
CSE 5542 - Real Time Rendering	

	
 	
 	
Week 9	




Post Geometry Shaders	


Courtesy: E. Angel and D. Shreiner – ���
Interactive Computer Graphics 6E © ���

Addison-Wesley 2012	


	




Pipeline	


Polygon Soup	




Pipeline	




Topics	

•  Clipping 	

	

•  Scan conversion	




Clipping	




Clipping	

•  After geometric stage	


–   vertices assembled into primitives	


•  Must clip primitives that are outside view frustum	




Clipping	




Scan Conversion	

Which pixels can be affected by each primitive	


–  Fragment generation	

– Rasterization or scan conversion	




Additional Tasks	

Some tasks deferred until fragment processing 	


– Hidden surface removal 	

– Antialiasing	




Clipping	




Contexts	

•  2D against clipping window	


•  3D against clipping volume	




2D Line Segments	

Brute force: 	


–  compute intersections with all sides of clipping window	

–  Inefficient	




Cohen-Sutherland Algorithm 
•  Eliminate cases without computing intersections	


•  Start with four lines of clipping window	


x = xmax	
x = xmin	


y = ymax	


y = ymin	




The Cases	

•  Case 1: both endpoints of line segment inside all four lines	


–  Draw (accept) line segment as is	


	

	


	


	


	


•  Case 2: both endpoints outside all lines and on same side of a 
line	

–  Discard (reject) the line segment	


x = xmax	
x = xmin	


y = ymax	


y = ymin	




The Cases	

•  Case 3: One endpoint inside, one outside	


– Must do at least one intersection	

•  Case 4: Both outside	


– May have part inside	

– Must do at least one intersection	


x = xmax	
x = xmin	


y = ymax	




Defining Outcodes	

•  For each endpoint, define an outcode	


•  Outcodes divide space into 9 regions	


•  Computation of outcode requires at most 4 comparisons 	


b0b1b2b3	


b0 = 1 if y > ymax, 0 otherwise	

b1 = 1 if y < ymin, 0 otherwise	

b2 = 1 if x > xmax, 0 otherwise	

b3 = 1 if x < xmin, 0 otherwise	




Using Outcodes	

Consider the 5 cases below	

AB: outcode(A) = outcode(B) = 0	


– Accept line segment	




Using Outcodes	

CD: outcode (C) = 0, outcode(D) ≠ 0	


–  Compute intersection	


–  Location of 1 in outcode(D) marks edge to intersect with	




Using Outcodes	

If there were a segment from A to a point in a region with 2 ones in 
outcode, we might have to do two intersections	


	




Using Outcodes	

EF: outcode(E) logically ANDed with outcode(F) (bitwise) ≠ 0	


– Both outcodes have a 1 bit in the same place	

–  Line segment is outside clipping window	


–  reject	




Using Outcodes	

•  GH and IJ	


–  same outcodes, neither zero but logical AND yields zero	


•  Shorten line  by intersecting with sides of window	

•  Compute outcode of intersection	


–  new endpoint of shortened line segment	


•  Recurse algorithm	




Cohen Sutherland in 3D	

•  Use 6-bit outcodes 	

•  When needed, clip line segment against planes	




Liang-Barsky Clipping	

Consider parametric form of a line segment	

	

	


	

	

Intersect with parallel slabs – 	


	
Pair for Y 	

 	
Pair for X	


	
Pair for Z	


	


	


p(α) = (1-α)p1+ αp2   1 ≥ α ≥ 0 

p1	


p2	




Liang-Barsky Clipping	

•  In (a): a4 > a3 > a2 > a1	


–  Intersect right, top, left, bottom: shorten	


•  In (b): a4 > a2 > a3 > a1 	


–  Intersect right, left, top, bottom: reject	




Advantages	

•  Can accept/reject as easily as with Cohen-

Sutherland	

•  Using values of α, we do not have to use algorithm 

recursively as with C-S	


•  Extends to 3D	



