Word Recognition with Conditional Random Fields

Jeremy Morris
12/03/2009

Outline

- Background
- Word Recognition – CRF Model
- Pilot System - TIDIGITS
- Larger Vocabulary - WSJ
- Future Work

Background

- Conditional Random Fields (CRFs)
 - Discriminative probabilistic sequence model
 - Directly defines a posterior probability $P(Y|X)$ of a label sequence Y given a set of observations X

$$P(Y | X) = \frac{\exp \left(\sum_k \sum_j \lambda_k s_j(x, y_k) + \sum_j \mu_j f_j(x, y_k, y_{k-1}) \right)}{Z(x)}$$

- The form of the CRF model includes weighted state feature functions and weighted transition feature functions
 - Both types of functions can be defined to incorporate observed inputs

Background

- Our previous work compared CRF models for phone recognition to HMM models

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRF (phone classes)</td>
<td>69.92%*</td>
</tr>
<tr>
<td>HMM Tandem16mix (phone classes)</td>
<td>69.34%</td>
</tr>
<tr>
<td>CRF (phone classes + phonological features)</td>
<td>70.63%*</td>
</tr>
<tr>
<td>HMM Tandem16mix (phone classes + phonological features)</td>
<td>69.40%</td>
</tr>
</tbody>
</table>

*Significantly (p<0.05) better than comparable Tandem 16mix triphone system (Morris & Fosler-Lussier 08)

Background

- Problem: How do we make use of CRF classification for word recognition?
 - Attempt to fit CRFs into current state-of-the-art models for speech recognition?
 - Attempt to use CRFs directly?

- Each approach has its benefits
 - Fitting CRFs into a standard framework lets us reuse existing code and ideas (Crandem system)
 - A model that uses CRFs directly opens up new directions for investigation
 - Requires some rethinking of the standard model for ASR
Problem: For a given input signal X, find the word string W that maximizes $P(W | X)$.

In an HMM, we would make this a generative problem.

We can drop the $P(X)$ because it does not affect the choice of W.

We want to build phone models, not whole word models...

... so we marginalize over the phones and look for the best sequence that fits these constraints.
However - our CRFs model \(P(\Phi | X) \) rather than \(P(X | \Phi) \). This makes the formulation of the problem somewhat different.

We want a formulation that makes use of \(P(\Phi | X) \). We can get that by marginalizing over the phone strings. But the CRF as we formulate it doesn't give \(P(\Phi | X) \) directly.

\[\arg \max_w P(W | X) = \arg \max_w \sum_{\Phi} P(W, \Phi | X) \]
\[= \arg \max_w \sum_{\Phi} P(W | \Phi, X) P(\Phi | X) \]

Frame level vs. Phone level:
- Mapping from frame level to phone level may not be deterministic.
- Example: The word "OH" with pronunciation /ow/.
- Consider this sequence of frame labels: ow ow ow ow ow ow.
- This sequence can possibly be expanded many different ways for the word "OH" ("OH", "OH OH", etc.).

\(\Phi \) here is a phone level assignment of phone labels.
\(\Phi \) gives related quantity – \(P(Q | X) \) where \(Q \) is the frame level assignment of phone labels.
Word Recognition

- Frame level vs. Phone segment level
 - This problem occurs because we're using a single state to represent the phone /ow/
 - Phone either transitions to itself or transitions out to another phone
 - We can change our model to a multi-state model and make this decision deterministic
 - This brings us closer to a standard ASR HMM topology
 - ow1 ow2 ow2 ow2 ow2 ow3 ow3
 - Now we see a single "OH" in this utterance

- Multi-state model gives us a deterministic mapping of Q -> Φ
 - Each frame-level assignment Q has exactly one segment level assignment associated with it
 - Potential pitfalls if the multi-state model is inappropriate for the features we are using

Word Recognition

\[P(\Phi | X) = \sum_{Q} P(\Phi, Q | X) \]
\[= \sum_{Q} P(\Phi | Q, X) P(Q | X) \]
\[\approx \sum_{Q} P(\Phi | Q) P(Q | X) \]

- What about P(W|Φ)?
 - Non-deterministic across sequences of words
 - Φ = / ah f eh r /
 - W = ? "a fair"? "affair"?
 - The more words in the string, the more possible combinations can arise

Word Recognition

\[P(W | X) \approx \sum_{\Phi, Q} P(W | \Phi) P(\Phi | Q) P(Q | X) \]

- What is P(Φ)?
 - Prior probability over possible phone sequences
 - Essentially acts as a "phone fertility/penalty" term – lower probability sequences get a larger boost in weight than higher probability sequences
 - Approximate this with a standard n-gram model
 - Seed it with phone-level statistics drawn from the same corpus used for our language model

Bayes Rule

- P(W) –language model
- P(Φ|W) – dictionary model
- P(Φ) – prior probability of phone sequences
Word Recognition

\[
\arg\max_W P(W | X) \approx \arg\max_{W \in \mathcal{L}} \frac{P(W | \Phi) P(\Phi)}{P(\Phi)} P(\Phi | Q) P(Q | X)
\]

- Our final model incorporates all of these pieces together
- Benefit of this approach – reuse of standard models
 - Each element can be built as a finite state machine (FSM)
 - Evaluation can be performed via FSM composition and best path evaluation as for HMM-based systems (Mohri & Riley, 2002)

Pilot Experiment: TIDIGITS

- First word recognition experiment – TIDIGITS recognition
 - Both isolated and strings of spoken digits, ZERO (or OH) to NINE
 - Male and female speakers
- Training set – 112 speakers total
 - Random selection of 11 speakers held out as development set
 - Remaining 101 speakers used for training as needed

Pilot Experiment: TIDIGITS

- Important characteristics of the DIGITS problem:
 - A given phone sequence maps to a single word sequence
 - A uniform distribution over the words is assumed
 - \(P(W | \Phi) \) easy to implement directly as FSM

Pilot Experiment: TIDIGITS

- Implementation
 - Created a composed dictionary and language model FST
 - No probabilistic weights applied to these FSTs – assumption of uniform probability of any digit sequence
 - Modified CRF code to allow composition of above FST with phone lattice
 - Results scored using standard HTK tools
 - Compared to a baseline HMM system trained on the same features

Pilot Experiment: Results

<table>
<thead>
<tr>
<th>Model</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM (triphone, 1 Gaussian, ~4500 parameters)</td>
<td>1.26%</td>
</tr>
<tr>
<td>HMM (triphone, 16 Gaussians ~120,000 parameters)</td>
<td>0.57%</td>
</tr>
<tr>
<td>CRF (monophone, ~4200 parameters)</td>
<td>1.11%</td>
</tr>
<tr>
<td>CRF (monophone, windowed, ~37000 parameters)</td>
<td>0.57%</td>
</tr>
<tr>
<td>HMM (triphone, 16 Gaussians, MFCCs)</td>
<td>0.25%</td>
</tr>
</tbody>
</table>

- Basic CRF performance falls in line with HMM performance for a single Gaussian model
- Adding more parameters to the CRF enables the CRF to perform as well as the HMM on the same features
Larger Vocabulary

- Wall Street Journal 5K word vocabulary task
 - Bigram language model
 - MLPs trained on 75 speakers, 6488 utterances
 - Cross-validated on 8 speakers, 650 utterances
 - Development set of 10 speakers, 368 utterances for tuning purposes
- Results compared to HMM-Tandem baseline and HMM-MFCC baseline

- Phone penalty model $P(\Phi)$
 - Constructed using the transcripts and the lexicon
 - Currently implemented as a phone pair (bigram) model
 - More complex model might lead to better estimates
 - Planning to explore this in the near future

Larger Vocabulary

- Direct finite-state composition not feasible for this task
 - State space grows too large too quickly
- Instead Viterbi decoding performed using the weighted finite-state models as constraints
 - Time-synchronous beam pruning used to keep time and space usage reasonable

Larger Vocabulary – Initial Results

<table>
<thead>
<tr>
<th>Model</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM MFCC</td>
<td>9.3%</td>
</tr>
<tr>
<td>HMM Tandem MLP</td>
<td>9.1%</td>
</tr>
<tr>
<td>CRF</td>
<td>12.0%</td>
</tr>
<tr>
<td>CRF (windowed)</td>
<td>11.7%</td>
</tr>
</tbody>
</table>

- Preliminary numbers reported on development set only
- Continuing to tune elements of the system for performance (beam width, weights on language model and phone model, feature transforms, etc.)

Next Steps

- More tuning
 - Continue to work with the development set to find the best parameters for decoding
- Feature selection
 - Examine what features will help this model, especially features that may be useful for the CRF that are not useful for HMMs
- Phone penalty model
 - Currently just a bigram phone model
 - A more interesting model leads to more complexity but may lead to better results

Discussion
References

Background

- Tandem HMM
 - ANN MLP classifiers are trained on labeled speech data
 - Classifiers can be phone classifiers, phonological feature classifiers
 - Classifiers output posterior probabilities for each frame of data
 - E.g. P(Q | X), where Q is the phone class label and X is the input speech feature vector

Idea: Crandem

- Use a CRF model to create inputs to a Tandem-style HMM
 - CRF labels provide a better per-frame accuracy than input MLPs
 - We’ve shown CRFs to provide better phone recognition than a Tandem system with the same inputs
 - This suggests that we may get some gain from using CRF features in an HMM

- Problem: CRF output doesn’t match MLP output
 - MLP output is a per-frame vector of posteriors
 - CRF outputs a probability across the entire sequence

- Solution: Use Forward-Backward algorithm to generate a vector of posterior probabilities
Forward-Backward Algorithm

- Similar to HMM forward-backward algorithm
- Used during CRF training
- Forward pass collects feature functions for the timesteps prior to the current timestep
- Backward pass collects feature functions for the timesteps following the current timestep
- Information from both passes are combined together to determine the probability of being in a given state at a particular timestep

\[P(y_{i,t} | X) = \frac{\alpha_{i,t} \beta_{i,t}}{Z(x)} \]

- This form allows us to use the CRF to compute a vector of local posteriors \(y \) at any timestep \(t \).
- We use this to generate features for a Tandem-style system
 - Take log features, decorrelate with PCA

Phone Recognition

- Pilot task – phone recognition on TIMIT
 - 61 feature MLPs trained on TIMIT, mapped down to 39 features for evaluation
 - Crandem compared to Tandem and a standard PLP HMM baseline model
 - As with previous CRF work, we use the outputs of an ANN MLP as inputs to our CRF
- Phone class attributes
 - Detector outputs describe the phone label associated with a portion of the speech signal
 - /N/, /d/, /aa/, etc.

Word Recognition

- Second task – Word recognition on WSJ0
 - Dictionary for word recognition has 54 distinct phones instead of 48
 - New CRFs and MLPs trained to provide input features
 - MLPs and CRFs trained on WSJ0 corpus of read speech
 - No phone level assignments, only word transcripts
 - Initial alignments from HMM forced alignment of MFCC features
 - Compare Crandem baseline to Tandem and original MFCC baselines

Results (Fosler-Lussier & Morris 08)

<table>
<thead>
<tr>
<th>Model</th>
<th>Phone Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLP HMM reference</td>
<td>68.1%</td>
</tr>
<tr>
<td>Tandem</td>
<td>70.8%</td>
</tr>
<tr>
<td>CRF</td>
<td>69.9%</td>
</tr>
<tr>
<td>Crandem – log</td>
<td>71.1%</td>
</tr>
</tbody>
</table>

* Significantly (p<0.05) improvement at 0.6% difference between models

Initial Results

<table>
<thead>
<tr>
<th>Model</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFCC HMM reference</td>
<td>9.12%</td>
</tr>
<tr>
<td>Tandem MLP (39)</td>
<td>8.95%</td>
</tr>
<tr>
<td>Crandem (19) (1 epoch)</td>
<td>8.85%</td>
</tr>
<tr>
<td>Crandem (19) (10 epochs)</td>
<td>9.57%</td>
</tr>
<tr>
<td>Crandem (19) (20 epochs)</td>
<td>9.98%</td>
</tr>
</tbody>
</table>

* Significant (p<0.05) improvement at roughly 1% difference between models
Word Recognition

- CRF performs about the same as the baseline systems
- But further training of the CRF tends to degrade the result of the Crandem system
 - Why?
 - First thought – maybe the phone recognition results are deteriorating (overtraining)

Word Recognition

- Further training of the CRF tends to degrade the result of the Crandem system
 - Why?
 - First thought – maybe the phone recognition results are deteriorating (overtraining)
 - Not the case
 - Next thought – examine the pattern of errors between iterations

Word Recognition

- Training the CRF tends to degrade the result of the Crandem system
 - Why?
 - First thought – maybe the phone recognition results are deteriorating (overtraining)
 - Not the case
 - Next thought – examine the pattern of errors between iterations
 - There doesn’t seem to be much of a pattern here, other than a jump in substitutions
 - Word identity doesn’t give a clue – similar words wrong in both lists

Initial Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Phone Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFCC HMM reference</td>
<td>70.09%</td>
</tr>
<tr>
<td>Tandem MLP (39)</td>
<td>75.58%</td>
</tr>
<tr>
<td>Crandem (19) (1 epoch)</td>
<td>72.77%</td>
</tr>
<tr>
<td>Crandem (19) (10 epochs)</td>
<td>72.81%</td>
</tr>
<tr>
<td>Crandem (19) (20 epochs)</td>
<td>72.93%</td>
</tr>
</tbody>
</table>

* Significant (p<0.05) improvement at roughly 0.07% difference between models

<table>
<thead>
<tr>
<th>Model</th>
<th>Total Errors</th>
<th>Insertions</th>
<th>Deletions</th>
<th>Subs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crandem (1 epoch)</td>
<td>542</td>
<td>57</td>
<td>144</td>
<td>341</td>
</tr>
<tr>
<td>Crandem (10 epochs)</td>
<td>622</td>
<td>77</td>
<td>145</td>
<td>400</td>
</tr>
<tr>
<td>Shared Errors</td>
<td>429</td>
<td>37</td>
<td>131*</td>
<td>261**</td>
</tr>
<tr>
<td>(1->10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 29 deletions are substitutions in one model and deletions in the other
**50 of these subs are different words between the epoch 1 and epoch 10 models
Word Recognition

MARCH vs. LARGE
Iteration 1
0 0 m 0.98271 l 0.0078177 en 0.0052043 em 0.00621807
0 1 m 0.978378 en 0.0063144 l 0.0050046 en 0.00180805
0 2 m 0.98055 en 0.0057963 l 0.002341182 fth 0.00183429
0 3 m 0.98379 en 0.00679143 l 0.0020919
0 4 m 0.935116 aa 0.0268982 em 0.0060147 l 0.0071382
0 5 m 0.710183 aa 0.234062 en 0.011164 w 0.0104974 l 0.009005

Iteration 10
0 0 m 0.949523 l -4.73606 en -4.80113 em -4.80113
0 1 m -0.0218056 en -5.09492 l -5.29322 en -6.31551
0 2 m -0.01646 en -5.1494 fth -5.70124 fth -6.85755
0 3 m -0.0186163 en -6.99293 l -5.92934 w -6.32205
0 4 m -0.0674021 aa -3.61607 en -4.75667 l -4.94296
0 5 m -0.343222 aa -1.496 en -4.4674 e -4.5962 l -4.71001

Word Recognition

Additional issues
- Crandem results sensitive to format of input data
 - Posterior probability inputs to the CRF give very poor results on word recognition.
 - I suspect is related to the same issues described previously
- Crandem results also require a much smaller vector after PCA
 - MLP uses 39 features – Crandem only does well once we reduce to 19 features
 - However, phone recognition results improve if we use 39 features in the Crandem system (72.77% - 74.22%)