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Fig. 1. Compressed adjacency matrix of the gene regulatory network of Bacillus subtilis, which consists of approximately 700 genes
and 1000 regulations [30].

Abstract—We present a novel technique—Compressed Adjacency Matrices—for visualizing gene regulatory networks. These di-
rected networks have strong structural characteristics: out-degrees with a scale-free distribution, in-degrees bound by a low maxi-
mum, and few and small cycles. Standard visualization techniques, such as node-link diagrams and adjacency matrices, are impeded
by these network characteristics. The scale-free distribution of out-degrees causes a high number of intersecting edges in node-link
diagrams. Adjacency matrices become space-inefficient due to the low in-degrees and the resulting sparse network. Compressed ad-
jacency matrices, however, exploit these structural characteristics. By cutting open and rearranging an adjacency matrix, we achieve
a compact and neatly-arranged visualization. Compressed adjacency matrices allow for easy detection of subnetworks with a specific
structure, so-called motifs, which provide important knowledge about gene regulatory networks to domain experts. We summarize
motifs commonly referred to in the literature, and relate them to network analysis tasks common to the visualization domain. We
show that a user can easily find the important motifs in compressed adjacency matrices, and that this is hard in standard adjacency
matrix and node-link diagrams. We also demonstrate that interaction techniques for standard adjacency matrices can be used for our
compressed variant. These techniques include rearrangement clustering, highlighting, and filtering.

Index Terms—Network, gene regulation, scale-free, adjacency matrix.

1 INTRODUCTION

A network is a powerful abstraction that consists of elements and con-
nections between these elements. Many common-day phenomena can
be encoded as a network. People and their social contacts, for exam-
ple, are summarized as social networks and subsequently studied in the
scientific domain of sociology [18]. The bioinformatics domain makes
heavy use of networks to make sense of interactions between organic
compounds. However, large networks are hard to visualize. Standard
network visualization methods, the node-link diagram and adjacency
matrix, are popular due to their intuitive simplicity and their generic
applicability (see Fig. 2). However, they are unable to scale to com-
plex networks, leading to the infamous hairballs in case of node-link
diagrams. Recent developments in the field of network visualization
move towards the exploitation of predetermined network characteris-
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tics in order to create visualizations that are more effective for analy-
sis by domain experts. We present such an approach, which has been
specifically designed for gene regulatory networks of bacteria.

The gene regulatory network (GRN) of a bacterium describes in-
teractions between a gene product (a regulator protein) and its target
genes. Genes are specific pieces of DNA that form the blueprint for
the creation of proteins. A regulator gene, a gene that codes for a reg-
ulator protein, can either promote (further) or inhibit (impede) other
genes. Sometimes, a gene both inhibits and promotes, depending on
environmental conditions. This regulation (or control) between genes
is described by a GRN, where genes and regulations are represented
as nodes and edges, respectively.

Because GRNs describe part of a bacterium’s internal mechanics,
domain experts study this type of network intensively, by making
use of standard network visualization and layout methods. However,
the specific structural properties of GRNs make visualization difficult,
even when the network is small. This difficulty is caused by the fol-
lowing characteristics [2]:

Low in-degree Every gene is regulated by only a few other genes.
Therefore, all nodes of the network have a low in-degree.

Scale-free out-degree There are few genes that regulate many oth-
ers, and many genes that regulate few others. Therefore, the net-
work’s out-degree distribution follows a power law.

Few cycles The network has few cycles because genes rarely (indi-
rectly) regulate each other both ways.
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Fig. 2. Two widely-used visualization techniques. Example of a node-
link diagram (left) and an adjacency matrix of the same network (right).

In this paper, we propose an approach that exploits these structural
characteristics, by creating an adjacency matrix that is cut up and re-
arranged to take up less space. Our novel network depiction benefits
bacterial GRN analysis, and has the following properties:

Compactness This enables a detailed overview of the entire network.

Localization of motifs This enables quick detection of subnetworks
of interest.

Consistent arrangement This facilitates interaction while preserv-
ing visual orientation.

2 RELATED WORK

Much research in the area of network visualization has been per-
formed [22, 42]. In this section, we restrict our overview to related
work directly relevant to our proposed approach.

The node-link diagram and adjacency matrix are the most popular
for network visualization. Node-link diagrams are—in general—used
to depict sparse networks (with a low edge to node ratio), while adja-
cency matrices are an alternative for dense networks (with a high edge
to node ratio) [14]. Node-link diagrams are intuitive, and most people
are able to interpret such diagrams without receiving further explana-
tion. Therefore, network visualization tools in the biological domain
often use this representation [24, 28, 38, 43]. However, when a net-
work is dense, this intuitiveness is overshadowed by the visual clutter
caused by the many edges that have to be drawn. In this case, an adja-
cency matrix provides a more ordered and therefore easier to interpret
depiction, even though an observer will have to become accustomed
to the visualization [1, 41].

Optimal drawing of node-link diagrams, corresponding to aesthetic
criteria, and the combinatorial aspects of deriving diagrams that ad-
here to these criteria, is the focus of the Graph Drawing domain [5].
Eades was the first to propose a force simulation to lay out graphs [11],
after which more elaborate force models were developed [13]. Such
force-based layouts are simple and effective. Aesthetic criteria are of-
ten used to judge the effectiveness of node-link diagrams and to derive
algorithms that generate high-quality diagrams [5]. The number of in-
tersections in a diagram is an important criterion, and therefore many
techniques focus on reducing these intersections [9, 10, 39]. Giving
edges a more complex geometry than a straight line, enabling the rout-
ing of edges, is a way to avoid intersections as well [27].

A simple example of the exploitation of specific network character-
istics is that of tree-layout algorithms [34]. Such algorithms generate
layouts that emphasize the inherent tree structure. Similarly, DAGs
(short for Directed Acyclic Graphs) are given special treatment with
Sugiyama’s algorithm [40], where the layered structure of a DAG is
exploited and emphasized.

The layout of an adjacency matrix is fairly rigid, i.e., nodes and
edges are restricted to rows and columns. Most attention has been
given to ordering nodes in such a way that patterns in the network
structure become apparent. This is known as rearrangement cluster-
ing, where nodes are placed close to each other in the arrangement
when their distance, according to some similarity measure, is small
as well [32]. Such approaches take on more complex forms in bi-
clustering [26], which tries to optimize horizontal and vertical order-
ing of nodes simultaneously. The use of adjacency matrices and cor-
responding rearrangement techniques is popular in the biological do-
main, where they appear in the form of heat maps [37].

Combining node-link diagrams and adjacency matrices has been
explored as well. One way of doing this is to couple a node-link di-
agram and an adjacency matrix depiction of the same network by co-
ordinated views [20]. Another way is to create a true hybrid, like the
NodeTrix technique [21], where dense parts of a network are detected,
isolated, and visualized as matrices, which are then reconnected with
links that represent the sparse sections of the network. This is another
example of a technique that exploits structural characteristics, namely
the presence of dense clusters.

An adjacency matrix can also be used when a network forms a
DAG. Then, when nodes are ordered to respect the DAG layers, only
the top-right triangle of the matrix will contain edge depictions. If
the DAG has few edges that skip multiple layers, the resulting matrix
can be arranged to form a more space-efficient staircase-like depiction.
This property is effectively used in Quilts [25], by giving special treat-
ment to the layer skipping edges, turning them into nodes referenced
with color codes, which enables further compaction of the adjacency
matrix. Genea Quilts [6] are a variant of Quilts that exploit properties
specific to genealogical networks to achieve similar compression.

Many analysis tasks involve following a path along the edges of
a network. In node-link diagrams, edges can be traced easily from
node to node, provided they are not overly obfuscated by intersections
with other edges. Node duplication involves the placement of multiple
copies of the same node, and distributing the edges over these dupli-
cates [19]. This enables greater reduction of edge crossings, creating
a cleaner depiction, at the cost of paths becoming harder to trace over
the nodes that have been duplicated. This problem also occurs in adja-
cency matrices, because every node is represented horizontally as well
as vertically, for outbound and inbound edges, respectively. Therefore,
following a path in an adjacency matrix is notoriously hard [14].

In a biological setting, node duplication is often used for node-link
diagrams of metabolic networks [8, 31], where certain nodes have such
a high degree that they are either split into many duplicate representa-
tions or removed altogether. This is done because some compounds,
like water, are involved in so many metabolic processes that they do

Fig. 3. Node-link diagram of the same GRN as in Fig. 1. Generated
with Cytoscape [38], using a standard spring-embedder layout algo-
rithm. Genes are depicted as dark gray nodes and regulations as col-
ored links: green, red, orange, and blue for promotion, inhibition, both,
and unspecified, respectively.
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not represent information of particular interest to an analyst. The tasks
that an analyst has to perform, aided by a network visualization, is of
great influence to such trade-offs. In some cases, tracing paths is of
no concern and representations more akin to adjacency lists are used,
such as animal pedigrees [16]. Here, paths are hard to follow, but it
is much easier to compare two nodes (and their attributes) that share
an edge. Dealing with the richness of information attached to nodes
and edges of networks often leads to these kind of solutions in visual
analytics. Pathline is another example of this [33], where metabolic
pathways are shaped into a vertical linear ordering, making it harder
to interpret the pathway, but easier to compare corresponding time-
series data that can now be stacked on top of each other in a consistent
manner.

Any network visualization is prone to scalability issues. Large
graph layout algorithms [17] often result in visualizations that are dif-
ficult to interpret. In such circumstances, compression of the network,
either lossless or lossy, can be beneficial. Here, lossless compression
refers to a visualization that still encodes all network information, but
with more complex encoding schemes that require additional effort by
an analyst to interpret. For example, visually nesting nodes with edges
identical to other nodes (identical neighborhoods) in a joint node can
drastically reduce the number of edges that have to be drawn. How-
ever, the routing of edges to nested nodes makes the structure of nested
nodes more complex. Grouping together children of trees is a simple
version of this [15], and an extension of this encoding to multiple lev-
els of nesting has been applied for the analysis of protein interaction
networks, forming so-called Power Graphs [35]. Lossy compression
is usually done by clustering of nodes into meta-nodes, thereby also
collapsing edges into meta-edges, where the presence of individual
nodes and edges may be lost in the visualization [12]. These kind of
approaches are used in interactive settings, where meta-nodes may be
expanded and collapsed at will [4].

3 MOTIVATION AND CONCEPT

Node-link diagrams are the customary method of inspecting gene reg-
ulatory networks in the biological domain, see Fig. 3 for an exam-
ple. Global features of the network are visible in the diagram, such
as the strong interconnectedness of the network, few genes that reg-
ulate many other genes, and many genes that are regulated by few
genes. More detailed features, such as the immediate neighborhood
of a gene, are obfuscated by many links causing substantial overlaps.
Yet, context and details are both important to biologists: they require
a clear overview of the immediate neighborhood of a gene, but also
need to follow paths and determine indirect regulations. Our aim is to
facilitate both in the same visualization.

As an alternative visualization, it would be possible to use an adja-
cency matrix. However, as is clear from Fig. 3, the network contains
many nodes but relatively few edges: it is sparse. The resulting adja-
cency matrix would therefore take up a lot of display space (approx-
imately 700 by 700 rows and columns, respectively), but it would be
mostly empty. This makes it hard to see both network context and de-
tails at the same time. The specific characteristics of a GRN—low in-
degree, power law out-degree, and few and small cycles [2]–however,
allow us to introduce a variant of an adjacency matrix that we call a
Compressed Adjacency Matrix (CAM).

The first two characteristics can be seen clearly in Fig. 3. It is im-
portant to note that they cause a strong interconnectedness of the net-
work, which makes it difficult to interpret a node-link representation.
However, in combination with the third characteristic, they imply that
a GRN has a highly DAG-like structure that consists of few layers.
Moreover, because of the second characteristic, there are relatively
few roots, nodes with no inbound edges; few hubs, nodes with both
inbound and outbound edges; and many leaves, nodes with no out-
bound edges. This is essential to the construction of our CAM, and
they are crucial to obtain its regular structure (see Fig. 1).

The interpretation of a CAM is straightforward, but, like a standard
adjacency matrix, a CAM is somewhat less intuitive than a node-link
diagram. Fig. 4(c) illustrates how to read a CAM: The outbound and
inbound edges of a node are found by looking to the right and upwards,

(a)

(b)

(c)

Fig. 4. Node-link diagrams of a simple network on the left and corre-
sponding CAMs on the right: (a) Nodes are uniquely labelled and edges
colored blue in both representations, the CAM shows edges as arcs or
dots. (b) Cycles are grouped in the layout of a CAM (orange), and nodes
with identical neighborhoods are stacked (red), roots are placed before
edges (labelled r), hubs diagonally (labelled h), and leaves at the bot-
tom (labelled l). (c) To follow a path in a CAM, one starts at a node and
traces a line (red) to the right until an edge is hit, then one traces a line
down until a node is hit again.

respectively, while using the underlying thick lines as guides.
From Fig. 4, several beneficial properties of CAMs become appar-

ent. First, the entire neighborhood of a node is easy to find by follow-
ing its underlying line. Second, nodes with identical neighborhoods
are localized as stacks that save space (lossless compression). Third,
the few and small cycles in the network are localized and give the im-
pression of an actual cycle, due to the edges of the cycles being drawn
as arcs. Fourth, the layers of the network’s DAG-like structure, and
regulations between these layers, are compartmentalized and visible
as contiguous surfaces. Finally, paths can be followed by tracing the
underlying thick lines through nodes, which is usually easy in node-
link diagrams as well, but not in standard adjacency matrices.

4 APPROACH

Though CAMs have a tidy appearance and standard adjacency matri-
ces are easy to derive from CAMs, the conversion of a network to a
CAM is not trivial and consists of six steps. First, the network is de-
composed into weakly connected components, after which every com-
ponent is treated as a separate network for the remaining steps. Sec-
ond, nodes with identical neighborhoods are grouped. Third, strongly
connected components are detected and grouped to form a DAG.
Fourth, the nodes of the DAG are partitioned into layers such that all
edges have the same direction with respect to the layers. Fifth, the lay-
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G

Fig. 5. Example network (left) with its weakly connected components
marked in red. In this case, the largest component is taken as G (right).
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Fig. 6. Example of G (left) and the GI (right) that is derived by grouping
vertices with identical neighborhoods. The vertices and edges in red
are joined into a larger group.

ers are turned into blocks that form the backbone of the CAM, where
nodes are partitioned into five classes that dictate their arrangement
in the CAM. In addition, grouped strongly connected components are
split into separate nodes again while maintaining the vertex arrange-
ment dictated by the blocks. Finally, the blocks are concatenated to
form a cascade from which node positions and the CAM visualiza-
tion are derived in various styles. We describe each step in detail and
illustrate it with a running example.

4.1 Network

The network is a directed graph G = (V,E), where V is the set of ver-
tices (nodes) and E is the set of directed edges between vertices of
G. We assume that G is weakly connected, i.e., every vertex is reach-
able from any other vertex when edge directions are ignored. If a net-
work is not weakly connected, it is decomposed into weakly connected
components with a connectivity search. Each weakly connected com-
ponent is then taken as G and converted to a CAM (see Fig. 5). The
individual CAMs are concatenated in the final visualization.

The vertices in our network have a number of attributes, such as the
gene’s name and annotation of gene function. The edges have a single
attribute that describes the type of interaction between a gene and its
target, namely promotion, inhibition, both, and unspecified. However,
the exact nature of the attributes is irrelevant to the construction of a
CAM.

4.2 Identical neighborhood grouping

Biological networks contain a lot of vertices with an identical neigh-
borhood. Grouping these vertices reduces the complexity of the net-
work, while still leaving open the possibility to properly convey each
vertex of a group in the final visualization. To this end, we define a
grouped version GI = (VI ,EI) of G, where VI is the set of vertices of
GI that represent non-overlapping subsets of V with identical neigh-
borhoods, and EI is the set of directed edges of GI .

Here, it is important to note that we take the edge attribute (describ-
ing the type of regulation) into account: only edges with the same
value for the attribute are combined into one. An example is shown in
Fig. 6, in which the vertices e and f both receive input from vertices b
and c, thus their neighborhoods are considered identical. Such vertices
are stacked on top of each other in the final visualization, cf. Fig. 4(b).

4.3 Strongly connected component grouping

We need to remove all cycles of GI to turn it into a Directed Acyclic
Graph. Along the same lines of the Sugiyama algorithm [40], we could
temporarily invert those edges that break a cycle, to be reverted again
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Fig. 7. Example of GI (left) and the GS (right) that is derived by grouping
SCCs. The red vertices and edges are part of an SCC that is larger
than a single vertex.
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Fig. 8. Example of GS (left) and its layering (right).

in the final visualization with a special edge depiction. However, a
better alternative is available to us because we know that G and there-
fore GI has few and small cycles. The small cycles imply the existence
of small strongly connected components (SCC), i.e., sub-graphs where
any vertex is reachable from any other vertex.

The SCCs of GI are a partition of VI . By grouping every SCC into a
single vertex, as shown in Fig. 7, we create a DAG GS = (VS,ES). The
set of vertices VS represents SCCs of GI , and the set ES is the set of di-
rected edges between vertices in GS. The edges ES are not necessarily
the same as the edges EI . They represent an aggregation, which means
that edges of EI with different attribute values can be represented by
a single edge of ES. This is not important for the construction of the
CAM, because it relies only on the structure of GS.

4.4 Layers

Graph GS is a DAG and can therefore be regarded as a layered structure
(see Fig. 8). We determine its layers Li, i = 0,1, . . . ,m, which form a
partition of VS, in a similar way as Sugiyama’s algorithm [40]:

The edges that run between layers all have the same direction. Also,
no edge runs between two vertices of the same layer. The vertex con-
figuration is as compact as possible: if a vertex v ∈ Li has outbound
edges, then there exists v′ ∈ Li+1 and an edge from v to v′, or there
exists v′ ∈ Li−1 and an edge from v′ to v. In other words, vertices
immediately precede their successors in the DAG if there are any suc-
cessors, or immediately succeed their predecessors otherwise. This is
important for the derivation of blocks from layers in a later stage.

4.5 Blocks

The layered node-link diagram of Fig. 8 already conveys the structure
of the network quite well. However, for large networks, the many edge
intersections between layers make it hard to interpret. We therefore
transform the layers into blocks, which we arrange in such a way that
empty space can be used effectively to obtain a compact visualization.

Layers map directly to blocks, i.e., a block Bi is derived from its
corresponding layer Li. Block Bi consists of sequences of vertices, Hi

and Vi, that specify the horizontal and vertical ordering of Li’s vertices
in the CAM, respectively. An appropriate ordering of the vertices in
Hi and Vi is crucial to obtain the desired compactness. We achieve this
by partitioning the vertices of Li into five classes:

Leaf Vertex in Li without successors.

Short root Vertex in Li that has a successor but no predecessors and
all successors are leaves in Li+1.
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Fig. 9. The composition of Bi and its placement with respect to its neigh-
boring blocks.

Long root Vertex in Li that has a successor but no predecessors and
is not a short root.

Short hub Vertex in Li that has a predecessor and successor, and all
successors are leaves in Li+1.

Long hub Vertex in Li that has a predecessor and successor, but is not
a short hub.

The partition that we get for Li then consists of leaves PL, short roots
PSR, long roots PLR, short hubs PSH , and long hubs PLH . Each of these
sets can be ordered individually, based on attributes or some other
characteristic. This ordering affects the readability of the CAM, and
we will come back to this in Section 4.6. Once we have the partition,
we can construct Hi and Vi by concatenation:

Hi = [PL, PSR, PSH , PLH , PLR]

Vi = [PSR, PSH , PLH , PLR]

The construction of Hi and Vi allows us to make a spatial configuration
of Bi as illustrated in Fig. 9. The blocks B1,B2, ...,Bm form a cascade
with enough space above it for edge depictions (see Fig. 10(b)). Most
vertices of Li occur twice in this configuration. The vertices of Hi have
depictions above them to represent inbound edges from predecessors
(in the light gray zone). Similarly, vertices in Vi have depictions to
their right to represent outbound edges to successors. This explains
why PL is missing from Vi: it consists of leaves that have no outbound
edges.

The presence of PSR in Hi is optional. Removing it will result in
a more compact but less consistent CAM, which we will discuss in
Section 4.6. Likewise, the configuration of Bi−1 and Bi is made more
compact by shifting down PL. This is possible, because vertices of PSR

and PSH in Bi−1 have only outbound edges to PL of Bi. Therefore, no
space is required for edge depictions beyond PL.

From the arrangement that we now have, we can actually construct a
standard adjacency matrix, see Fig. 10(c). This can be done by shifting
the vertices that belong to some Hi upwards to a common horizontal
axis, and shifting those vertices that belong to some Vi to a vertical
axis at the left (while respecting their block-induced arrangement).

Finally, the grouped strongly connected components VS are flat-
tened within Hi and Vi. The sets of identical neighborhood vertices are
maintained in the layout, and drawn as stacks of vertices. In addition,
edges in EI that connect vertices of a strongly connected component
are represented by arcs, which forms the cycle shown in Fig. 4.

For the small example network, clearly not much compression can
be achieved. However, the teaser image and the image discussed in
Section 5 show that our approach is effective for compressing large
GRNs.

4.6 Visualization

Our approach creates a layout that consists of inbound and/or out-
bound positions for every vertex if it has an in and/or outbound neigh-
borhood, respectively. This provides us with enough information to
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Fig. 10. (a) Layers of GS. (b) Blocks of GS that form a CAM. (c) Stan-
dard adjacency matrix arranged according to the blocks of GS. All edge
depictions are in red. Here e, f and g are leaves, c is a short root, k and
a,d are long roots, b and l are short hubs, and h is a long hub.

create a CAM visualization. As in Fig. 10, edge depictions are placed
in a grid, outbound from the vertex to its direct left and inbound to the
vertex directly below it. We give a special treatment to hubs because
they have inbound and outbound edges by definition. In standard ad-
jacency matrices, they therefore appear both at the left and at the top
of the matrix, spaced wide apart, making it difficult to trace a path. In
contrast, we place each hub at the middle of an arc that extends from
the hub’s inbound neighborhood to its outbound neighborhood. This
special treatment of hubs is enabled by their carefully chosen arrange-
ment (cf. Fig. 9).

Styles

Like for a standard adjacency matrix, the grid drawn in the background
is a visual aid that more strongly associates a vertex depiction with
edge depictions of its in- and/or outbound neighborhoods (and vice-
versa). Even with this aid, adjacency matrices are hard to interpret
when they are large. We have therefore experimented with various
visual styles to improve interpretation. A sample of style combinations
is shown in Fig. 11.

The first style is a plain grid, where grid cells are separated by solid
lines (see Fig. 11(a)). These lines help to inspect the neighborhood of
a vertex, but they have to be given a dark color to be visible due to
their small width. This creates many strong brightness transitions in
the visualization, impeding its aesthetics.
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Fig. 11. A sample of CAM configurations, applied to a section of Fig. 1: (a) Thin separating lines. (b) Non-regulations as gray dots. (c) Thick
underlying lines. (d) Periodic spacing. (e) Leaves have no rearrangement clustering on neighborhood similarity. (f) Thick underlying lines are
shortened. (g) Roots are treated as hubs. (h) Filtered and highlighted on two selected genes.

The second style circumvents the need for explicit lines by intro-
ducing gray edge depictions for those vertex pairs that have no edges
between them (see Fig. 11(b)). This generalization creates a grid pat-
tern that guides the observer as well. However, the presence of these
non-edge depictions draws away attention from the actual edges, mak-
ing it harder to get an impression of the network’s connectivity. More-
over, a connection between the neighborhoods of hubs still has to be

made explicit, which is done with a thick arc that does not integrate
well with the visual style of the rest of the CAM.

In our opinion, the third style is the most effective and therefore
default style of the prototype. Instead of drawing lines between the
edge depictions, thick and translucent lines are drawn behind them
(see Fig. 11(c)). Vertical and horizontal lines appear darker where
they intersect due to their translucency, as though they are plies that
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are stacked on top of each other. This makes every line of a vertex
stand out and better to trace, e.g., it is easy to follow a line down
from an edge, along an arc, to the depiction of the hub that the edge
is directed to, and even further along the arc, into the hub’s outbound
neighborhood. Thus, paths in the network are visually apparent and
can be followed. Note that this is not possible in a standard adjacency
matrix. The other styles also enable path following, but the neighbor-
hood of a vertex does not appear as a clear contiguous area.

Even with the aid of a grid, it is still hard to find all edges of a ver-
tex’s neighborhood because it is easy to accidentally skip a line over
a long distance. This is similar to drifting off direction when there
are no lines guiding you. One way to suppress this effect is to add
more structure to the grid, providing additional landmarks to guide an
observer. A periodic change of grid cell color is commonly used to
get this effect in adjacency matrices and tables. However, we want
to restrict the use of colors, because we already use colors to encode
edge types. Instead, extra space can be added between vertices to cre-
ate a visual grouping of cells. This makes skipping a line harder, but
also causes the visualization to be less tidy (see Fig. 11(d)). Likewise,
space between blocks and different classes of vertex can be added if
desired.

We have also experimented with minimizing line length while mak-
ing sure the lines still contain all edges (see Fig. 11(f)). This makes
it easier to determine the extent of a neighborhood. It also makes the
visualization less structured, and implies the presence of edges (pos-
sibly non-existing) at line intersections, because the immediate neigh-
borhood is darker. Similarly, the inbound neighborhood line of a root
is hidden by default because it wastes space (it has no edges to guide
the observer to). Including these lines may be desirable, however, to
get a more consistent visualization (see Fig. 11(g)).

Color

All visual components of the CAM are gray scale except for the edges.
The number of grays used is kept at a minimum, because this draws
attention to the edges. This also leaves the rest of the color space avail-
able to color code edge types such that they are easy to distinguish.
Green and red colors encode regulations that promote and inhibit, re-
spectively, because it is a custom in the target domain. Orange encodes
regulations that both promote and inhibit, because it is approximately
an intermediary for green and red, yet can still be distinguished as a
separate color. Blue encodes unspecified regulations, because it has a
neutral connotation.

Vertices are colored dark gray—not black—to make them less dom-
inant. They are also given halos matching the background color
(white) to improve contrast, and to make them distinguishable when
partially stacked. Likewise, edges and text labels are given halos.

Arrangement

Various vertex arrangements are implemented in the prototype, i.e.,
the sets in the partition of a layer Li (cf. Section 4.5) can be or-
dered in various ways. Simple arrangements like sorting by in- and
out-degree are possible, in addition to rearrangement clustering by
neighborhood similarity. Similarity clustering is widely used to bring
out edge patterns in standard adjacency matrices [20], and by com-
parison of Fig. 11(c) and (e) it is also beneficial to CAMs of GRNs.
The use of arrangements is configurable in the prototype, but by de-
fault we arrange leaves by inbound neighborhood similarity, and hubs
and roots by out-degree. Switching arrangements can be done interac-
tively, where vertices transition smoothly to their new positions.

Vertex arrangement in CAMs is more restricted than in an adjacency
matrix due to vertices being part of blocks and their partitions. It is
also possible that leaves with similar neighborhoods end up in different
layers of the DAG and thus in a different block because one inbound
edge is different, causing a large distance between the leaves in the
final visualization.

Interaction

Hovering over vertices and edges is possible for highlighting and ob-
taining additional information, i.e., gene name and function descrip-

tion for hovered vertices, and inbound and outbound gene names for
hovered edges. In addition, two types of connectivity search are sup-
ported: highlighting of direct neighborhood and highlighting of the
entire up- and down-directed section of the network, i.e., all genes
that (in-)directly influence or are influenced by the hovered gene (see
Fig. 11(h)). Moreover, multiple vertices can be selected such that any
highlighting is kept in place when the vertices are no longer being
hovered.

When a vertex or edge is highlighted, its size, color saturation, and
brightness is increased, such that it stands out from its surroundings.
The background grid lines are darkened as well to provide extra guid-
ance. As shown in Fig. 11(h), the enlarged edges also help to distin-
guish between those edges that are part of the connectivity search, and
those that are part of the neighborhood of a connected vertex.

Highlighted vertices and edges attract attention, but the remainder
of the network may inhibit their inspection. The prototype therefore
allows to filter those vertices and edges that are not highlighted. This
causes a considerable reduction in size of the CAM, making it easier
to interpret (see Fig. 11(h)). Moreover, it enables interactive naviga-
tion of the network, because nodes can be added or removed from
the selection, increasing or decreasing parts of the network that are
highlighted and therefore visible. To better facilitate this navigation,
the transition between filtered CAMs is animated, and the underlying
block arrangement is maintained to preserve the observer’s visual ori-
entation. This means that the entire network is always the basis for the
generated CAM, so the DAG structure that leads to layers and blocks
is stable, and vertices do not switch blocks, regardless of filtering.

5 DISCUSSION

We will now compare CAMs to standard visualization techniques that
are often used for GRN analysis. Fig. 12 and 13 show the CAM and the
node-link diagram of a GRN of the bacterium Escherichia coli, which
consists of approximately 1300 genes and 2800 regulations [36].

Node-link diagrams are more intuitive than CAMs, but in case of
Fig. 13, there are so many edge intersections that the diagram is hardly
readable. Some depictions are even fully occluded, leading to a loss
of information. More advanced node-link encodings [7], or layout
techniques that are specific to scale-free networks [3], may create more
insightful visualizations. However, many edge intersections cannot
be avoided due to the interconnectedness of the GRN. Edge-bundling
techniques could alleviate this further [23], but at the risk of additional
information loss.

The main disadvantage of CAMs is inefficient use of space. Node-
link diagrams can be more efficient in this aspect, because the posi-
tioning of nodes is less restricted. Even after compression, it can be
seen in Fig. 12 that large sections of the CAM remain unused, and
that it has a high aspect ratio. However, the neatly-arranged visual-
ization and lack of edge overlaps provided by a CAM outweigh these
disadvantages.

GRN analysts have specific needs that have to be taken into account
as well, which involve the search of patterns. These patterns come in
the form of subnetworks with a specific structure. Some instances of
these subnetworks are called motifs, which are subnetworks that are
statistically over-represented in GRNs, and are known to have a spe-
cialized function [2]. We therefore consider the most important sub-
network structures, corresponding motifs, and related generic network
tasks [29].

Genes should be regarded as part of a dynamical system to under-
stand why specific subnetwork structures have specialized function.
Genes have a so-called level of expression that is conceptually related
to the extent at which the gene is involved in protein production or the
regulation of other genes. It is also possible to talk about regulation
signals, because regulations are dependent on gene expression levels
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Fig. 12. Rotated CAM of the GRN of bacterium Escherichia coli.

Fig. 13. Node-link diagram of the GRN of Escherichia coli, laid out with
a spring-based method in Cytoscape as commonly used by GRN ana-
lysts.

and are therefore time dependent. The motifs that we discuss can thus
be regarded as signal processing components, acting as signal delays,
filters, and pulse generators.

Self-edge Single vertex with an edge directed to itself.

This structure is of particular interest in GRNs because a self-
inhibiting gene (or the negative auto-regulation motif) likely shows a
faster response to inbound regulation signals, and is more stable when
receiving fluctuating signals [2]. Likewise, a self-promoting gene (or
the positive auto-regulation motif) shows slower response to inbound
signals. Self-edges are easily spotted in both Fig. 12 and Fig. 13 as
curves that bend back into a node. This also makes self-edges local-
ized such that they are easily spotted as a part of another subnetwork
of interest.

Out-fan Vertex with edges directed towards a set of vertices.

Inspecting an out-fan of a vertex requires finding its neighborhood, the
adjacency task of [29]. This is relevant for gaining insight about regu-
lators, which are genes with a large outbound neighborhood, referred
to as a regulon. These regulators play a dominant role in a bacterium’s
response to environmental conditions, acting as master switches for
parts of a GRN. A regulator is easily spotted in a node-link diagram
by the many edges that converge at its position, creating the appear-
ance of an actual fan. Likewise, a regulator is easily spotted in a CAM
because it is either a root or a hub, and these vertex classes are eas-
ily distinguished. A regulator also tends to be in a higher layer and
has large strips of edge depictions to its right that is emphasized by
neighborhood similarity clustering. In addition, the ordering of hubs
and roots by out-degree places regulons close to each other per layer,
making them easier to spot. Surveying the entire neighborhood of
a regulon, however, is difficult in node-link diagrams because direct
neighbors can be positioned anywhere, and individual edges are hard
to spot because of the many edge intersections. While neighbors have
more regular positions in a CAM, making them easier to find, they can
be spread out over longer distances as well.
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auto-regulation single-input module

feed-forward loop multi-input module

Fig. 14. Illustrations of GRN motifs, generalized of regulation types.
Gray areas represent the remainder of a network.

The single-input module motif is a form of out-fan where the genes
of a regulon are affected by only one regulator (see Fig. 14). Here, a
temporal arrangement of gene activations occurs by varying the regu-
lation strength to each gene of the regulon, in essence creating a se-
quential program that is executed when the regulator becomes active.
Single-input modules are spotted in a node-link diagram by their dense
arrangement around a regulator, provided that it is not obfuscated by
edges that are not part of the module. Stacked leaves in a CAM, with
only one inbound edge, correspond directly to a single-input module.
For example, it can be seen that Escherichia coli has many such mod-
ules of varying size spread out over all layers, while Bacillus subtilis
(see Fig. 1) has relatively few large modules that are mostly part of the
first layers.

In-fan Vertex with edges directed towards it from a set of vertices.

The observations for the out-fan are symmetric to those of the in-fan.
However, the in-fan is of relevance to the multiple-input module mo-
tif, which is an extension of the single-input module where multiple
regulons have strong overlap (see Fig. 14). This enables the execution
of different sequential programs with the same genes. The special ar-
rangement of vertices in CAMs clearly reveal multiple-input modules,
where the out-degree ordering of roots and hubs pushes regulators
close together and the neighborhood similarity arrangement of leaves
show overlap—and differences—between regulons as thick stripes of
edge depictions. Regulon overlap can be detected in node-link dia-
grams as two fans that diverge to the same set of nodes if only two
regulators are involved. However, involvement of more than two regu-
lators results in patterns that are hard to discern. Moreover, it is harder
to compare two or more regulons in the node-link diagram of Fig. 13
than in the CAM of Fig. 12.

Path Multiple vertices connected such that they form a directed chain.

A path in a GRN is effectively an indirect regulation of the gene at the
end of the path by the gene at the beginning of the path. Likewise, a
regulator may have greater effect on the entire GRN than initially es-
timated from its regulon, because it affects even more genes via paths
through its regulon. This stipulates the desire for focus (e.g., fans) and
context (e.g., paths). Tracing a path is called follow path in [29].

There may exist multiple paths between two genes. Such regula-
tory paths tend to pass signals at different speeds, especially when the
lengths of the paths are unequal. The relevance of this follows from
feed-forward loop motifs. Feed-forward loops consist of three genes
with one direct and one indirect regulation (see Fig. 14). Its behav-
iors are the filtering of pulses (brief inbound regulation signals), the
conversion of long inbound regulation signals to outbound pulses, and
the shortening or elongation of response to inbound signals similar to
auto-regulation.

Following paths is already difficult in the node-link diagrams of
Fig. 3 and 13, and spotting two paths between two nodes even more
so. This is not easy in CAMs either, but feed-forward loops can still
be discerned because the nodes of the paths follow each other in the
layering and therefore create consistent patterns. These patterns are
made explicit by highlighting and filtering, as seen in Fig. 11(h).

Cycle Multiple vertices connected such that they form a cycle.

Cycles are also known as feed-back loops but they are uncommon in
GRNs, and therefore not considered to be motifs. However, genes
that are part of cycles have strongly associated behavior, because these
cycles tend to be small. For example, two genes that inhibit each other
form a cycle that functions as a form of indirect auto-regulation on
both genes. In that sense, genes that are part of a cycle behave in
unison.

The presence of cycles is clearly lost in large node-link diagrams,
where the nodes of a cycle can have large distance between them, and
the links of the cycles are obfuscated by other links. Cycles are lo-
calized in CAMs and have the appearance of actual cycles, making
them easier to spot. Moreover, the complementary nature of genes
that are part of a cycle also becomes apparent, because their neighbor-
hood edges are placed close to each other in the matrix. This enables
easy comparison of their neighborhoods (see the right-most cycle in
Fig. 12).

Clearly, there are other visualization techniques beyond node-link
diagrams that can be considered, foremost of which are adjacency ma-
trices and more advanced visual encodings. Adjacency matrices, how-
ever, are almost identical to CAMs but take up a lot more space and
do not facilitate following a path. The more advanced visual encod-
ings focus on networks that have structural characteristics different
from those of GRNs. NodeTrix [21], for example, is effective for net-
works that have somewhat isolated clusters, which does not match the
strongly interconnected nature of GRNs that follows from their scale-
free out-degree distribution. Moreover, Quilts [25] are designed for
DAG-like networks but rely on a tidy layer structure where few edges
skip layers. As becomes clear from Fig. 12, GRNs have many edges
that skip layers, mainly outbound from important regulators, that make
Quilts impractical. We have also tried other node-link layout algo-
rithms, but these gave the same, or worse, results as the one shown in
Fig. 13.

6 CONCLUSION

We have presented a new approach for the visualization of GRNs and
demonstrated its strengths and weaknesses with respect to finding sub-
network structures that are of importance to GRN analysts. Moreover,
CAMs have clear benefits over standard adjacency matrices, such as
the ability to follow paths, which in some aspects is even easier than
in node-link diagrams. The feasibility of applying the CAM technique
in practice is shown with a prototype that supports various interactive
techniques often used for standard adjacency matrices. The combina-
tion of adjacency matrix specific techniques, such as rearrangement
clustering, and node-link diagram properties, such as no node duplica-
tion, make for a good alternative to current GRN visualizations.

Future work includes the integration of CAMs into the visual anal-
ysis process of GRN analysts. This involves the mapping of additional
data to vertices, such as gene expression time series, where we can
exploit the linear arrangement of vertices in a CAM to improve at-
tribute comparison tasks. We also want to investigate further matrix
compression, for example, by arranging leaves by neighborhood size
and pushing sections of them upwards where possible. In addition, the
layers of a CAM could be made to branch out, in accordance with a
possible branch-like structure of the network itself.

For a CAM to achieve an extensive compression, the visualized net-
work has to fulfill specific requirements. So far we have not encoun-
tered other types of network that fulfill these requirements. However,
we plan to investigate methods to make CAMs applicable to a broader
class of networks. Case in point is an alternate method to deal with
cycles, i.e., inverting edges instead of grouping strongly connected
components. This means that the few and small cycles requirement
can be dropped, but likely at the cost of less intuitive visualizations.
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