Report on CSE 778

Computer-Aided Design and Analysis of VLSI Circuits

P. Sadayappan

Course Information

- Taught every Autumn, MWF 12:30-1:16; 4 credits
- Around 25 students, mix of CSE-UG/G, ECE-UG/G
 - AU04: 7 cse-ug, 9 cse-g, 4 ece-ug, 5 ece-g
- Course covers both "low-level" and "high-level" design (two separate graduate-level courses in ECE)
 - Low-level: Transistor-level design and layout; used for creating building blocks like adders, shifters, registers etc.
 - High-level: Hardware Description Language (Verilog); used for system design

Low-Level Design

- · Topics:
 - CMOS circuit design techniques
 - Layout design, extraction
 - Effect of transistor size on performance
 - Simulation for functional testing and timing characterization

Coursework

- · First half: Low-level design
 - 2 Labs, 2 HW's, 1 Design Project
 - Design project (individually done) emphasizes iterative design to achieve circuit performance goals
 - Use simple analytical model to develop initial design; implement circuit, create layout, extract and simulate to characterize performance; identify performance bottleneck and redesign; iterate several times till optimal performance is achieved.
 - Written Project Report describing initial design and documenting design iterations.
- Mid-term
- Second half: High-level design using HDL's
 - Group project (2 students): design/verification of simple system (e.g. Soda-machine controller; Digital alarm clock)
 - Group presentation (oral, ~ 20 minutes)

Capstone Criteria 1 & 2 & 3

- · Criteria 1 & 2
 - Is at the senior level
 - Pre-requisites CSE 560, CSE 601, CSE 675, ECE 561
- Criterion 3: Design component
 - Design is a significant focus in course: 2 labs and 2 projects
 - Project 1 illustrates design iteration typical in industry

Criterion 4: Course Content

- Realistic constraints
 - · Performance constraints
- Standards
 - · Verilog HDL is an IEEE standard
 - Layout design rules
- · Maintainability
 - Currently not emphasized in course; could look for ways of addressing this in future offerings

Criterion 5: Documentation

- Written project reports for project 1 & 2
- Project designs are documented in project reports, but no specified structure for the documentation
 - Ad hoc, using mix of schematics, English descriptions, source code fragments, annotated simulation output etc.
 - Would be desirable to provide greater structure for design documentation

Criterion 6: Oral Presentation

- Each group makes an oral presentation (about 20 minutes; 10 minutes by each partner)
 - Topic is either Design Project 2, or
 - Any other pre-approved topic pertaining to course matter
- · Feedback & Peer Evaluation
 - Students fill out feedback forms
 - Good attendance (offered a small amount of extra credit)
- Presentation on Design Project vs. Other topics
 - Few groups chose to present their Project 2 design
 - Alternative topic presentations were much more interesting
 - e.g. Pentium Architecture; Itanium Architecture; Phase-Locked Loops; Commercial CAD Tools; CAD Synthesis

Criteria 7: Teamwork

- Project 2 was done in 2-person teams
- Oral presentation required presentation by both team members
- Team choice was left to students
 - Considered mixing CSE and ECE, but class was not quite balanced in count
- Nothing formalized regarding work partitioning and team interaction; nothing explicitly reported
 - For project 2, the overall effort is definitely reduced by partitioning design work: teams divided up work by dividing up component modules of design
 - For oral presentation, typically two coordinated and linked presentations

Criterion 8: Course-size

- Cap: 30
- Enrolment over last few years has been around 25