CSE 5542 - Real Time Rendering Week 9

Post Geometry Shaders

Courtesy: E. Angel and D. Shreiner – Interactive Computer Graphics 6E © Addison-Wesley 2012

Pipeline

Pipeline

Topics

- Clipping
- Scan conversion

- After geometric stage
 - vertices assembled into primitives
- Must clip primitives that are outside view frustum

Scan Conversion

Which pixels can be affected by each primitive

- Fragment generation
- Rasterization or scan conversion

Additional Tasks

Some tasks deferred until fragment processing

- Hidden surface removal
- Antialiasing

Contexts

• 2D against clipping window

• 3D against clipping volume

2D Line Segments

Brute force:

- compute intersections with all sides of clipping window
- Inefficient

Cohen-Sutherland Algorithm

- Eliminate cases without computing intersections
- Start with four lines of clipping window

The Cases

- Case I: both endpoints of line segment inside all four lines
 - Draw (accept) line segment as is

- Case 2: both endpoints outside all lines and on same side of a line
 - Discard (reject) the line segment

The Cases

- Case 3: One endpoint inside, one outside
 Must do at least one intersection
- Case 4: Both outside
 - May have part inside
 - Must do at least one intersection

Defining Outcodes

- For each endpoint, define an outcode $b_0b_1b_2b_3$
- $b_0 = I \text{ if } y > y_{max}, 0 \text{ otherwise}$ $b_1 = I \text{ if } y < y_{min}, 0 \text{ otherwise}$ $b_2 = I \text{ if } x > x_{max}, 0 \text{ otherwise}$ $b_3 = I \text{ if } x < x_{min}, 0 \text{ otherwise}$

- Outcodes divide space into 9 regions
- Computation of outcode requires at most 4 comparisons

Consider the 5 cases below

AB: outcode(A) = outcode(B) = 0

Accept line segment

CD: outcode (C) = 0, outcode(D) \neq 0

- Compute intersection
- Location of I in outcode(D) marks edge to intersect with

If there were a segment from A to a point in a region with 2 ones in outcode, we might have to do two intersections

EF: outcode(E) logically ANDed with outcode(F) (bitwise) $\neq 0$

- Both outcodes have a 1 bit in the same place
- Line segment is outside clipping window
- reject

- GH and IJ
 - same outcodes, neither zero but logical AND yields zero
- Shorten line by intersecting with sides of window
- Compute outcode of intersection
 - new endpoint of shortened line segment
- Recurse algorithm

Cohen Sutherland in 3D

- Use 6-bit outcodes
- When needed, clip line segment against planes

Liang-Barsky Clipping

Consider parametric form of a line segment

 $\mathbf{p}(\alpha) = (1 - \alpha)\mathbf{p}_1 + \alpha \mathbf{p}_2 \quad 1 \ge \alpha \ge 0$

Intersect with parallel slabs –

Pair for Y Pair for X Pair for Z

Liang-Barsky Clipping

• In (a): $a_4 > a_3 > a_2 > a_1$

- Intersect right, top, left, bottom: shorten

• In (b): $a_4 > a_2 > a_3 > a_1$

- Intersect right, left, top, bottom: reject

Advantages

- Can accept/reject as easily as with Cohen-Sutherland
- Using values of α , we do not have to use algorithm recursively as with C-S
- Extends to 3D

