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Abstract
Shared-memory languages and systems provide strong guar-
antees only for well-synchronized (data-race-free) programs.
Prior work introduces support for memory consistency based
on region serializability of executing code regions, but all
approaches incur serious limitations such as adding high
run-time overhead or relying on complex custom hardware.

This paper explores the potential for leveraging widely
available, commodity hardware transactional memory to
provide an end-to-end memory consistency model called dy-
namically bounded region serializability (DBRS). To amor-
tize high per-transaction costs, yet mitigate the risk of un-
predictable, costly aborts, we introduce dynamic runtime
support called Legato that executes multiple dynamically
bounded regions (DBRs) in a single transaction. Legato
varies the number of DBRs per transaction on the fly, based
on the recent history of committed and aborted transactions.
Legato outperforms existing commodity enforcement of
DBRS, and its costs are less sensitive to a program’s shared-
memory communication patterns. These results demonstrate
the potential for providing always-on strong memory con-
sistency using commodity transactional hardware.

1. Introduction
It is notoriously challenging to achieve both correctness
and scalability in the context of shared-memory languages
and systems. A fundamental challenge is that, for perfor-
mance reasons, languages and systems provide intuitive,
well-defined semantics only for well-synchronized execu-
tions. For ill-synchronized executions (executions with data
races), languages and systems provide weak, unexpected,
and sometimes undefined behaviors [1, 15, 41].

Prior work has introduced compiler, runtime, and sys-
tem support for stronger memory consistency models [3,
4, 20, 27, 28, 34, 35, 38, 42, 43, 51, 59, 62, 64, 65, 68].
However, existing work suffers from serious limitations: it
is either not end-to-end, i.e., it does not provide guaran-
tees with respect to the original program; adds high run-
time overhead; or it relies on complex custom hardware sup-
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port (Section 2). A promising direction in this space is sup-
port for serializability of bounded regions, i.e., an execution
is equivalent to some serial execution of bounded regions
of code [4, 20, 39, 42, 59, 64]. While existing support for
bounded region serializability suffers from the aforemen-
tioned limitations, it offers the potential for a practical bal-
ance between performance and strength.

This paper’s approach provides support for an end-to-
end memory model called dynamically bounded region se-
rializability (DBRS). DBRS guarantees atomic execution
for regions of code between well-defined program points:
loop back edges, method calls and returns, and synchroniza-
tion operations. This guarantee with respect to the original
program has the potential to simplify the job of analyses,
systems, and developers. Prior work called EnfoRSer pro-
vides end-to-end support for a closely related memory model
called statically bounded region serializability [59], but En-
foRSer requires complex compiler transformations, and its
performance is sensitive to a program’s memory access com-
munication patterns (Sections 2.2 and 5.3).

This paper introduces an approach called Legato that pro-
vides end-to-end DBRS using commodity hardware trans-
actional memory (HTM) [30, 31, 72]. Our implementa-
tion targets Intel’s Transactional Synchronization Extensions
(TSX) [72], which is widely available on mainstream com-
mercial processors. While enforcing DBRS with commodity
HTM seems straightforward, commodity HTM has two rel-
evant limitations. First, the cost of starting and stopping a
transaction is relatively high [55, 72]. We find that a naı̈ve
implementation of DBRS that executes each dynamically
bounded region (DBR) in its own transaction, slows pro-
grams on average by 2.7X (Section 5.3). Second, commod-
ity HTM is “best effort,” meaning that any transaction might
abort, requiring a non-transactional fallback.

Legato overcomes the first challenge (high per-transaction
costs) by merging multiple DBRs into a single transaction.
However, longer transactions run into the second challenge,
since they are more likely to abort for reasons such as mem-
ory access conflicts, private cache misses, and unsupported
instructions and events. Legato thus introduces a dynamic,
online algorithm that decides, on the fly, how many DBRs to
merge into a transaction, based on the history of recently at-
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tempted transactions, considering both transient and phased
program behavior. For the (rare) single-DBR transactions
that commodity HTM cannot commit, Legato falls back to a
global lock to ensure progress.

Our evaluation compares our implementation of Legato
with the closest related prior work, EnfoRSer [59], on
benchmarked versions of large, real, multithreaded Java
applications [12]. In addition to outperforming EnfoRSer
on average, Legato provides two key advantages over En-
foRSer. First, Legato provides stable performance across
programs, whereas EnfoRSer’s approach is sensitive to
an execution’s amount of shared-memory communication.
For programs with more communicating memory accesses,
EnfoRSer slows them considerably, and Legato provides
significantly lower overhead. Second, Legato adds signifi-
cantly less compiler complexity and costs than EnfoRSer—
reducing execution costs for just-in-time compilation. Over-
all, Legato demonstrates the potential benefits—and the in-
herent limits—of using commodity HTM to enforce strong
memory consistency.

2. Background and Motivation
This section first motivates and explains the memory model
enforced by Legato, dynamically bounded region serializ-
ability (DBRS). We then describe Intel’s hardware transac-
tional memory (HTM) and explain why its limitations make
it challenging to provide DBRS.

2.1 Memory Models
Memory models define the possible behaviors of a mul-
tithreaded program execution [1–3, 15, 41]. If a memory
model’s guarantees are with respect to the original source
program, then the memory model is end-to-end, and both
the compiler and hardware must respect it. In contrast, hard-
ware memory models provide guarantees with respect to the
compiled program only [18, 34, 40, 66, 67].

DRF0 and its variants. Memory consistency models for
shared-memory languages, including C++ and Java’s mem-
ory models [15, 41], are based on the DRF0 memory model
introduced by Adve and Hill in 1990 [3]. DRF0 assumes that
executions do not have any data races.1 By assuming data
race freedom, DRF0 permits compilers and hardware to per-
form optimizations that ignore possible inter-thread effects,
as long as they do not cross synchronization boundaries.

As long as an execution is free of data races, DRF0
(and its variants) provide a guarantee of sequentially con-
sistency [3, 33]. This guarantee in turn provides an even
stronger property: synchronization-free regions (SFRs) of
code appear to execute atomically; that is, the execution is
equivalent to some serial execution of SFRs [3, 38]. How-
ever, for executions with data races, DRF0 provides few, if
any, guarantees [15, 16, 19, 41, 61].

1 A data race exists if two accesses to the same variable are concurrent—
not ordered by the happens-before relation, which is the union of synchro-
nization and program order [32]—and conflicting—executed by different
threads and at least one is a write.

Sequential consistency. Much work has focused on pro-
viding sequential consistency (SC) as a memory model [1, 4,
20, 34, 35, 43, 54, 62, 65, 68]. Under SC, operations appear
to interleave in program order [33]. Despite much effort, it
is not clear that SC provides a compelling tradeoff between
strength and performance [1]. Enforcing end-to-end SC gen-
erally requires restricting optimizations in both the compiler
and hardware. Many SC-enforcing systems only target hard-
ware [28, 34, 35, 54] or the compiler [43], lacking end-to-
end guarantees. Further, SC’s guarantees are relatively weak
and unintuitive for programmers, and SC does not eliminate
many concurrency bugs [1, 59].

2.2 Region Serializability
Prior work introduces memory models based on region seri-
alizability (RS), in which regions of code appear to execute
atomically and in program order [4, 11, 20, 38, 39, 42, 51,
59, 64]. RS is appealing not only because it has the potential
to be stronger than SC, but also because it permits compiler
and hardware optimizations within regions.

Some prior work provides serializability of unbounded
regions: regions bounded by synchronization or enclosed in
transactions [7, 11, 13, 14, 21, 29, 30, 38, 46, 51, 52, 71].
Unbounded RS incurs high run-time overhead or relies on
complex custom hardware support, in order to detect and
resolve conflicts between arbitrarily long regions of code.
Furthermore, unbounded RS leads to potentially unintuitive
progress guarantees: some programs guaranteed to terminate
under SC cannot terminate under unbounded RS [51, 59].
Bounded RS. In contrast, approaches that support bounded
RS—in which each executed region performs a bounded
amount of work—have the potential to avoid the cost and
complexity associated with supporting unbounded regions.
This paper’s focus is on end-to-end bounded RS, which sev-
eral existing approaches provide by enforcing atomic exe-
cution and restricting cross-region optimizations in both the
compiler and hardware [4, 42, 59, 64]. Nonetheless, most of
these approaches (with one exception [59], described below)
choose region boundary points arbitrarily and thus cannot
provide any guarantee beyond end-to-end SC; furthermore,
they require custom hardware extensions to caches and co-
herence protocols [4, 42, 64].

In this paper, we focus on a memory model that provides
end-to-end guarantees, with respect to the source program,
that are strictly stronger than SC. We call this memory model
dynamically bounded region serializability (DBRS). Under
DBRS, regions of code that are guaranteed to be dynamically
bounded (called DBRs) execute atomically. In particular, we
define the boundaries of DBRs to be loop back edges and
method calls and returns, since an execution cannot execute
an unbounded number of steps without reaching a back edge,
call, or return. Synchronization operations are also DBR
boundaries, to ensure progress.

In a DBRS-by-default world, analyses, systems, and de-
velopers can make simplifying assumptions. Analyses and
systems such as model checkers [47] and multithreaded
record & replay [69] can consider many fewer interleavings,
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compared with SC or weaker models. Developers can reason
easily about regions of code that will execute atomically.

Furthermore, DBRS improves reliability automatically,
by providing atomicity for regions of code that programmers
may already assume to be atomic. Prior work shows that
DBRS (called SBRS in that work, but essentially with the
same region boundaries) eliminates erroneous behaviors due
to data races—even errors that are possible under SC [59].

Prior work providing bounded RS in commodity systems.
Among prior approaches providing bounded RS, only one,
EnfoRSer [59], does not rely on custom hardware. In this
paper, our focus is also on supporting commodity systems—
which now provide best-effort HTM. While EnfoRSer has
relatively low overhead (36% on average in prior work [59]
and 40% on average in our experiments), it suffers from
several serious drawbacks. First, it uses complex compiler
analyses and transformations that may limit adoption and
affect execution time in a just-in-time compilation environ-
ment. Second, EnfoRSer achieves low overhead by employ-
ing a form of lightweight, biased reader–writer lock [17] that
adds low overhead for programs with relatively few inter-
thread dependences. For programs with even modest levels
of communication, the biased locks slow programs substan-
tially [17, 59]. (In general, software approaches that do not
use biased locking to provide RS, such as STMs, slow pro-
grams by 2–3X or more [24, 63].)

To our knowledge, EnfoRSer is the only existing ap-
proach that provides end-to-end bounded RS guarantees
with respect to the original program. EnfoRSer’s static and
dynamic components rely on regions being both statically
and dynamically bounded; statically bounded means that
when the region executes, each static instruction executes
at most once. EnfoRSer thus introduces and enforces a
memory model called statically bounded region serializ-
ability (SBRS), which bounds regions at loop back edges
and method calls and returns, as well as synchronization op-
erations. This paper’s implementation uses the same bound-
aries for DBRS as EnfoRSer used for SBRS, thus enforc-
ing the same memory model. DBRS requires only dynamic
boundedness and in theory need not be as strict as SBRS.
For example, one could extend DBRs by omitting region
boundaries at leaf method calls and returns and at loop back
edges for loops with bounded trip counts.

2.3 Commodity Hardware Transactional Memory
Recent mainstream commodity processors support hard-
ware transactional memory (HTM) [22, 72].2 We focus
on Intel’s Transactional Synchronization Extensions (TSX),
which provide two interfaces: hardware lock elision (HLE)
and restricted transactional memory (RTM). RTM allows
programmers to provide fallback actions when a transac-
tion aborts, whereas HLE can only fall back to acquiring a
lock [26, 72], so we use RTM in order to have finer control.

2 Non-commodity processors, such as IBM’s Blue Gene/Q [70] and Azul’s
systems [23], provided HTM somewhat earlier.

RTM extends the ISA to provide XBEGIN and XEND
instructions; upon encountering XBEGIN, the processor at-
tempts to execute all instructions transactionally, committing
the transaction when it reaches XEND. The XBEGIN instruc-
tion takes an argument that specifies the address of a fallback
handler, from which execution continues if the transaction
aborts. When a transaction aborts, RTM does the follow-
ing: reverts all architectural state to the point when XBE-
GIN executed; sets a register to an error code that indicates
the abort’s proximate cause; and jumps to the fallback han-
dler, which may re-execute the transaction or execute non-
transactional fallback code. RTM also provides XABORT,
which explicitly aborts an ongoing transction, and XTEST,
which returns whether execution is in an RTM transaction.

2.4 Commodity HTM’s Limitations and Challenges
Intel’s commodity HTM has two main constraints that limit
its direct adoption for providing region serializability with
low overhead: best-effort completion and run-time overhead.
Prior work that leverages Intel TSX for various purposes has
encountered similar issues [8, 36, 37, 45, 50, 55, 56, 72, 73].
(Prior work uses TSX for purposes that are distinct from
ours, e.g., optimizing data race detection. An exception is
observationally cooperative multithreading [50]; Section 6.)
Best-effort speculative execution. The TSX specification
explicitly provides no guarantees that any transaction will
commit. In practice, transactions abort for various reasons:

Data conflicts: While a core executes a transaction, if any
other core (whether or not it is in a transaction) accesses a
cache line accessed by the transaction in a conflicting way,
the transaction aborts.

Evictions: In general, an eviction from the L1 or L2 pri-
vate cache (depending on the TSX implementation) triggers
an abort. Thus a transaction can abort simply because the
footprint of the transaction exceeds the cache.

Unsupported instructions: The TSX implementation may
not support execution of certain instructions, such as CPUID,
PAUSE, and INT within a transaction.

Unsupported events: The TSX implementation may not
support certain events, such as page faults, context switches,
and hardware traps.

Other reasons: A transaction may abort for other, poten-
tially undocumented, reasons.
Overheads of transactional execution. A transactional
abort costs about 150 clock cycles, according to Ritson and
Barnes [55]—which is on top of the costs of re-executing
the transaction speculatively or executing fallback code.

Even in the absence of aborts, simply executing in trans-
actions incurs overhead. Prior work finds that each trans-
action (i.e., each non-nested XBEGIN–XEND pair) incurs
fixed “startup” and “tear-down” costs approximately equal to
the overhead of three uncontended atomic operations (e.g.,
test-and-set or compare-and-swap) [55, 72]. Prior work also
finds that transactional reads have overhead [55], meaning
that executing a transaction incurs non-fixed costs as well.

3



3. Legato: Enforcing DBRS with HTM
Enforcing the DBRS memory model with HTM appears
to be a straightforward proposition. The compiler can en-
close each dynamically bounded region (DBR) in a hard-
ware transaction; the atomicity of hardware transactions thus
naturally provides region serializability. Unfortunately, this
straightforward approach has several challenges. First, the
operations to begin and end a hardware transaction are quite
expensive—nearly the cost of three atomic operations per
transaction [55, 72] (Section 2.4). Because DBRs can be
quite short, incurring the cost of three atomic operations
per region can lead to significant overhead; indeed, on the
benchmarks we evaluate, we find that simply placing each
DBR in a hardware transaction leads to 175% overhead over
an unmodified JVM (see Section 5.3). On the other hand, if
a transaction is large, a second problem arises: commodity
HTM is best-effort, so transactional execution of the DBR is
not guaranteed to complete, e.g., if the memory footprint of a
transaction exceeds hardware capacity (Section 2.4). Third,
even short regions of code may contain operations such as
page faults that cannot execute inside an HTM transaction.

3.1 Solution Overview
We propose a novel solution, called Legato,3 to enforce
DBRS at reasonable overheads, overcoming the challenges
posed by expensive HTM instructions. Our key insight lies
in amortizing the cost of starting and ending transactions by
merging multiple DBRs into a single hardware transaction.
Note that merging DBRs into a larger atomic unit does not
violate the memory model: if a group of DBRs executes
atomically, the resulting execution is still equivalent to a
serialization of DBRs.

Rather than merging together a fixed number of regions
into a single transaction (which could run afoul of the other
problems outlined above), we propose an adaptive merging
strategy that varies the number of regions placed into a hard-
ware transaction based on the history of recent aborts and
commits, to adapt to transient and phased program behavior.
As transactions successfully commit, Legato increases the
number of regions placed into a single transaction, further
amortizing HTM overheads. To avoid the problem of large
transactions repeatedly aborting due to HTM capacity limi-
tations, Legato responds to an aborted transaction by placing
fewer regions into the next transaction. Section 3.2 describes
Legato’s merging algorithm in detail.

Legato’s merging algorithm addresses the first two issues
with using HTM to enforce DBRS. The third issue, where
HTM is unable to complete a single region due to incompati-
ble operations, can be tackled by using a fallback mechanism
that executes a DBR using a global lock, which is acceptable
since fallbacks are infrequent.

3.2 Merging Regions to Amortize Overhead
If Legato is to merge DBRs together to reduce overhead, the
obvious question is how many regions to merge together to

3 In music, “legato” means to play smoothly, with no breaks between notes.

execute in a hardware transaction. At a minimum, each re-
gion can be executed separately, but as we have discussed,
this leads to too much overhead. At the maximum, regions
can be merged until “hard” boundaries are hit: operations
such as thread fork and monitor wait that inherently inter-
rupt atomicity. While this maximal merging would produce
the lowest possible overhead from transactional instructions,
it is not possible in practice, due to practical limitations of
transactional execution, as well as specific limitations intro-
duced by commodity HTMs, such as Intel’s TSX. We iden-
tify three issues that exert downward pressure on the number
of regions that can be executed as a single transaction:

1. Conflicts between transactions will cause one of the
transactions to abort and roll back, wasting any work per-
formed prior to the abort. Larger transactions are likely
to waste more work. Predicting statically when region
conflicts might happen is virtually impossible.

2. Intel’s HTM implementation has capacity limits: while
executing a hardware transaction, caches buffer transac-
tional state. If the read and write sets of the transaction
exceed the cache size, the transaction aborts even if there
is no region conflict. In general, larger transactions have
larger read and write sets, so are more likely to abort due
to capacity limits. While in principle it might be possible
to predict when a transaction can exceed the HTM’s ca-
pacity limits, in practice it is hard to predict the footprint
of a transaction a priori.

3. Finally, there are some operations that Intel’s HTM can-
not accommodate within transactions. We call these op-
erations “HTM-unfriendly” operations. Any DBR that
contains an HTM-unfriendly instruction not only cannot
be executed in a transaction (and hence must be han-
dled separately), but it clearly cannot be merged with
other regions to create a larger transaction. Some of these
HTM-unfriendly operations can be identified statically,
but other HTM-unfriendly operations, such as hard page
faults, are difficult to predict.

Note that each of these issues is, essentially, dynamic. It is
hard to tell whether merging regions together into a trans-
action will trigger an abort. Moreover, the implications of
each of these issues for region merging is different. Region
conflicts are unpredictable and inherently transient, mean-
ing that an abort due to a region conflict is nondeterminis-
tic. While executing larger transactions may result in more
wasted work, it is often the case that simply re-executing the
transaction will result in successful completion (though the
transaction may inherently be high conflict, in which case
merging fewer regions and executing a smaller transaction
may be cost effective, or even necessary to make progress).

On the other hand, if transactions abort due to capacity
limits or HTM-unfriendly instructions, re-executing exactly
the same transaction will likely still result in an abort. If
a transaction aborts due to a capacity constraint, it may be
necessary to merge fewer regions into the transaction prior
to attempting to re-execute the transaction. Furthermore, if a
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transaction aborts due to an HTM-unfriendly instruction, it
might be necessary to execute just that region using a non-
HTM fallback mechanism (see Section 4) to make progress.

While all of these issues push for merging fewer regions
into each transaction, minimizing overhead argues for merg-
ing as many regions as possible into a single transaction.

3.2.1 Basic Merging Algorithm
Putting it all together, mitigating the overhead of HTM while
accounting for its limits suggests the following dynamic
approach to merging regions:

• Begin a transaction prior to executing a region. Execute
the region transactionally.
• If execution reaches the end of the region without abort-

ing, execute the following region as part of the same
transaction.
• If a transaction aborts and rolls back, determine the rea-

son for its abort. If the abort was transient, such as due to
a page fault or a region conflict, retry the transaction. If
the abort was due to capacity limits or HTM-unfriendly
instructions, retry the transaction but end the transaction
prior to the region that caused the problem. Begin a new
transaction before executing the next region.

While this basic merging algorithm is attractive, and greed-
ily merges as many regions as possible into each transaction,
there are several practical limitations. First, note that a trans-
action has to abort at least once before it can commit, which
will waste a lot of work. Second, when a transaction aborts,
Intel’s HTM implementation provides no way to know when
or where the transaction aborted. In other words, we cannot
know which DBR actually triggered the abort—there is no
way to communicate this information back from an aborted
transaction—which means that we do not know when to end
the re-executed transaction and begin the next one.

Thus we cannot rely on tracking the abort location to de-
termine when to stop merging regions and commit a trans-
action. Instead, we need a target number of regions to merge
together. While executing a transaction, if the target number
of regions is met, the transaction commits (even if more re-
gions could have been merged into the transaction), and the
next region executes in a new transaction.

Figure 1 shows the instrumentation that Legato uses at
region boundaries to implement this target-based merging
strategy. T.regionsExec is a per-thread integer that tracks
how many more DBRs to merge together in the current
transaction. Once the target number of regions have been
merged, the transaction commits, and the instrumentation
queries a controller to determine the next target (line 3). If a
transaction aborts, the instrumentation queries the controller
for a new target (line 7).

Note that the controller logic executes only at transaction
boundaries (lines 2–9). In contrast, each region boundary
executes only an inexpensive decrement and check (line 1).

So how should the controller determine the merge target?
In general, if transactions are successfully committing, then

1 if (−−T.regionsExec == 0) {
2 XEND();
3 T.regionsExec = T. controller .onCommit();
4 eax = −1; // reset HTM error code register
5 abortHandler:
6 if ( eax != −1) { // reached here via abort?
7 T.regionsExec = T. controller .onAbort();
8 }
9 XBEGIN(abortHandler);

10 // if TX aborts: sets eax and jumps to abortHandler
11 }

Figure 1. Legato’s instrumentation at a DBR boundary. T is the
currently executing thread. When a transaction has merged the
target number of regions (T.regionsExec == 0) or aborts (control
jumps to abortHandler), the instrumentation queries the controller
(Figure 2) for the number of DBRs to merge in the next transaction.

it is probably safe to be more aggressive in merging regions
together. On the other hand, if transactions are frequently
aborting, Legato is probably being too aggressive in merging
and should merge fewer regions into each transaction. Next
we describe Legato’s controller design.

3.2.2 A Setpoint Controller
Because different programs, as well as phases during a pro-
gram’s execution, have different characteristics—e.g., dif-
ferent region footprints and different likelihoods of region
conflicts—we cannot pick a single merge target throughout
execution. Instead, our approach should try to infer this tar-
get dynamically. Borrowing from the control theory litera-
ture, we call the target number of regions the setpoint, and
the algorithm that selects the setpoint the setpoint algorithm.

The key to the setpoint algorithm is that there are two tar-
gets: the setpoint, setPoint, which is the “steady state” target
for merging regions together, and the current target, curr-
Target, which is the target for merging regions together dur-
ing the current transaction’s execution. (The controller re-
turns currTarget’s value to the instrumentation in Figure 1.)

We distinguish between these two targets for a simple rea-
son. Legato attempts to execute regions together in a trans-
action until it hits the setpoint, at which point the transaction
commits. But what happens if the transaction aborts before
hitting the setpoint? There are two possible inferences that
could be drawn from this situation:

1. The abort is a temporary setback, e.g., due to a capacity
limit exceeded by this combination of regions. It may be
necessary to merge together fewer regions to get past the
roadblock, but there is no need to become less aggressive
in merging regions overall. In this case, it might be useful
to temporarily reduce currTarget, but eventually increase
currTarget so that currTarget = setPoint.

2. The abort reflects a new phase of execution for the
program—for example, moving to a higher-contention
phase of the program—where it might be prudent to be
less aggressive in merging regions. The right approach
then is to lower setPoint, in order to suffer fewer aborts.
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STEADY
On Commit:

1. setPoint← setPoint + Sinc

2. currTarget← setPoint

On Abort:
1. setPoint← setPoint − Sdec

2. currTarget←min(currTarget/Cdecr , setPoint)

3. ⇒ PESSIMISTIC state

PESSIMISTIC
On Commit:

1. ⇒ OPTIMISTIC state
On Abort:

1. currTarget← currTarget / Cdecr

OPTIMISTIC
On Commit:

1. currTarget←min(currTarget× Cincr , setPoint)

2. if currTarget = setPoint then⇒ STEADY state
On Abort:

1. currTarget← currTarget / Cdecr

2. ⇒ PESSIMISTIC state

Figure 2. A state machine describing transitions in the setpoint
algorithm when onCommit and onAbort are called by the instru-
mentation. In all cases, the state machine returns currTarget.

These considerations lead to the design of Legato’s control
algorithm, which is expressed as a finite state machine with
three states, described in Figure 2. Each thread uses its own
instance of the state machine. In the STEADY state, when-
ever a transaction commits, the controller views this as ev-
idence that merging can be more aggressive, so it increases
setPoint and sets currTarget to setPoint. When a transac-
tion aborts, the controller decreases both setPoint and curr-
Target. An abort moves the controller into PESSIMISTIC
state, which continues to decrease currTarget if more aborts
occur. If a transaction commits while the controller is in PES-
SIMISTIC state, the controller does not assume that it is safe
to become more aggressive immediately. Instead, the con-
troller keeps the current target, and it moves to OPTIMISTIC
state, where it can be aggressive again.

Note that currTarget increases and decreases geometri-
cally, while setPoint increases and decreases arithmetically.
In other words, the current target fluctuates quickly to cap-
ture transient effects such as capacity limits, while the set-
point, which represents the steady-state merge target, fluctu-
ates more slowly, to capture slower effects such as changing
phases of the program.

Our experiments use a value of 2 for Cdecr . The idea is
that, given the lack of knowledge about the abort location, it
is equally probable that a transaction aborted during its first
half as its second half. Our experiments use fixed values for
Sinc and Sdec chosen from a sensitivity study (Section 5.3).

3.3 Designing a Fallback
Legato requires a fallback mechanism when it encounters
a single DBR that cannot be executed transactionally (e.g.,
if the region contains an HTM-unfriendly instruction). The

fallback mechanism must allow the region to execute in
a non-speculative manner while still maintaining atomicity
with respect to other, speculatively executing regions. Be-
cause we find that the fallback is needed infrequently, Legato
uses a simple, global spin lock to provide atomicity in these
situations. If a single-DBR transaction (i.e., currTarget = 1)
aborts, Legato’s instrumentation acquires a global lock for
the duration of the DBR, ensuring atomicity with respect to
other, non-speculative regions. To ensure atomicity with re-
spect to other, speculatively executing regions, each specu-
lative region must check whether the global lock is held, and
abort if so. Existing speculative lock elision approaches use
similar logic to elide critical sections [26, 53, 57, 72, 74].

We modify the instrumentation from Figure 1 so that, im-
mediately prior to committing a transaction, Legato checks
whether the global lock is held. If it is, Legato conservatively
aborts the transaction.

3.4 Discussion: Extending Legato to Elide Locks
Although individual DBRs are bounded by synchronization
operations such as lock acquire and release operations, a
multi-DBR transaction may include lock acquires and re-
leases. Thus, it is entirely possible for an executed transac-
tion to include both the start and end of a critical section.
Therefore, with modest extensions to its design, Legato can
naturally execute the critical section without acquiring the
lock, in a generalization of lock elision [26, 53, 57, 72, 74].
Legato’s approach can even execute several critical sections,
including nested critical sections, inside a single transaction.
Although extending the design is minor, changing the imple-
mentation’s handling of program locks would involve ma-
jor changes to the locking and threading subsystems, so we
leave this exploration for future work.

4. Implementation
We have implemented Legato by modifying Jikes RVM
3.1.3 [5, 6], a Java virtual machine that is comparable in
performance to efficiently tuned commercial JVMs [11]. We
have made our Legato implementation publicly available on
the Jikes RVM Research Archive.

We extend Jikes RVM to generate TSX operations by bor-
rowing from publicly available patches by Ritson et al. [56].

Although Legato’s approach is distinctly different from
EnfoRSer’s [59], we have built Legato in the same JVM
instance as our publicly available implementation of En-
foRSer, to minimize any irrelevant empirical differences be-
tween the two implementations.
Compilation and instrumentation. Jikes RVM uses two
just-in-time compilers at run time. The first time a method
executes, Jikes RVM compiles it with the baseline com-
piler, which generates unoptimized machine code directly
from Java bytecode. When a method becomes hot, Jikes
RVM compiles it with the optimizing compiler at succes-
sively higher optimization levels. We modify both compilers
to insert Legato’s instrumentation. The prior software-only
work, EnfoRSer, modifies only the optimizing compiler, due
to the complexities of transforming programs to provide the
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memory model; it modifies baseline-compiled code to simu-
late the performance of enforcing DBRS [59].

Jikes RVM’s dynamic compilers automatically insert
yield points—points in the code where a thread can yield,
e.g., for stop-the-world garbage collection or for online pro-
filing [10]—into compiled code. Yield points are typically at
each method’s entry and exit and at loop back edges. Thus
they demarcate statically and dynamically bounded regions,
which EnfoRSer uses to enforce statically bounded region
serializability (SBRS). Unlike EnfoRSer, Legato does not
require statically bounded regions (Section 2.2). Neverthe-
less, Jikes RVM’s yield points provide convenient region
boundaries, so Legato adopts them. Legato instruments all
yield points and synchronization operations as DBR bound-
aries. For efficiency and to avoid executing the yield point
handler in a transaction, Legato inserts its region boundary
instrumentation so that the yield point executes in the in-
strumentation slow path (see Figure 1). This instrumentation
performs the yield point logic only after ending a transaction
and before starting the next transaction.
Handling HTM-unfriendly events and instructions. For
instructions and events that we can identify at compile time
as HTM unfriendly (Section 3.2), which are often in inter-
nal JVM code, the implementation forcibly ends the cur-
rent transaction, and starts another transaction after the in-
struction. For unexpected HTM-unfriendly instructions and
events, Legato already handles them by falling back to a
global lock after a single-DBR transaction aborts.

Our implementation executes application code, including
Java library code called by the application, in transactions.
Since compiled application code frequently calls into the
VM, transactions may include VM code. If the VM code is
short, it makes sense to execute it transactionally. However,
the VM code may be lengthy or contain HTM-unfriendly in-
structions. We thus instrument VM code’s region boundaries
(yield points) like application boundaries—except that VM
code does not start a new transaction after committing the
current transaction. Since some VM code is “uninterrupt-
ible” and executes no yield points, Legato unconditionally
ends the current transaction at a few points we have identi-
fied that commonly abort (e.g., the object allocation “slow
path”). Whenever a thread ends a transaction in VM code, it
starts a new transaction upon re-entering application code.

5. Evaluation
This section evaluates the performance and run-time charac-
teristics of Legato, compared with alternative approaches.

5.1 Setup and Methodology
EnfoRSer implementation. EnfoRSer provides multiple
compiler transformations for ensuring atomicity; our exper-
iments use EnfoRSer’s speculation transformation because
it performs best [59].

EnfoRSer can use the results of whole-program static race
detection analysis [59, 60]. However, to avoid relying on
the “closed-world hypothesis” (Section 6) and to make En-
foRSer more directly comparable with Legato (which does

Threads Dynamic events
Total Live Accesses DBRs Acc. / DBR

eclipse6 18 12 1.6×1010 5.0×109 3.1
hsqldb6 402 102 6.8×108 4.4×108 1.5
lusearch6 65 65 3.1×109 9.7×108 3.2
xalan6 9 9 1.3×1010 5.2×109 2.5
avrora9 27 27 7.9×109 1.4×109 5.6
jython9 3 3 6.6×109 4.7×109 1.4
luindex9 2 2 3.9×108 1.5×108 2.6
lusearch9 c c 3.0×109 8.9×108 3.4
pmd9 5 5 6.4×108 3.7×108 1.7
sunflow9 2×c c 2.3×1010 3.4×109 6.9
xalan9 c c 1.2×1010 4.7×109 2.6
pjbb2000 37 9 2.6×109 1.2×109 1.7
pjbb2005 9 9 9.1×109 3.6×109 2.5

Table 1. Dynamic execution characteristics. Three programs
spawn threads proportional to the number of cores c, which is 14
in our experiments. The last three columns report memory accesses
executed, dynamically bounded regions executed, and their ratio.

not use whole-program static analysis), our experiments do
not use any whole-program static analysis.
Environment. The experiments run on a single-socket In-
tel Xeon E5-2683 system with 14 cores and one hardware
thread per core (we disable hyperthreading), running Linux
3.10.0. Although Intel has disabled TSX in this processor
because of a known vulnerability, the vulnerability does not
affect non-malicious code, so we explicitly enable TSX.
Benchmarks. In our experiments, modified Jikes RVM ex-
ecutes (1) the large workload size of the multithreaded Da-
Capo benchmarks [12] versions 2006-10-MR2 and 9.12-
bach (2009), distinguished by suffixes 6 and 9, using only
programs that Jikes RVM can run, and (2) fixed-workload
versions of SPECjbb2000 and SPECjbb2005.4

Execution methodology. For each configuration of En-
foRSer and Legato, we build a high-performance Jikes RVM
executable, which adaptively optimizes the application as it
runs and uses the default high-performance garbage collec-
tor, which adjusts the heap size automatically.

Each performance result is the mean of 15 runs, with
95% confidence intervals shown. Each reported statistic is
the mean of 8 statistics-gathering runs.

5.2 Run-Time Characteristics
The Threads columns in Table 1 report the total number
of threads spawned and maximum number of live threads
for each evaluated program. The Dynamic events columns
report the number of executed memory accesses, the number
of executed dynamically bounded regions (i.e., the number
of region boundaries executed), and the average number of
memory accesses executed per DBR. Each program executes
between hundreds of millions and tens of billions of memory
accesses. The average DBR size for each program varies
from 1.4 to 6.9 executed memory accesses.

4 http://www.spec.org/jbb200{0,5}, http://users.cecs.anu.
edu.au/~steveb/research/research-infrastructure/pjbb2005
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Staccato Legato
DBRs / Acc. / Abort rate

Trans. Abort rate Trans. trans. trans. Total ( conf cap fallb other)
eclipse6 5.0×109 <0.1% 4.4×107 110 360 14.4% ( 2.1% 3.3% <0.1% 9.0%)
hsqldb6 4.2×108 <0.1% 8.8×106 48 77 13.8% ( 1.7% 2.3% <0.1% 9.8%)
lusearch6 8.9×108 0.8% 3.5×107 25 88 31.0% (24.9% 0.6% 0.2% 5.4%)
xalan6 5.1×109 0.1% 2.3×108 22 57 10.5% ( 7.2% 0.6% <0.1% 2.7%)
avrora9 1.4×109 3.2% 1.1×108 13 71 41.7% (13.6% 0.4% 3.7% 24.0%)
jython9 4.5×109 <0.1% 3.5×107 130 190 8.0% ( 0.8% 5.1% <0.1% 2.1%)
luindex9 1.5×108 <0.1% 1.5×106 100 260 16.7% ( 0.9% 4.9% <0.1% 10.9%)
lusearch9 8.2×108 0.2% 2.8×107 29 110 22.7% (15.9% 0.6% <0.1% 6.1%)
pmd9 3.5×108 1.2% 1.5×107 23 43 41.2% (35.5% 1.5% 0.2% 4.0%)
sunflow9 3.3×109 0.3% 5.3×107 62 440 20.8% (17.3% 2.5% <0.1% 1.0%)
xalan9 4.5×109 0.2% 2.2×108 20 55 14.8% ( 8.5% 0.7% <0.1% 5.7%)
pjbb2000 1.2×109 <0.1% 3.9×107 31 53 7.2% ( 3.4% 0.53% <0.1% 3.2%)
pjbb2005 3.6×109 0.4% 5.0×108 7.2 18 28.1% (14.8% 0.1% <0.1% 13.2%)

Table 2. Transaction commits and aborts for Staccato and Legato, and average DBRs and memory accesses per transaction for Legato.

Table 2 reports committed and aborted transactions for
the default configuration of Legato that uses the setpoint-
based merging algorithm (right half), compared with a con-
figuration of Legato that does no merging, which we call
Staccato5 (left half). The two Trans. columns show the num-
ber of committed transactions for Staccato and Legato, re-
spectively. The DBRs / trans. column shows the number of
DBRs executed per committed transaction for Legato. Note
that Staccato executes one DBR per transaction.6 As the ta-
ble shows, on average Legato reduces the executed transac-
tions by 1–2 orders of magnitude compared with Staccato.
The Acc. / trans. column shows that a typical transaction in
Legato executes dozens or hundreds of memory accesses.

While the reduction in committed transactions repre-
sents the benefit provided by Legato’s merging of DBRs
into transactions, Legato’s Abort rate columns represent the
cost of merging. The Total column shows the total number
of aborts, as a percentage of total committed transactions
(the Trans. column). Most programs have an abort rate be-
tween 10% and 30%, which is substantial. In contrast, the
abort rate for Staccato is significantly lower: typically less
than 1% and at most 3.2%. The values in parentheses show
the breakdown of aborts into four categories (again as a per-
centage of committed transactions): conflict and capacity
aborts; explicit aborts when the global fallback lock is held
(Section 3.3); and other reasons (Section 2.4). For most pro-
grams, conflicts are the primary cause of aborts; conflicts
are difficult to predict since they involve cross-thread inter-
actions. In general, it is worthwhile for Legato to “risk” con-
flicts in order to merge transactions and avoid per-transaction
costs. The second-most common cause of aborts is “other”;
although RTM’s abort error code provides no information
about these aborts, by using the Linux perf tool we find that

5 In music, “staccato” means to play each note disconnected from the others.
6 Although one might expect the number of transactions executed by Stac-
cato to be exactly equal to the number of regions per benchmark from Ta-
ble 1, they differ because (i) the measurements are taken from different runs,
and (ii) in Staccato, not every region executes in a transaction, due to the
fallback mechanism.

most of these aborts are due to system calls inside the VM,
existing exceptions in the program, and system interrupts.

5.3 Performance
Figure 3 compares the performance of three approaches that
provide DBRS: EnfoRSer [59]; Staccato, which executes
each DBR in its own transaction; and the default Legato con-
figuration. Each result is the run-time overhead over baseline
execution (unmodified Jikes RVM). Since EnfoRSer adds
dramatically different overhead depending on the amount
of cross-thread communication between memory accesses
(Section 2.2), the figure divides the programs into whether
they have low or high rates of communicating memory ac-
cesses, leading to low or high EnfoRSer overhead, respec-
tively. We categorize programs as “high communication” if
≥0.1% of all memory accesses trigger biased reader–writer
locks’ “explicit communication” protocol [17, 59].

For the four high-communication programs, EnfoRSer
adds nearly 60% overhead or more; for pjbb2005, EnfoRSer
adds over 120% overhead. Unsurprisingly, pjbb2005 has
the highest percentage of accesses involved in cross-thread
communication, 0.5% [17].

In contrast, the run-time overhead of Staccato is not
correlated with cross-thread communication, but is instead
dominated by the costs of starting and ending transactions.
On average, Staccato adds 175% run-time overhead due to
the high cost of frequent transaction boundaries. This result
shows that applying commodity HTM naı̈vely to provide
DBRS is a nonstarter, motivating Legato’s contributions.

Legato improves over both Staccato and EnfoRSer by
amortizing per-transaction costs and by avoiding EnfoRSer’s
highly variable costs tied to communicating memory ac-
cesses. By merging transactions, Legato reduces average
run-time overhead to 33%, compared with 175% without
merging, despite incurring a significantly higher abort rate
than Staccato (Table 2). Legato’s overhead is relatively sta-
ble across programs, and is at most 50% for any program.
On average, Legato adds 32% and 35%, respectively for the
low- and high-communication programs. Notably, Legato’s
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Figure 3. Run-time overhead of providing DBRS with three approaches: software-based EnfoRSer; Staccato, which executes each DBR in
a transaction; and the default Legato configuration that merges multiple DBRs into transactions. The programs are separated into low- and
high-communication behavior, with component and overall geomeans reported.

average overhead for high-communication programs (35%)
is significantly lower than EnfoRSer’s average overhead for
these programs (74%). Not only does Legato significantly
outperform EnfoRSer on average (33% versus 40%, respec-
tively), but Legato’s overhead is more stable and less sensi-
tive to shared-memory interactions.

Legato’s performance breakdown. We used partial con-
figurations to find more insights into the 33% run-time over-
head of Legato. Instrumentation at region boundaries adds
an overhead of 12%. The remaining overhead of 21% comes
from beginning and ending transactions, aborting and run-
ning inside transactions. We have found it diffcult to con-
cretely separate out these costs.

Sensitivity study. As presented in Section 3.2.2, Legato
maintains a per-thread setpoint, setPoint, that it adjusts in re-
sponse to transaction commits and aborts. The setpoint algo-
rithm’s state machine (Figure 2) uses Sinc and Sdec to adjust
setPoint. By default, Legato uses the parameters Sinc = 1
and Sdec = 10; our rationale for these choices is that the
marginal cost of an aborted transaction is significantly more
than the cost of executing shorter transactions.

Here we evaluate sensitivity to the parameters Sinc and
Sdec . Figure 4 shows the run-time overhead of Legato with
each combination of 1 and 10 for these values. The first con-
figuration, Legato S inc = 1, S dec = 10, corresponds to the
default Legato configuration used in the rest of the evalu-
ation. The second configuration, Legato S inc = 10, S dec
= 1, shows that performance is sensitive to large changes
in these parameters; its high overhead validates the intuition
behind keeping the Sinc/Sdec ratio small. The last two con-
figurations both set Sinc = Sdec ; their overheads fall be-
tween the overheads of the first two configurations.

The magnitudes of Sinc and Sdec represent how quickly
the algorithm adjusts to phased behavior. We find that for
other values of Sinc and Sdec within 2X of the default val-
ues (results not shown), the magnitudes do not significantly

affect average performance. Instead, the results suggest that
the Sinc/Sdec ratio is most important, and a ratio of about
0.1 provides the best performance on average.

Dynamic vs. fixed setpoints. Legato uses a dynamic set-
point algorithm that adjusts the setpoint based on recent ex-
ecution behavior. An alternative approach is to use a fixed
setpoint throughout the entire execution, which cannot han-
dle differences between programs or a program’s phases.
Our extended technical report [58] evaluates this alternative,
finding that the best fixed setpoint differs from program to
program. While the best fixed setpoint for each application
provides similar performance to Legato’s dynamic setpoint
algorithm, Legato does not require per-application tuning.

Compilation time. For both EnfoRSer and Legato, the dy-
namic, just-in-time compilers in Jikes RVM insert instru-
mentation into the compiled code. EnfoRSer performs com-
plex compiler analyses and transformations that generate
significantly more code than the original program; unlike
Legato, EnfoRSer analyzes, transforms, and instruments
memory accesses, branches, arithmetic instructions, and
other instructions. In contrast, Legato limits its instrumen-
tation to region boundaries. In a just-in-time compilation
setting, the additional compilation time translates into extra
execution time for several reasons: (1) the extra compilation
time itself (although Jikes RVM uses a separate optimizing
compiler thread); (2) the effect on downstream optimiza-
tions and transformations that must handle more code; and
(3) the opportunity cost of not being able to optimize code
as quickly, and thus executing less-optimized code overall.

Figure 5 shows the compilation time added by EnfoRSer
and Legato for the same executions used for Figure 3. We
emphasize that since compilation occurs at run time, these
costs are already reflected in overall execution time; in
fact, Legato’s compilation overhead advantage is somewhat
muted by the fact that Jikes RVM’s adaptive optimization
system [9] naturally performs less compilation as compila-
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Figure 5. Just-in-time compilation overhead of providing DBRS
with EnfoRSer versus Legato.

tion becomes more expensive (i.e., Legato optimizes more
methods than EnfoRSer). The figure shows that on average
Legato adds one-third as much compilation overhead over
the baseline (unmodified Jikes RVM) as EnfoRSer: 138%
versus 45%. These results show that the best-performing ex-
isting approach that targets commodity systems, relies on
complex, costly compiler analyses and transformations. In
contrast, Legato uses only relatively simple instrumentation
at region boundaries (cf. Figure 1).
Space overhead. The extended technical report [58] re-
ports space overhead of EnfoRSer and Legato over an un-
modified JVM. EnfoRSer and Legato incur average space
overhead of 29% and 2%, respectively, mainly because En-
foRSer adds per-object metadata while Legato does not.

6. Related Work
This section considers prior work other than work on mem-
ory models and commodity HTM, which Section 2 covered.
Using whole-program static analysis. Whole-program
static analysis can identify potential data races between
static program memory accesses [48, 49]. However, sound
(no missed races) static analysis suffers from two main prob-
lems. First, its precision scales poorly with program size and
complexity. EnfoRSer uses the results of sound static analy-
sis to avoid instrumenting definitely data-race-free accesses,
reducing average overhead from 36% to 27% [59]. In follow-
up work, we extend EnfoRSer to provide atomicity of low-
contention regions with coarse-grained pessimistic locks,
using static pairs of potentially racy accesses to identify

regions that should use the same lock [60]. Second, whole-
program static analysis relies on the so-called “closed-world
hypothesis”—that all of the code is available at compile
time—which fails to hold for dynamically loaded languages
such as Java. In contrast, Legato does not rely on whole-
program static analysis or the closed-world hypothesis.

Another serializability-based model. O’Neill and Stone
use TSX to provide speculation-based atomicity for obser-
vationally cooperative multithreading (OCM) [50]. In OCM,
all program code is in atomic regions, but the regions are
not dynamically bounded. The OCM implementation uses
TSX’s HLE implementation, which automatically falls back
to a global lock for transactions that abort; the main perfor-
mance challenge is serialized execution resulting from re-
gions that abort when executed as TSX transactions. In con-
trast, Legato’s regions generally fit in a TSX transaction; the
main challenge is merging regions into transactions to bal-
ance competing costs.

Dynamic atomic regions. Prior work proposes customized
hardware to execute code in atomic regions, enabling ag-
gressive speculative optimizations that can be rolled back
if necessary [25, 44]. Mars and Kumar address one chal-
lenge in such settings: data conflicts can cause atomic op-
timization regions to roll back excessively [44]. They intro-
duce a framework to mitigate the effect of shared-memory
conflicts that lead to misspeculations or “squashes.” Their
technique, called BlockChop, uses a composition of retri-
als, delay, translation to finer-grained regions, and fallback
to conflict-free interpretation mode to significantly reduce
the number of misspeculations, exploiting the right tradeoff
between the costs of these mechanisms. While BlockChop
shows the cost of conflicting accesses to be a significant
contributor to overheads, Legato shows that in current com-
mercial hardware the cost of start and end of transactions is
prohibitive. Essentially, because of their different objectives
and constraints, BlockChop favors reducing region sizes to
reduce conflicts while Legato favors increasing region sizes
to reduce overhead.

7. Conclusion
Legato provides a novel direction to provide bounded re-
gion serializability at reasonable overheads on commodity
systems, overcoming the limitations and complexity of prior
work. Unlike prior approaches, Legato maintains consistent
overhead even in the face of applications with many com-
municating threads, making it more suitable for applications
with diverse communication patterns, and giving it more
predictable performance overall. Legato hence advances the
state of the art in efficiently enforcing stronger memory
models in commodity systems.
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