048 (58:048), 'Energy Systems Design,' is a required design course that is offered during the senior year. The goal of this course is to integrate engineering molems, while concurrently relates to thermal systems and energy-related engineering problems, while concurrently developing written communication, oral communication, and multi-disciplinary teamwork skills. This integration is accomplished by having the students work on open-ended design problems throughout the course. The students also learn about and conduct research related to contemporary global issues connected with the production and utilization of energy and sustainable development.

ME:4055 (58:055), 'Mechanical Systems Design,' is a required, four-credit course offered during the senior year. Topics addressed in the course include design considerations for mechanical engineering systems; strength, deformation, durability of mechanical elements; safe-life, failsafe, damage-tolerant design; and standards, products' liability, and ethics in design.

Table 4.28. Rubric for Outcome (j)

Delemano		Degree of	of Achievement	
Indicator	Unsatisfactory	Marginal	Satisfactory	Exemplary
Indicator	(0)	(1)	(2)	(3)
1. Interest	No awareness of	Awareness of at	Awareness of at least	Awareness of more
	any	least one	two contemporary	than two contemporary
	contemporary	contemporary issue;	issues; shows interest	issues; is enthusiastic
	issues; shows no	shows occasional	most of the time	about the issues and
	interest and	interest		always asks questions

	never asks			
2. Knowledge	Cannot	Familiarity with	Familiarity with	Great familiarity with
	describe/explain	(describes/explains)	(describes/explains)	(describes/explains)
	any	selected	most contemporary	contemporary issues of
	contemporary	contemporary issues,	issues; takes active	all kinds; takes full
	issues	but rarely seeks out	role in increasing	advantage of available
		new knowledge	knowledge about the	resources to increase
		about the issues	issues	knowledge about the
				issues
3. Use	Cannot	Some use of	Consistent use of	Comprehensive use of
	demonstrate any	knowledge of	knowledge of	knowledge of
	connection	contemporary issues	contemporary issues	contemporary issues in
	between	in solving	in solving	solving engineering
	contemporary	engineering	engineering	problems; offers
	issues and	problems	problems; establishes	alternative (or
	engineering		connection with	opposing) views; can
	problem solving		material learned in	fully relate
			other courses	contemporary issues to
				material learned in
				courses
T	Table /	1 On Janation the out	mant annant an	termonte souteining

<u>Assessment Instruments</u>: Table 4.29 describes the current assessment instruments pertaining to each performance indicator defined in the rubric of outcome (j). The old assessment instruments were based on an essay on contemporary issues in ME:0099 (58:091), 'ME Professional Seminar.' In particular, the students were asked to answer the following questions in the essay: (1) Name at least two contemporary issues addressed in a seminar or elsewhere.

(2) Describe these contemporary issues.(3) Explain how these contemporary issues can impact your work as an engineer

.

Table 4.29. Assessment Instruments for Outcome (j)

Performance	Assessme	t Instrument
Indicator	ME:4048, 'Energy Systems Design'	ME:4055, 'Mechanical Systems Design'
		Introduction section of the report on Modern
		Wind Turbine Systems. Students are
		required to describe energy-related
1 Internet		challenges that modern society faces;
T. HILETESI		explain how these challenges can impact
		their work as mechanical engineers; describe
		technical challenges related to the
		production of wind energy.
		Introduction section and Design Challenges
		section of the report on Modern Wind
		Turbine Systems. In the Design Section of
7 Knowladna		the report, students are expected to describe
2. INHOMICUES		existing technical challenges related to the
		design of the chosen component or related
		system and how it impacts the performance
		of the wind turbine systems.
	Students use their knowledge of energy	Introduction section and New Designs
3. Use	needs and impacts in evaluating	section of the report on Modern Wind
	renewable energy options for designing a	Turbine Systems. In the New Designs

	the assessment instrument.	the United States. The report is used as	LEED-certified home in various parts of
challenges.	potentially overcome existing technical	to describe new designs that could	section of the report, students are expected

(2) Frequency of Assessment

Outcome (j) is assessed once per year.

(3) Expected Level of Attainment

The ME Program faculty consider that outcome (j) is attained if the following two dimensions of the performance measure are met for each performance indicator: (1) the average numerical score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal to two indicates satisfactory performance. The threshold value of 84% is calculated based on the probability, $P[Z \leq 1] = 0.84$, where *Z* follows the standard normal distribution.

(4) Summary of Evaluation Results and Extent of Outcome Attainment

Table 4.30 presents the assessment results for outcome (j) in terms of both the average scores and percentages of students with scores equal to or greater than 2. The results are broken down for each performance indicator, as described in Table 4.28, and the outcome is assessed for each semester. The numerical results indicate the following:

- (i) In the fall semester of 2010 and the spring semester of 2011, this outcome was assessed by ME:0099 (58:091); the assessment results were improved, resulting in both dimensions of the performance measure being met in the spring semester of 2011.
- In fall semesters of 2011 and 2012, ME:4048 (58:048) was only used to assess the performance indicator "Use". Therefore, corrective actions were taken in the fall 2013 semester.
- (iii) In the fall semester of 2012, the results from ME:4055 (58:055) showed that both dimensions of the performance measure were essentially met for the three performance indicators. However, the percentage score for the second indicator, "*Knowledge*," was slightly less than the target value of 84%. Thus, corrective actions were taken in the fall semester of 2013.
- (iv) The assessment results in the fall semester of 2013 showed that the three performance indicators were fully achieved.

Continuous improvements and action plans are described in Section 4.B.1.10.

Table 4.30. Assessment Results for Outcome (j)

Fall 2013)	Fall 2013 1	Fall 2012 1	Fall 2012	Fall 2011	Spring 2011 1	Fall 2010 1		Fall 2013	Fall 2013	Fall 2012	Fall 2012	Fall 2011	Spring 2011	Fall 2010		CELLESTEL	Comoctor
ME:4055	ME:4048	ME:4055	ME:4048	ME:4048	ME:0099	ME:0099		ME:4055	ME:4048	ME:4055	ME:4048	ME:4048	ME:0099	ME:0099		Number	Course
98.5	NA	92.8	NA	NA	100.0	97.7	(b) Percentage	2.95	NA	2.60	NA	NA	2.10	2.02	(a) A	Interest	
98.5	NA	81.9	NA	NA	98.0	89.7	s of scores exceeding 2	2.94	NA	2.30	NA	NA	2.10	2.08	verage scores	Knowledge	Performance Inc
98.5	100.0	96.4	100.0	100.0	89.8	79.3		2.87	2.74	2.30	2.75	2.68	2.00	1.87		Use	licator
98.5	100.0	90.4	100.0	100.0	89.8	75.9		2.92	2.74	2.40	2.75	2.68	2.10	2.00		Average	

4.A.11 Outcome (k): an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

(1) Assessment Process

<u>Rubric used for Assessment</u>: Table 4.31 presents the rubric used for assessing outcome (k). This rubric was designed to assess the ability of a student to use modern engineering tools. The rubric utilizes three performance indicators that examine students' abilities to (1) use of CAD software; (2) use engineering packages; and (3) use laboratory equipment. Four degrees of achievement are specified, i.e., unsatisfactory (0), marginal (1), satisfactory (2), and exemplary (3) for which the parenthetical values represent the associated numerical scores.

Course used for Assessment: ME:3052 (58:052), 'Mechanical Systems,' (four credit hours) and ME:4080 (58:080), 'Experimental Engineering,' (three credit hours).

ME:3052 (58:052), 'Mechanical Systems,' is a required course taken by juniors in Mechanical Engineering. The goal of this course is to provide students with the opportunity to develop an understanding of the basic procedures used in the analysis and design of mechanical systems. The course contains laboratory work using advance engineering design and analysis packages.

ME:4080 (58:080), 'Experimental Engineering,' is a required course for seniors in Mechanical Engineering. The course uses modern instrumentation and data acquisition tools along with significant data processing and reporting. These courses are well suited to assess the ability of students to use modern engineering tools.

Table 4.31. Rubric for Outcome (k)

Dalamono		Degree (of Achievement	
Indicator	Unsatisfactory	Marginal	Satisfactory	Exemplary
	(0)	(1)	(2)	(3)
1. Use of	Not knowledgeable	Knows about CAD	Knowledgeable about	Very knowledgeable
CAD	about CAD	software	CAD software	about CAD software
software	software programs;	programs; uses	programs; uses them	programs; uses them
	seldom uses them	them occasionally.	effectively in design.	very effectively in
	in design.			design; proficient at
				navigating them to
				achieve goals.
2. Use of	Not knowledgeable	Knows about	Knowledgeable about	Very knowledgeable
analysis	about analysis	engineering	engineering analysis	about engineering
packages	packages; seldom	analysis packages;	packages; uses them	analysis packages; uses
	uses them in	uses them	effectively in problem	them very effectively
	problem solving	occasionally.	solving and design.	in problem solving and
	and design.			design; proficient at
				navigating them to
				achieve goals.
3. Use of	Very limited	Has general idea	Knowledgeable about	Same as (2) plus knows
hardware	knowledge about	of hardware and	laboratory equipment	hardware limitations
and	laboratory	equipment, but the	and hardware; selects	and their efficient use;
laboratory	equipment; no	selection is	appropriate pieces;	uses them very
equipment	attempts made to	ineffective; uses	knows their use for	effectively.
	learn.	them but needs	laboratory tests,	
		significant	design, or research.	
		accietance		

<u>Assessment Instruments</u>: Table 4.32 describes the assessment instruments pertaining to each performance indicator defined in the rubric of outcome (k).

Table 4.32. Assessment Instruments for Outcome (k)

Performance	Assessmer	ıt Instrument
Indicator	ME:3052, 'Mechanical Systems'	ME:4080, 'Experimental Engineering'
1. Use of CAD	Individual laboratory reports: Students	
software	are required to generate CAD models	
	using commercial, solid modeling	
	software, and document their procedures.	
2. Use of analysis	Individual laboratory reports: Students	
packages	are required to conduct mechanical	
	analyses using a commercial finite	
	element package. Students must select	
	the appropriate element(s), generate	
	finite element meshes, perform analyses,	
	and demonstrate an ability to evaluate	
	the results.	
3. Use of		Log Books in Labs and in Final Project
hardware and		Report. These experimental projects require
laboratory		the students to use instrumentation to
equipment		complete a fairly complex experiment and to
		design and conduct an experiment.

(2) Frequency of Assessment

Outcome (k) is assessed once per year based on ME:3052 (58:052) (spring semester) and twice per year based on ME:4080 (58:080) (fall and spring semesters).

(3) Expected Level of Attainment

The ME Program faculty consider that outcome (k) is attained if the following two dimensions of the performance measure are met for each performance indicator: (1) the average numerical score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal to two indicates satisfactory performance. The threshold value of 84% is calculated based on the probability, $P[Z \leq I] = 0.84$, where Z follows the standard normal distribution.

(4) Summary of Evaluation Results and Extent of Outcome Attainment

Table 4.33 presents the assessment results for outcome (k) in terms of both the average scores and percentages of students with scores equal to or greater than 2. The results are broken down for each performance indicator, as described in Table 4.31, and for each semester the outcome is assessed. The numerical results indicate the following:

(i) Both dimensions of the performance measure were met for all three performance indicators in then spring and fall semesters of 2011, 2012, and 2013 and in the spring semester of 2014. Therefore, outcome (k) was fully achieved.

Continuous improvements and action plans are described in Section 4.B.1.11.

Table 4.33. Assessment Results for Outcome (k)

Spring 2012	Fall 2011	Spring 2011	Spring 2011		Spring 2014	Spring 2014	Fall 2013	Spring 2013	Spring 2013	Fall 2012	Spring 2012	Spring 2012	Fall 2011	Spring 2011	Spring 2011		OCHICS ICI	Comoctor	
ME:3052	ME:4080	ME:4080	ME:3052		ME:4080	ME:3052	ME:4080	ME:4080	ME:3052	ME:4080	ME:4080	ME:3052	ME:4080	ME:4080	ME:3052		Number	Course	
91.4			93.8	(b) Percentag		2.8			2.7			2.5			2.0	(a) /	software	Use of CAD	
92.6			98.5	es of scores exceeding 2		2.9			2.8			2.6			2.0	Average scores	packages	Use of analysis	Performance I
	100.0	96.7			2.9		2.6	2.7		2.4	2.4		3	2.3			equipment	Use of hardware	ndicator
96.9	100.0	96.7	92.3		2.9	2.8	2.6		2.7	2.4		2.5	3		2.3		A VELAGE	A TOTOTO	

59

100.0	100.0			ME:4080	Spring 2014
98.5		98.5	98.5	ME:3052	Spring 2014
93.3	93.3			ME:4080	Fall 2013
95.5	95.5			ME:4080	Spring 2013
100.0		100.0	100.0	ME:3052	Spring 2013
100.0	100.0			ME:4080	Fall 2012
89.6	89.6			ME:4080	Spring 2012

4.A.12 Outcome (I): an ability to work professionally in either thermal or fluid systems engineering, including the design and realization of such systems

(1) Assessment Process

<u>Rubric used for Assessment</u>: Table 4.34 presents the rubric used for assessing outcome (1). This nubric is designed to assess the ability of a student to work professionally in thermal and fluid systems engineering, including the design and realization of such systems. The rubric utilizes three performance indicators that examine students' abilities to (1) identify technical issues involved in designing a thermal and fluid system; (2) identify and account for resource issues and constraints that impact on design; and (3) demonstrate design skills and design innovation, in particular the ability to design large-scale thermal and fluid systems. Four degrees of achievement are specified, i.e., unsatisfactory (0), marginal (1), satisfactory (2), and exemplary (3), with the parenthetical values representing the associated numerical scores.

Course used for Assessment: ME:4048 (58:048), 'Energy Systems Design' (four credit hours).

ME:4048 (58:048) is a required design course offered during the senior year. The goal of this course is to integrate engineering and science coursework as it relates to thermo-fluid-related engineering problems, while concurrently developing written communication, oral communication, and multi-disciplinary teamwork skills. This integration is accomplished by having the students work on open-ended design problems.

Table 4.34. Rubric for Outcome (1)

Defermence		Degree of /	Achievement	
Indicator	Unsatisfactory	Marginal	Satisfactory	Exemplary
	(0)	(1)	(2)	(3)
1. Identify issues	Couldn't identify	Identifies some	Has identified	Has completely
involved in	key design issues;	design issues but	most of the design	identified key design
designing a thermal	lack of judgment.	has not prioritized	issues and	issues and
and fluid system		them; judgment not	prioritized them;	prioritized them; has
		adequate.	judgment on	ranked them based
			priorities seems	on their importance.
			OK.	
2. Identify and	Unaware of	Has some	Well-documented	Has developed
account for	material or design	understanding of	constraints; has	alternate plans for
resource issues and	constraints; no	constraints and has	addressed	resources; has
constraints that	resources	addressed resources	resources needed	alternate methods of
impact on design	identified		to complete design	meeting design

Progress according	Good progress	Progress is	Progress is almost	3. Demonstrate
in to schedule; good	with good design	adequate and shows	non-existent; no	design skills and
design skills; design	skills; limited	design skills;	skills shown and	design innovation,
on; has many	design innovatic	hardly any design	concept of	in particular the
innovations and	alternatives	innovation; limited	innovation is non-	ability to design
alternatives.	considered	variations.	existent.	large-scale thermal
				and fluid systems
;n to sci desig on; has n innov alterr	with good desig skills; limited design innovatic alternatives considered	adequate and shows design skills; hardly any design innovation; limited variations.	non-existent; no skills shown and concept of innovation is non- existent.	design skills and design innovation, in particular the ability to design large-scale thermal and fluid systems

<u>Assessment Instruments</u>: Table 4.35 describes the assessment instruments pertaining to each performance indicator defined in the rubric of outcome (I).

Table 4.35. Assessment Instruments for Outcome (I)

Performance Indicator	Assessment Instrument
1. Identify issues involved in designing a	A homework problem on an energy system choice will be used to assess this indicator. Students will be required to state the technical issues involved in the
thermal and fluid system	design and implementation of a specific, practically-relevant system. See sample student work on HW2_Sample1 (Problem 1 on the evaluation of energy-efficient windows).
2. Identify and account	Homework to assess the feasibility of an energy-efficient lighting system to
for resource issues and	replace a conventional system. See sample student work on HW2 (Problem 2 on
constraints that impact	energy efficient lighting evaluation).
on design	
3. Demonstrate design	Take-home, open-ended design problem. The student will demonstrate the
skills and design	ability to set up and solve the relevant equations to design a thermal and fluid
innovation; in particular,	system with many interacting components. The case of a waste heat recovery
the ability to design	system for a dishwasher was analyzed. See sample student work on HW3
large-scale thermal and	(Problem 2 on heat recovery dishwashing system design).

(2) Frequency of Assessment

fluid systems

(

(

Outcome (I) is assessed once per year.

(3) Expected Level of Attainment

The ME Program faculty consider that the outcome (l) is attained if the following two dimensions of the performance measure are met for each performance indicator: (1) the average numerical score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal to two indicates satisfactory performance. The threshold value of 84% is calculated based on the probability, $P[Z \leq I] = 0.84$, where Z follows the standard normal distribution.

(4) Summary of Evaluation Results and Extent of Outcome Attainment

Table 4.36 presents the assessment results for outcome (1) in terms of both the average scores and percentages of students with scores equal to or greater than 2. The results are broken down for each performance indicator, as described in Table 4.34, and the outcome is assessed for each semester. The numerical results indicate the following:

or system

constraints

Ð was fully achieved. Both dimensions of the performance measure were met for all three performance indicators in the fall semesters of 2010, 2011, 2012, and 2013. Therefore, outcome

Continuous improvements and action plans are described in Section 4.B.1.12.

Table 4.36. Assessment Results for Outcome (I)

			_	_	_		_	_	_	_	-
	Semester		Fall 2010	Fall 2011	Fall 2012	Fall 2013		Fall 2010	Fall 2011	Fall 2012	Fall 2013
	Course Number		ME:4048	ME:4048	ME:4048	ME:4048		ME:4048	ME:4048	ME:4048	ME:4048
	Identify issues involved in designing a thermal and fluid system		2.66	2.19	2.91	2.46	(b) Pe	100	80.7	100	89.1
Performance I	Identify and account for resource issues and constraints that impact on the design	(a) Average scores	2.71	2.86	2.80	2.78	creentages of scores exceed	95.5	100	100	100
ndicator	Demonstrate design skills and design innovation; in particular facility to perform design of a large-scale thermal and fluid system		2.78	2.80	2.95	2.55	ing 2	100	100	100	93.9
	Average		2.72	2.61	2.89	2.6		98.5	93.6	100	94.3

engineering, including the design and realization of such systems 4.A.13 Outcome (m): an ability to work professionally in mechanical systems

Fall 2013 ME:4048

(1) Assessment Process

specified, i.e., unsatisfactory (0), marginal (1), satisfactory (2), and exemplary (3). (3) design or analyze mechanical systems/components. considerations in the design of mechanical systems; (2) apply design criteria for durability; and <u>Rubric used for Assessment</u>: Table 4.37 presents the rubric used for assessing outcome (m). The rubric utilizes three performance indicators that examine students' abilities to (1) understand Four degrees of achievement are

hours). Course used for Assessment: ME:4055 (58:055), 'Mechanical Systems Design' (four credit

assignments on product liability, standards, and modern wind energy systems. These written products' liability, and ethics in design. The course requires each student to complete written durability of mechanical elements; safe-life, fail-safe, damage-tolerant design; standards, include design considerations for mechanical engineering systems; strength, deformation, ME:4055 (58:055) is a required, four-credit course offered during the senior year. Course topics

> assignments and problems on the final exam are used to assess students' abilities to work professionally in mechanical systems areas, including the design and realization of such designs.

Table 4.37. Rubric for Outcome (m)

performance indicator defined in the rubric of outcome (m) Assessment Instruments: Table 4.38 describes the assessment instruments that pertain to each

2

and components

(2) Frequency of Assessment

Outcome (m) is assessed once per year

(3) Expected Level of Attainment

The ME Program faculty consider that outcome (m) is attained if the following two dimensions of the performance measure are met for each performance indicator: (1) the average numerical score ≥ 2 and (2) at least 84% of the students have obtained a score ≥ 2 . A numerical score equal to two indicates satisfactory performance. The threshold value of 84% is calculated based on the probability, $P[Z \leq 1] = 0.84$, where Z follows the standard normal distribution.

(4) Summary of Evaluation Results and Extent of Outcome Attainment

Table 4.39 presents the assessment results for outcome (m) in terms of both the average scores and percentages of students with scores equal to or greater than 2. The results are broken down for each performance indicator, as described in Table 4.37, and the outcome is assessed for each semester. The numerical results indicate the following:

- (i) Both dimensions of the performance measure were essentially met for the first two performance indicators, i.e., "understanding of considerations in the design of mechanical systems" and "ability to apply design criteria for durability," in the fall semesters of 2010, 2011, 2012, and 2013.
- (ii) The average scores and percentages of students with scores ≥ 2 for the third performance indicator, "*ability to design or analyze mechanical systems and components*," have been improving over the years. The average scores in the fall semesters of 2011, 2012, and 2013 met the target score, whereas the percentage score for the third indicator in the fall semester of 2012 was still slightly less than the target value of 84. Therefore, corrective actions were taken for the third indicator in the fall semester of 2013 showed great improvement, meeting the target score.

Continuous improvements and action plans are described in Section 4.B.1.13.

	Semester		Fall 2010	Fall 2011	Fall 2012
	Course Number		ME:4055	ME:4055	ME:4055
Inderstanding of	Understanding of considerations in the design of mechanical systems	(a) Av	2.9	2.90	2.7
Performance Indic	Ability to apply design criteria for durability	erage scores	2.0	2.47	2.5
Ability to design	or analyze mechanical systems and components		1.9	2.10	2.3
	Average		2.3	2.49	2.5

Table 4.39. Assessment Results for Outcome (m)

2		
h		

Fall 2013	Fall 2013	Fall 2012	Fall 2011	Fall 2010		Fall 2013	Fall 2013
ME:4055:002	ME:4055:001	ME:4055	ME:4055	ME:4055		ME:4055:002	ME:4055:001
100	100	96.4	100	100	(b) Percentages	2.97	2.9
100	94	86.7	91.4	73.6	of scores exceeding 2	2.54	2.3
100	99	81.9	76	68.1		2.97	2.7
100	99	91.6	89.2	79.2		2.82	2.6

4.B Continuous Improvement

4.B.1 Actions Resulting from the Assessment of Student Outcomes

4.B.1.1 Outcome (a): an ability to apply knowledge of mathematics, science, and engineering

Assessment results

Spring 2011: The first performance indicator, "Application of fundamental principles of science and engineering," was slightly below the target threshold of 84%, with 79.4% of students achieving satisfactory or better, and the second performance indicator, "Use of engineering and mathematical models to solve open-ended problems," was met (84%). The third performance indicator, "Application of advanced mathematical principles to solve problems," was 77.8%, slightly below the target threshold of 84%.

Spring 2012: The first two performance indicators demonstrated satisfactory performance. The third performance indicator, "*Application of advanced mathematical principles to solve problems*," was 45.7%, significantly below the target threshold of 84%.

Spring 2013: The first two performance indicators were above the target threshold, and the third performance indicator was 74.1%, slightly below the target threshold of 84%.

Spring 2014: All three performance indicators were above the target threshold. In particular, a significant improvement was observed in the third performance indicator.

Actions taken

Spring 2011, ME3045 (58:045), 'Heat Transfer': James Buchholz

In the evaluation in the spring of 2011, the students' abilities to apply knowledge of mathematics were assessed on a problem in which the students had to manipulate and solve the appropriate form of the heat equation for a given geometry and boundary conditions. The students' performances were marginally satisfactory. In discussions during a ME program meeting, it was decided that this problem was too advanced to be used for assessment in this course.

Spring 2012, ME3045 (58:045), 'Heat Transfer'': James Buchholz

Additional time was devoted to the solution of one-dimensional boundary value problems involving the heat equation, i.e., students apply appropriate boundary conditions to fundamental solutions of the heat equation. Informal assessment and feedback were provided through in-class

quizzes

Spring 2013, ME3045 (58:045), 'Heat Transfer': James Buchholz

Prior to the beginning of the spring semester in 2013, the instructor met with the College of Engineering's Associate Dean of Academic Programs, Keri Hornbuckle, and Professor of Mathematics, Colleen Mitchell. The purpose of the meeting was to discuss differences in terminology and teaching methods used in differential equations and vector calculus courses taught by the Mathematics department. The objective of the discussion was to identify ways to help students make the transition from the study of math to engineering courses in which the math is applied, e.g., in ME:3045 (58:045), 'Heat Transfer,' in particular. During the discussion of the heat equation in ME:3045 (58:045), the instructor engaged students in an open discussion of the sisues were addressed in the lecture. One important issue identified was that most students did not realize that much of the material covered in their differential equations course fundamental solution sto the relevant forms of the heat equation was not relevant to ME:3045 (58:045), since fundamental solutions to the relevant forms of the heat equation were provided.

Spring 2014, ME3045 (58:045), 'Heat Transfer': James Buchholz

Primary changes were made in this Heat Transfer course, including a) collection and grading of homework assignments from almost every lecture with one problem being selected randomly from each assignment, b) the mid-term exam was scheduled in the evening, allowing 90 minutes rather than the standard 50-minute class period to complete the exam without significantly lengthening the exam, and c) after the exam, the students were given the same exam as a homework assignment, and they were given approximately 36 hours to complete the exam. The results of the original exam were used in the evaluation of the first performance indicator.

4.B.1.2 Outcome (b): an ability to design and conduct experiments, as well as to analyze and interpret data

Assessment results

Spring 2012: The average achievement for the performance indicators, "*Data analysis*" and "*Experiment design*," decreased with respect to previous semesters.

Fall 2012: The third and sixth performance indicators, "*Experimental procedures*" and "*Experiment design*," were below the target threshold of 84%.

Spring 2013: The average scores for all of the six performance indicators were greater than 2, and all of the percentages of students with scores ≥ 2 for the six performance indicators were greater than the target value of 84%.

Fall 2013: All of the average scores for the six performance indicators were greater than 2, and the all of the percentages of students with scores ≥ 2 for the six performance indicators were greater than the target value of 84%.

Spring 2014: Scores were within expected parameters, with a slight decrease in "Experimental

Actions taken

Fall 2012, ME:4080 (58:080), 'Experimental Engineering': Pablo Carrica

More emphasis was given to the analysis of results and techniques for experiment design. This was enabled by allowing more time to work on reports for the main laboratory assignments.

Spring 2013, ME:4080 (58:080), 'Experimental Engineering': Hongtao Ding

The decrease in performance for the indicators "*Experimental procedures*" and "*Experiment design*" in the fall of 2012 was attributed to the introduction of the more complex data acquisition software, LabView, resulting in more time being spent on teaching LabView and its use for the different laboratories. The two indicators were improved after corrective actions were undertaken in the spring of 2013.

Fall 2013, ME:4080 (58:080), 'Experimental Engineering': Hongtao Ding

The students generally have difficulty in understanding the laboratory manuals for Dynamic System labs, such as lab 2c and lab 2d. Therefore, the lectures were enhanced significantly for dynamic response by showing more computer examples of time and frequency responses.

Spring 2014, ME:4080 (58:080), 'Experimental Engineering': Pablo Carrica

The last experiment before the final project was extended in time to allow for more in-depth analysis of the results and for preparing the written report, which is the main document produced in the course.

4.B.1.3 Outcome (c): an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

Assessment results

Fall 2013: Both dimensions of the performance measure were met for all performance indicators in fall semester of 2010 and in the fall and spring semesters of 2012 and 2013.

Spring 2014: The outcome in the spring semester of 2014 was found to be satisfactory. The scores remained stable and were well above the 84% goal.

Actions taken

Spring 2013, ME:4086 (58:086), 'Mechanical Engineering Design Project' and ME:4186 (58:186), 'Enhanced Design Experience': Andrew Kusiak, Albert Ratner, and Daniel Mineck

The faculty revised the "Capstone Design Individual Experience" form to assess students' abilities on consideration of specific design constraints, such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability constraints. Students in the Mechanical Engineering Design Project (MEDP), the Program of Enhanced Design

Experience (PEDE), and the Virtual International Design Project (VIDP) are required to complete the forms and attach them as appendices to their final design project. The new forms greatly increased the type and depth of information collected, and they have provided a much-improved knowledge base with which to assess the students. Having specific categories in each of the areas enables evaluation of how well all of the students understand each of the constraints as opposed to using a single characterization. While the students have a good general understanding, the instructors intend to delve more closely into the data and to develop additional training and information sessions for the students in areas where particular weaknesses have been identified.

The results obtained from the new form show that the greatest deficits were in political considerations (~12%) and sustainability (~40%). The actions taken to address this include a plan to discuss how political considerations in various countries lead to drastically different products being produced for those specific markets. Then, assessments are made of the effects of these different requirements on the designs the students are working on. For sustainability, the intent is to include material that assesses the sustainability of a product based on how it is manufactured and its projected lifetime. Also, the instructor will work with the instructor of the seminar series to identify a professional engineer who can speak to the students on this topic. A detailed summary of the raw data collected from these forms is posted on the ME Program's low a Courses Online (ICON) site.

these issues and the different factors that influence and restrict design choices. governmental regulations on design decisions. The students showed a good understanding of changing teams. It included significant discussions of international issues and the impact of spring semester. PEDE (six projects) and VIPT (one project) broken into several parts with projects out of the 22 that were available in the fall semester of 2013 and another eight in the international presences. In terms of specifics, the MEDP student teams selected 10 industrial multi-national corporation, and design projects making use of big data for corporations with large Commonwealth of Independent States), design of a software platform for collaboration within a range of projects that involve the design of product families for overseas markets (e.g., the takes place in the classroom during the periodic project update meetings. We have witnessed a (particularly in MEDP) offered for selection by the students and the learning experience that student awareness of the broad issues pertinent to design was the portfolio of the projects have increased the number of speakers from industry. The most powerful tool used in increasing design challenges and constraints. Departmental seminars, including the Professional Seminar, John Deere and Florida Power and Light, have made presentations in the design course on various 2013. Topical speakers from companies, including Ross Wilcox from Rockwell and others from used a number of approaches to address the shortcomings identified in the spring semester of Teams' (VIPT): Andrew Kusiak, Albert Ratner, and Daniel Mineck: The Department has Enhanced Design Experience' (PEDE), and (Section 2), 'Virtual International Project ME:4186 (58:186), 'Enhanced Design Experience,' including (Section 1), 'Program Spring 2014, ME:4086 (58:086), 'Mechanical Engineering Design Project' (MEDP) and for

Recommendations: The previous changes appear to have been successful in addressing the previously observed weaknesses. Future improvements will include changes to the wording on the student's self-reporting/survey form to make it clear that the students can cite examples of relevant experience from both their capstone class and from other experiences they have had as

undergraduates.

4.B.1.4 Outcome (d): an ability to function on multidisciplinary teams

Assessment results

Fall 2012: Data were not collected in the spring and fall semesters of 2011, and the outcome was not assessed. Based on the data collected in fall semesters of 2010 and 2012 and the spring semester of 2012, both dimensions of the performance measure were mostly met for all four performance indicators. The only exception was for the third performance indicator, *contribution to teamwork or project*, in the fall semester of 2012, when the score of 80% using ENGR:2760 (57:021) was slightly below the target value of 84%.

Fall 2013: The data collected in the fall of 2013 based on ENGR:2760 (57:021) showed that the third performance indicator, *contribution to teamwork or project*, decreased from the score of 97.9% in the spring semester of 2013 to 82.6% in the fall semester of 2013. This was explained by the very low enrollment of ME students in the fall of 2013.

Spring 2014: The data collected in the spring of 2014 based on ENGR:2760 (57:021) when 96 ME students were enrolled showed that the third performance indicator, *contribution to teamwork or project*, increased back to 96:9%. Furthermore, all the data collected in ME:4086 (58:086), 'Mechanical Engineering Design Project,' ME:4186 (58:186), 'Enhanced Design Experience,' and ENGR:2760 (57:021), 'Design for Manufacturing' showed that both dimensions of the performance measure were met for all performance indicators.

Actions taken

Fall 2012/Spring 2013, ENGR:2760 (57:021), 'Design for Manufacturing': Ibrahim Ozbolat Although the project was posted very early, the tendency of the groups was to finalize the implementation of the project during the submission week, and some students had conflicts with their individual assignments in other courses. Thus, we introduced sub-deadlines for the project to distribute the overall load uniformly over the semester, leaving less work for students to do during the submission week. We expect that students will participate in group meetings regularly due to multiple sub-deadlines, particularly during the second half of the semester. The third performance indicator was monitored in the spring of 2013 offering of ENGR:2760 (57:021) to determine the effect of the changes that were implemented. An improvement in the third performance indicator for ENGR:2760 (57:021) was observed when the sub-deadlines were introduced and more time was allocated for the project near the end of the semester. The other indicators showed satisfactory results as usual.

Spring 2013, ME:4086 (58:086), 'Mechanical Engineering Design Project,' and ME:4186 (58:186), 'Enhanced Design Experience': Andrew Kusiak, Albert Ratner, and Daniel Mineck

The faculty revised the student peer evaluations from an assessment instrument for outcome (d) to assess "*Intra-team communication skills*" as suggested by the survey recommendation about enhancing communication in a team (Section 2.E.2). The results of the assessment showed that the students are very good at intra-team communication, with an average score of 2.8/3.0 across

all Capstone Design projects. An interesting effect was apparent between the one-semester projects and the two-semester projects in that the standard deviation decreased from 0.4 for the one-semester projects to 0.2 for the two-semester projects. This implies that the extra time in the projects had the greatest impact on the poorest performers, and, in fact, none of the students scored below 2.5.

The faculty revised the Capstone Design Individual Experience form to include questions that allowed students to document their efforts of identifying, initiating contact, and working with other professionals, leading to better understanding of the benefits of learning and functioning in a multi-disciplinary team setting. Beginning with the spring semester of 2013, students in ME:4086 (58:086) and ME:4186 (58:186) have been required to fill out the assessment form. The results show that the students interacted with a range of professions, including people in sales and marketing at both potential and current suppliers and the sponsor's sales/dealership personnel. They also interacted with various engineering personnel, including computer science professionals, who assisted them in virtual reality and related modeling and simulation; electrical and civil engineers (depending on the project); and mechanical engineers with expertise in various specialties.

The focus of continuous improvement for AY 2013/14 was to enhance students' understanding of sustainability and governmental/political effects. These will serve as the drivers to introduce the students to professionals who work in these areas so as to assist the students in developing a better appreciation of these issues and their impact on engineering. This will be done through both direct meetings and classroom-based, case-study discussions.

Fall 2013/Spring 2014, ENGR:2760 (57:021), 'Design for Manufacturing': Ibrahim Ozbolat The indicators were all satisfactory, so no specific action was proposed. The instructor will continue to work on enhancing the delivery of the course and trying to identify new areas for enhancement.

Spring 2014, ME:4086 (58:086), 'Mechanical Engineering Design Project,' and ME:4186 (58:186), 'Enhanced Design Experience': Andrew Kusiak, Albert Ratner, and Daniel Mineck: An additional project status update meeting was introduced in ME:4086 (58:086) because it appeared that the primary issues were that the students were not aware of the different skills they were demonstrating and that it took detailed questioning to extract the information from them. Also, there were some editorial changes made to the existing forms to help identify the information of interest.

Recommendations: For ME:4186 (58:186), the project experience form should be revised to make it clear to the students that they should include experiences from their entire time as undergraduate students and not just things from their capstone design experience. The project experience form also was used for outcome (c), and a similar recommendation was made there.

4.B.1.5 Outcome (e): an ability to identify, formulate, and solve engineering problems

Assessment results

Spring 2012: The average scores for all performance indicators satisfied the target threshold of

Spring 2013: Both the average and percentage scores for all performance indicators met the target thresholds.

Spring 2014: Both the average and percentage scores for all performance indicators met the target thresholds.

Actions taken

Spring 2013, ME:3052 (58:052), 'Mechanical Systems': Hiroyuki Sugiyama

comparative analysis. In summary, in previous years, students had difficulty in developing an at that time, explanations were provided regarding model reduction for the purpose of could be solved by hand. This was done on an individual basis during the computer laboratory explained how the students could develop a reduced model (as required in the project report) that modeling and numerical errors in FE solutions. Furthermore, Professor Sugiyama and the TAs those calculated by hand. With this content, students gained a more specific awareness of the solutions." This performance indicator requires students to compare finite element solutions with was used to evaluate the performance indicator "Analysis and interpretation of problem students did not do well in the discussion and evaluation sections in the computer project that a better understanding of model verification and validation. The component of "modeling and laboratory sessions developing an appropriate reduced model in the project were provided to students in the computer emphasis was placed on the modeling aspects in the course, and detailed instructions for appropriate model that was solvable by hand for the purpose of comparison. In 2013, more session. numerical errors" was missing in the previous years, and it could have been one of the reasons numerical errors" in the finite element (FE) section of the course so that students could achieve (58:052), Mechanical Systems' course, Professor Sugiyama emphasized "modeling Professor Sugiyama joined the Department in the spring semester of 2013. . The students signed up for computer laboratory to work on the project individually, and, In the ME:3052 and

Spring 2014, ME:3052 (58:052), 'Mechanical Systems': Hiroyuki Sugiyama No action was taken.

4.B.1.6 Outcome (f): an understanding of professional and ethical responsibility

Assessment results

Both dimensions of the performance measure were met for all performance indicators in all semesters. Therefore, outcome (f) was fully achieved based on the current rubric.

Actions taken

Spring 2013, 'Professional Seminar': Sharif Rahman and Pavlo Krokhmal Based on the discussion in the MIE meeting on February 12, 2013, and the Mechanical Systems

Based on the discussion in the MIE meeting on February 12, 2013, and the Mechanical Systems faculty meeting on February 13, 2013, a consensus was reached that ME Professional Seminars provide an appropriate basis for performing additional assessment of outcome (f).

series will alternate between the two sets of professional skills. i.e., (1) ethics and business practices or (2) leadership. In the new format, the focus of the seminar seminar series. A seminar series in a given year will target one of two sets of professional skills, Beginning in the fall of 2013, ME undergraduates have been exposed to a new professional

Fall 2013, ME:4055 (58:055), 'Mechanical Systems Design' (MSD): Olesya Zhupanska

give lectures. guest speakers (from industry, Law School, and the UI ADA compliance office) were invited to the course related to product liability, standards, and engineering ethics were revised. Several also included questions to assess the students' knowledge of NSPE's Code of Ethics. Topics in using written assignments on product liability, standards, and engineering ethics. The final exam In 2013, the assessment instruments were completely redesigned. The outcome was assessed

Fall 2013, ME:0099 (58:091), 'Professional Seminar': Kyung K. Choi

speaker was invited to give two lectures. In 2013, the outcome was assessed using written assignments on engineering ethics. A guest

4.B.1.7 Outcome (g): an ability to communicate effectively

Assessment results

obtained from 2010 to 2013 met the target thresholds. Therefore, outcome (g) was fully achieved. and Daniel Mineck: Both the average and percentage scores for all performance indicators Fall 2013, ME:4086 (58:086), 'Mechanical Engineering Design Project,' and ME:4186 (58:186), 'Enhanced Design Experience': Hongtao Ding, Andrew Kusiak, Albert Ratner,

level. semesters remained stable, with at least 80% of the students meeting the expected performance which was slightly less than the target threshold of 84%. Overall, the scores over multiple although the percentage score for the indicator, writing skills, in the spring of 2014 was 82.4%, assessment results indicated that the students' writing and presentation skills were satisfactory, outcome was assessed using ME:4080 (58:080), 'Experimental Engineering,' ME:4086 (58:086), Experience': Pablo Carrica, Andrew Kusiak, Albert Ratner, and Daniel Mineck: The Spring 2014, ME:4080 (58:080), 'Experimental Engineering,' ME:4086 (58:086), 'Mechanical Engineering Design Project,' and ME:4186 (58:186), 'Enhanced Design 'Mechanical Engineering Design Project,' and ME:4186 (58:186), 'PEDE and VIPT.' The

Actions taken

Mineck: No action was taken. Spring 2013, ME:4086 (58:086), 'Mechanical Engineering Design Project, and ME:4186 (58:186), 'Enhanced Design Experience': Andrew Kusiak, Albert Ratner, and Daniel

and Daniel Mineck: Fall 2013, ME:4086 (58:086), 'Mechanical Engineering Design Project,' and ME:4186 (58:186), 'Enhanced Design Experience': Hongtao Ding, Andrew Kusiak, Albert Ratner, No action was taken.

73

comments on draft reports. Grading standards and expectations also will be analyzed Spring 2014, ME:4080 (58:080), 'Experimental Engineering,' ME:4086 (58:086), including paying more attention to written reports early in the curriculum and providing The faculty is considering implementing measures to improve the students' performance, Experience': Pablo Carrica, Andrew Kusiak, Albert Ratner, and Daniel Mineck: 'Mechanical Engineering Design Project,' and ME:4186 (58:186), 'Enhanced Design

engineering solutions in a global, economic, environmental, and societal context 4.B.1.8 Outcome (h): the broad education necessary to understand the impact of

Assessment results

Therefore, outcome (h) was fully achieved. Both dimensions of the performance measure were met for all performance indicators.

Actions taken:

to Transform, Interact, Learn, Engage) classrooms that facilitate group activity, peer-assisted material pertaining to the issue of energy and its sustainable production and use. they would record the the information they acquired based on reading assigned and self-collected learning, and multimedia sources of information. Students were asked to create a blog on which Fall 2011, ME:4048 (58:048), 'Engineering Systems Design': H. S. Udaykumar This assessment was based on a new approach to teaching the course, i.e., using the TILE (Spaces

Fall 2012, ME:4048 (58:048), 'Engineering Systems Design': H. S. Udaykumar

energy profiles they obtained with quality-of-life indicators. looked at the efficiencies of the various entities in terms of energy use, and they correlated the spectrum of high energy-consuming entities to low energy-consuming entities. The students performing in-depth analyses of the energy profiles of a country/city chosen from across the content was not well managed. Therefore, the student blog was replaced by a PowerPoint blog was difficult to grade because information was organized differently by each group, and the presentation that the students designed and developed over a period of about a month by After some reflection and consultations with the TAs from past semesters, it was decided that the

Fall 2013, ME:4048 (58:048), 'Engineering Systems Design': H. S. Udaykumar Lectures in this semester were podcast and placed on ICON so that students could view them at any time. This is in line with the flipping of the classroom pedagogy adopted in this semester.

learning 4.B.1.9 Outcome (i): a recognition of the need for, and an ability to engage in life-long

Assessment results

Fall 2012: The percentage of students with scores ≥ 2 for the performance indicator, "*Responsibility*," in ME:4055 (58:055) was less than the target value of 84%.

Thus, outcome (i) was fully achieved Fall 2013: Both dimensions of the performance measure were met for all performance indicators.

Actions taken

Olesya Zhupanska Spring/Fall 2013, ME:4055 (58:055), 'Mechanical Systems Design': Hongtao Ding and

A 20-minute introduction to the design of modern wind turbines will be added to help the students with their technical reports on wind turbine systems.

Zhupanska Fall 2013, ME:4055 (58:055), 'Mechanical Systems Design': Hongtao Ding and Olesya

further actions were taken. the desired level in the fall of 2012 was resolved as demonstrated by the improved score. No The issue concerning the low percentage of students who met the "responsibility" indicator at

4.B.1.10 Outcome (j): a knowledge of contemporary issues

Assessment results

percentage for the second indicator "knowledge" was slightly less than the target value of 84%. performance measure were essentially met for the three performance indicators. However, the semester of 2012, the results from ME:4055 (58:055) showed that both dimensions of the did not cover all three performance indicators individually, as indicated below. In the Fall 2012: In the fall semesters of 2011 and 2012, the collection of data from ME:4048 (58:048) fall

the students. Therefore, outcome (j) was fully achieved. Fall 2013: The assessment results showed that outcome (j) was satisfactorily demonstrated by

Actions taken

since has been used since the fall of 2012 to obtain data on the individual components of outcome course would be useful to help assess this outcome. It was decided that ME:4055 (58:055), After some reflection and discussion in the ME Program meetings, it was felt that an additional difficult to separate it into the individual components of "Interest," "Knowledge," and "Use." assessment document for the assessed outcome is listed under the performance indicator, "Use," in reality, the problem tested the students on "Interest," "Knowledge," and "Use." It was to map the large problem to the individual outcomes. Even though the numerical value in the (58:048), 'Energy Systems Design' from other courses, and it was not clear to the instructor how many conjoined and interwoven parts. The outcome had just been transitioned to ME:4048 large effort on the part of the students, i.e., a semester-end project on LEED certification with of the outcomes in the grading process. The assessment of the outcome was based on a rather using a large-scale project, but it was difficult to effectively separate the performance indicators ME:4048 (58:048), 'Energy Systems Design.' In the fall of 2011, the assessment was performed Spring 2013, ME:4048 (S8:048), 'Energy Systems Design': H. S. Udaykumar The assessment of outcomes for the fall of 2011 was transitioned from ME:0099 (58:091) to 'Mechanical Systems Design,' would be a good venue to parse the different individual indicators

Fall 2013, ME:4048 (58:048), 'Energy Systems Design' (ESD), and ME:4055 (58:055), 'Mechanical Systems Design' (MSD): U. S. Udaykumar and Olesya Zhupanska No further actions were taken.

4.B.1.11 Outcome (k): an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Assessment results

semesters from 2011 to 2014. Therefore, outcome (k) was fully achieved Both dimensions of the performance measure were met for all performance indicators in all

Actions taken

Spring 2013, ME:4080 (58:080), 'Experimental Engineering': Hongtao Ding

in 'Experimental Engineering.' Data acquisition occurs in almost all experiments in both 'Engineering Instrumentation' and 'Experimental Engineering DASYLab software. Teaching LabView starts in 'Engineering Instrumentation,' and it continues LabView software was used for data acquisition and signal processing instead of the older

Spring 2013: Mechanical Systems Faculty

software and the Finite Element program. to ten hours. The laboratory section will be increased accordingly, from four hours to six hours. (58:055), 'Mechanical Systems Design' (Section 4.B.3). Implementation of the revised sequence began in the spring semester of 2014. There is a plan to expand 'Finite Element' from eight hours the Department in the fall of 2012 and the spring of 2013, respectively. Thus, the Mechanical Systems faculty has been revamping ME:3052 (58:052), 'Mechanical Systems' and ME:4055 More emphasis will be placed on laboratory assignments that involve the joint use of CAD Two new mechanical systems faculty, Professors Hongtao Ding and Hiroyuki Sugiyama, joined

to use Pro/E again. ANSYS is introduced in ME:3052 (58:052), 'Mechanical Systems,' and it is used extensively in ME:4115. ABAQUS is used in ME:4110. Currently, our students learn Pro/E in ENGR:2760 (57:021), 'Design for Manufacturing.' They use Pro/E in ME:3052 (58:052), 'Mechanical Systems.' Students who take ME:4115 (58:115), Finite Element I, and ME:4110 (58:110), 'Computer Aided Engineering,' will have opportunities

systems engineering, including the design and realization of such systems 4.B.1.12 Outcome (I): an ability to work professionally in either thermal or fluid

Assessment results

semesters of 2010, 2011, 2012, and 2013. Therefore, outcome (I) was fully achieved Both dimensions of the performance measure were met for all performance indicators in the fall

Actions taken

Fall 2012, 2013: No action was taken.

4.B.1.13 Outcome (m): an ability to work professionally in mechanical systems engineering, including the design and realization of such systems

Assessment results

Fall 2012: Both dimensions of the performance measure were essentially met for the first two performance indicators, i.e., "*understanding of considerations in the design of mechanical systems*" and "*ability to apply design criteria for durability*." The average scores and percentages of students with scores ≥ 2 for the third performance indicator, "*ability to design or analyze mechanical systems and components*," have been improving over the last few years. Even so, the percentage score for the fall semester of 2012 was slightly less than the target value of 84%. Therefore, corrective actions are required for the third indicator.

Fall 2013: The outcome was assessed using the ME:4055 (58:055), 'Mechanical Systems Design' (MSD) course. The new assessment instruments were used, and the students' performances were found to be satisfactory.

Actions taken

Spring/Fall 2013, ME:4055 (58:055), 'Mechanical Systems Design': Hongtao Ding and Olesya Zhupanska

The students had some difficulty in applying different failure theories for fastener design. This will be improved by giving more examples on failure prevention in fastener design or by redesigning the assessment instruments. The 'Mechanical Systems' faculty met and discussed revamping several related courses. Thus, in the fall of 2013, the assessment instruments were completely redesigned. The outcome was assessed using written assignments on product liability, standards, and modern wind energy systems. The final exam also included questions that were designed to assess the students' ability to apply design criteria for durability. Course topics related to product liability and standards were revised. Several guest speakers (from industry, Law School, and the UI ADA Compliance Office) were invited to offer lectures.

4.B.2 Actions Resulting from Surveys and Interviews

4.B.2.1 Survey results and actions

The following surveys were used to obtain feedback concerning student outcomes.

- Survey of exiting undergraduate seniors (twice a year)
- . Survey of the design project mentor and/or sponsor (twice a year)
- 3. Survey of design project judges (twice a year)

The numerical scores were as follows: 1 (strongly agree), 2 (moderately agree), 3 (slightly agree), 4 (slightly disagree), 5 (moderately disagree) and 6 (strongly disagree). The survey results are summarized in Table 4.40 and Table 4.41.

Actions taken

For most outcomes, the survey results fall in the categories between 'strongly agree' and 'moderately agree' with the exceptions of outcomes (g), an ability to communicate effectively and (i), a recognition of the need for, and an ability to engage in, life-long learning. The low scores for outcome (i) from the design project mentor/sponsor survey and the design judge surveys were due to their not having an adequate basis to make a judgment. For outcome (g), there was a discrepancy between the senior exit survey and the design project mentor/sponsor and judge surveys. Based on the written comments, it was determined that the low scores were due to one outlier group, unreadable charts, and/or small fonts.

Regarding outcome (m) and elective courses for solid modeling, in the spring semester of 2013, the Design EFA coordinators, Professors Kyung K. Choi and Sharif Rahman, investigated this suggestion. They examined the syllabi and course materials for the following courses that emphasize the use of Pro/E or other solid modeling software packages, i.e., BME:2710 (051:063), 'Engineering Drawing, Design, and Solid Modeling,' and CEE:2240 (053:040), 'Introduction to Computer Aided Design-3D Design'. They recommended that these courses not to be listed in the Design EFA's General Electives. However, these courses could be taken by students if they select a tailored EFA. Also, please refer to 0 concerning the revamping of the 'Mechanical Systems' courses and for a discussion of Pro/E and FEM software.

The survey results also indicated that the curriculum should be enhanced in the areas of software skills, communication in a team, and leadership (Section 2.E.2), and the resulting actions are:

Software skill:

Actions:

Please refer to the actions described in Section 4.B.1.11.

. Communication in a team:

Action: In the spring of 2013, a new performance indicator "intra-team communication skills" was added to assess outcome (d), *an ability to function on multi-disciplinary teams*.

3. Leadership:

Action:

increased coverage in the College-wide seminars and Departmental professional seminars. responsibility in the professional seminars (Section 4.B.1.6). These topics have received The faculty discussed including topics on leadership along with professional and ethical

4.] Action: Hands-on experience:

The faculty discussed the suggestion concerning the need for more hands-on experience. In fact, our students gain significant hands-on experience in ENGR:2760 (57:021), 'Design for Manufacturing.' This course requires student teams to design and manufacture a 1/18 scale on experience during the design processes in ENGR:2760 (57:021). performance metric. Thus, the faculty concluded that our students have gained sufficient handsexam. Groups should complete a 7-ft race in the shortest time, where time will be used as the together, and the implementation of the design. A competition is held before the week of the final drawings, construction techniques, the creativity of the solution, the ability of the team to work depth and completeness of understanding of the design problem, the quality of the engineering manufactured by a computer numerically controlled (CNC) milling process using a standard plastic workpiece. Considerable effort are placed on the design process and its constraints, the shafts designed using CAD software; however, the chassis must be partially or fully turning, drilling, sawing, welding, bending, and grinding to manufacture the chassis, wheels, and Groups are free to use any appropriate traditional manufacturing techniques, such as milling, electric car, which must be driven by an electric motor that is powered by a standard battery.

Table 4.40. Summary of Mean Scores of the Surveys

			~ 2012	2								
1.6	1.22	1.50	3.80	1.63	2.78	1.71	1.44	1.33	1.56	1.44	2.11	Project judges
2.4	1.64	1.56	2.29	2.18	2.18	2.09	1.55	1.33	2.09	2.18	1.36	Project mentors
2.1	 1.72	1.91	1.34	1.56	1.45	1.38	1.63	1.26	1.72	1.79	1.61	Senior exit int.
Ξ	(k)	ij	(i)	(h)	(g)	(f)	(e)	(d)	(c)	(b)	(a)	Survey
			2012	s, Fall	tcome	ent ou	Stud					2

C					Stude	nt oute	comes,	Sprin	g 2013				
Surrey	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)
Senior exit int.	1.73	1.80	1.60	1.33	1.33	1.40	1.27	1.47	1.40	1.73	1.40	1.73	1.80
Project mentors	2.14	1.57	2.57	1.33	2.57	2.43	1.86	2.71	2.60	2.57	1.57	3.00	2.43
Project judges	2.00	2.20	1.60	2.60	2.00	1.40	1.75	1.60	4.00	2.00	2.60	2.00	1.50
					2		•	1					

exit int. Survey Senior (a) 1.25 (b) 1.50 c 1.75 (**d**) 1.13 (e) 1.38 Student outcomes, Fair 2013 f 1.25 (g) 1.25 (**h**) 2.00 (i) 1.13(j) 1.25 (k) 1.50**(I)** 1.75 (m) 1.38

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
1.67 2.00 1.67 2.67 2.67 2.00 1.67 2.00 1.50 2.50 1.14 1.67 2.14 1.71 1.86 2.60 1.83 1.57 2.40 1.43 Student outcomes, Spring 2014
2.00 1.67 2.67 2.67 2.00 1.67 2.00 1.50 2.50 1.67 2.14 1.71 1.86 2.60 1.83 1.57 2.40 1.43 Student outcomes, Spring 2014
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
2.67 2.00 1.67 2.00 1.50 2.50 1.86 2.60 1.83 1.57 2.40 1.43 Spring 2014 (h) (h) (h) (h)
2.00 1.67 2.00 1.50 2.50 2.60 1.83 1.57 2.40 1.43 g 2014 (h) (h) (m)
1.67 2.00 1.50 2.50 1.83 1.57 2.40 1.43
2.00 1.50 2.50 1.57 2.40 1.43
1.50 2.50 2.40 1.43
2.50 1.43

Project 1.89 3.00 2.25 2.00 1.89 3.33 2.22 2.13 2.25 3.43 2.00 3.75	Student outcomes, Spring 2014 Senior 1.40 1.52 2.07 1.40 1.47 1.40 <	Project 2.43 1.57 1.29 1.14 1.67 2.14 1.71 1.86 2.60 1.83 1.57 2.40 judges 2.43 1.57 1.14 1.67 2.14 1.71 1.86 2.60 1.83 1.57 2.40	Project mentors 1.67 2.00 1.67 2.00 1.67 2.67 2.67 2.00 1.67 2.00
---	--	---	--

Table 4.41. Summary of Written Comments of the Surveys

Survey	Written comments, Fall 2012
Senior exit	(1) I would rather work with fluids or dynamics over thermal.
interview	(m) Elective course should be available for both Pro/E and Solidworks.
Duning	(h) I have not had a chance to observe it.
Froject	(i) I have not had a chance to observe this.
mentors	(I) Was not part of any project.
	(g) Wide range of communication abilities demonstrated. Specific issues for
	many were unreadable charts (mostly due to small font) and lots of um's and
Project judges	ah's; One group lagged dramatically.
	(i) Not sure if I had any basis upon which to make a judgment on this; needs
	to be demonstrated.
Survey	Written comments, Spring 2013
	(General comment)
	I believe there are too many solution manuals out there, and students are

Survey	Written comments, Spring 2013
	(General comment)
	• I believe there are too many solution manuals out there, and students are
	just memorizing the information instead of learning it.
interritory	 The best experience is undergraduate research.
TITEL VIEW	 Offer different design courses: AutoCAD, Revit, Solidworks, etc.
	• The math department does not convey to us why we are learning the
	material.
	 I think it would be good to promote more undergraduate research.
	(a) I only met with the students twice, but they seemed capable.
	(c, e) Unfortunately, we were unable to attend the final presentation, and
Project	have not seen the final project results.
mentors	(f) I have no evidence or experience on which to base such a judgment.
	(h, i, j, l, m) I have insufficient information on which to base an answer to

79

this question

Survey	Written comments, Spring 2014
	(General comment)
	Add more classes that are solely based on learning certain programs
Senior exit	such as proE, Ansys, abaqus, etc.
interviews	• I think there needs to be more emphasis on preparing students for the
	industry. My senior design project has shown me that I have not learned
	enough skills, beyond theory, to design and create a product.
	 Students need more training in Creo or similar programs

	 Somehow, earlier on, it would definitely be beneficial to student with better context as to how the skills they an learning are going to transfer. E.g. A student in Statics migh problem that shows how important Statics is in Mechanic The one downside of the curriculum(and I see this as a builties that the students have to learn everything separately chance to put it all to gather in the big picture classes such as Systems Design and Energy Systems Design. The lab equipment and lab procedures for experimental need to be updated. Their procedures are out of date and equipment is shotty.
	 (b) This project didn't require experiments (l) The project did not require such detail. (f, j) I assume so. (f) Some students come to the work place in hoodie sweatshirt.
mentors	(General comment) Overall - job well done. However, student tapering off towards the end of semester. Need to address this. run program. The student interviews uncovered just one area to offered an opportunity for improvement, which was understan contemporary issues. Thanks!!
Project judges	 (a) In general, there was a lack of adequate quantitative analys (d) Very difficult to judge this one from a 20 minute presentative (e) Strong on defining but weak on solving. (f) Difficult to determine. (G) Ceneral comment) I encountered very few students whom I thereally enthusiastic about engineering. The seemed to all want to management as quickly as possible. I think more emphasis on fundamentals and basic engineering approaches would allow the better vision of the overall system and have more appreciation of engineering and innovation. The students that I talked to see almost exclusively on business aspects, which while important end-all. Disappointed at how several projects stopped at CAD; at least minimal mockups.

Survey

Project judges

(General comment) I did not see the students having a clear idea of how to

tools or fundamental "back of the envelope" assessments

opinion on this. (k) I didn't see many cases of projects that effectively applied these analysis

(i) Difficult to determine with such little time; no information to base an

analysis and many of the projects seemed to be more marketing in nature use what I would hope they learned in their other classes. There was minimal

than engineering, so part of the problem was that they did not have a need to

do much analysis

interviews Senior exit

personal research goals.

(General comment) Have professors more focused on teaching than their

Written comments, Fall 2013

the problem at hand to a standard of a Deere engineer. The students were well

versed in engineering theory. However, the majority of a Mechanical (General comment) We had a great group of students who were able to solve

mentors Project

Project judges

in coming years.

hands-on project activities will enhance their knowledge and skills required

working are good cross section of engineering issues faced in industry. The the majority of the students' future success. The projects students are economic feasibility of solutions. In having made the same transition

from specific questions. One area that I am particularly biased towards is (General comment) So my additional areas for specific feedback separate (f) Did not recall specific instances of this - so will respond accordingly. cubicles anymore, they need to have a strong foundation in communication impacts that their design decisions have on the schedule and budgets in both problem as quickly and efficiently as possible. I feel the students would Engineer's job is to provide schedule and budget impacts while solving the

the short term and long term. Also, engineers are not allowed to just sit in benefit from more application of the theory in conjunction with the economic

Difficult to tell.

across disciplines and cultures

(undergraduate / graduate degree -> industry) this is a critical component of

4.B.2.2 Senior interview results

In the spring of 2013, the end of the semester Senior Project Presentation night was scheduled on May 9, and the Industrial Advisory Board meeting was scheduled on May 10. The ME and IE for, and an ability to engage in, life-long learning and outcome (j), a knowledge of contemporary been conducted twice, i.e., in the springs of 2013 and 2014. The interviews allowed assessment either board members or project judges from various companies. Since then, the interviews have ABET committees decided to arrange one-on-one interviews for all of our senior students by committees chose two outcomes for assessment. They are outcome (i), a recognition of the need and evaluation of the achievement of some student outcomes from the industrial perspective. The

issues. The board members and judges indicated that the interviews were helpful for them to know better about the ABET process and the needs of the program. The board members and project judges scored the achievement of these outcomes based on their respective rubrics in Table 4.25 and Table 4.28. A summary of the interviews is shown in Table 4.42. Overall, the two dimensions of the performance measure were met for both outcomes.

Table 4.42. Summary of Senior Interviews Conducted by Advisory Board Members and

Judges

Spring 2013 94.2 100.0 Spring 2014 100.0 98.4 100.0 Outcome (i) Performance India	Spring 2013 94.2 94.2 100.0		(b) Percentages of scores exceed	Spring 2014 2.4 2.4 2.4	Spring 2013 2.5 2.5 2.5	(a) Average scores	Semester Curiosity Responsibility Knowledge Translation	Outcome (i) Performance Ind
	rmance Indicators	100.0 98.0	scores exceeding 2	2.4 2.5	2.5 2.5	age scores	owledge Knowledge nslation Integration	formance Indicators
Average 2.1 2.4	98.4	98.0		2.4	2.5		Average	-

4.B.3 Other Actions

- a....d

The actions described in this section resulted primarily from discussions at ME program faculty meetings. These actions were organized by courses.

ME:3351 (58:051): 'Engineering Instrumentation'

ME:3351 (58:051), 'Engineering Instrumentation,' was first offered in the fall of 2011. This course, which replaced the four s.h. 57:018, 'Principles of Electronic Instrumentation,' taught by the Department of Electrical and Computer Engineering, was reviewed during 2010-2011. In the review, it was found that, from a Mechanical Engineering perspective, 'Principles of Electronic Instrumentation' overemphasized material on electronics and semiconductors and underemphasized sensors and the use of instrumentation usage, both of which are very important for Mechanical Engineers. Thus, the Mechanical and Industrial Engineering Department proposed the development of a new, two s.h. course to teach sensors, instrumentation, and data acquisition using modern software (LabView). The new course, 'Engineering Instrumentation,' also allowed the sensors component to be removed from ME:4080 (58:080), 'Experimental Engineering,' providing more time to concentrate on advanced experimental techniques and

83

uncertainty analysis. In addition, Mechanical Engineering students now are required to take the two s.h. course ENGR:2730 (57:017), 'Computers in Engineering,' in which they learn programming, an important area that the faculty wanted to reinforce.

Fall 2011 (first offering): James Buchholz

Course description: Measurement errors and calibration, measurement circuits, laboratory instrumentation, amplifiers, frequency domain, frequency response, noise, analog filters, sensors, data acquisition, LabView, and signal processing and filtering with LabView. This is a two s.h. course, including eight two-hour laboratory sessions.

Fall 2012: James Buchholz

The curriculum was modified to de-emphasize frequency domain, frequency response, and filters; there was an increased emphasis on instrumentation, calibration, and error analysis.

Fall 2013: James Buchholz

To support a significant increase in enrollment, a second lecture section and two additional laboratory sections were established. Prof. Buchholz taught both lecture sections, and an instructor was hired to supervise the laboratory sections (reporting to and receiving support and assistance from Prof. Buchholz). The number of students in each laboratory section also was increased, requiring the purchase of equipment for the additional laboratory stations. This also provided an opportunity to replace old equipment used in the laboratories.

ME:4048 (58:048): 'Energy Systems Design'

Fall 2012: H. S. Udaykumar

ME:4048 (58:048), 'Energy Systems Design' (ESD), was taught (all lectures and discussion sessions) in the TILE classroom, which was designed to promote active-learning pedagogies and student collaboration. These classrooms are equipped with extensive technology, including large monitor displays for each student's table, large screens and projectors for viewing by the entire class, network connectivity, and microphones available at each table in the larger rooms. Students work in groups to foster peer-supported learning, and the course mainly relies on several miniprojects and a larger, end-of-semester project to enable students to learn by doing. Feedback from students has been very positive. The course structure now follows the principles of inquiry-based learning in which students self-direct their learning while the teacher acts as a facilitator.

ME:3052 (58:052), 'Mechanical Systems

Spring 2012: Justin Garvin

Based on the results of the assessment of outcome (k) in the spring of 2011, the rubric for this outcome was modified. Explicit references to "ANSYS" and "Pro/E" were replaced by "commercial finite element program" and "solid modeling software," respectively, because students were not required to use ANSYS and Pro/E exclusively in their projects. The modified rubric was used in the spring of 2012.

Spring 2013: Hiroyuki Sugiyama

The finite element section was slightly modified specifically to provide the students with a better understanding of modeling and numerical errors in finite element solutions. Lectures on "finite element modeling and errors" were added for this purpose. This slight modification helped students evaluate numerical results obtained by finite element software in the computer project, and the average score in the discussion and evaluation sections of the project report was improved.

ME:4055 (58:055), 'Mechanical Systems Design'

Fall 2012: Hongtao Ding

This course was taught by Professor Ding who joined the Department in the fall of 2012. ME:4055 (58:055), 'Mechanical Systems Design,' which was already used to assess outcomes (f) and (m), also was used to assess outcomes (i) and (j). An introduction to modern wind turbine systems, in particular, the design of the gear box of a wind turbine, was added to help students engage in life-long learning and gain more knowledge of contemporary issues.

Fall 2013: Olesya Zhupanska

In 2013, the assessment instruments were completely redesigned. The outcome was assessed using written assignments on product liability, standards, and engineering ethics. Also, the final exam included questions to assess the students' knowledge concerning NSPE's Code of Ethics. Course topics related to product liability, standards, and engineering ethics were revised. A number of guest speakers (from industry, Law School, and the UI ADA compliance office) were invited to give lectures.

Course Revision Summary: ME:3052 (58:052), 'Mechanical Systems,' and ME:4055 (58:055), 'Mechanical Systems Design,' Spring 2013, Olesya Zhupanska

ME:3052 (58:052), 'Mechanical Systems,' is a required, junior-level course, and ME:4055 (58:055), 'Mechanical Systems Design,' is a required, senior-level course in the ME program, with the former course being a pre-requisite for the latter course. Both courses were discussed and re-evaluated at a series of the Mechanical Systems group faculty meetings in the spring of 2013. As a result of these discussions, several changes were recommended and approved by the MIE faculty in May 2013. The changes were implemented in the spring of 2014.

As a result of the revisions, many topics that were taught previously in ME:4055 (58:055), e.g., fatigue and durability in design, fracture, engineering ethics, product liability, and standards, were moved to ME:3052 (58:052), 'Mechanical Systems.'

New topics were added to the revised ME:4055 (58:055) course, i.e., kinematics of mechanisms, dynamics and vibration of machines, and computer-aided analysis of machines. Previously, these topics were not covered in any required undergraduate ME courses.

The revised course, ME:3052 (58:052), 'Mechanical Systems,' is a four s.h. course, whereas it had been a 3 s.h. course in the past. The topics that will be covered include product liability,

standards in engineering design, engineering ethics, mechanical behavior and failure of materials, materials selection in design, stress and deflection analysis, static failure theories, fatigue and durability in design, fracture, statistical and reliability considerations, and finite element analysis using commercially available software.

The revised course, ME:4055 (58:055), 'Mechanical Systems Design,' is a 3 s.h. course that had been a 4 s.h. course in the past. The topics covered include kinematics of mechanisms, dynamics and vibration of machines, design of cams and gears, design of machine elements, and computer-aided analysis of machines. The course ENGR:2710 (57:010), 'Dynamics,' was added as a pre-requisite for ME:4055 (58:055).

ME:4080 (58:080): 'Experimental Engineering'

Fall 2010 Acquisition of Skystream 3.7 Wind Turbine: Pablo M. Carrica

ME:4080 (58:080), 'Experimental Engineering,' is an experiment-based course for seniors in ME. To combine advanced experiments and content on the contemporary topic of wind energy, a Skystream 2.4 kW wind turbine was installed on campus, three blocks south of the Experimental Engineering Laboratory. The turbine was purchased with funds from the College of Engineering and a grant from the Iowa Alliance for Wind Innovation and Novel Development (IAWIND). Also, the grant allowed for the purchase of wireless data acquisition systems and instrumentation to allow students to perform remote experiments using the turbine. The turbine is equipped with a hinged tower base and a winch that enables the turbine to be lowered and raised easily.

The turbine was commissioned in 2010, and it was first used by students in the fall semester of 2010. Students use the turbine to perform experiments for the final project in ME:4080 (58:080), 'Experimental Engineering.'

Spring 2011: Pablo M. Carrica

In the spring of 2011, rubrics were developed to assess Student Outcome (b) "ability to design and conduct experiments and to analyze and interpret data," Performance Indicator "use of hardware and lab equipment" in Student Outcome (k), and Performance Indicators "organization in writing" and "writing skills" in Student Outcome (g). To accommodate the grading needed for the assessments, the individual and group reporting requirements were modified. Homework was required but not graded, and weekly quizzes were implemented to prevent students from downloading textbook solutions from the Internet.

Fall 2011: Pablo M. Carrica

Due to poor results with the quizzes, graded homework was implemented again. Some of the problems were specifically designed for the course instead of coming from the textbook.

Spring 2012: Pablo M. Carrica

to implement the transition to LabView software beginning in the fall of 2012. performance in uncertainty analysis and dynamic response results. All experiments were revised Now, all homework problems are developed specifically for the course. This resulted in better

Fall 2012: Pablo M. Carrica

these experiments will be updated in the next few semesters. experiments still use DASYLab because the available hardware is incompatible with LabView; the concepts that were taught in performed using LabView instead of DASYLab, and one LabView lecture was added to refresh (including uncertainty), and improved reporting. Eighty percent of the experiments were allowed additional time for the performance of more complex experiments, more data analysis The curriculum was modified in response to the implementation of 58:051, 'Engineering Instrumentation.' The elimination of Sensors, now taught in 'Engineering Instrumentation,' 'Engineering Instrumentation.' Twenty percent of the

Spring 2013: Hongtao Ding

they will be updated in the next few semesters. two experiments still using DASYLab have hardware that is incompatible with LabView, and Two more experiments were converted to use LabView instead of DASYLab. The remaining

Spring 2014: Pablo M. Carrica The development of a new experiment on the reduction of vapor cavity drag reduction was initiated, and it will be introduced as a final project. The plan is to complete it and offer it as an elective experiment in the fall of 2014.

Certificate in Wind Energy

Spring 2013: Pablo M. Carrica

Engineering, Electrical and Computer Engineering, and Geography. from the Departments of Mechanical and Industrial Engineering, Civil and Environmental in the state. The Certificate in Wind Energy integrates coursework and the faculty's expertise the country, and several facilities that manufacture wind turbines, towers, and blades are located has a strong stake in wind energy. It generates more electricity from wind than any other state in professionals with diverse backgrounds and knowledge of the fundamentals of wind energy. Iowa use of this technology is expected to increase over the next few decades, creating the need for A new interdisciplinary undergraduate certificate in wind energy was developed and became effective in the spring of 2013. Wind energy has become a major source of clean energy, and the

Engineering program. elective and can be used to complete the conditions for the EFA, as required by the Mechanical GEOG:3560 (44:130), 'Spatial Analyses of Wind Energy.' The other 12 semester hours are there are two required courses, i.e., IE:4550 (56:155), 'Wind Power Management,' and Students must take 18 semester hours of coursework in any of the departments involved, and

> Engineering and the Geography Departments, respectively (44:130), 'Spatial Analyses of Wind Energy,' developed in the Mechanical and Industrial Wind Energy, i.e., ME:4142 (58:142), 'Wind Turbine Aerodynamics,' and GEOG:3560 Two courses are being offered this semester for the first time in the context of the Certificate in

of the courses offered. The Student Chapter of the American Wind Energy Association (AWEA) year, attracted by the multi-disciplinary nature of the curriculum and the contemporary content energy, complementing the offering of the Certificate. at the University of Iowa has dozens of affiliated students who are interested in the area of wind It is expected that between 10 and 15 students will enroll to the Certificate in Wind Energy every

4.C Additional Information

Administration." Each semester, the ME faculty upload the ABET information to this site, such system at the University of Iowa. Most instructors in ME program use ICON as the website for their courses. We created a site on ICON called "Mechanical Engineering Program rubrics and assessment instruments. In addition, other ABET information, such as minutes of the as the results of the assessment of student outcomes, continuous improvement activities, and One of the major improvements of our program during this ABET review cycle relates to the method used to document and maintain ABET assessment results and continuous improvement is well organized by categories and subcategories. site. Based on the user-friendly interface provided by ICON, the ABET information on the site meetings conducted by the ME program concerning ABET, also has been uploaded to the ICON activities. We used the online capabilities provided by ICON, which is the course management

will be available to the reviewers during the accreditation visit. The material will be organized outcomes and (2) documentation will be organized by course and will include the syllabus, course as follows: (1) documentation and assessment results will be organized by each of the ME student In addition, hard copies of the materials and documentation supporting the assessment process material, samples of students' graded work, and the results of assessments of the various courses