CSE 5542 - Real Time Rendering
Week 6-7-8

PR DEPARTMENT OF

5) PR ¢ 4
@)51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

OpenGL Perspective
Matrix
Courtesy: Prof. H-W. Shen

(5 Ve PRI OEPARTMENT OF |
Y. R¥SI®] compuTER SCIENCE
L N BVRUS [\ eNGINEERING

8y
SEm=m==2” W UNI

Perspective Transform

/
/
/
/

i
A7

@ OEPARTMENT OF
COMPUTER SCIENCE
i M BRI \\D ENGINEERING

i DEPARTMENT OF
®/51®) coMPUTER SCIENCE
NIIRUS \\D ENGINEERING

DEPARTMENT OF

®/51®] coMPUTER SCIENCE
NIIRUS \\D ENGINEERING

i DEPARTMENT OF
®/51®) coMPUTER SCIENCE
NIIRUS \\D ENGINEERING

OHIO
el

COMPUTER SCIENCE
AND ENGINEERING

FIGURE 10.41 Rendered teapots.

) H @ OEPARTMENT OF
@)51®] coMPUTER SCIENCE
SIRUIS! AN D ENGINEERING

UNIVERSITY

)) H DEPARTMENT OF
il KOIsl®) conMPUTER SCIENCE
NPRVBS! AND ENGINEERING

Modeling

FIGURE 10.5 Model airplane

FIGURE 10.6 Cross-section
curve.
Desired
Appfoldmoia

FIGURE 10.7 Approximatior
of cross-section curve.

E

OHIO
STATE

UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Parametric Curve

x = x(u), l'%u-ﬂ"l
dp(u)

y =y(u), Py = d':il:'l |
du Pod
z = z(u). L -

T
()

Parametric

PR DEPARTMENT OF

T*'H
(S)D}gl% COMPUTER SCIENCE
SURUS! AND ENGINEERING

Paramet

ric Curve

E10.3 Curve segment.

Consider a curve of the form?
x(u)

plu) = | y(u)
z(u)

A polynomial parametric curve of degree® n is of the form

n
p(u) = Z u"ck.
k=0

where each ¢; has independent x, y, and z components; that is,

Cxi
= cyk

Czk
The n + 1 column matrices {c;} are the coefficients of p; they give us 3(n + 1) degrees
of freedom in how we choose the coefficients of a particular p. There is no coupling,

however, among the x, y, and z components, so we can work with three independent
equations, each of the form

plu) = Z r(k(k,

k=0

where p is any one of x, y, or z. There are n + 1 degrees of freedom in p(u). We can
define our curves for any range interval of u:

T T TR

however, with no loss of generality (see Exercise 10.3), we can assume that 0 <u < 1.
As the value of u varies over its range, we define a curve segment, as shown in
Figure 10.3.

OHIO
STATE

UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Cubic Parametric Curves

3
P(u) = ¢, + ¢+ U + ¢ = Z cuf =u'c,
k=0

where

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Control Points

*pP,
N) . P3
plol™——
°p,

FIGURE 10.9 Curve segment
and control points.

PoY

P2

FIGURE 10.10 Joining of interpolating segments.

O

OHIO
STATE

UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Bezier

3
pu) =Y _ b(wp,

=0
] p(u) = b(u)Tp,
0.8
0.6 [3“1_"]3"—‘
3u(l — u)”
)(u):Mgu: i))
0.4 I 3u(1—wu) |
3
u
0.2
0
0 0.2 0.4 0.6 0.8 1 ” 1 o"l
FIGURE 10.18 Blending polynomials for the Bézier cubic. M. — -3 3 0
B=|l 3 6 3 ol
I_—l 3 -3 lJ

@ OEPARTMENT OF

T*'H
@51®] coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

Parametric Surface

e, ¥) x =x(u, v) - =
plu,v) = | y(u,v) p az“}‘,,-, ap _ By (i)
z(u’ V) }I :}"“1 V‘)v 8“ - 3:“:‘,V) 3‘/ az(dl:'v)
z=2z(u, v), u a
)/ av.
Yy
*u =]
v=0 *pl. v
v=1
U= O —— X
z
plu,v)= -~

SURE 10.4 Surface patch.

- — = - P

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Parametric Surface

(x(u, V) ‘| s m
pu, v)=1| y(u,v) | = Z Z cu'v.
I_z«_u, V) J =0 J=0

Y
*u:l
v=0 Pl vi
v=1
7— —X

z

n

m

10.4 Surface patch.

)

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Bezier Surface

Patches

3
plu, v) = Z b ()b (v)py = u'MgPMj}v.

P

m

Poa
Bézier patch.

P23

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Subdivision

FIGURE 10.37 Cubic Bézier surface.

FIGURE 10.34 Convex hulls and control points.

T H @ OEPARTMENT OF
@51®] coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

e New points created by subdivision
o Old points discarded affer subdivision
© Old points retained affer subdivision

FIGURE 10.38 First subdivision of surface.

® New points created by subdivision
© Old points discarded after subdivision
@ Old points retained affer subdivision

FIGURE 10.39 Points after second subdivision.

P30 P13

P(X) Pog

FIGURE 10.40 Subdivided quadrant.

.
- = :

] I I n
+

Il]]

PR OEPARTMENT OF

T*'H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Code for GL

Courtesy:
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

PR DEPARTMENT OF

T*'H
d [95518] comPUTER SCIENCE
1 AND ENGINEERING

UNIVERSITY

GLM

OpenGL Mathematics (GLM) is a header only C++ mathematics library
for graphics software based on the OpenGL Shading Language (GLSL).

Provides classes and functions designed and implemented following as
strictly as possible the GLSL conventions and functionalities.

When a programmer knows GLSL, he knows GLM as well, making it
really easy to use.

PR DEPARTMENT OF

o~ TR
d 11518 compuTER SCIENCE
AND ENGINEERING

UNIVERSITY

C++

glm::mat4 myMatrix;
glm::vec4 myVector;

/I fill myMatrix and myVector somehow
glm::vec4 transformedVector = myMatrix * myVector;

// Again, in this order ! this is important.

PR DEPARTMENT OF

: T H
d [®/51®] comPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

GLSL

mat4 myMatrix;
vec4 myVector;

/I fill myMatrix and myVector somehow
vec4 transformedVector = myMatrix * myVector;

// Yeah, it's pretty much the same than GLM

T PR DEPARTMENT OF

+ H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

ldentity

glm::mat4 myldentityMatrix = glm::mat4(|.0f);

S PSELUSSRG 0EPARTMENT OF

@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Translate

GLM -
#include <glm/transform.hpp> // after <glm/glm.hpp>

glm::mat4 myMatrix = glm::translate(10.0f, 0.0f, 0.0f);

glm::vec4 myVector(10.0f, 10.0f, 10.0f, 0.0f);
glm::vec4 transformedVector = myMatrix * myVector;

GLSL -
vec4 transformedVector = myMatrix * myVector;

il OEPARTMENT OF

oic

COMPUTER SCIENCE
MRS AN ENGINEERING

Scaling

I/ ' Use #include <glm/gtc/matrix_transform.hpp> and #include
<glm/gtx/transform.hpp>

glm::mat4 myScalingMatrix = glm::scale(2.0f, 2.0f ,2.0f);

o 3 OEPARTMENT OF
4 %j&% COMPUTER SCIENCE
SRS \ND ENGINEERING

Rotation

I/ ' Use #include <glm/gtc/matrix_transform.hpp> and #include
<glm/gtx/transform.hpp>

gim::vec3 myRotationAxis(??, 22, ??);

glm::rotate(angle_in_degrees, myRotationAxis);

PR DEPARTMENT OF

5) PR ¢ 4
/4 [®)51®) conPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Accumulating Transforms

TransformedVector =
TranslationMatrix * RotationMatrix * ScaleMatrix * OriginalVector;

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

JOHIO

In Code

GLM

glm::mat4 myModelMatrix = myTranslationMatrix * myRotationMatrix *
myScaleMatrix;

glm::vec4 myTransformedVector = myModelMatrix * myOriginalVector;

GLSL

mat4 transform = mat2 * matl;
vec4 out_vec = transform * in_vec;

PR DEPARTMENT OF

5) PR ¢ 4
d [®/51®] comPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

In Diagrams

[Model Matrix]

I OEPARTMENT OF

T H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

In Pictures

PR DEPARTMENT OF

58] cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

PRSI OEPARTMENT OF

@151®) coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Camera/Eye Space

glm::mat4 ViewMatrix = glm::translate(-3.0f, 0.0f ,0.0f);

i OEPARTMENT OF

COMPUTER SCIENCE
= AND ENGINEERING

Camera/Eye Space

glm::mat4 CameraMatrix = glm::LookAt (

cameraPosition, // the position of your camera, in world space
cameraTarget, // where you want to look at, in world space

upVector I/ probably glm::vec3(0,1,0),

// but (0,-1,0) would make you looking upside-down

Transform objects from world to eye space

[Model Matrix]

I

[View Matrix]

PR OEPARTMENT OF

@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

gluLookAt

LookAt(eye, at, up)

(pr! Upy: UPZ) & S =

TN

(eye eye, , eye)

P~
47"‘:’?—”-"

—

@l OEPARTMENT OF

iy lonio
5 S[ATE

COMPUTER SCIENCE
=~ AND ENGINEERING

Camera Coordinate Frame

PR DEPARTMENT OF

@51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Camera Space

. . 3
Right hand coordinate system (u, u, U, -eye-u
y_|Vs Vv, Ve &y
n=art-—eye n, n, n, —eye-n
7 0 0 O 1)
n=-—- y
Hn” (at, at,, at)
— — (up,, up,, up,) Gyt /d
U=Upxn "a @
— — A
V=nXu

(eye,, eye,, eye_)

PR DEPARTMENT OF

Y EIONT
(S)DIT‘ICII% COMPUTER SCIENCE
SRWIS \ND ENGINEERING

Old Style

void display()

{
glClear(GL_COLOR BUFFER_BIT);
glMatrixMode(GL MODELVIEW);
glLoadldentity();
gluLookAt(0,0,1,0,0,0,0,1,0);

}

DEPARTMENT OF

COMPUTER SCIENCE
SRS AND ENGINEERING

JOHIO

New World

- Create a view matrix

view = glm::lookAt(glm::vec3(0.0, 2.0, 2.0), gim::vec3(0.0, 0.0, 0.0), glm::vec3(0.0,
1.0, 0.0));

- Combine with modeling matrices
glm::mat4 model = gim::mat4(1.0f);
model = glm::rotate(model, angle, glm::vec3(0.0f, 0.0f, 1.0f));

model = glm::scale(model, scale_size, scale_size, scale_size);

glm::mat4 modelview = view * model;

- PRI DEPARTMENT OF ‘
(53171;121[% COMPUTER SCIENCE
SUBME] AND ENGINEERING |

Working with Old World

gIMatrixMode(GL_MODELVIEW);
glLoadMatrixf(&modelview[0][0]);

// begin to draw your geometry

I OEPARTMENT OF

2 |otio

COMPUTER SCIENCE
SIRVISY A ND ENGINEERING

Hd
4 UNIVERSITY

Projection Matrices

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

PURELUIRCY DEPARTMENT OF

@51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Demo

 Frojechion L] X

Yorld-space vieww Screen-space view

Command manipulation window

fovy aspect zNear zFar
gluPerspective(€0.0 ,1.00 ,1.0 ,10.0);
gluLookAt(0.00 ,0.00 ,2.00 , <-eye
0.00 ,0.00 ,0.00 , <=-center

0.00 ,1.00 ,000); <-up

Click on the arguments and move the mouse to modify values.

PRI OEPARTMENT OF
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

In Code

/I Generates a really hard-to-read matrix, but a normal, standard 4x4 matrix nonetheless
glm::mat4 projectionMatrix = glm:perspective(

FoV, // The horizontal Field of View, in degrees : the amount of "zoom".

// Think "camera lens". Usually between 90° (extra wide) and 30° (quite zoomed in)
4.0f / 3.0f, // Aspect Ratio. Depends on the size of your window.

//Notice that 4/3 == 800/600 == 1280/960, sounds familiar ?
0.1f, I/ Near clipping plane. Keep as big as possible, or you'll get precision issues.

100.0f Il Far clipping plane. Keep as little as possible.
);

PR DEPARTMENT OF

) PR ¢ 4
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

T 'H @ OEPARTMENT OF
@51®] coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

In Diagrams

[Model Matrix]

I

[View Matrix]

I

[Projection Matrix]

|

, T 'H @ OEPARTMENT OF
d [®518] comMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

More Code

C++ : compute the matrix

glm::mat4 MVPmatrix = projection * view * model;
/| Remember : inverted !

// GLSL : apply it
transformed_vertex = MVP * in_vertex;

PR DEPARTMENT OF

) PR ¢ 4
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Combined

PRl DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Generate Matrix

I/ Projection matrix : 45°
//Field of View, 4:3 ratio, display range : 0.1 unit <-> 100 units
glm::mat4 Projection = glm::perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.0f);

// Camera matrix
glm::mat4 View = glm::lookAt(
glm::vec3(4,3,3),// Camera is at (4,3,3), in World Space
glm::vec3(0,0,0), // and looks at the origin
glm::vec3(0,1,0) // Head is up (set to 0,-1,0 to look upside-down)
);
// Model matrix : an identity matrix (model will be at the origin)
glm::mat4 Model = glm::mat4(1.0f); // Changes for each model !
/I Our ModelViewProjection : multiplication of our 3 matrices
glm::mat4 MVP = Projection *View * Model;
// Remember, matrix multiplication is the other way around

Tee] PRELUSERE OEPARTMENT OF
@)51®] coMPUTER SCIENCE
- N BVAVIS \\D ENGINEERING |

GLSL Takes Over

/I Get a handle for our "MVP" uniform.
// Only at initialisation time.
GLuint MatrixID = glGetUniformLocation(program|D, "MVP"),

I/ Send our transformation to the currently bound shader,

/I 'in the "MVP" uniform
// For each model you render, since the MVP will be different

Il (at least the M part)

glUniformMatrix4fv(MatrixID, |, GL_FALSE, &MVP[0][0]);

il OEPARTMENT OF

[oic

COMPUTER SCIENCE
MRS AN ENGINEERING

Use It

in vec3 vertexPosition_modelspace;
uniform mat4 MVP;

void main(){
/I Output position of the vertex, in clip space : MVP * position

vec4 v = vec4(vertexPosition _modelspace, |);

// Transform an homogeneous 4D vector, remember !
gl _Position = MVP * v;

{ SOy PR DEPARTMENT OF

H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

' Tutorial 03

Old Style

PRl DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

OpenGL Orthogonal Viewing

Ortho (left,right,bottom, top,near, far)

y (n‘ght, top, -far)
A /
=-far

z
4 7~View volume
- z=near
A
\ -

(left, bottom, -near)

near and far measured from camera

PR OEPARTMENT OF

¥ | OO | | .
SIATE iﬁg:%ﬁﬁg&fxg] E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

UNIVERSITY ‘ Addison-Wesley 2012

OpenGL Perspective

Frustum(left,right,bottom,top,near,far)

Yy z:far

Ul “[right, top,-near]

s (left, bottom -near)

Ll 4

#

@l OEPARTMENT OF

®)3¥®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Using Field of View

* With Frustum it is often difficult to get the
desired view

* Perpective(fovy, aspect, near, far) often provides a
better interface

Y
) h

«—— front plane

aspect = w/h
fov

PR DEPARTMENT OF

) U l'iv
@/51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

4
4 UNIVERSITY

Old Style

void display()

{
glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_PROJETION);
glLoadldentity();
gluPerspective(fove, aspect, near, far);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt(0,0,1,0,0,0,0,1,0);
my_display(); // your display routine

il OEPARTMENT OF

a2 oo

COMPUTER SCIENCE
B BYRBSY /\\D ENGINEERING

4
4 UNIVERSITY

Can Still GLM

- Set up the projection matrix

glm::mat4 projection = glm::mat4(1.0f);
projection = glm::perspective(60.0f, |.0f,. I, 100.0f);

- Load the matrix to GL_PROJECTION

gIlMatrixMode(GL_PROJECTION);
glLoadMatrixf(&projection[0][0]);

PR DEPARTMENT OF

) PR ¢
@)51®] coMPUTER SCIENCE
A BVAIS AND ENGINEERING

UNI

Next

@ OEPARTMENT OF

OHIO
SIATE

COMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Why we need shading

* Just attach color glColor

e But

(3,00 PENREPRY DEPARTMENT OF
, (i %j&% COMPUTER SCIENCE
il BRVES \\p ENGINEERING

neEEEE”

Shading

* Why does the shape !

N

* Light-material interaction at points -> different color or shade

* Factor
— Light sources
— Material properties
— Location of viewer
— Surface orientation

PR DEPARTMENT OF

s
d [®)51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Global Effects

shadow

multiple reflection

translucent surface

PR OEPARTMENT OF

d [®/51®] comPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Light Sources

General Difficult !

PR DEPARTMENT OF

{ DR 4
®/51®] 0MPUTER SCIENCE . . .
AND ENGINEERING E.Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Lvei ‘ Addison-Wesley 2012

Simple Light Sources

PR DEPARTMENT OF

T H
(@)57®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Point Sources

Point source
Model with position and color
Distant source = infinite
distance away (parallel)

PURNLURCE OEPARTMENT OF

d [95518] comPUTER SCIENCE
* AND ENGINEERING

UNIVERSITY

Spot Light

Spotlight
Restrict light from ideal point
source

- DONSLUNERG 0cPARTMENT OF
d [®/51®] coMmPUTER SCIENCE
. AND ENGINEERING

UNIVERSITY

Ambient

~ Ambient light
Same amount of light in scene

Model contribution of all
sources and reflecting surfaces

@ OEPARTMENT OF

OHIO COMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

WIWILEY

Light-Matter
Interaction

Volume 1

JOHN WEINER
P-T. HO

E

T H
@/51(®) coMPUTER SCIENCE

UNIVERSITY

DEPARTMENT OF

AND ENGINEERING

Indirect/Direct Light

O wyerw scratchapixel com

PR DEPARTMENT OF

T*'H
d [®51®] comPUTER SCIENCE
' AND ENGINEERING

UNIVERSITY

Scatter (reflect) & Absporb

@ OEPARTMENT OF
COMPUTER SCIENCE
NPRVBS! \ND ENGINEERING

Color!

b
-
o

Percent Reflection
\ £
Omw >

400 500 600 700
Wavelength (nm)

Amount reflected determines the color and brightness of
the object
Red surface appears red in white light - red component is
reflected and rest is absorbed

PR DEPARTMENT OF

\ sl
'fl 12151® compuTER SCIENCE
AND ENGINEERING

UNIVERSITY

The Surface

Reflected light is scattered depending on smoothness
and orientation of the surface

@ OEPARTMENT OF

T*'H
@5V @ 0MPUTER SCIENCE
B AND ENGINEERING

UNIVERSITY

Surface Type - Smooth

* Very Smooth - more reflected light concentrated in
one direction — like a perfect mirror

Equal Angles of Reflection

Angle of Angle of
Incidence | Reflection

g

71T

. PSR DEPARTMENT OF
@I58} coMPUTER SCIENCE
SURUS \ND ENGINEERING

TBT - specular

V. N/ g /&

G S Lo Spevudar Calorssy

PR OEPARTMENT OF

T*'H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Surface Type - Rough

Scatters light in all directions

R

rough surface

@l OEPARTMENT OF

P |OHiO

COMPUTER SCIENCE
AND ENGINEERING

Smooth vs. Rough

Specular and Diffuse Reflection

\

e
Specular Diffuse
Reflection Reflection
Figure 1

Speculas

Component

i
A J

Pure Diffinse P Specular Glossy

| S @ OEPARTMENT OF
58] cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Smooth vs. Rough

Specular Reflection Diffuse Retlection
Reflection

T 'H @ OEPARTMENT OF
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

The Phong lllumination Model

PR DEPARTMENT OF

) PR ¢ 4
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Phong Model

A simple local model that can be computed rapidly
* Has three components
— Diffuse
— Specular
— Ambient
* Uses four vectors

- 3

— To source

— To viewer
— Normal P
— Perfect reflector

o) PSLURIRY OEPARTMENT OF
d [9/5108] conMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

|deal Reflector

* Normal is determined by local orientation
* Angle of incidence = angle of relection

* The three vectors must be coplanar

I OEPARTMENT OF

q [e51e

COMPUTER SCIENCE
SIRVISY A ND ENGINEERING

Hd
4 UNIVERSITY

Computing r

Want all three to be unit length
r=2(l*n)n-|

() Nl PENRIRY DEPARTMENT OF
, (i %) COMPUTER SCIENCE
L AR AND ENGINEERING

gs=pse”

Diffuse

Al
-l

P Diline Lo Spexundar Crlossy

@l OEPARTMENT OF

T H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Lambertian Surface

Amount reflected is proportional to vertical component of
incoming light

— reflected light ~cos 0.

—cos 0, =1 - n if vectors normalized

— Three coefficients, k,, k, k, that measure each color
component is reflected

.) U }:1 I ODEPARTMENT OF
d L®51(®) coMPUTER SCIENCE
B! AND ENGINEERING

Specular or Glossy Surface

e
"l

P Ixfline Fore Speculr Cilossy

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Specular Surfaces

Specular highlights due to incoming light being reflected in
directions close to the direction of a perfect reflection

Not Ideal Mirror

specular
highlight

@ OEPARTMENT OF

OHIO

COMPUTER SCIENCE
=~ AND ENGINEERING

Specular Reflections

- 3

I~k I cos%

I

reflected shininess coef
intensity incoming intensity P

absorption coef

87

e PRI ocearTMEnT oF |
N P¥sI® conpuTER SCIENCE
b A BUaYS anoeneineeRING

eEEEE

The Shininess Coefficient

* a between
— 100 and 200 correspond to metals
— 5 and |0 give surface that look like plastic

cos* ¢

) ot SIS 0cARTMENT OF
o (53171;1:1[% COMPUTER SCIENCE
i B PUaYS A\nD ENGINEERING

Se=m=s”

Ambient Light

* Result of multiple interactions between (large) light
sources and objects in environment

* Amount and color depend on both color of light(s)
and material properties of the object

* Add k, |, to diffuse and specular terms

VO

reflection coef intensity of ambient light

DEPARTMENT OF
COMPUTER SCIENCE
MRS AN ENGINEERING

oo

Distance Terms

- Light from a point source that reaches a surface is
inversely proportional to the square of the distance
between them

- We can add a factor of the form |/(ad + bd +cd?) to
the diffuse and specular terms

- The constant and linear terms soften the effect of the
point source

ARG DEPARTMENT OF

e |onio
- S‘[,'AC[E gagzn&mg&m& E.Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Light Source As

* We add results from each light source

* Each light source has separate diffuse, specular, and
ambient terms to allow for maximum flexibility
even though this form does not have a physical

justification
* Separate red, green and blue components

* Hence, 9 coefficients for each point source

o Idr’ Idg’ Idb’ Isr’ Isg’ Isb’ Iar’ Iag’ Iab

(3TN TOI_HLIOE DEPARTMENT OF
% 1 SIATE /C\(IJ\‘IB/I ELI:JEEIQSEC};IEI{J\' g E E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
7 B UNIVERSITY :
| Addison-Wesley 2012

Material Properties

* Material properties match light source
properties
— Nine absorbtion coefficients
* Ky kdg, Kyps Ko I<sg, K Ko kag, k.,
— Shininess coefficient a

I OEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

Adding Components

For each light source and each color component,
the Phong model can be written (without the

distance terms) as
| =k, 1, 1 n +k I (v -r)3@+k |

n
For each color component
. . I
we add contributions from
all sources
P

) yr] PPEREAEPRY DEPARTMENT OF
d 19518 co\vpUTER SCIENCE
A BYaWS AnD ENGINEERING |

Modified Phong Model

* The specular term in the Phong model
IS problematic because it requires the
calculation of a new reflection vector
and view vector for each vertex

* Blinn suggested an approximation using
the halfway vector that is more efficient

; Sy TOI_HUOE DEPARTMENT OF
' SIATE /C\(IJ\‘IB/I E:E:ggm g E E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
'°= 287 B UNIVERSITY i
- ‘ Addison-Wesley 2012

More to

Come.....

T 'H @ OEPARTMENT OF
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

The Halfway Vector

 h is normalized vector halfway between
land v

h=(1+v)/|1+V]

(3,0 PENKETR OEPARTMENT OF
: \1 (S)DI&II% COMPUTER SCIENCE
& B PBUsYEM AND ENGINEERING

neEEEE”

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

Using the halfway vector

* Replace (v r)*by(n - h)P
* [is chosen to match shineness

* Note that halfway angle is half of angle
between r and v if vectors are coplanar

* Resulting model is known as the
modified Phong or Blinn lighting model

— Specified in OpenGL standard

(& Sy PGSR OEPARTMENT OF
Y. R¥51®] compuTER SCIENCE
i N RIS D ENGINEERING

Wg==EE=2” W UNI

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

Example

Only differences in
these teapots are
the parameters

in the modified
Phong model

IR 0EPARTMENT OF

T -
fl $&518] coMPUTER SCIENCE . ; ;
AND ENGINEERING E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

UNIVERSITY

Computation of Vectors

1 and v are specified by the application
« Can computer r fromland n
* Problem is determining n

* For simple surfaces is can be determined but
how we determine n differs depending on
underlying representation of surface

 OpenGL leaves determination of normal to
application

— Exception for GLU quadrics and Bezier surfaces was
deprecated

(I, TN PIREAEIRY DEPARTMENT OF
(@)51®) coMPUTER SCIENCE

AND ENGINEERING E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Plane Normals

« Equation of plane: ax+by+cz+d =0

 From Chapter 3 we know that plane is
determined by three points p,, p,, p; Or
normal n and p,

 Normal can be obtained by

- 5

n = (p,-py) % (P1-Po)

s o ST oceantMENT OF
: .l [®I51®] coMPUTER SCIENCE
= B BYRABS \\D ENGINEERING

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

Normal to Sphere

 Implicit function f(x,y.z)=0
 Normal given by gradient

« Sphere f(p)=p-p-1

 n = [odf/ox, ofloy, of/oz]'=p

©

(3N PENRATLY DEPARTMENT OF
, S %&i% COMPUTER SCIENCE
&]

i YRS AND ENGINEERING

SEEm==s

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

Parametric Form

* For sphere
X=xX(u,V)=cos u sin v ®
y=y(u V)=COS U COS V V
z=z(u,v)=§in u

Tangent plane determined by vectors

op/ou = [0x/0u, dy/ou, 0z/cu]T
op/ov = [0x/0v, oy/ov, 0z/ov]T

* Normal given by cross product
n = op/ou x op/ov

Pl OEPARTMENT OF

OHIO
SDAC['E iﬁg:mﬁzggm ((;:] E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

General Case

* We can compute parametric normals for
other simple cases

— Quadrics

— Parameteric polynomial surfaces
« Bezier surface patches (Chapter 10)

DEPARTMENT OF

T H ' E
(@/51®) coMPUTER SCIENCE

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
NIPRVIS \ND ENGINEERING | g b b

Addison-Wesley 2012

Shading in OpenGL

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

() g bl_’ijd DEPARTMENT OF |
e COMPUTER SCIENCE o . .
iR SDAC[E AND ENGINEERING E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Dl : ; Addison-Wesley 2012

Objectives

* Introduce the OpenGL shading methods
— per vertex vs per fragment shading
— Where to carry out

* Discuss polygonal shading
— Flat
— Smooth
— Gouraud

el PESRDR DEPARTMENT OF |
.l [®I51®] comPUTER SCIENCE
B BVRBS \\p ENGINEERING

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

OpenGL shading

* Need
— Normals

— material properties
— Lights
- State-based shading functions have

been deprecated (gINormal,
glMaterial, glLight)

- Get computer in application or send
attributes to shaders

. el PERRIEY DEPARTMENT OF
: .l [®I51®] coMPUTER SCIENCE
g AND ENGINEERING

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

Normalization

« Cosine terms in lighting calculations can be
computed using dot product

 Unit length vectors simplify calculation

« Usually we want to set the magnitudes to have
unit length but

— Length can be affected by transformations

— Note that scaling does not preserved
length

« GLSL has a normalization function

Dl DEPARTMENT OF

o T H
(@518 cOMPUTER SCIENCE
5 E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
l BVAVIS D ENGINEERING | g p p

Addison-Wesley 2012

Normal for Triangle

plane

n=(p,-Py) *(P;-Po)

n-(p-p,)=0

normalize n < n/ |n| Py

Note that right-hand rule determines outward face

E

UNIVERSITY

DEPARTMENT OF

TR
d (@518} oMmPUTER SCIENCE

AND ENGINEERING

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

Specifying a Point Light

Source

* For each light source, we can set an RGBA for
the diffuse, specular, and ambient components,
and for the position

vecd diffuse0 =vecd4 (1.0, 0.0, 0.0, 1.0);

vecd4 ambient0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 specular0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 light0 pos =vec4(1.0, 2.0, 3,0, 1.0);

o] BRI 0EPARTMENT OF
%) COMPUTER SCIENCE
SUAYEE] AND ENGINEERING |

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

Distance and Direction

* The source colors are specified in RGBA

* The position is given in homogeneous
coordinates

— If w =1.0, we are specifying a finite location
— If w =0.0, we are specifying a parallel
source with the given direction vector

* The coefficients in distance terms are usually
quadratic (1/(a+b*d+c*d*d)) where d is the
distance from the point being rendered to the
light source

e TOI_'iKS DEPARTMENT OF
COMPUTER SCIENCE . . .
] E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
4 EUBYE AND ENGINEERING | g p p

Addison-Wesley 2012

Spotlights

* Derive from point source
— Direction
— Cutoff

— Attenuation Proportional to

COS“%b Intensity
A

-0 (I)

PR OEPARTMENT OF

%E) COMPUTER SCIENCE
4 EYaYS] Ano eneineeRiNG

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

Global Ambient Light

« Ambient light depends on color of light
sources

— A red light in a white room will cause a red
ambient term that disappears when the
light is turned off

* A global ambient term that is often
helpful for testing

s o IR oceaRtMENT OF
: .l [®I51®] coMPUTER SCIENCE
= B BYRABS \\D ENGINEERING

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

Moving Light Sources

* Light sources are geometric objects whose
positions or directions are affected by the
model-view matrix

* Depending on where we place the position
(direction) setting function, we can

— Move the light source(s) with the object(s)
— Fix the object(s) and move the light source(s)
— Fix the Iight source(s) and move the object(s)

Fi<) L_y
%\ﬁ: A% NGI NEE‘H]GE nt Angel and D. Shreiner: Interactive Computer Graphics 6E ©

‘""""””/ el | Addison-Wesley 2012

Material Properties

« Material properties should match the terms in
the light model

» Reflectivities
* W component gives opacity

vec4 ambient = vecd4 (0.2, 0.2, 0.2, 1.0);
vecd4d diffuse = vecd4 (1.0, 0.8, 0.0, 1.0);
vec4 specular = vec4(1.0, 1.0, 1.0, 1.0);

GLfloat shine 100.0

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

TN BPEELBPRE 0cPARTMENT OF ‘
%j:ll% COMPUTER SCIENCE
4l BYaYS] Ano EnciNeERiNG

Front and Back Faces

* Every face has a front and back

* For many objects, we never see the back face
so we don’ t care how or if it’ s rendered

 |f it matters, we can handle in shader

g O

back faces not visible back faces visible

Rl DEPARTMENT OF

N R
@/518) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

Emissive Term

* We can simulate a light source in
OpenGL by giving a material an
emissive component

* This component is unaffected by any
sources or transformations

)y TOI-’ild DEPARTMENT OF |
) SIATE L FHoUIERCE E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
g AND ENGINEERING .

| Addison-Wesley 2012

Transparency

« Material properties are specified as
RGBA values

 The A value can be used to make the
surface translucent

* The default is that all surfaces are
opague regardless of A

« Later we will enable blending and use
this feature

. ye] PERREVEY OEPARTMENT OF
‘ 'l [®I51®) comPUTER SCIENCE
NPRWIS AND ENGINEERING

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

Polygonal Shading

* |n per vertex shading, shading calculations are
done for each vertex

— Vertex colors become vertex shades and
can be sent to the vertex shader as a vertex
attribute

— Alternately, we can send the parameters to

the vertex shader and have it compute the
shade

» By default, vertex shades are interpolated

,,_ : E. Angel and D,_Shreiner: Interactive Computer Graphics 6E ©
g BAYa 25HS180 use uniformivasiables to shade

Polygon Normals

Triangles have a single normal

— Shades at the vertices as computed by the
Phong model can be almost same

— Identical for a distant viewer (default) or if
there is no specular componer*

« Consider model of sphere
Want different normals at
each vertex even though
this concept is not quite
correct mathematically

@ OEPARTMENT OF

OHIO : :)
SIATE xgz%ﬁzgggxg F E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

llllll ERSITY Addison-Wesley 2012

Smooth Shading

* We can set a new
normal at each vertex

» Easy for sphere model

— If centered at origin n =
P

* Now smooth shading
works

* Note silhouette edge

@ OEPARTMENT OF

OHiO)

SIATE %gzmﬁzggm‘g E E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Mesh Shading

* The previous example is not general
because we knew the normal at each
vertex analytically

* For polygonal models, Gouraud
proposed we use the average of the
normals around a mesh vert n

n = (n;tnytn;+n,)/ [ntnytng oy

22 TOI_’iid DEPARTMENT OF /)

IALE /C\?\JBA Eﬁg;g&fﬁg - E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
NI 5 .

| Addison-Wesley 2012

Gouraud and Phong

Shading

« Gouraud Shading

— Find average normal at each vertex (vertex
normals)

— Apply modified Phong model at each vertex

— Interpolate vertex shades across each polygon
* Phong shading

— Find vertex normals

— Interpolate vertex normals across edges

— Interpolate edge normals across polygon

) | SIATE AND ENGINEERING E. Angel and D. Streiner: Interactive Computer Graphics 6
7 | UNiveRsiTY ‘ Addison-Wesley 2012

e phvmedified Phong model at each fraﬁ%ment

Comparison

 |f the polygon mesh approximates surfaces with
a high curvatures, Phong shading may look
smooth while Gouraud shading may show

edges
* Phong shading requires much more work than
Gouraud shading

— Until recently not available in real time
systems

— Now can be done using fragment shaders
* Both need data structures to represent meshes

Il DEPARTMENT OF

{ GEAY 5
OHIO . : :
N VIERSGIENGE E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Vertex Lighting Shaders |

// vertex shader

1n vec4 vPosition;

1n vec3 vNormal;

out vec4 color; //vertex shade

// light and material properties

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;

uniform mat4 Projection;

uniform vec4 LightPosition;

uniform float Shininess;

S PR oceanmvent of
d [®5¥®] coMPUTER SCIENCE

AND ENGINEERING E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Vertex Lighting Shaders I

vold main()

d
// Transform vertex position into eye coordinates
vec3 pos = (ModelView * vPosition).xyz;

vec3 L = normalize(LightPosition.xyz - pos);
vec3 E = normalize(-pos);
vec3 H = normalize(L + E);

// Transform vertex normal into eye coordinates
vec3 N = normalize(ModelView*vec4(vNormal, 0.0)).xyz;

PRI 0cPARTMENT OF
@)5¥®) coMPUTER SCIENCE

AND ENGINEERING E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Vertex Lighting Shaders Il

// Compute terms 1n the 1llumination equation
vec4 ambient = AmbientProduct;

float Kd = max(dot(L, N), 0.0);

vecd diffuse = Kd*DiffuseProduct;

float Ks = pow(max(dot(N, H), 0.0), Shininess);

vecd specular = Ks * SpecularProduct;

1f(dot(L, N) < 0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);
gl Position = Projection * ModelView * vPosition;

color = ambient + diffuse + specular;

color.a=1.0;
)

TO ".,6 DEPARTMENT OF

d [®I51®) coMPUTER SCIENCE . . .

] E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
NIPRVIS \ND ENGINEERING | g p p

Addison-Wesley 2012

Vertex Lighting Shaders |V

// fragment shader
1n vec4 color;
vold main()

{
gl FragColor = color;

Pl DEPARTMENT OF

T.:B
4 [®)5¥®) conmPUTER SCIENCE - : i
AND ENGINEERING E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

UNIVERSITY

Fragment Lighting

Shaders

// vertex shader
1n vec4 vPosition;
1n vec3 vNormal;

// output values that will be interpolatated per-fragment
out vec3 fN;
out vec3 fE;
out vec3 fL;

uniform mat4 ModelView;

uniform vec4 LightPosition;
_um.'EQm_m.a.tA Projection;

Il OEPARTMENT OF

|OHiO
S'DAC[E gﬂg;%gg&fﬁ g F E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Fragment Lighting

Shaders

vold main()

{
fN = vNormal;

fE = vPosition.xyz;
fL. = LightPosition.xyz;

1f(LightPosition.w != 0.0) {
fL. = LightPosition.xyz - vPosition.xyz;

gl Position = Projection*Model View*vPosition;

S PREEEEY oceanmven oF
(@)5¥®) coMPUTER SCIENCE
SIATE

AND ENGINEERING E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Fragment Lighting

Shaders1H

// fragment shader

// per-fragment interpolated values from the vertex shader
in vec3 fN;
in vec3 fL;
1n vec3 {E;

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;

uniform vec4 LightPosition;

uniform float Shininess;

@l OEPARTMENT OF

oo
SIATE

COMPUTER SCIENCE o . .
AND ENGINEERING E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Fragment Lighting

Shaderst1Vv

vold main()

d

// Normalize the mput lighting vectors

vec3 N = normalize(fN);
vec3 E = normalize(fE);
vec3 L = normalize(fL);

vec3 H = normalize(L + E);
vec4d ambient = AmbientProduct;

PR DEPARTMENT OF

{ GEAY 5
{OhiO . :
,Cx?qg:%ﬁzgfm g] E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

e | Addison-Wesley 2012

Fragment Lighting

Shaders—V

float Kd = max(dot(L, N), 0.0);
vecd diffuse = Kd*DiffuseProduct;

float Ks = pow(max(dot(N, H), 0.0), Shininess);
vecd specular = Ks*SpecularProduct;

// discard the specular highlight if the light's behind the vertex
if(dot(L, N) <0.0)
specular = vec4(0.0, 0.0, 0.0, 1.0);

gl FragColor = ambient + diffuse + specular;
gl FragColor.a = 1.0;

o) PSS 0EPARTMENT OF
d [®/51®] coMPUTER SCIENCE

' E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
NIPRVIS \ND ENGINEERING | g b b

Addison-Wesley 2012

