CSE 5542 - Real Time Rendering
Week 6

PR DEPARTMENT OF

5) PR ¢ 4
@)51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

OpenGL Perspective
Matrix
Courtesy: Prof. H-W. Shen

(5 Ve PRI OEPARTMENT OF |
Y. R¥SI®] compuTER SCIENCE
L N BVRUS [\ eNGINEERING

8y
SEm=m==2” W UNI

Perspective Transform

/
/
/
/

i
A7

@ OEPARTMENT OF
COMPUTER SCIENCE
i M BRI \\D ENGINEERING

i DEPARTMENT OF
®/51®) coMPUTER SCIENCE
NIIRUS \\D ENGINEERING

DEPARTMENT OF

®/51®] coMPUTER SCIENCE
NIIRUS \\D ENGINEERING

i DEPARTMENT OF
®/51®) coMPUTER SCIENCE
NIIRUS \\D ENGINEERING

OHIO
el

COMPUTER SCIENCE
AND ENGINEERING

FIGURE 10.41 Rendered teapots.

) H @ OEPARTMENT OF
@)51®] coMPUTER SCIENCE
SIRUIS! AN D ENGINEERING

UNIVERSITY

)) H DEPARTMENT OF
il KOIsl®) conMPUTER SCIENCE
NPRVBS! AND ENGINEERING

Modeling

FIGURE 10.5 Model airplane

FIGURE 10.6 Cross-section
curve.
Desired
Appfoldmoia

FIGURE 10.7 Approximatior
of cross-section curve.

E

OHIO
STATE

UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Parametric Curve

x = x(u), l'%u-ﬂ"l
dp(u)

y =y(u), Py = d':il:'l |
du Pod
z = z(u). L -

T
()

Parametric

PR DEPARTMENT OF

T*'H
(S)D}gl% COMPUTER SCIENCE
SURUS! AND ENGINEERING

Paramet

ric Curve

E10.3 Curve segment.

Consider a curve of the form?
x(u)

plu) = | y(u)
z(u)

A polynomial parametric curve of degree® n is of the form

n
p(u) = Z u"ck.
k=0

where each ¢; has independent x, y, and z components; that is,

Cxi
= cyk

Czk
The n + 1 column matrices {c;} are the coefficients of p; they give us 3(n + 1) degrees
of freedom in how we choose the coefficients of a particular p. There is no coupling,

however, among the x, y, and z components, so we can work with three independent
equations, each of the form

plu) = Z r(k(k,

k=0

where p is any one of x, y, or z. There are n + 1 degrees of freedom in p(u). We can
define our curves for any range interval of u:

T T TR

however, with no loss of generality (see Exercise 10.3), we can assume that 0 <u < 1.
As the value of u varies over its range, we define a curve segment, as shown in
Figure 10.3.

OHIO
STATE

UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Cubic Parametric Curves

3
P(u) = ¢, + ¢+ U + ¢ = Z cuf =u'c,
k=0

where

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Control Points

*pP,
N) . P3
plol™——
°p,

FIGURE 10.9 Curve segment
and control points.

PoY

P2

FIGURE 10.10 Joining of interpolating segments.

O

OHIO
STATE

UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Bezier

3
pu) =Y _ b(wp,

=0
] p(u) = b(u)Tp,
0.8
0.6 [3“1_"]3"—‘
3u(l — u)”
)(u):Mgu: i))
0.4 I 3u(1—wu) |
3
u
0.2
0
0 0.2 0.4 0.6 0.8 1 ” 1 o"l
FIGURE 10.18 Blending polynomials for the Bézier cubic. M. — -3 3 0
B=|l 3 6 3 ol
I_—l 3 -3 lJ

@ OEPARTMENT OF

T*'H
@51®] coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

Parametric Surface

e, ¥) x =x(u, v) - =
plu,v) = | y(u,v) p az“}‘,,-, ap _ By (i)
z(u’ V) }I :}"“1 V‘)v 8“ - 3:“:‘,V) 3‘/ az(dl:'v)
z=2z(u, v), u a
)/ av.
Yy
*u =]
v=0 *pl. v
v=1
U= O —— X
z
plu,v)= -~

SURE 10.4 Surface patch.

- — = - P

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Parametric Surface

(x(u, V) ‘| s m
pu, v)=1| y(u,v) | = Z Z cu'v.
I_z«_u, V) J =0 J=0

Y
*u:l
v=0 Pl vi
v=1
7— —X

z

n

m

10.4 Surface patch.

)

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Bezier Surface

Patches

3
plu, v) = Z b ()b (v)py = u'MgPMj}v.

P

m

Poa
Bézier patch.

P23

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Subdivision

FIGURE 10.37 Cubic Bézier surface.

FIGURE 10.34 Convex hulls and control points.

T H @ OEPARTMENT OF
@51®] coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

e New points created by subdivision
o Old points discarded affer subdivision
© Old points retained affer subdivision

FIGURE 10.38 First subdivision of surface.

® New points created by subdivision
© Old points discarded after subdivision
@ Old points retained affer subdivision

FIGURE 10.39 Points after second subdivision.

P30 P13

P(X) Pog

FIGURE 10.40 Subdivided quadrant.

.
- = :

] I I n
+

Il]]

PR OEPARTMENT OF

T*'H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Code for GL

Courtesy:
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

PR DEPARTMENT OF

T*'H
d [95518] comPUTER SCIENCE
1 AND ENGINEERING

UNIVERSITY

GLM

OpenGL Mathematics (GLM) is a header only C++ mathematics library
for graphics software based on the OpenGL Shading Language (GLSL).

Provides classes and functions designed and implemented following as
strictly as possible the GLSL conventions and functionalities.

When a programmer knows GLSL, he knows GLM as well, making it
really easy to use.

PR DEPARTMENT OF

o~ TR
d 11518 compuTER SCIENCE
AND ENGINEERING

UNIVERSITY

C++

glm::mat4 myMatrix;
glm::vec4 myVector;

/I fill myMatrix and myVector somehow
glm::vec4 transformedVector = myMatrix * myVector;

// Again, in this order ! this is important.

PR DEPARTMENT OF

: T H
d [®/51®] comPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

GLSL

mat4 myMatrix;
vec4 myVector;

/I fill myMatrix and myVector somehow
vec4 transformedVector = myMatrix * myVector;

// Yeah, it's pretty much the same than GLM

T PR DEPARTMENT OF

+ H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

ldentity

glm::mat4 myldentityMatrix = glm::mat4(|.0f);

S PSELUSSRG 0EPARTMENT OF

@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Translate

GLM -
#include <glm/transform.hpp> // after <glm/glm.hpp>

glm::mat4 myMatrix = glm::translate(10.0f, 0.0f, 0.0f);

glm::vec4 myVector(10.0f, 10.0f, 10.0f, 0.0f);
glm::vec4 transformedVector = myMatrix * myVector;

GLSL -
vec4 transformedVector = myMatrix * myVector;

il OEPARTMENT OF

oic

COMPUTER SCIENCE
MRS AN ENGINEERING

Scaling

I/ ' Use #include <glm/gtc/matrix_transform.hpp> and #include
<glm/gtx/transform.hpp>

glm::mat4 myScalingMatrix = glm::scale(2.0f, 2.0f ,2.0f);

o 3 OEPARTMENT OF
4 %j&% COMPUTER SCIENCE
SRS \ND ENGINEERING

Rotation

I/ ' Use #include <glm/gtc/matrix_transform.hpp> and #include
<glm/gtx/transform.hpp>

gim::vec3 myRotationAxis(??, 22, ??);

glm::rotate(angle_in_degrees, myRotationAxis);

PR DEPARTMENT OF

5) PR ¢ 4
/4 [®)51®) conPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Accumulating Transforms

TransformedVector =
TranslationMatrix * RotationMatrix * ScaleMatrix * OriginalVector;

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

JOHIO

In Code

GLM

glm::mat4 myModelMatrix = myTranslationMatrix * myRotationMatrix *
myScaleMatrix;

glm::vec4 myTransformedVector = myModelMatrix * myOriginalVector;

GLSL

mat4 transform = mat2 * matl;
vec4 out_vec = transform * in_vec;

PR DEPARTMENT OF

5) PR ¢ 4
d [®/51®] comPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

In Diagrams

[Model Matrix]

I OEPARTMENT OF

T H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

In Pictures

PR DEPARTMENT OF

58] cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

PRSI OEPARTMENT OF

@151®) coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Camera/Eye Space

glm::mat4 ViewMatrix = glm::translate(-3.0f, 0.0f ,0.0f);

i OEPARTMENT OF

COMPUTER SCIENCE
= AND ENGINEERING

Camera/Eye Space

glm::mat4 CameraMatrix = glm::LookAt (

cameraPosition, // the position of your camera, in world space
cameraTarget, // where you want to look at, in world space

upVector I/ probably glm::vec3(0,1,0),

// but (0,-1,0) would make you looking upside-down

Transform objects from world to eye space

[Model Matrix]

I

[View Matrix]

PR OEPARTMENT OF

@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

gluLookAt

LookAt(eye, at, up)

(pr! Upy: UPZ) & S =

TN

(eye eye, , eye)

P~
47"‘:’?—”-"

—

@l OEPARTMENT OF

iy lonio
5 S[ATE

COMPUTER SCIENCE
=~ AND ENGINEERING

Camera Coordinate Frame

PR DEPARTMENT OF

@51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Camera Space

. . 3
Right hand coordinate system (u, u, U, -eye-u
y_|Vs Vv, Ve &y
n=art-—eye n, n, n, —eye-n
7 0 0 O 1)
n=-—- y
Hn” (at, at,, at)
— — (up,, up,, up,) Gyt /d
U=Upxn "a @
— — A
V=nXu

(eye,, eye,, eye_)

PR DEPARTMENT OF

Y EIONT
(S)DIT‘ICII% COMPUTER SCIENCE
SRWIS \ND ENGINEERING

Old Style

void display()

{
glClear(GL_COLOR BUFFER_BIT);
glMatrixMode(GL MODELVIEW);
glLoadldentity();
gluLookAt(0,0,1,0,0,0,0,1,0);

}

DEPARTMENT OF

COMPUTER SCIENCE
SRS AND ENGINEERING

JOHIO

New World

- Create a view matrix

view = glm::lookAt(glm::vec3(0.0, 2.0, 2.0), gim::vec3(0.0, 0.0, 0.0), glm::vec3(0.0,
1.0, 0.0));

- Combine with modeling matrices
glm::mat4 model = gim::mat4(1.0f);
model = glm::rotate(model, angle, glm::vec3(0.0f, 0.0f, 1.0f));

model = glm::scale(model, scale_size, scale_size, scale_size);

glm::mat4 modelview = view * model;

- PRI DEPARTMENT OF ‘
(53171;121[% COMPUTER SCIENCE
SUBME] AND ENGINEERING |

Working with Old World

gIMatrixMode(GL_MODELVIEW);
glLoadMatrixf(&modelview[0][0]);

// begin to draw your geometry

I OEPARTMENT OF

2 |otio

COMPUTER SCIENCE
SIRVISY A ND ENGINEERING

Hd
4 UNIVERSITY

Projection Matrices

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

PURELUIRCY DEPARTMENT OF

@51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Demo

 Frojechion L] X

Yorld-space vieww Screen-space view

Command manipulation window

fovy aspect zNear zFar
gluPerspective(€0.0 ,1.00 ,1.0 ,10.0);
gluLookAt(0.00 ,0.00 ,2.00 , <-eye
0.00 ,0.00 ,0.00 , <=-center

0.00 ,1.00 ,000); <-up

Click on the arguments and move the mouse to modify values.

PRI OEPARTMENT OF
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

In Code

/I Generates a really hard-to-read matrix, but a normal, standard 4x4 matrix nonetheless
glm::mat4 projectionMatrix = glm:perspective(

FoV, // The horizontal Field of View, in degrees : the amount of "zoom".

// Think "camera lens". Usually between 90° (extra wide) and 30° (quite zoomed in)
4.0f / 3.0f, // Aspect Ratio. Depends on the size of your window.

//Notice that 4/3 == 800/600 == 1280/960, sounds familiar ?
0.1f, I/ Near clipping plane. Keep as big as possible, or you'll get precision issues.

100.0f Il Far clipping plane. Keep as little as possible.
);

PR DEPARTMENT OF

) PR ¢ 4
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

T 'H @ OEPARTMENT OF
@51®] coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

In Diagrams

[Model Matrix]

I

[View Matrix]

I

[Projection Matrix]

|

, T 'H @ OEPARTMENT OF
d [®518] comMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

More Code

C++ : compute the matrix

glm::mat4 MVPmatrix = projection * view * model;
/| Remember : inverted !

// GLSL : apply it
transformed_vertex = MVP * in_vertex;

PR DEPARTMENT OF

) PR ¢ 4
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Combined

PRl DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Generate Matrix

I/ Projection matrix : 45°
//Field of View, 4:3 ratio, display range : 0.1 unit <-> 100 units
glm::mat4 Projection = glm::perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.0f);

// Camera matrix
glm::mat4 View = glm::lookAt(
glm::vec3(4,3,3),// Camera is at (4,3,3), in World Space
glm::vec3(0,0,0), // and looks at the origin
glm::vec3(0,1,0) // Head is up (set to 0,-1,0 to look upside-down)
);
// Model matrix : an identity matrix (model will be at the origin)
glm::mat4 Model = glm::mat4(1.0f); // Changes for each model !
/I Our ModelViewProjection : multiplication of our 3 matrices
glm::mat4 MVP = Projection *View * Model;
// Remember, matrix multiplication is the other way around

Tee] PRELUSERE OEPARTMENT OF
@)51®] coMPUTER SCIENCE
- N BVAVIS \\D ENGINEERING |

GLSL Takes Over

/I Get a handle for our "MVP" uniform.
// Only at initialisation time.
GLuint MatrixID = glGetUniformLocation(program|D, "MVP"),

I/ Send our transformation to the currently bound shader,

/I 'in the "MVP" uniform
// For each model you render, since the MVP will be different

Il (at least the M part)

glUniformMatrix4fv(MatrixID, |, GL_FALSE, &MVP[0][0]);

il OEPARTMENT OF

[oic

COMPUTER SCIENCE
MRS AN ENGINEERING

Use It

in vec3 vertexPosition_modelspace;
uniform mat4 MVP;

void main(){
/I Output position of the vertex, in clip space : MVP * position

vec4 v = vec4(vertexPosition _modelspace, |);

// Transform an homogeneous 4D vector, remember !
gl _Position = MVP * v;

{ SOy PR DEPARTMENT OF

H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

' Tutorial 03

Old Style

PRl DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

OpenGL Orthogonal Viewing

Ortho (left,right,bottom, top,near, far)

y (n‘ght, top, -far)
A /
=-far

z
4 7~View volume
- z=near
A
\ -

(left, bottom, -near)

near and far measured from camera

PR OEPARTMENT OF

¥ | OO | | .
SIATE iﬁg:%ﬁﬁg&fxg] E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

UNIVERSITY ‘ Addison-Wesley 2012

OpenGL Perspective

Frustum(left,right,bottom,top,near,far)

Yy z:far

Ul “[right, top,-near]

s (left, bottom -near)

Ll 4

#

@l OEPARTMENT OF

®)3¥®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Using Field of View

* With Frustum it is often difficult to get the
desired view

* Perpective(fovy, aspect, near, far) often provides a
better interface

Y
) h

«—— front plane

aspect = w/h
fov

PR DEPARTMENT OF

) U l'iv
@/51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

4
4 UNIVERSITY

Old Style

void display()

{
glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_PROJETION);
glLoadldentity();
gluPerspective(fove, aspect, near, far);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt(0,0,1,0,0,0,0,1,0);
my_display(); // your display routine

il OEPARTMENT OF

a2 oo

COMPUTER SCIENCE
B BYRBSY /\\D ENGINEERING

4
4 UNIVERSITY

Can Still GLM

- Set up the projection matrix

glm::mat4 projection = glm::mat4(1.0f);
projection = glm::perspective(60.0f, |.0f,. I, 100.0f);

- Load the matrix to GL_PROJECTION

gIlMatrixMode(GL_PROJECTION);
glLoadMatrixf(&projection[0][0]);

PR DEPARTMENT OF

) PR ¢
@)51®] coMPUTER SCIENCE
A BVAIS AND ENGINEERING

UNI

Next

@ OEPARTMENT OF

OHIO
SIATE

COMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

