
CSE 5542 - Real Time Rendering	

	

 	

 	

Week 9	

Post Geometry Shaders	

Courtesy: E. Angel and D. Shreiner – ���
Interactive Computer Graphics 6E © ���

Addison-Wesley 2012	

	

Pipeline	

Polygon Soup	

Pipeline	

Topics	

•  Clipping 	

	

•  Scan conversion	

Clipping	

Clipping	

•  After geometric stage	

–  vertices assembled into primitives	

•  Must clip primitives that are outside view frustum	

Clipping	

Scan Conversion	

Which pixels can be affected by each primitive	

–  Fragment generation	

– Rasterization or scan conversion	

Additional Tasks	

Some tasks deferred until fragment processing 	

– Hidden surface removal 	

– Antialiasing	

Clipping	

Contexts	

•  2D against clipping window	

•  3D against clipping volume	

2D Line Segments	

Brute force: 	

–  compute intersections with all sides of clipping window	

–  Inefficient	

Cohen-Sutherland Algorithm
•  Eliminate cases without computing intersections	

•  Start with four lines of clipping window	

x = xmax	

x = xmin	

y = ymax	

y = ymin	

The Cases	

•  Case 1: both endpoints of line segment inside all four lines	

–  Draw (accept) line segment as is	

	

	

	

	

	

•  Case 2: both endpoints outside all lines and on same side of a
line	

–  Discard (reject) the line segment	

x = xmax	

x = xmin	

y = ymax	

y = ymin	

The Cases	

•  Case 3: One endpoint inside, one outside	

– Must do at least one intersection	

•  Case 4: Both outside	

– May have part inside	

– Must do at least one intersection	

x = xmax	

x = xmin	

y = ymax	

Defining Outcodes	

•  For each endpoint, define an outcode	

•  Outcodes divide space into 9 regions	

•  Computation of outcode requires at most 4 comparisons 	

b0b1b2b3	

b0 = 1 if y > ymax, 0 otherwise	

b1 = 1 if y < ymin, 0 otherwise	

b2 = 1 if x > xmax, 0 otherwise	

b3 = 1 if x < xmin, 0 otherwise	

Using Outcodes	

Consider the 5 cases below	

AB: outcode(A) = outcode(B) = 0	

– Accept line segment	

Using Outcodes	

CD: outcode (C) = 0, outcode(D) ≠ 0	

–  Compute intersection	

–  Location of 1 in outcode(D) marks edge to intersect with	

Using Outcodes	

If there were a segment from A to a point in a region with 2 ones in
outcode, we might have to do two intersections	

	

Using Outcodes	

EF: outcode(E) logically ANDed with outcode(F) (bitwise) ≠ 0	

– Both outcodes have a 1 bit in the same place	

–  Line segment is outside clipping window	

–  reject	

Using Outcodes	

•  GH and IJ	

–  same outcodes, neither zero but logical AND yields zero	

•  Shorten line by intersecting with sides of window	

•  Compute outcode of intersection	

–  new endpoint of shortened line segment	

•  Recurse algorithm	

Cohen Sutherland in 3D	

•  Use 6-bit outcodes 	

•  When needed, clip line segment against planes	

Liang-Barsky Clipping	

Consider parametric form of a line segment	

	

	

	

	

Intersect with parallel slabs – 	

	

Pair for Y 	

 	

Pair for X	

	

Pair for Z	

	

	

p(α) = (1-α)p1+ αp2 1 ≥ α ≥ 0

p1	

p2	

Liang-Barsky Clipping	

•  In (a): a4 > a3 > a2 > a1	

–  Intersect right, top, left, bottom: shorten	

•  In (b): a4 > a2 > a3 > a1 	

–  Intersect right, left, top, bottom: reject	

Advantages	

•  Can accept/reject as easily as with Cohen-

Sutherland	

•  Using values of α, we do not have to use algorithm

recursively as with C-S	

•  Extends to 3D	

