Rendering the Teapot
Utah Teapot
vertices.js

```javascript
var numTeapotVertices = 306;
var vertices = [
  vec3(1.4, 0.0, 2.4),
  vec3(1.4, -0.784, 2.4),
  vec3(0.784, -1.4, 2.4),
  vec3(0.0, -1.4, 2.4),
  vec3(1.3375, 0.0, 2.53125),

  .
  .
  .

];
```
patches.js

```javascript
var numTeapotPatches = 32;
var indices = new Array(numTeapotPatches);
    indices[0] = [0, 1, 2, 3,
        4, 5, 6, 7,
        8, 9, 10, 11,
        12, 13, 14, 15
    ];
    indices[1] = [3, 16, 17, 18,
        .
        .
    ];
```
Evaluation of Polynomials
Modeling

FIGURE 10.5 Model airplane

FIGURE 10.6 Cross-section curve.

FIGURE 10.7 Approximation of cross-section curve.
Topics

• Introduce types of curves and surfaces
 – Explicit
 – Implicit
 – Parametric

• Discuss Modeling and Approximations
Escaping Flatland

• Lines and flat polygons
 – Fit well with graphics hardware
 – Mathematically simple
• But world is not flat
 – Need curves and curved surfaces
 – At least at the application level
 – Render them approximately with flat primitives
Modeling with Curves

data points

approximating curve

interpolating data point
Good Representation?

• Properties
 – Stable
 – Smooth
 – Easy to evaluate
 – Must we interpolate or can we just come close to data?
 – Do we need derivatives?
Explicit Representation

• Function

 \[y = f(x) \]

• Cannot represent all curves
 – Vertical lines
 – Circles

• Extension to 3D
 – \[y = f(x), \ z = g(x) \]
 – The form \[z = f(x,y) \] defines a surface
Implicit Representation

- Two dimensional curve(s)
 \(g(x,y)=0 \)
- Much more robust
 - All lines \(ax+by+c=0 \)
 - Circles \(x^2+y^2-r^2=0 \)
- Three dimensions \(g(x,y,z)=0 \) defines a surface
 - Intersect two surface to get a curve
Algebraic Surface

\[
\sum_i \sum_j \sum_k x^i y^j z^k = 0
\]

Quadric surface \(2 \geq i+j+k \)

At most 10 terms
Parametric Curves

- Separate equation for each spatial variable
 \[x = x(u) \]
 \[y = y(u) \]
 \[z = z(u) \]
 \[\mathbf{p}(u) = [x(u), y(u), z(u)]^T \]

- For \(u_{\text{max}} \geq u \geq u_{\text{min}} \) we trace out a curve in two or three dimensions
Parametric Lines

We can normalize u to be over the interval $(0,1)$

Line connecting two points \mathbf{p}_0 and \mathbf{p}_1

$$\mathbf{p}(u) = (1-u)\mathbf{p}_0 + u\mathbf{p}_1$$

Ray from \mathbf{p}_0 in the direction \mathbf{d}

$$\mathbf{p}(u) = \mathbf{p}_0 + u\mathbf{d}$$
Parametric Surfaces

- Surfaces require 2 parameters
 \[x = x(u,v) \]
 \[y = y(u,v) \]
 \[z = z(u,v) \]
 \[\mathbf{p}(u,v) = [x(u,v), y(u,v), z(u,v)]^T \]
- Want same properties as curves:
 - Smoothness
 - Differentiability
 - Ease of evaluation
Normals

We can differentiate with respect to u and v to obtain the normal at any point p.

$$\frac{\partial p(u, v)}{\partial u} = \begin{bmatrix} \frac{\partial x(u, v)}{\partial u} \\ \frac{\partial y(u, v)}{\partial u} \\ \frac{\partial z(u, v)}{\partial u} \end{bmatrix}$$

$$\frac{\partial p(u, v)}{\partial v} = \begin{bmatrix} \frac{\partial x(u, v)}{\partial v} \\ \frac{\partial y(u, v)}{\partial v} \\ \frac{\partial z(u, v)}{\partial v} \end{bmatrix}$$

$$n = \frac{\partial p(u, v)}{\partial u} \times \frac{\partial p(u, v)}{\partial v}$$
Curve Segments

\[p(u) \]

join point \[p(1) = q(0) \]
Parametric Polynomial Curves

\[
x(u) = \sum_{i=0}^{N} c_{xi} u^i \\
y(u) = \sum_{j=0}^{M} c_{yj} u^j \\
z(u) = \sum_{k=0}^{L} c_{zk} u^k
\]

- If \(N=M=L\), we need to determine \(3(N+1)\) coefficients

- Curves for \(x\), \(y\) and \(z\) are independent, we can define each independently in an identical manner

- We will use the form where \(p\) can be any of \(x\), \(y\), \(z\)

\[
p(u) = \sum_{k=0}^{L} c_k u^k
\]
Why Polynomials

• Easy to evaluate

• Continuous and differentiable everywhere
 – Continuity at join points including continuity of derivatives
 \[p(u) \]
 \[q(u) \]
 join point \(p(1) = q(0) \)
 but \(p'(1) \neq q'(0) \)
Cubic Polynomials

- N=M=L=3,

\[p(u) = \sum_{k=0}^{3} c_k u^k \]

- Four coefficients to determine for each of x, y and z
- Seek four independent conditions for various values of u resulting in 4 equations in 4 unknowns for each of x, y and z
 - Conditions are a mixture of continuity requirements at the join points and conditions for fitting the data
Matrix-Vector Form

\[p(u) = \sum_{k=0}^{3} c_k u^k \]

define \(c = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} \quad u = \begin{bmatrix} 1 \\ u \\ u^2 \\ u^3 \end{bmatrix} \)

then \(p(u) = u^T c = c^T u \)
Interpolating Curve

Given four data (control) points p_0, p_1, p_2, p_3, determine cubic $p(u)$ which passes through them.

Must find c_0, c_1, c_2, c_3

$$p(u) = \sum_{k=0}^{3} c_k u^k$$

$$p(u) = u^T c = c^T u$$
Interpolation Equations

apply the interpolating conditions at $u=0, 1/3, 2/3, 1$

$p_0 = p(0) = c_0$
$p_1 = p(1/3) = c_0 + (1/3)c_1 + (1/3)^2c_2 + (1/3)^3c_2$
$p_2 = p(2/3) = c_0 + (2/3)c_1 + (2/3)^2c_2 + (2/3)^3c_2$
$p_3 = p(1) = c_0 + c_1 + c_2 + c_2$

or in matrix form with $p = [p_0 \ p_1 \ p_2 \ p_3]^T$

$p = Ac$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & \left(\frac{1}{3}\right) & \left(\frac{1}{3}\right)^2 & \left(\frac{1}{3}\right)^3 \\ 1 & \left(\frac{2}{3}\right) & \left(\frac{2}{3}\right)^2 & \left(\frac{2}{3}\right)^3 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
Interpolation Matrix

Solving for \(\mathbf{c} \) we find the interpolation matrix

\[
\mathbf{M}_I = \mathbf{A}^{-1} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
-5.5 & 9 & -4.5 & 1 \\
9 & -22.5 & 18 & -4.5 \\
-4.5 & 13.5 & -13.5 & 4.5
\end{bmatrix}
\]

\(\mathbf{c} = \mathbf{M}_I \mathbf{p} \)

Note that \(\mathbf{M}_I \) does not depend on input data and can be used for each segment in \(x, y, \) and \(z \)
Interpolating Multiple Segments

use $\mathbf{p} = [p_0 \ p_1 \ p_2 \ p_3]^T$

use $\mathbf{p} = [p_3 \ p_4 \ p_5 \ p_6]^T$

Get continuity at join points but not continuity of derivatives
Blending Functions

Rewriting the equation for \(p(u) \)

\[
p(u) = \mathbf{u}^T \mathbf{c} = \mathbf{u}^T \mathbf{M} \mathbf{p} = \mathbf{b}(u)^T \mathbf{p}
\]

where \(\mathbf{b}(u) = [b_0(u) \; b_1(u) \; b_2(u) \; b_3(u)]^T \) is an array of blending polynomials such that

\[
p(u) = b_0(u)p_0 + b_1(u)p_1 + b_2(u)p_2 + b_3(u)p_3
\]

\[
b_0(u) = -4.5(u-1/3)(u-2/3)(u-1)
b_1(u) = 13.5u \; (u-2/3)(u-1)
b_2(u) = -13.5u \; (u-1/3)(u-1)
b_3(u) = 4.5u \; (u-1/3)(u-2/3)
\]
Blending Functions – NOT GOOD

\[b_0(u) = -4.5(u-1/3)(u-2/3)(u-1) \]
\[b_1(u) = 13.5u (u-2/3)(u-1) \]
\[b_2(u) = -13.5u (u-1/3)(u-1) \]
\[b_3(u) = 4.5u (u-1/3)(u-2/3) \]
As Opposed to …

FIGURE 10.18 Blending polynomials for the Bézier cubic.
Parametric Surface

\[p(u, v) = \begin{bmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{bmatrix} \]

\[x = x(u, v), \]
\[y = y(u, v), \]
\[z = z(u, v), \]

\[\frac{\partial p}{\partial u} = \begin{bmatrix} \frac{\partial x(u, v)}{\partial u} \\ \frac{\partial y(u, v)}{\partial u} \\ \frac{\partial z(u, v)}{\partial u} \end{bmatrix} \]
\[\frac{\partial p}{\partial v} = \begin{bmatrix} \frac{\partial x(u, v)}{\partial v} \\ \frac{\partial y(u, v)}{\partial v} \\ \frac{\partial z(u, v)}{\partial v} \end{bmatrix} \]

\[n = \frac{\partial p}{\partial u} \times \frac{\partial p}{\partial v}. \]

\[p(u, v) = \sum_{l=0}^{n} \sum_{j=0}^{m} c_{ij} u^i v^j. \]

FIGURE 10.4 Surface patch.
Cubic Polynomial Surfaces

\[p(u,v) = [x(u,v), y(u,v), z(u,v)]^T \]

where

\[p(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij} u^i v^j \]

\(p \) is any of \(x, y \) or \(z \)

Need 48 coefficients (3 independent sets of 16) to determine a surface patch
Interpolating Patch

\[
p(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij} u^i v^j
\]

Need 16 conditions to determine the 16 coefficients \(c_{ij} \)
Choose at \(u,v = 0, 1/3, 2/3, 1 \)
Matrix Form

Define $\mathbf{v} = [1 \, v \, v^2 \, v^3]^T$

$$\mathbf{C} = [c_{ij}] \quad \mathbf{P} = [p_{ij}]$$

$$p(u,v) = \mathbf{u}^T \mathbf{C} \mathbf{v}$$

If we observe that for constant u (v), we obtain interpolating curve in v (u), we can show

$$\mathbf{C} = \mathbf{M}_i \mathbf{P} \mathbf{M}_i$$

$$p(u,v) = \mathbf{u}^T \mathbf{M}_i \mathbf{P} \mathbf{M}_i^T \mathbf{v}$$
Blending Patches

\[p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) p_{ij} \]

Each \(b_i(u)b_j(v) \) is a blending patch

Shows that we can build and analyze surfaces from our knowledge of curves
Bezier and Spline Curves and Surfaces
Beziers

\[p(u) = \sum_{i=0}^{3} b_i(u)p_i, \]

\[p(u) = b(u)^T p, \]

\[(1 - u)^3 \]
\[3u(1 - u)^2 \]
\[3u^2(1 - u) \]
\[u^3 \]

\[\gamma(u) = M_B^T u = \begin{bmatrix} (1 - u)^3 \\ 3u(1 - u)^2 \\ 3u^2(1 - u) \\ u^3 \end{bmatrix} . \]

\[M_B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} . \]

FIGURE 10.18 Blending polynomials for the Bézier cubic.
Bezier Surface Patches

\[p(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)p_{ij} = u^T M_B P M_B^T v. \]

FIGURE 10.20 Bezier patch.
Utah Teapot – Bezier Avatar

Available as a list of 306 3D vertices and the indices that define 32 Bezier patches
Beziers

- Do not usually have derivative data
- Beziers suggested using the same 4 data points as with the cubic interpolating curve to approximate the derivatives
Approximating Derivatives

- \(p_1 \) located at \(u=1/3 \)
- \(p_2 \) located at \(u=2/3 \)
- \(p'(0) \approx \frac{p_1 - p_0}{1/3} \)
- \(p'(1) \approx \frac{p_3 - p_2}{1/3} \)
- Slope \(p'(0) \)
- Slope \(p'(1) \)
Equations

Interpolating conditions are the same

\[p(0) = p_0 = c_0 \]
\[p(1) = p_3 = c_0+c_1+c_2+c_3 \]

Approximating derivative conditions

\[p'(0) = 3(p_1 - p_0) = c_0 \]
\[p'(1) = 3(p_3 - p_2) = c_1+2c_2+3c_3 \]

Solve four linear equations for \(\mathbf{c} = \mathbf{M_B} \mathbf{p} \)
Bezierser Matrix

\[
M_B = \begin{bmatrix}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1 \\
\end{bmatrix}
\]

\[p(u) = u^T M_B p = b(u)^T p\]

blending functions
Blending Functions

\[b(u) = \begin{bmatrix} (1-u)^3 \\ 3u(1-u)^2 \\ 3u^2(1-u) \\ u^3 \end{bmatrix} \]

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)
Bernstein Polynomials

\[b_{kd}(u) = \frac{d!}{k!(d-k)!} u^k (1-u)^{d-k} \]

Blending polynomials for any degree \(d \)

- All zeros at 0 and 1
- For any degree they all sum to 1
- They are all between 0 and 1 inside (0,1)
Rendering Curves and Surfaces
Evaluation of Polynomials
Evaluating Polynomials

- Polynomial curve – evaluate polynomial at many points and form an approximating polyline
- Surfaces – approximating mesh of triangles or quadrilaterals

\[
p(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)p_{ij} = u^T M_B P M_B^T v.
\]

\[
b(u) = M_B^T u = \begin{bmatrix}
(1 - u)^3 \\
3u(1 - u)^2 \\
3u^2(1 - u) \\
u^3
\end{bmatrix}.
\]

\[
M_B = \begin{bmatrix}
1 & 0 & 0 & 0 \\
3 & 3 & 0 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1
\end{bmatrix}.
\]
Evaluate without Computation?
Convex Hull Property

- Bezier curves lie in the convex hull of their control points
- Do not interpolate all the data; cannot be too far away
deCasteljau Recursion

• Use convex hull property to obtain an efficient recursive method that does not require any function evaluations
 – Uses only the values at the control points
• Based on the idea that “any polynomial and any part of a polynomial is a Bezier polynomial for properly chosen control data”
Splitting a Cubic Bezier

p_0, p_1, p_2, p_3 determine a cubic Bezier polynomial and its convex hull

Consider left half $l(u)$ and right half $r(u)$
Since \(l(u) \) and \(r(u) \) are Bezier curves, we should be able to find two sets of control points \(\{l_0, l_1, l_2, l_3\} \) and \(\{r_0, r_1, r_2, r_3\} \) that determine them.
Convex Hulls

\{l_0, l_1, l_2, l_3\} and \{r_0, r_1, r_2, r_3\} each have a convex hull that is closer to \(p(u)\) than the convex hull of \{p_0, p_1, p_2, p_3\}. This is known as the variation diminishing property.

The polyline from \(l_0\) to \(l_3\) (= \(r_0\)) to \(r_3\) is an approximation to \(p(u)\). Repeating recursively we get better approximations.
Efficient Form

\[l_0 = p_0 \]
\[r_3 = p_3 \]
\[l_1 = \frac{1}{2}(p_0 + p_1) \]
\[r_1 = \frac{1}{2}(p_2 + p_3) \]
\[l_2 = \frac{1}{2}(l_1 + \frac{1}{2}(p_1 + p_2)) \]
\[r_1 = \frac{1}{2}(r_2 + \frac{1}{2}(p_1 + p_2)) \]
\[l_3 = r_0 = \frac{1}{2}(l_2 + r_1) \]

Requires only shifts and adds!
Beziers in general

- Bezier
- Interpolating
- B Spline
Bezizer Patches

Using same data array $\mathbf{P} = [p_{ij}]$ as with interpolating form

$$p(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) \ p_{ij} = u^T \mathbf{M}_B \mathbf{P} \mathbf{M}_B^T v$$

Patch lies in convex hull
Evaluation of Polynomials
deCasteljau Recursion
Surfaces

• Recall that for a Bezier patch curves of constant u (or v) are Bezier curves in u (or v)

• First subdivide in u
 – Process creates new points
 – Some of the original points are discarded
Second Subdivision

- New points created by subdivision
- Old points discarded after subdivision
- Old points retained after subdivision

16 final points for 1 of 4 patches created
vertices.js: three versions of the data vertex data

patches.js: teapot patch data

teatot1: wire frame teapot by recursive subdivision of Bezier curves

teatot2: wire frame teapot using polynomial evaluation

teatot3: same as teapot2 with rotation

teatot4: shaded teapot using polynomial evaluation and exact normals

teatot5: shaded teapot using polynomial evaluation and normals computed for each triangle
vertices.js

http://www.cs.unm.edu/~angel/WebGL/11/vertices.js

var numTeapotVertices = 306;
var vertices = [
vec3(1.4, 0.0, 2.4),
vec3(1.4, -0.784, 2.4),
vec3(0.784, -1.4, 2.4),
vec3(0.0, -1.4, 2.4),
vec3(1.3375, 0.0, 2.53125),
.
.
.
];
patches.js

http://www.cs.unm.edu/~angel/WebGL/7E/11/patches.js

var numTeapotPatches = 32;
var indices = new Array(numTeapotPatches);
 indices[0] = [0, 1, 2, 3,
 4, 5, 6, 7,
 8, 9, 10, 11,
 12, 13, 14, 15
];
 indices[1] = [3, 16, 17, 18,
 .
 .
];
Patch Reader

http://www.cs.unm.edu/~angel/WebGL/7E/11/
patchReader.js
bezier = function(u) {
 var b = [];
 var a = 1 - u;
 b.push(u*u*u);
 b.push(3*a*u*u);
 b.push(3*a*a*u);
 b.push(a*a*a);
 return b;
}
Patch Indices to Data

```javascript
var h = 1.0/numDivisions;

patch = new Array(numTeapotPatches);
for(var i=0; i<numTeapotPatches; i++)
    patch[i] = new Array(16);
for(var i=0; i<numTeapotPatches; i++)
    for(j=0; j<16; j++) {
        patch[i][j] = vec4([vertices[indices[i][j]][0],
                            vertices[indices[i][j]][2],
                            vertices[indices[i][j]][1], 1.0]);
    }
```
Vertex Data

```javascript
for ( var n = 0; n < numTeapotPatches; n++ ) {
    var data = new Array(numDivisions+1);
    for(var j = 0; j <= numDivisions; j++) data[j] = new Array(numDivisions+1);
    for(var i = 0; i <= numDivisions; i++) for(var j = 0; j <= numDivisions; j++) {
        data[i][j] = vec4(0,0,0,1);
        var u = i*h;
        var v = j*h;
        var t = new Array(4);
        for(var ii=0; ii<4; ii++) t[ii] = new Array(4);
        for(var ii=0; ii<4; ii++) for(var jj=0; jj<4; jj++) {
            t[ii][jj] = bezier(u)[ii]*bezier(v)[jj];
        }
        for(var ii=0; ii<4; ii++) for(var jj=0; jj<4; jj++) {
            temp = vec4(patch[n][4*ii+jj]);
            temp = scale( t[ii][jj], temp);
            data[i][j] = add(data[i][j], temp);
        }
    }
}
```
for(var i=0; i<numDivisions; i++)
 for(var j =0; j<numDivisions; j++) {
 points.push(data[i][j]);
 points.push(data[i+1][j]);
 points.push(data[i+1][j+1]);
 points.push(data[i][j]);
 points.push(data[i+1][j+1]);
 points.push(data[i][j+1]);
 index += 6;
 }
Recursive Subdivision

http://www.cs.unm.edu/~angel/WebGL/7E/11/teapot1.html
divideCurve = function(c, r, l) {
 // divides c into left (l) and right (r) curve data
 var mid = mix(c[1], c[2], 0.5);
 l[0] = vec4(c[0]);
 l[1] = mix(c[0], c[1], 0.5);
 l[2] = mix(l[1], mid, 0.5);
 r[3] = vec4(c[3]);
 r[2] = mix(c[2], c[3], 0.5);
 r[1] = mix(mid, r[2], 0.5);
 r[0] = mix(l[2], r[1], 0.5);
 l[3] = vec4(r[0]);
 return;
}
Divide Patch

dividePatch = function (p, count) {
 if (count > 0) {
 var a = mat4();
 var b = mat4();
 var t = mat4();
 var q = mat4();
 var r = mat4();
 var s = mat4();
 // subdivide curves in u direction, transpose results, divide
 // in u direction again (equivalent to subdivision in v)
 for (var k = 0; k < 4; ++k) {
 var pp = p[k];
 var aa = vec4();
 var bb = vec4();
 }
 }
}
Divide Patch

divideCurve(pp, aa, bb);
 a[k] = vec4(aa);
 b[k] = vec4(bb);
}

 a = transpose(a); b = transpose(b);
 for (var k = 0; k < 4; ++k) {
 var pp = vec4(a[k]);
 var aa = vec4();
 var bb = vec4();
 divideCurve(pp, aa, bb);
 q[k] = vec4(aa);
 r[k] = vec4(bb);
 }
 for (var k = 0; k < 4; ++k) {
 var pp = vec4(b[k]);
 var aa = vec4();
var bb = vec4();
divideCurve(pp, aa, bb);
t[k] = vec4(bb);
}
// recursive division of 4 resulting patches
dividePatch(q, count - 1);
dividePatch(r, count - 1);
dividePatch(s, count - 1);
dividePatch(t, count - 1);
}
else {
 drawPatch(p);
}
return;
drawPatch = function(p) {
 // Draw the quad (as two triangles) bounded by
 // corners of the Bezier patch
 points.push(p[0][0]);
 points.push(p[0][3]);
 points.push(p[3][3]);
 points.push(p[0][0]);
 points.push(p[3][3]);
 points.push(p[3][0]);
 index+=6;
 return;
}

<script id="vertex-shader" type="x-shader/x-vertex">

attribute vec4 vPosition;

void main()
{
mat4 scale = mat4(0.3, 0.0, 0.0, 0.0,
0.0, 0.3, 0.0, 0.0,
0.0, 0.0, 0.3, 0.0,
0.0, 0.0, 0.0, 1.0);

 gl_Position = scale*vPosition;
}
</script>
Fragment Shader

<script id="fragment-shader" type="x-shader/x-fragment">

precision mediump float;

void main()
{
 gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}
</script>
Adding Shading

http://www.cs.unm.edu/~angel/WebGL/7E/11/teapot4.html

Using Face Normals

\[
\begin{align*}
\text{var } t_1 &= \text{subtract(data[i+1][j], data[i][j])}; \\
\text{var } t_2 &= \text{subtract(data[i+1][j+1], data[i][j])}; \\
\text{var normal} &= \text{cross(t1, t2)}; \\
\text{normal} &= \text{normalize(normal)}; \\
\text{normal[3]} &= 0; \\
\text{points.push(data[i][j])}; &\quad \text{normals.push(normal)}; \\
\text{points.push(data[i+1][j])}; &\quad \text{normals.push(normal)}; \\
\text{points.push(data[i+1][j+1])}; &\quad \text{normals.push(normal)}; \\
\text{points.push(data[i][j])}; &\quad \text{normals.push(normal)}; \\
\text{points.push(data[i+1][j+1])}; &\quad \text{normals.push(normal)}; \\
\text{points.push(data[i][j+1])}; &\quad \text{normals.push(normal)}; \\
\text{index+= 6;} &
\end{align*}
\]
nbezier = function(u) {
 var b = [];
 b.push(3*u*u);
 b.push(3*u*(2-3*u));
 b.push(3*(1-4*u+3*u*u));
 b.push(-3*(1-u)*(1-u));
 return b;
}
Vertex Shader

```html
<script id="vertex-shader" type="x-shader/x-vertex">
attribute vec4 vPosition; attribute vec4 vNormal; varying vec4 fColor;
uniform vec4 ambientProduct, diffuseProduct, specularProduct;
uniform mat4 modelViewMatrix; uniform mat4 projectionMatrix; uniform vec4 lightPosition;
uniform float shininess; uniform mat3 normalMatrix;
void main()
{
    vec3 pos = (modelViewMatrix * vPosition).xyz;
    vec3 light = lightPosition.xyz; vec3 L = normalize( light - pos );
    vec3 E = normalize( -pos ); vec3 H = normalize( L + E );
    // Transform vertex normal into eye coordinates
    vec3 N = normalize( normalMatrix * vNormal.xyz);
    // Compute terms in the illumination equation
    vec4 ambient = ambientProduct;
    float Kd = max( dot(L, N), 0.0 ); vec4 diffuse = Kd * diffuseProduct;
    float Ks = pow( max(dot(N, H), 0.0), shininess ); vec4 specular = Ks * specularProduct;
    if( dot(L, N) < 0.0 ) {
        specular = vec4(0.0, 0.0, 0.0, 1.0);
    }
    gl_Position = projectionMatrix * modelViewMatrix * vPosition;
    fColor = ambient + diffuse + specular;
    fColor.a = 1.0;
} </script>
```
precision mediump float;

varying vec4 fColor;

void main()
{
 gl_FragColor = fColor;
}
</script>
Post Geometry Shaders
Pipeline

Polygon Soup

Transformed Vertices & Primitives

Vertex Processor (Programmable)

Rasterizer

Fragment Processor (Programmable)

Output Merging

3D

3D

3D

2D array of color-values
Pipeline

Vertices → Vertex Processor → Clipper and Primitive Assembler → Rasterizer → Fragment Processor → Pixels
Topics

• Clipping

• Scan conversion
Clipping
Clipping

• After geometric stage
 – vertices assembled into primitives

• Must clip primitives that are outside view frustum
Clipping
Scan Conversion

Which pixels can be affected by each primitive

– Fragment generation
– Rasterization or scan conversion
Additional Tasks

Some tasks deferred until fragment processing

– Hidden surface removal
– Antialiasing
Clipping
Contexts

• 2D against clipping window

• 3D against clipping volume
2D Line Segments

Brute force:

– compute intersections with all sides of clipping window
– Inefficient
Cohen-Sutherland Algorithm

- Eliminate cases without computing intersections
- Start with four lines of clipping window
The Cases

• Case 1: both endpoints of line segment inside all four lines
 – Draw (accept) line segment as is

• Case 2: both endpoints outside all lines and on same side of a line
 – Discard (reject) the line segment
The Cases

• Case 3: One endpoint inside, one outside
 – Must do at least one intersection

• Case 4: Both outside
 – May have part inside
 – Must do at least one intersection
Defining Outcodes

- For each endpoint, define an outcode $b_0b_1b_2b_3$

<table>
<thead>
<tr>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 if $y > y_{\text{max}}$, 0 otherwise</td>
<td>1 if $y < y_{\text{min}}$, 0 otherwise</td>
<td>1 if $x > x_{\text{max}}$, 0 otherwise</td>
<td>1 if $x < x_{\text{min}}$, 0 otherwise</td>
</tr>
</tbody>
</table>

$y = y_{\text{max}}$

$y = y_{\text{min}}$

$x = x_{\text{min}}$ $x = x_{\text{max}}$

- Outcodes divide space into 9 regions

- Computation of outcode requires at most 4 comparisons
Using Outcodes

Consider the 5 cases below

AB: outcode(A) = outcode(B) = 0
 – Accept line segment
Using Outcodes

CD: outcode (C) = 0, outcode(D) ≠ 0

- Compute intersection
- Location of 1 in outcode(D) marks edge to intersect with

<table>
<thead>
<tr>
<th></th>
<th>1001</th>
<th>1000</th>
<th>1010</th>
<th>y = y_{\text{max}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>0000</td>
<td>0010</td>
<td>y = y_{\text{min}}</td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>0100</td>
<td>0110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\begin{align*}
\text{x} &= x_{\text{min}} \\
\text{x} &= x_{\text{max}}
\end{align*}
Using Outcodes

If there were a segment from A to a point in a region with 2 ones in outcode, we might have to do two intersections

<table>
<thead>
<tr>
<th></th>
<th>1001</th>
<th>1000</th>
<th>1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>0000</td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>0100</td>
<td>0110</td>
<td></td>
</tr>
</tbody>
</table>

\(y = y_{\text{max}} \)

\(y = y_{\text{min}} \)

\(x = x_{\text{min}} \) \quad \text{and} \quad \(x = x_{\text{max}} \)
Using Outcodes

EF: outcode(E) logically ANDed with outcode(F) (bitwise) ≠ 0
- Both outcodes have a 1 bit in the same place
- Line segment is outside clipping window
- reject

\[
\begin{array}{c|c|c|c|c}
1001 & 1000 & 1010 & y = y_{\text{max}} \\
0001 & 0000 & 0010 & \\
0101 & 0100 & 0110 & y = y_{\text{min}} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
x = x_{\text{min}} & x & x = x_{\text{max}} \\
\end{array}
\]
Using Outcodes

- GH and IJ
 - same outcodes, neither zero but logical AND yields zero
- Shorten line by intersecting with sides of window
- Compute outcode of intersection
 - new endpoint of shortened line segment
- Recurse algorithm

\[
\begin{array}{ccc}
1001 & 1000 & 1010 \\
0001 & 0000 & 0010 \\
0101 & 0100 & 0110 \\
\end{array}
\]

\[
y = y_{\text{max}} \\
y = y_{\text{min}} \\
x = x_{\text{min}} \quad x = x_{\text{max}}
\]
Cohen Sutherland in 3D

- Use 6-bit outcodes
- When needed, clip line segment against planes
Liang-Barsky Clipping

Consider parametric form of a line segment

\[p(\alpha) = (1-\alpha)p_1 + \alpha p_2 \quad 1 \geq \alpha \geq 0 \]

Intersect with parallel slabs –

Pair for Y
Pair for X
Pair for Z
Liang-Barsky Clipping

- In (a): $a_4 > a_3 > a_2 > a_1$
 - Intersect right, top, left, bottom: shorten
- In (b): $a_4 > a_2 > a_3 > a_1$
 - Intersect right, left, top, bottom: reject
Advantages

• Can accept/reject as easily as with Cohen-Sutherland
• Using values of α, we do not have to use algorithm recursively as with C-S
• Extends to 3D
Polygon Clipping

• Not as simple as line segment clipping
 – Clipping a line segment yields at most one line segment
 – Clipping a polygon can yield multiple polygons

• Convex polygon is cool 😊
Fixes
Tessellation and Convexity

Replace nonconvex (concave) polygons with triangular polygons (a tessellation)
Clipping as a Black Box

Line segment clipping - takes in two vertices and produces either no vertices or vertices of a clipped segment.
Pipeline Clipping - Line Segments

Clipping side of window is independent of other sides
– Can use four independent clippers in a pipeline

\[
\begin{align*}
(x_1, y_1) & \quad \text{Top} \quad (x_3, y_3) \\
(x_2, y_2) & \quad \text{Bottom} \quad (x_5, y_5) \\
(x_3, y_3) & \quad \text{Right} \quad (x_5, y_5) \\
(x_3, y_3) & \quad \text{Left} \quad (x_4, y_4)
\end{align*}
\]
Pipeline Clipping of Polygons

- Three dimensions: add front and back clippers
- Small increase in latency
Bounding Boxes

Use an axis-aligned bounding box or extent

- Smallest rectangle aligned with axes that encloses the polygon
- Simple to compute: max and min of x and y
Bounding boxes

Can usually determine accept/reject based only on bounding box

accept

reject

requires detailed clipping
Clipping vs. Visibility

- Clipping similar to hidden-surface removal
- Remove objects that are not visible to the camera
- Use visibility or occlusion testing early in the process to eliminate as many polygons as possible before going through the entire pipeline
Clipping
Hidden Surface Removal

Object-space approach: use pairwise testing between polygons (objects)

Worst case complexity $O(n^2)$ for n polygons
Better Still
Painter’s Algorithm

Render polygons a back to front order so that polygons behind others are simply painted over

B behind A as seen by viewer

Fill B then A
Depth Sort

Requires ordering of polygons first
- $O(n \log n)$ calculation for ordering
- Not all polygons front or behind all other polygons

Order polygons and deal with easy cases first, harder later

Polygons sorted by distance from COP

Distance from COP

Polygons

A, B, C, D, E
Easy Cases

A lies behind all other polygons
- Can render

Polygons overlap in z but not in either x or y
- Can render independently
Hard Cases

Overlap in all directions but can one is fully on one side of the other

cyclic overlap

penetration
Back-Face Removal (Culling)

- face is visible iff $90 \geq \theta \geq -90$
- equivalently $\cos \theta \geq 0$
- or $\mathbf{v} \cdot \mathbf{n} \geq 0$

- plane of face has form $ax + by + cz + d = 0$
- After normalization $\mathbf{n} = (0 \ 0 \ 1 \ 0)^T$

+ Need only test the sign of c

- Will not work correctly if we have nonconvex objects
Image Space Approach

- Look at each ray (nm for an n x m frame buffer)
- Find closest of k polygons
- Complexity $O(nmk)$
- Ray tracing
- z-buffer
z-Buffer Algorithm

• Use a buffer called z or depth buffer to store depth of closest object at each pixel found so far
• As we render each polygon, compare the depth of each pixel to depth in z buffer
• If less, place shade of pixel in color buffer and update z buffer
for (each polygon P in the polygon list) do{
 for (each pixel (x, y) that intersects P) do{
 Calculate z-depth of P at (x, y)
 If (z-depth < z-buffer[x, y])
 then{
 z-buffer[x, y] = z-depth;
 COLOR(x, y) = Intensity of P at (x, y);
 }
 }
 #If-programming-for alpha compositing:
 Else if (COLOR(x, y).opacity < 100%) then{
 COLOR(x, y) = Superimpose COLOR(x, y) in front of Intensity of P at (x, y);
 }
 #Endif-programming-for
} } display COLOR array.
A simple three-dimensional scene

Z-buffer representation
Efficiency - Scanline

As we move across a scan line, the depth changes satisfy $a\Delta x + b\Delta y + c\Delta z = 0$

Along scan line

$\Delta y = 0$
$\Delta z = -\frac{a}{c} \Delta x$

In screen space $\Delta x = 1$
Scan-Line Algorithm

Combine shading and hsr through scan line algorithm

scan line i: no need for depth information, can only be in no or one polygon

scan line j: need depth information only when in more than one polygon
Implementation

Need a data structure to store

– Flag for each polygon (inside/outside)
– Incremental structure for scan lines that stores which edges are encountered
– Parameters for planes
Rasterization

- Rasterization (scan conversion)
 - Determine which pixels that are inside primitive specified by a set of vertices
 - Produces a set of fragments
 - Fragments have a location (pixel location) and other attributes such as color and texture coordinates that are determined by interpolating values at vertices

- Pixel colors determined later using color, texture, and other vertex properties
Scan-Line Rasterization
ScanConversion - Line Segments

- Start with line segment in window coordinates with integer values for endpoints
- Assume implementation has a `write_pixel` function

\[m = \frac{\Delta y}{\Delta x} \]

\[y = mx + h \]
DDA Algorithm

- Digital Differential Analyzer
 - Line $y = mx + h$ satisfies differential equation
 \[
 \frac{dy}{dx} = m = \frac{Dy}{Dx} = \frac{y_2 - y_1}{x_2 - x_1}
 \]

- Along scan line $Dx = 1$

 For($x = x_1; x <= x_2, ix++$) {
 $y += m$;
 display ($x, \text{round}(y), \text{line_color}$)
 }
Problem

DDA = for each x plot pixel at closest y

– Problems for steep lines
Bresenham’s Algorithm

• DDA requires one floating point addition per step

• Eliminate computations through Bresenham’s algorithm

• Consider only $1 \geq m \geq 0$
 – Other cases by symmetry

• Assume pixel centers are at half integers
Main Premise

If we start at a pixel that has been written, there are only two candidates for the next pixel to be written into the frame buffer.

\[y = mx + h \]
Candidate Pixels

\[l \geq m \geq 0 \]

Note that line could have passed through any part of this pixel
Decision Variable

\[d = \Delta x (b-a) \]

- \(d \) is an integer
- \(d > 0 \) use upper pixel
- \(d < 0 \) use lower pixel

\[y = mx + h \]
Incremental Form

Inspect d_k at $x = k$

$$d_{k+1} = d_k - 2Dy, \text{ if } d_k < 0$$
$$d_{k+1} = d_k - 2(Dy - Dx), \text{ otherwise}$$

For each x, we need do only an integer addition and test

Single instruction on graphics chips
Polygon Scan Conversion

• Scan Conversion = Fill
• How to tell inside from outside
 – Convex easy
 – Nonsimple difficult
 – Odd even test
 • Count edge crossings
Filling in the Frame Buffer

Fill at end of pipeline

– Convex Polygons only
– Nonconvex polygons assumed to have been tessellated
– Shades (colors) have been computed for vertices (Gouraud shading)
– Combine with z-buffer algorithm
 • March across scan lines interpolating shades
 • Incremental work small
Using Interpolation

C_1 C_2 C_3 specified by vertex shading

C_4 determined by interpolating between C_1 and C_2

C_5 determined by interpolating between C_2 and C_3

interpolate between C_4 and C_5 along span
Scan Line Fill

Can also fill by maintaining a data structure of all intersections of polygons with scan lines

- Sort by scan line
- Fill each span

![Diagram of vertex order generated by vertex list and desired order]
Data Structure
Aliasing

- Ideal rasterized line should be 1 pixel wide

- Choosing best y for each x (or visa versa) produces aliased raster lines
Antialiasing by Area Averaging

- Color multiple pixels for each x depending on coverage by ideal line

![Original vs Antialiased Comparison](image)

- Magnified view of original and antialiased lines
Polygon Aliasing

- Aliasing problems can be serious for polygons
 - Jaggedness of edges
 - Small polygons neglected
 - Need compositing so color of one polygon does not totally determine color of pixel

All three polygons should contribute to color