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OpenGL Perspective 
Matrix	



Courtesy: Prof. H-W. Shen	





Perspective Transform	

















Modeling	





Parametric Curve	





Parametric Curve	





Cubic Parametric Curves	





Control Points	





Bezier	





Parametric Surface 	





Parametric Surface	





Bezier Surface Patches	





Subdivision	





Code	





Code for GL	


	

Courtesy:	


http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/	





GLM	


OpenGL Mathematics (GLM) is a header only C++ mathematics library 
for graphics software based on the OpenGL Shading Language (GLSL).	


	


Provides classes and functions designed and implemented following as 
strictly as possible the GLSL conventions and functionalities.	


	


When a programmer knows GLSL, he knows GLM as well, making it 
really easy to use.	





glm::mat4 myMatrix;	


glm::vec4 myVector;	


	


// fill myMatrix and myVector somehow	


	


glm::vec4 transformedVector = myMatrix * myVector;	


	


 // Again, in this order ! this is important.	



C++	





GLSL	



mat4 myMatrix;	


vec4 myVector;	


	


// fill myMatrix and myVector somehow	


vec4 transformedVector = myMatrix * myVector; 	


	


// Yeah, it's pretty much the same than GLM	





Identity	



glm::mat4 myIdentityMatrix = glm::mat4(1.0f);	





Translate	



GLM -	


#include <glm/transform.hpp> // after <glm/glm.hpp>	


glm::mat4 myMatrix = glm::translate(10.0f, 0.0f, 0.0f);	


glm::vec4 myVector(10.0f, 10.0f, 10.0f, 0.0f);	


glm::vec4 transformedVector = myMatrix * myVector; 	



GLSL - 	


vec4 transformedVector = myMatrix * myVector;	





Scaling	



// Use #include <glm/gtc/matrix_transform.hpp> and #include 
<glm/gtx/transform.hpp>	


	


glm::mat4 myScalingMatrix = glm::scale(2.0f, 2.0f ,2.0f);	





Rotation	



// Use #include <glm/gtc/matrix_transform.hpp> and #include 
<glm/gtx/transform.hpp>	


	


glm::vec3 myRotationAxis( ??, ??, ??);	


	


glm::rotate( angle_in_degrees, myRotationAxis );	





Accumulating Transforms	



TransformedVector = ���
TranslationMatrix * RotationMatrix * ScaleMatrix * OriginalVector;	





In Code	


GLM	


	


glm::mat4 myModelMatrix = myTranslationMatrix * myRotationMatrix * 
myScaleMatrix;	


	


glm::vec4 myTransformedVector = myModelMatrix * myOriginalVector;	



GLSL	


	


mat4 transform = mat2 * mat1;	


vec4 out_vec = transform * in_vec;	





In Diagrams	





In Pictures	







Camera/Eye Space	



glm::mat4 ViewMatrix = glm::translate(-3.0f, 0.0f ,0.0f);	





Camera/Eye Space	


glm::mat4 CameraMatrix = glm::LookAt (	


    cameraPosition, // the position of your camera, in world space	


    cameraTarget,   // where you want to look at, in world space	


    upVector        // probably glm::vec3(0,1,0), 	



	

 	

// but (0,-1,0) would make you looking upside-down	


);	



Transform objects from world to eye space 	
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gluLookAt	


LookAt(eye, at, up)	





Camera Coordinate Frame 



Camera Space	


Right hand coordinate system 	



!n = at − eye
!n =
!n
!n

!u = up× !n
v = !n × !u



Old Style	



void display()   	


{	


      glClear(GL_COLOR_BUFFER_BIT); 	


      glMatrixMode(GL_MODELVIEW); 	


      glLoadIdentity(); 	


      gluLookAt(0,0,1,0,0,0,0,1,0); 	


      …	


}	





New World 

view = glm::lookAt(glm::vec3(0.0, 2.0, 2.0), glm::vec3(0.0, 0.0, 0.0), glm::vec3(0.0, 
1.0, 0.0)); 	



- Create a view matrix 	



- Combine with modeling matrices	



 glm::mat4 model = glm::mat4(1.0f); 	


  model = glm::rotate(model, angle, glm::vec3(0.0f, 0.0f, 1.0f)); 	


  model = glm::scale(model, scale_size, scale_size, scale_size); 	


	


  glm::mat4 modelview = view * model; 	





Working with Old World 
 glMatrixMode(GL_MODELVIEW); 	


  glLoadMatrixf(&modelview[0][0]);	


	


// begin to draw your geometry 	


… 	





Projection Matrices	







Demo  



In Code	


// Generates a really hard-to-read matrix, but a normal, standard 4x4 matrix nonetheless	


	


glm::mat4 projectionMatrix = glm::perspective(	


	


    FoV,         // The horizontal Field of View, in degrees : the amount of "zoom". 	



	

   // Think "camera lens". Usually between 90° (extra wide) and 30° (quite zoomed in)	


    4.0f / 3.0f, // Aspect Ratio. Depends on the size of your window. 	



	

   //Notice that 4/3 == 800/600 == 1280/960, sounds familiar ?	


    0.1f,        // Near clipping plane. Keep as big as possible, or you'll get precision issues.	


    	


    100.0f       // Far clipping plane. Keep as little as possible.	


);	





Effect	





In Diagrams	





More Code	


C++ : compute the matrix	


	


glm::mat4 MVPmatrix = projection * view * model; 	


// Remember : inverted !	



// GLSL : apply it	


transformed_vertex = MVP * in_vertex;	





Combined 	





Generate Matrix	


// Projection matrix : 45° 	


//Field of View, 4:3 ratio, display range : 0.1 unit <-> 100 units	


glm::mat4 Projection = glm::perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.0f);	


	


// Camera matrix	


glm::mat4 View       = glm::lookAt(	


    glm::vec3(4,3,3), // Camera is at (4,3,3), in World Space	


    glm::vec3(0,0,0), // and looks at the origin	


    glm::vec3(0,1,0)  // Head is up (set to 0,-1,0 to look upside-down)	


);	


// Model matrix : an identity matrix (model will be at the origin)	


glm::mat4 Model      = glm::mat4(1.0f);  // Changes for each model !	


// Our ModelViewProjection : multiplication of our 3 matrices	


glm::mat4 MVP        = Projection * View * Model; 	


// Remember, matrix multiplication is the other way around	





GLSL Takes Over	


// Get a handle for our "MVP" uniform.	


// Only at initialisation time.	


GLuint MatrixID = glGetUniformLocation(programID, "MVP");	


 	


// Send our transformation to the currently bound shader,	


// in the "MVP" uniform	


// For each model you render, since the MVP will be different 	


// (at least the M part)	


	


glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]);	





Use It	


in vec3 vertexPosition_modelspace;	


uniform mat4 MVP;	


 	


void main(){ 	


// Output position of the vertex, in clip space : MVP * position	


	


    vec4 v = vec4(vertexPosition_modelspace,1); 	


	


// Transform an homogeneous 4D vector, remember ?	


    gl_Position = MVP * v;	


	


}	







Old Style	
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OpenGL Orthogonal Viewing 

Ortho(left,right,bottom,top,near,far) 

near and far measured from camera 
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OpenGL Perspective	



Frustum(left,right,bottom,top,near,far)	
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Using Field of View	



•  With Frustum it is often difficult to get the 
desired view	



•  Perpective(fovy, aspect, near, far) often provides a 
better interface	



aspect = w/h	



front plane	





Old Style	



void display()   	


{	


      glClear(GL_COLOR_BUFFER_BIT); 	


      glMatrixMode(GL_PROJETION); 	


      glLoadIdentity(); 	


      gluPerspective(fove, aspect, near, far); 	


      glMatrixMode(GL_MODELVIEW); 	


      glLoadIdentity(); 	


      gluLookAt(0,0,1,0,0,0,0,1,0); 	


      my_display();    // your display routine	


}	





Can Still GLM 

 projection = glm::perspective(60.0f,1.0f,.1f,100.0f); 	


 glm::mat4 projection = glm::mat4(1.0f); 	



 glMatrixMode(GL_PROJECTION);	


 glLoadMatrixf(&projection[0][0]); 	



-  Set up the projection matrix 	



-  Load the matrix to GL_PROJECTION	





Next	
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Why we need shading	


•  Just attach color  glColor	



•  But	
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Shading 
•  Why does the shape ?	



	


•  Light-material interaction at points -> different color or shade	



•  Factor 	


–  Light sources	


–  Material properties	


–  Location of viewer	


–  Surface orientation	
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Global Effects	



translucent surface	



shadow	



multiple reflection	
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Light Sources	


General Difficult !	
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Simple Light Sources	





Point Sources	



Point source	


Model with position and color	


Distant source = infinite 
distance away (parallel)	





Spot Light	



Spotlight	


Restrict light from ideal point 
source	





Ambient	



Ambient light	


	



Same amount of light in scene	


	


Model contribution of all 
sources and reflecting surfaces	







Indirect/Direct Light	





Scatter (reflect) & Absporb	



Light strikes object - is partially absorbed & partially scattered (reflected)	





Color !	



Amount reflected determines the color and brightness of 
the object	



Red surface appears red in white light - red component is 
reflected and rest is absorbed	
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The Surface	


Reflected light is scattered depending on  smoothness 
and orientation of the surface	
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Surface Type - Smooth 
•  Very Smooth - more reflected light concentrated in  

one direction – like a perfect mirror  



TBT - specular	
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Surface Type - Rough 
Scatters light in all directions 

rough surface 
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Smooth vs. Rough 



Smooth vs. Rough	





The Phong Illumination Model	
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Phong Model	


A simple local model that can be computed rapidly	


•  Has three components	



– Diffuse	


–  Specular	


– Ambient	



•  Uses four vectors 	


– To source	


– To viewer	


– Normal	


–  Perfect reflector	
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Ideal Reflector	


•  Normal is determined by local orientation	


•  Angle of incidence = angle of relection	


•  The three vectors must be coplanar	





Computing r 
Want all three to be unit length 

82 

r = 2(l•n)n− l



Diffuse	
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Lambertian Surface	


Amount reflected is proportional to vertical component of 
incoming light	



–  reflected light ~cos θi	



–  cos θi = l · n if vectors normalized	


– Three coefficients, kr, kb, kg that measure each color 

component is reflected	





Specular or Glossy Surface	





Specular Surfaces 
Specular highlights due to incoming light being reflected in 
directions close to the direction of a perfect reflection  
 
Not Ideal Mirror 

specular 
highlight 
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Specular Reflections 

φ	



Ir ~ ks I cosαφ	



shininess coef	



absorption coef	



incoming intensity	


reflected	


intensity	





88 

The Shininess Coefficient 
•  α between  

– 100 and 200 correspond to metals 
–  5 and 10 give surface that look like plastic	



cosα φ	



φ	

 90 -90 
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Ambient Light	


•  Result of multiple interactions between (large) light 

sources and objects in environment	


•  Amount and color depend on both color of light(s) 

and material properties of the object	



•  Add ka Ia to diffuse and specular terms	



reflection coef	

 intensity of ambient light	
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Distance Terms	


- Light from a point source that reaches a surface is 
inversely proportional to the square of the distance 
between them	


- We can add a factor of the form 1/(ad + bd +cd2) to	


the diffuse and specular  terms	


- The constant and linear terms soften the effect of the 

point source	
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Light Source As	


•  We add  results from each light source	


•  Each light source has separate diffuse, specular, and 

ambient terms to allow for maximum flexibility 
even though this form does not have a physical 
justification	



•  Separate red, green and blue components	


•  Hence, 9 coefficients for each point source	



–  Idr, Idg, Idb, Isr, Isg, Isb, Iar, Iag, Iab	
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Material Properties	


•  Material properties match light source 

properties	


– Nine absorbtion coefficients	



•  kdr, kdg, kdb, ksr, ksg, ksb, kar, kag, kab	



–  Shininess coefficient a 	
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Adding Components	


For each light source and each color component, 

the Phong model can be written (without the 
distance terms) as	



I =kd Id  l · n  + ks Is (v · r )a + ka Ia	


	


For each color component	


we add contributions from	


all sources	
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Modified Phong Model 
•  The specular term in the Phong model 

is problematic because it requires the 
calculation of a new reflection vector 
and view vector for each vertex 

•  Blinn suggested an approximation using 
the halfway vector that is more efficient 
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The Halfway Vector 
•  h is normalized vector halfway between 

l and v 

h = ( l + v )/ | l + v | 
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Using the halfway vector 
•  Replace (v · r )α  by (n · h )β	



•   β is chosen to match shineness 
•  Note that halfway angle is half of angle 

between r and v if vectors are coplanar 
•  Resulting model is known as the 

modified Phong or Blinn lighting model 
– Specified in OpenGL standard 
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Example 

Only differences in  
these teapots are  
the parameters 
in the modified 
Phong model 
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Computation of Vectors 

•   l and v are specified by the application 
•  Can computer r from l and n 
•  Problem is determining n 
•  For simple surfaces   is can be determined but 

how we determine n differs depending on 
underlying representation of surface 

•  OpenGL leaves determination of normal to 
application 
–  Exception for GLU quadrics and Bezier surfaces was 

deprecated 
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Plane Normals 
•  Equation of plane: ax+by+cz+d = 0 
•  From Chapter 3 we know that plane is 

determined by three points p0, p2, p3 or 
normal n and p0 

•  Normal can be obtained by 

n = (p2-p0) × (p1-p0) 
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Normal to Sphere 
•  Implicit function f(x,y.z)=0 
•  Normal given by gradient 
•  Sphere f(p)=p·p-1 
•     n = [∂f/∂x, ∂f/∂y, ∂f/∂z]T=p 
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Parametric Form 
•  For sphere 

•   Tangent plane determined by vectors 

•  Normal given by cross product 

x=x(u,v)=cos u sin v 
y=y(u,v)=cos u cos v 
z= z(u,v)=sin u 

∂p/∂u = [∂x/∂u, ∂y/∂u, ∂z/∂u]T 
∂p/∂v = [∂x/∂v, ∂y/∂v, ∂z/∂v]T 

n = ∂p/∂u × ∂p/∂v  
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General Case 
•  We can compute parametric normals for 

other simple cases 
– Quadrics 
– Parameteric polynomial surfaces 

•  Bezier surface patches (Chapter 10) 



Shading in OpenGL 
Ed Angel 

Professor Emeritus of Computer Science 
University of New Mexico 
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Objectives 
•  Introduce the OpenGL shading methods 

– per vertex vs per fragment shading 
– Where to carry out 

•  Discuss polygonal shading 
– Flat 
– Smooth 
– Gouraud 
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OpenGL shading 
•  Need  

–  Normals 
–  material properties 
–  Lights 

-  State-based shading functions have 
been deprecated (glNormal, 
glMaterial, glLight) 

-  Get computer in application or send 
attributes to shaders 
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Normalization 
•  Cosine terms in lighting calculations can be 

computed using dot product 
•  Unit length vectors simplify calculation 
•  Usually we want to set the magnitudes to have 

unit length but 
– Length can be affected by transformations 
– Note that scaling does not preserved 

length 
•  GLSL has a normalization function 
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Normal for Triangle 

p0 

p1 

p2 

n 
plane     n ·(p - p0 ) = 0 

n = (p2 - p0 ) ×(p1 - p0 )  
 

normalize n   ←  n/ |n| 

p 

Note that right-hand rule determines outward face 
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Specifying a Point Light 
Source 

•  For each light source, we can set an RGBA for 
the diffuse, specular, and ambient components, 
and for the position 

 

vec4 diffuse0 =vec4(1.0, 0.0, 0.0, 1.0); 
vec4 ambient0 = vec4(1.0, 0.0, 0.0, 1.0); 
vec4 specular0 = vec4(1.0, 0.0, 0.0, 1.0); 
vec4 light0_pos =vec4(1.0, 2.0, 3,0, 1.0); 
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Distance and Direction 
•  The source colors are specified in RGBA 
•  The position is given in homogeneous 

coordinates 
–  If w =1.0, we are specifying a finite location 
–  If w =0.0, we are specifying a parallel 

source with the given direction vector 
•  The coefficients in distance terms are usually 

quadratic (1/(a+b*d+c*d*d))  where d is the 
distance from the point being rendered to the 
light source 
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Spotlights 

•  Derive from point source 
– Direction 
– Cutoff 
– Attenuation Proportional to 

cosαφ	



θ	

-θ	

 φ	
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Global Ambient Light 
•  Ambient light depends on color of light 

sources 
– A red light in a white room will cause a red 

ambient term that disappears when the 
light is turned off 

•  A global ambient term that is often 
helpful for testing 



113 
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 

Addison-Wesley 2012 

Moving Light Sources 

•  Light sources are geometric objects whose 
positions or directions are affected by the 
model-view matrix 

•  Depending on where we place the position 
(direction) setting function, we can 
– Move the light source(s) with the object(s) 
– Fix the object(s) and move the light source(s) 
– Fix the light source(s) and move the object(s) 
– Move the light source(s) and object(s) 

independently 
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Material Properties 
•  Material properties should match the terms in 

the light model 
•  Reflectivities 
•  w component gives opacity 

vec4 ambient = vec4(0.2, 0.2, 0.2, 1.0); 
vec4 diffuse = vec4(1.0, 0.8, 0.0, 1.0); 
vec4 specular = vec4(1.0, 1.0, 1.0, 1.0); 
GLfloat shine = 100.0 
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Front and Back Faces 
•  Every face has a front and back 
•  For many objects, we never see the back face 

so we don’t care how or if it’s rendered 
•  If it matters, we can handle in shader  

back faces not visible back faces visible 
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Emissive Term 
•  We can simulate a light source in 

OpenGL by giving a material an 
emissive component 

•  This component is unaffected by any 
sources or transformations 
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Transparency 
•  Material properties are specified as 

RGBA values 
•  The A value can be used to make the 

surface translucent 
•  The default is that all surfaces are 

opaque regardless of A 
•  Later we will enable blending and use 

this feature 
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Polygonal Shading 
•  In per vertex shading, shading calculations are 

done for each vertex 
– Vertex colors become vertex shades and 

can be sent to the vertex shader as a vertex 
attribute 

– Alternately, we can send the parameters to 
the vertex shader and have it compute the 
shade 

•  By default, vertex shades are interpolated 
across an object if passed to the fragment 
shader as a varying variable (smooth shading) 

•  We can also use uniform variables to shade 
with a single shade (flat shading) 
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Polygon Normals 
•  Triangles have a single normal 

– Shades at the vertices as computed by the 
Phong model can be almost same  

–  Identical for a distant viewer (default) or if 
there is no specular component  

•  Consider model of sphere 
•  Want different normals at 
each vertex even though 
this concept is not quite 
correct mathematically 



120 
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 

Addison-Wesley 2012 

Smooth Shading 

•  We can set a new 
normal at each vertex 

•  Easy for sphere model  
–  If centered at origin n = 

p  
•  Now smooth shading 

works 
•  Note silhouette edge 
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Mesh Shading 
•  The previous example is not general 

because we knew the normal at each 
vertex analytically 

•  For polygonal models, Gouraud 
proposed we use the average of the 
normals around a mesh vertex 

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4| 
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Gouraud and Phong 
Shading 

•  Gouraud Shading 
– Find average normal at each vertex (vertex 

normals) 
– Apply modified Phong model at each vertex 
–  Interpolate vertex shades across each polygon 

•  Phong shading 
– Find vertex normals 
–  Interpolate vertex normals across edges 
–  Interpolate edge normals across polygon 
– Apply modified Phong model at each fragment 
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Comparison 
•  If the polygon mesh approximates surfaces with 

a high curvatures, Phong shading may look 
smooth while Gouraud shading may show 
edges 

•  Phong shading requires much more work than 
Gouraud shading 
– Until recently not available in real time 

systems 
– Now can be done using fragment shaders 

•  Both need data structures to represent meshes 
so we can obtain vertex normals 



Vertex Lighting Shaders I 
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// vertex shader 
in vec4 vPosition; 
in vec3 vNormal; 
out vec4 color;  //vertex shade 
 
// light and material properties 
uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct; 
uniform mat4 ModelView; 
uniform mat4 Projection; 
uniform vec4 LightPosition; 
uniform float Shininess; 



Vertex Lighting Shaders II 
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void main() 
{ 
    // Transform vertex  position into eye coordinates 
    vec3 pos = (ModelView * vPosition).xyz; 

  
    vec3 L = normalize( LightPosition.xyz - pos ); 
    vec3 E = normalize( -pos ); 
    vec3 H = normalize( L + E ); 
 
    // Transform vertex normal into eye coordinates 
    vec3 N = normalize( ModelView*vec4(vNormal, 0.0) ).xyz; 
 
     



Vertex Lighting Shaders III 
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// Compute terms in the illumination equation 
    vec4 ambient = AmbientProduct; 
 
    float Kd = max( dot(L, N), 0.0 ); 
    vec4  diffuse = Kd*DiffuseProduct; 
    float Ks = pow( max(dot(N, H), 0.0), Shininess ); 
    vec4  specular = Ks * SpecularProduct; 
    if( dot(L, N) < 0.0 )  specular = vec4(0.0, 0.0, 0.0, 1.0);  
    gl_Position = Projection * ModelView * vPosition; 
 
    color = ambient + diffuse + specular; 
    color.a = 1.0; 
} 



Vertex Lighting Shaders IV 
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// fragment shader 
 
in vec4 color; 
 
void main()  
{  
    gl_FragColor = color; 
}  
 
 



Fragment Lighting 
Shaders I 
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// vertex shader  
in vec4 vPosition; 
in vec3 vNormal; 
 
// output values that will be interpolatated per-fragment 
out vec3 fN; 
out vec3 fE; 
out vec3 fL; 
 
uniform mat4 ModelView; 
uniform vec4 LightPosition; 
uniform mat4 Projection; 
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void main() 
{ 
    fN = vNormal; 
    fE = vPosition.xyz; 
    fL = LightPosition.xyz; 
     
    if( LightPosition.w != 0.0 ) { 

 fL = LightPosition.xyz - vPosition.xyz; 
    } 
 
    gl_Position = Projection*ModelView*vPosition; 
} 
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// fragment shader 
 
// per-fragment interpolated values from the vertex shader 
in vec3 fN; 
in vec3 fL; 
in vec3 fE; 
 
uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct; 
uniform mat4 ModelView; 
uniform vec4 LightPosition; 
uniform float Shininess; 
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void main()  
{  
    // Normalize the input lighting vectors 
     
   vec3 N = normalize(fN); 
    vec3 E = normalize(fE); 
    vec3 L = normalize(fL); 
 
    vec3 H = normalize( L + E );    
    vec4 ambient = AmbientProduct; 
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float Kd = max(dot(L, N), 0.0); 
    vec4 diffuse = Kd*DiffuseProduct; 
     
    float Ks = pow(max(dot(N, H), 0.0), Shininess); 
    vec4 specular = Ks*SpecularProduct; 
 
    // discard the specular highlight if the light's behind the vertex 
    if( dot(L, N) < 0.0 )  

 specular = vec4(0.0, 0.0, 0.0, 1.0); 
     
    gl_FragColor = ambient + diffuse + specular; 
    gl_FragColor.a = 1.0; 
}  
 
 
 


