CSE 5542 - Real Time Rendering Week 9

department of
COMPUTER SCIENCE
AND ENGINEERING

Post Geometry Shaders

Courtesy: E. Angel and D. Shreiner Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Pipeline

Pipeline

Topics

- Clipping
- Scan conversion

Clipping

Clipping

- After geometric stage
- vertices assembled into primitives
- Must clip primitives that are outside view frustum

Clipping

department of
COMPUTER SCIENCE
AND ENGINEERING

Scan Conversion

Which pixels can be affected by each primitive

- Fragment generation
- Rasterization or scan conversion

Additional Tasks

Some tasks deferred until fragment processing

- Hidden surface removal
- Antialiasing

Clipping

Contexts

- 2D against clipping window

- 3D against clipping volume

2D Line Segments

Brute force:

- compute intersections with all sides of clipping window
- Inefficient

Cohen-Sutherland Algorithm

- Eliminate cases without computing intersections
- Start with four lines of clipping window

The Cases

- Case I: both endpoints of line segment inside all four lines
- Draw (accept) line segment as is

	$y=y_{\text {max }}$	
$x=x_{\text {min }}$	0	$x=x_{\text {max }}$
	$y=y_{\text {min }}$	

- Case 2: both endpoints outside all lines and on same side of a line
- Discard (reject) the line segment

The Cases

- Case 3: One endpoint inside, one outside
- Must do at least one intersection
- Case 4: Both outside
- May have part inside
- Must do at least one intersection

Defining Outcodes

- For each endpoint, define an outcode $b_{0} b_{1} b_{2} b_{3}$
$b_{0}=1$ if $y>y_{\max }, 0$ otherwise
$b_{1}=l$ if $y<y_{\text {min }}, 0$ otherwise
$b_{2}=I$ if $x>x_{\max }, 0$ otherwise
$b_{3}=I$ if $x<x_{\text {min }}, 0$ otherwise

1001	1000	1010
0001	0000	0010
0101	0100	0110
x	$=x_{\text {min }} x=y_{\text {max }}$	
max		

- Outcodes divide space into 9 regions
- Computation of outcode requires at most 4 comparisons

Using Outcodes

Consider the 5 cases below

$A B$: outcode $(A)=$ outcode $(B)=0$

- Accept line segment

ofpartment of
COMPUTER SCIENCE
AND ENGINEERING

Using Outcodes

CD: outcode $(C)=0$, outcode $(D) \neq 0$

- Compute intersection
- Location of I in outcode(D) marks edge to intersect with

1001	1000	1010
0001	0000	0010
0101	0100	0110
x	$=x_{\text {min }} x=y_{\text {max }}$	
$y=y$		

Using Outcodes

If there were a segment from A to a point in a region with 2 ones in outcode, we might have to do two intersections

1001	1000	1010
0001	0000	0010
0101	0100	0110
x	$=x_{\text {min }} x=y_{\text {max }}$	
max		

Using Outcodes

EF: outcode(E) logically ANDed with outcode(F) (bitwise) $\neq 0$

- Both outcodes have a I bit in the same place
- Line segment is outside clipping window
- reject

1001	1000	1010
0001	0000	0010
0101	0100	0110
x	$=x_{\text {min }} x=y_{\text {max }}$	
max		

Using Outcodes

- GH and IJ
- same outcodes, neither zero but logical AND yields zero
- Shorten line by intersecting with sides of window
- Compute outcode of intersection
- new endpoint of shortened line segment
- Recurse algorithm

1001	1000	1010
0001	0000	0010
0101	0100	0110
$x=$	$=x_{\text {min }} x=y_{\text {max }}$	
$y=y_{\text {min }}$		

Cohen Sutherland in 3D

- Use 6-bit outcodes
- When needed, clip line segment against planes

Liang-Barsky Clipping

Consider parametric form of a line segment

$$
\mathbf{p}(\alpha)=(1-\alpha) \mathbf{p}_{1}+\alpha \mathbf{p}_{2} \quad 1 \geq \alpha \geq 0
$$

Intersect with parallel slabs -
Pair for Y
Pair for X
Pair for Z

DEPARTMENT OF
COMPUTER SCIENCE
AND ENGINEERING

Liang-Barsky Clipping

- $\ln (a): a_{4}>a_{3}>a_{2}>a_{1}$
- Intersect right, top, left, bottom: shorten
- $\ln (b): a_{4}>a_{2}>a_{3}>a_{1}$
- Intersect right, left, top, bottom: reject

Advantages

- Can accept/reject as easily as with CohenSutherland
- Using values of α, we do not have to use algorithm recursively as with C-S
- Extends to 3D

