Optimizing an SPT-Tree for Visual Analytics

Connor Gramazio∗
Department of Computer Science
Brown University & Tufts University

Remco Chang†
Department of Computer Science
Tufts University

ABSTRACT

Despite the extensive work done in the scientific visualization community on the creation and optimization of spatial data structures, there has been little adaptation of these structures in visual analytics and information visualization. In this work we present how we modify a space-partitioning time (SPT) tree – a structure normally used in direct-volume rendering – for geospatial-temporal visualizations. We also present optimization techniques to improve the traversal speed of our structure through locational codes and bitwise comparisons. Finally, we present the results of an experiment that quantitatively evaluates our modified SPT tree with and without our optimizations. Our results indicate that retrieval was nearly three times faster when using our optimizations, and are consistent across multiple trials. Our finding could have implications for performance in using our modified SPT tree in large-scale geospatial temporal visual analytics software.

1 INTRODUCTION

In recent years the visual analytics community has made great advances in optimizing data storage for tabular data. Perhaps the most notable contribution is from Polaris [6], which helped introduce visual analytics to online analytical processing. Yet other types of popular data, like geospatial-temporal data, have received little attention. Furthermore, prior work in other fields is seldom incorporated into visual analytics research, depriving the community of valuable resources. In this work we show how we modified a space-partitioning time (SPT) tree [1] – a structure used in direct-volume rendering – to match how geospatial-temporal data is used in visual analytics. An illustration of our structure, which displays both spatial and temporal substructures, is shown in Figure 1. We also discuss several optimizations we have made to traversing the structure to improve search speed.

Unlike data used in direct-volume rendering, data in the visual analytics and information visualization communities often produce incomplete trees due to the distribution of data. However, navigation through incomplete trees can become slow when using quadtrees and other spatial, hierarchal data structures, as it is not possible to perform simple jumps into a cell’s memory location. Instead, algorithms must traverse down the entire structure. Our implementation is based off the SPT traversal algorithm, which first traverses down a binary time tree where the root is the whole time span of the data and the leaves are individual time steps. In the SPT tree each time node has a complete octree where each octree leaf represents a voxel. Our optimizations improve traversal speed while still using an incomplete tree, rather than the SPT tree’s complete octree, to conserve space.

The database and geographic information systems communities have a wealth of information available for spatial-temporal storage [2][4]. However, we wanted to see how structures from one area of visualization could be used in another, and whether or not they could remain efficient across domains. We hope that our work can help spur more cross-community work within visualization.

∗e-mail: cgrama01@cs.tufts.edu
†e-mail:remco@cs.tufts.edu

IEEE Conference on Visual Analytics Science and Technology 2012
October 14 - 19, Seattle, WA, USA
978-1-4673-4753-2/12/$31.00 ©2012 IEEE

Our work’s immediate purpose is to make working with geospatial-temporal data more attractive for visualization researchers and developers by providing a hierachical data structure that is both efficient and familiar. We show how concepts from other visualization areas can be effective in visual analytics development by example. We also optimize around common interactions with spatial-temporal data to reduce retrieval time for frequently used tasks, though we have left user testing for future work.

2 THE STRUCTURE

Given the extensive work in scientific visualization and graphics on optimizing hierarchial, spatial structures like quadtrees, we propose a hierarchal-based data model. But if we are to switch to a hierarchal model, a new schema for representing geospatial-temporal data must be considered. In existing relational storage methods it is most common to represent time as an extra dimension in a data cube. However, as shown by Shen et al. [5], treating time as a third dimension of a hierarchal structure can sharply decrease its resolution, which degrades a hierarchal structure’s efficiency.

Despite decreased performance, thinking of time as a third dimension is often more intuitive. To help developers, we looked for hierarchal structures in scientific visualization that maintain this unified abstraction in their interfaces, yet did not suffer a drop in performance by coupling time and space in their implementation. After performing a survey, we found the SPT tree to be the best fit.

2.1 Temporal and spatial substructures

The original SPT tree used a binary tree as its temporal indexing structure, with the root spanning the whole time frame, internal nodes representing increasingly large durations of time, and leaves representing single time steps. Instead of using a time tree we use a hash map. It is common in geospatial-temporal software for users to scrub along a timeline, or index into specific points in time, and hash maps are ideal for this type of indexing. We felt that fast individual time step indexing was more important than support for quick access to time spans, which we expect will be used much less frequently.

Our spatial substructure remains the same as the SPT tree. In our implementation we used a quadtree, however the structure supports any number of dimensions.

3 OPTIMIZATIONS

While the primary emphasis of our work is optimizing retrieval speed, our structure does save space. Because time steps are likely to be unique, and should cause few if any collisions, the hash map we use for temporal indexing can be reduced in size. Not requiring complete spatial trees also saves space.

We base our indexing optimizations on work done by Frisken and Perry [3]. Their work describes a way to efficiently traverse quadtrees and higher dimensional structures through bit comparisons. In this work we focus on searching for points, however...
Frisken and Perry also provide optimizations for region search and moving to adjacent nodes in the tree.

3.1 Frisken and Perry optimizations

The optimizations Frisken and Perry describe in their work rely on locational codes represented by bit strings. These bit strings are generated by bit shifting normalized values as shown in Listing 1. Every bit represents a branching decision for one level of the spatial tree. In a quadtree if both x and y locational codes are zero, then the algorithm will traverse to the top left child. If x is one and y is zero, then the algorithm will traverse to the top right child. The other two traversal decisions are made in similar fashion. Because traversal uses almost exclusively bit comparisons, the constant attached to the cost of traversal is reduced.

Frisken and Perry’s work was written in C, so we have made several changes to their approach in our implementation to better fit C++ idioms. Our traversal algorithm can be found in Listing 1. Note that nextNextLevel and the if/else statement can be safely eliminated, however the function will not be warning-free.

Listing 1: Optimized point search for a quadtree

```c
vector<DataElts>* QuadNode ::
    findPoint (float x, float y) {
        QuadNode* cell = getSmallestNode(x, y);
        vector<DataElts> vec;
        DataElts* data;
        for (int i = 0; i < cell->getNumElts(); i++) {
            data = cell->getDataElts(i);
            if (data != NULL & & data->getx() == x
                & & data->gety() == y) {
                vec.push_back(data);
            }
        }
        return vec;
    }
```

QuadNode* QuadNode :: getSmallestNode
(float x, float y) {
 QuadNode* cell = this;
 int nextLevel = rootLevel - 1;
 unsigned int xLocCode = (unsigned int)
 (x * (1 << rootLevel));
 unsigned int yLocCode = (unsigned int)
 (y * (1 << rootLevel));
 while (cell->isLeaf() == false) {
 int nextNextLevel = nextLevel - 1;
 unsigned int childBranchBit = 1 << (nextLevel);
 unsigned int xChild =
 ((xLoc & childBranchBit) >> nextLevel);
 unsigned int yChild;
 if (nextNextLevel < 0) {
 yChild = (yLoc & childBranchBit) << 1;
 } else {
 yChild = ((yLoc & childBranchBit) >>nextNextLevel);
 }
 unsigned int childIndex = xChild+yChild;
 cell = cell->getChild(childIndex);
 nextLevel--;
 }
 return cell;
}

4 METHODS AND RESULTS

To test the efficiency of our structure with and without optimizations we generated random sets of coordinates, populated trees, and then searched for a set point. We first tested sets of 100, 500, 1000, and 5000 elements with each set size undergoing 10,000 trials. We then tested our structure on sets of 200,000 elements with 1,000 trials. Because indexing through time is free in comparison to indexing through space, we tested only spatial retrieval. All testing was performed on 15-inch Early 2008 MacBook Pro with a 2.4GHz Intel Core 2 Duo CPU and 4GB 667 MHz DDR2 SDRAM. Our results can be found in Table 1 and in Figure 2. On average, in each size category, we achieved a near tripling in performance. Through testing we also discovered that our retrieval using a 200,000 element tree using our optimized algorithm was faster than retrieving from a 100 element tree using the unoptimized traversal, suggesting that the optimizations provide better opportunities for scalability.

5 CONCLUSION

We have shown a set of adaptations to the SPT tree that make it appropriate to use with geospatial-temporal data, and optimizations that nearly tripled the performance of spatial traversal. We have also shown by example that it is possible to take a structure in a related field and adapt it to help visual analytics software accommodate more types of data. Immediately accessible future work involves further fine-tuning our optimizations and testing against relational databases in real applications.

REFERENCES