CSE 5542 - Real Time Rendering Week 6-7-8

OpenGL Perspective Matrix

Courtesy: Prof. H-W. Shen

Perspective Transform

AND ENGINEERING

P.5	P.6 That is ;		
	Xmax-Xmin	0 Xmax + Xmm	0
$X \times X \times X = A - far + B$ O = A - far + B O = A - far + B A - far + B far far far far	0 Xina	x-Jum Ymax-Ymm	D = MPz
	000	-(N+F) (F-N)d	-2NF (F-N)d
=) A - far + B = + 1 $= + 1$		Pole matrix by d.	0
$-2 - Ad + \frac{B \cdot d}{far} = 1 - (2)$			
Solve A. B from D & 2:	Xmax-Xmin 2	0 Xmax+Xmirs 0 Xmax-Xmirs d Ymax+Ymirs ax Jun Y max-Jurn	0
$A = \frac{N+F}{(N-F)d} = \frac{2N\times F}{d(N-F)}$	June June	ax Junn & max - Junn - (N+F)	-2NT
where Nanear Fafar	0 0	-(N+F) $F-N$	T-N
so we have the new projection moting.	have, if we set	the image plane at	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	that is, d= n) .	the hear plane
(f - N/a a (f - N))	then we	have the following F	inal matrix

FIGURE 10.41 Rendered teapots.

CURVES AND SURFACES

Modeling

Parametric Curve

FIGURE 10.1 Parametric

Parametric Curve

P(Umax)

Consider a curve of the form²

$$\mathbf{p}(u) = \begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix}.$$

A polynomial parametric curve of degree3 n is of the form

$$\mathbf{p}(u) = \sum_{k=0}^{n} u^{k} \mathbf{c}_{k}$$

where each ck has independent x, y, and z components; that is,

$$\mathbf{c}_{k} = \begin{bmatrix} c_{xk} \\ c_{yk} \\ c_{zk} \end{bmatrix}.$$

The n + 1 column matrices { c_k } are the coefficients of p; they give us 3(n + 1) degrees of freedom in how we choose the coefficients of a particular p. There is no coupling, however, among the x, y, and z components, so we can work with three independent equations, each of the form

$$p(u) = \sum_{k=0}^{n} u^{k} c_{k}$$

where *p* is any one of *x*, *y*, or *z*. There are n + 1 degrees of freedom in p(u). We can define our curves for any range interval of *u*:

$$u_{\min} \le u \le u_{\max};$$

however, with no loss of generality (see Exercise 10.3), we can assume that $0 \le u \le 1$. As the value of u varies over its range, we define a **curve segment**, as shown in Figure 10.3.

P(vmin)

FIGURE 10.3 Curve segment.

Cubic Parametric Curves

$$\mathbf{p}(u) = \mathbf{c}_0 + \mathbf{c}_1 u + \mathbf{c}_2 u^2 + \mathbf{c}_3 u^3 = \sum_{k=0}^{3} \mathbf{c}_k u^k = \mathbf{u}^T \mathbf{c},$$

where

$$\mathbf{c} = \begin{bmatrix} \mathbf{c}_0 \\ \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{bmatrix}, \qquad \mathbf{u} = \begin{bmatrix} 1 \\ u \\ u^2 \\ u^3 \end{bmatrix}, \qquad \mathbf{c}_k = \begin{bmatrix} c_{kx} \\ c_{ky} \\ c_{kz} \end{bmatrix}.$$

Control Points

FIGURE 10.9 Curve segment and control points.

FIGURE 10.10 Joining of interpolating segments.

Bezier

FIGURE 10.18 Blending polynomials for the Bézier cubic.

$$\mathbf{p}(u) = \sum_{t=0}^{3} b_t(u) \mathbf{p}_t,$$
$$\mathbf{p}(u) = \mathbf{b}(u)^T \mathbf{p},$$

$$\mathbf{b}(u) = \mathbf{M}_B^T \mathbf{u} = \begin{bmatrix} (1-u)^3 \\ 3u(1-u)^2 \\ 3u^2(1-u) \\ u^3 \end{bmatrix}.$$

$$\mathbf{M}_{B} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}.$$

Parametric Surface

Parametric Surface

$$\mathbf{p}(u, v) = \begin{bmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{bmatrix} = \sum_{t=0}^{n} \sum_{j=0}^{m} \mathbf{c}_{tj} u^{t} v^{j}$$

FIGURE 10.4 Surface patch.

Bezier Surface Patches

$$\mathbf{p}(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) \mathbf{p}_{ij} = \mathbf{u}^T \mathbf{M}_B \mathbf{P} \mathbf{M}_B^T \mathbf{v}$$

FIGURE 10.20 Bézier patch.

Subdivision

FIGURE 10.34 Convex hulls and control points.

o Old points discarded after subdivision

Old points retained after subdivision

FIGURE 10.39 Points after second subdivision.

FIGURE 10.40 Subdivided quadrant.

Code

```
void draw_patch(point4 p[4][4])
{
```

```
points[n] = p[0][0];
n++;
points[n] = p[3][0];
n++;
points[n] = p[3][3];
n++;
points[n] = p[0][3];
n++;
```

```
void divide_curve(point4 c[4], point4 r[4], point4 l[4])
{
```

```
/* division of convex hull of Bezier curve */
```

```
int i;
point4 t;
for(i=0;i<3;i++)</pre>
```

```
1[0][i]=c[0][i];
r[3][i]=c[3][i];
1[1][i]=(c[1][i]+c[0][i])/2;
r[2][i]=(c[2][i]+c[3][i])/2;
t[i]=(1[1][i]+r[2][i])/2;
1[2][i]=(t[i]+1[1][i])/2;
r[1][i]=(t[i]+r[2][i])/2;
1[3][i]=r[0][i]=(1[2][i]+r[1][i])/2;
```

```
for(i=0; i<4; i++) 1[i][3] = r[i][3] = 1.0;</pre>
```

```
}
```



```
void divide_patch(point4 p[4][4], int n)
{
    point4 q[4][4], r[4][4], s[4][4], t[4][4];
    point4 a[4][4], b[4][4];
    int k;
    if(n==0) draw_patch(p); /* draw patch if recursion done */
```

```
/* subdivide curves in u direction, transpose results, divide
in u direction again (equivalent to subdivision in v) */
```

else

```
t
for(k=0; k<4; k++) divide_curve(p[k], a[k], b[k]);
transpose4(a);
transpose4(b);
for(k=0; k<4; k++)
        {
        divide_curve(a[k], q[k], r[k]);
        divide_curve(b[k], s[k], t[k]);
        }
</pre>
```

/* recursive division of 4 resulting patches */

```
divide_patch(q, n-1);
divide_patch(r, n-1);
divide_patch(s, n-1);
divide_patch(t, n-1);
}
```

}

Code for GL

Courtesy: http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

GLM

OpenGL Mathematics (GLM) is a header only C++ mathematics library for graphics software based on the OpenGL Shading Language (GLSL).

Provides classes and functions designed and implemented following as strictly as possible the GLSL conventions and functionalities.

When a programmer knows GLSL, he knows GLM as well, making it really easy to use.

C++

glm::mat4 myMatrix;
glm::vec4 myVector;

// fill myMatrix and myVector somehow

glm::vec4 transformedVector = myMatrix * myVector;

// Again, in this order ! this is important.

GLSL

mat4 myMatrix; vec4 myVector;

// fill myMatrix and myVector somehow
vec4 transformedVector = myMatrix * myVector;

//Yeah, it's pretty much the same than GLM

Identity

glm::mat4 myldentityMatrix = glm::mat4(1.0f);

Translate

GLM -

#include <glm/transform.hpp> // after <glm/glm.hpp>
glm::mat4 myMatrix = glm::translate(10.0f, 0.0f, 0.0f);
glm::vec4 myVector(10.0f, 10.0f, 10.0f, 0.0f);
glm::vec4 transformedVector = myMatrix * myVector;

GLSL - vec4 transformedVector = myMatrix * myVector;

Scaling

// Use #include <glm/gtc/matrix_transform.hpp> and #include <glm/gtx/transform.hpp>

glm::mat4 myScalingMatrix = glm::scale(2.0f, 2.0f, 2.0f);

Rotation

// Use #include <glm/gtc/matrix_transform.hpp> and #include <glm/gtx/transform.hpp>

glm::vec3 myRotationAxis(??, ??, ??);

glm::rotate(angle_in_degrees, myRotationAxis);

Accumulating Transforms

TransformedVector = TranslationMatrix * RotationMatrix * ScaleMatrix * OriginalVector;

In Code

GLM

glm::mat4 myModelMatrix = myTranslationMatrix * myRotationMatrix *
myScaleMatrix;

glm::vec4 myTransformedVector = myModelMatrix * myOriginalVector;

GLSL

```
mat4 transform = mat2 * mat1;
vec4 out_vec = transform * in_vec;
```


In Diagrams

In Pictures

Camera/Eye Space

glm::mat4ViewMatrix = glm::translate(-3.0f, 0.0f, 0.0f);

Camera/Eye Space

gluLookAt

LookAt(eye, at, up)

Camera Coordinate Frame

Camera Space

Right hand coordinate system

$$\vec{n} = at - eye$$
$$\vec{n} = \frac{\vec{n}}{\|\vec{n}\|}$$
$$\vec{u} = up \times \vec{n}$$
$$v = \vec{n} \times \vec{u}$$

$$\mathbf{V} = \begin{pmatrix} U_{x} & U_{y} & U_{z} & -eye \cdot \mathbf{u} \\ V_{x} & V_{y} & V_{z} & -eye \cdot \mathbf{v} \\ n_{x} & n_{y} & n_{z} & -eye \cdot \mathbf{n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$(up_{x}, up_{y}, up_{z}) \quad (at_{x}, at_{y}, at_{z})$$

$$(up_{x}, up_{y}, up_{z}) \quad (eye_{x}, eye_{y}, eye_{z})$$

Old Style

```
void display()
{
    glClear(GL_COLOR_BUFFER_BIT);
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    gluLookAt(0,0,1,0,0,0,0,1,0);
    ....
```


New World

- Create a view matrix

view = glm::lookAt(glm::vec3(0.0, 2.0, 2.0), glm::vec3(0.0, 0.0, 0.0), glm::vec3(0.0, 1.0, 0.0));

- Combine with modeling matrices

```
glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, angle, glm::vec3(0.0f, 0.0f, 1.0f));
model = glm::scale(model, scale_size, scale_size, scale_size);
```

```
glm::mat4 modelview = view * model;
```


Working with Old World

glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(&modelview[0][0]);

// begin to draw your geometry

. . .

Projection Matrices

Demo

In Code

// Generates a really hard-to-read matrix, but a normal, standard 4x4 matrix nonetheless

glm::mat4 projectionMatrix = glm::perspective(

- FoV, // The horizontal Field of View, in degrees : the amount of "zoom".
 // Think "camera lens". Usually between 90° (extra wide) and 30° (quite zoomed in)
 4.0f / 3.0f, // Aspect Ratio. Depends on the size of your window.
 //Notice that 4/3 == 800/600 == 1280/960, sounds familiar ?
 0.1f, // Near clipping plane. Keep as big as possible, or you'll get precision issues.
- 100.0f // Far clipping plane. Keep as little as possible.

);

In Diagrams

More Code

C++ : compute the matrix

glm::mat4 MVPmatrix = projection * view * model;
// Remember : inverted !

```
// GLSL : apply it
transformed_vertex = MVP * in_vertex;
```


Combined

Generate Matrix

```
// Projection matrix : 45°
//Field of View, 4:3 ratio, display range : 0.1 unit <-> 100 units
glm::mat4 Projection = glm::perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.0f);
```

```
// Camera matrix
glm::mat4View = glm::lookAt(
    glm::vec3(4,3,3), // Camera is at (4,3,3), in World Space
    glm::vec3(0,0,0), // and looks at the origin
    glm::vec3(0,1,0) // Head is up (set to 0,-1,0 to look upside-down)
);
// Model matrix : an identity matrix (model will be at the origin)
glm::mat4 Model = glm::mat4(1.0f); // Changes for each model !
// Our ModelViewProjection : multiplication of our 3 matrices
glm::mat4 MVP = Projection *View * Model;
// Remember, matrix multiplication is the other way around
```


GLSL Takes Over

// Get a handle for our "MVP" uniform.
// Only at initialisation time.
GLuint MatrixID = glGetUniformLocation(programID, "MVP");

// Send our transformation to the currently bound shader,
// in the "MVP" uniform
// For each model you render, since the MVP will be different
// (at least the M part)

glUniformMatrix4fv(MatrixID, I, GL_FALSE, &MVP[0][0]);

Use It

in vec3 vertexPosition_modelspace; uniform mat4 MVP;

void main(){

}

// Output position of the vertex, in clip space : MVP * position

vec4 v = vec4(vertexPosition_modelspace,I);

// Transform an homogeneous 4D vector, remember ?
 gl_Position = MVP * v;

Old Style

OpenGL Orthogonal Viewing

Ortho(left,right,bottom,top,near,far)

near and far measured from camera

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Perspective

Frustum(left,right,bottom,top,near,far)

Using Field of View

- With Frustum it is often difficult to get the desired view
- Perpective(fovy, aspect, near, far) often provides a better interface

Old Style

```
void display()
{
    glClear(GL_COLOR_BUFFER_BIT);
    glMatrixMode(GL_PROJETION);
    glLoadIdentity();
    gluPerspective(fove, aspect, near, far);
    glMatrixMode(GL_MODELVIEVV);
    glLoadIdentity();
    gluLookAt(0,0,1,0,0,0,0,1,0);
    my_display(); // your display routine
}
```


Can Still GLM

- Set up the projection matrix

glm::mat4 projection = glm::mat4(1.0f);
projection = glm::perspective(60.0f, 1.0f, 1f, 100.0f);

- Load the matrix to GL_PROJECTION

glMatrixMode(GL_PROJECTION);
glLoadMatrixf(&projection[0][0]);

Next

Why we need shading

• Just attach color glColor

• But

Shading

• Why does the shape ?

- Light-material interaction at points -> different color or shade
- Factor
 - Light sources
 - Material properties
 - Location of viewer
 - Surface orientation

Global Effects

Light Sources

General Difficult !

E.Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Simple Light Sources

Point Sources

Point source

Model with position and color Distant source = infinite distance away (parallel)

Spot Light

Spotlight Restrict light from ideal point source

Ambient

Ambient light

Same amount of light in scene

Model contribution of all sources and reflecting surfaces

Indirect/Direct Light

Scatter (reflect) & Absporb

Light strikes object - is partially absorbed & partially scattered (reflected)

Color !

Amount reflected determines the color and brightness of the object

Red surface appears red in white light - red component is reflected and rest is absorbed

The Surface

Reflected light is scattered depending on smoothness and orientation of the surface

Surface Type - Smooth

 Very Smooth - more reflected light concentrated in one direction – like a perfect mirror

TBT - specular

GS

Surface Type - Rough

Scatters light in all directions

rough surface

Smooth vs. Rough

Smooth vs. Rough

The Phong Illumination Model

Phong Model

- A simple local model that can be computed rapidly
- Has three components
 - Diffuse
 - Specular
 - Ambient
- Uses four vectors
 - To source
 - To viewer
 - Normal
 - Perfect reflector

Ideal Reflector

- Normal is determined by local orientation
- Angle of incidence = angle of relection
- The three vectors must be coplanar

Computing r

Want all three to be unit length

$$r = 2(I \bullet n)n - I$$

Diffuse

Lambertian Surface

Amount reflected is proportional to vertical component of incoming light

- reflected light $\sim \cos \theta_i$
- $-\cos \theta_i = \mathbf{I} \cdot \mathbf{n}$ if vectors normalized
- Three coefficients, k_r , k_b , k_g that measure each color component is reflected

Specular or Glossy Surface

Specular Surfaces

Specular highlights due to incoming light being reflected in directions close to the direction of a perfect reflection

Not Ideal Mirror

Specular Reflections

87

The Shininess Coefficient

- α between
 - 100 and 200 correspond to metals
 - 5 and 10 give surface that look like plastic

Ambient Light

- Result of multiple interactions between (large) light sources and objects in environment
- Amount and color depend on both color of light(s) and material properties of the object
- Add $k_a I_a$ to diffuse and specular terms

reflection coef intensity of ambient light

Distance Terms

- Light from a point source that reaches a surface is inversely proportional to the square of the distance between them
- We can add a factor of the form $I/(ad + bd + cd^2)$ to the diffuse and specular terms
- The constant and linear terms soften the effect of the point source

E.Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Light Source As

- We add results from each light source
- Each light source has separate diffuse, specular, and ambient terms to allow for maximum flexibility even though this form does not have a physical justification
- Separate red, green and blue components
- Hence, 9 coefficients for each point source
 I_{dr}, I_{dg}, I_{db}, I_{sr}, I_{sg}, I_{sb}, I_{ar}, I_{ag}, I_{ab}

Material Properties

- Material properties match light source properties
 - Nine absorbtion coefficients
 - k_{dr} , k_{dg} , k_{db} , k_{sr} , k_{sg} , k_{sb} , k_{ar} , k_{ag} , k_{ab}
 - Shininess coefficient a

Adding Components

For each light source and each color component, the Phong model can be written (without the distance terms) as

$$\mathbf{I} = \mathbf{k}_{d} \mathbf{I}_{d} \mathbf{I} \cdot \mathbf{n} + \mathbf{k}_{s} \mathbf{I}_{s} (\mathbf{V} \cdot \mathbf{r})^{a} + \mathbf{k}_{a} \mathbf{I}_{a}$$

For each color component we add contributions from all sources

Modified Phong Model

- The specular term in the Phong model is problematic because it requires the calculation of a new reflection vector and view vector for each vertex
- Blinn suggested an approximation using the halfway vector that is more efficient

More to Come.....

The Halfway Vector

h is normalized vector halfway between
 I and v

h = (1 + v) / |1 + v|

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Using the halfway vector

- Replace $(\mathbf{v}\,\cdot\,\mathbf{r}\,)^{\alpha}$ by $(\mathbf{n}\,\cdot\,\mathbf{h}\,)^{\beta}$
- β is chosen to match shineness
- Note that halfway angle is half of angle between r and v if vectors are coplanar
- Resulting model is known as the modified Phong or Blinn lighting model
 – Specified in OpenGL standard

Example

Only differences in these teapots are the parameters in the modified Phong model

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Computation of Vectors

- I and v are specified by the application
- Can computer r from I and n
- Problem is determining n
- For simple surfaces is can be determined but how we determine n differs depending on underlying representation of surface
- OpenGL leaves determination of normal to application
 - Exception for GLU quadrics and Bezier surfaces was deprecated

Plane Normals

- Equation of plane: ax+by+cz+d = 0
- From Chapter 3 we know that plane is determined by three points p₀, p₂, p₃ or normal n and p₀
- Normal can be obtained by

$$\mathbf{n} = (\mathbf{p}_2 - \mathbf{p}_0) \times (\mathbf{p}_1 - \mathbf{p}_0)$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Normal to Sphere

- Implicit function f(x,y.z)=0
- Normal given by gradient
- Sphere $f(\mathbf{p})=\mathbf{p}\cdot\mathbf{p}\cdot\mathbf{1}$
- $\mathbf{n} = [\partial f / \partial x, \partial f / \partial y, \partial f / \partial z]^{\mathrm{T}} = \mathbf{p}$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Parametric Form

For sphere

x=x(u,v)=cos u sin v y=y(u,v)=cos u cos v

• Tangent plane determined by vectors

 $\partial \mathbf{p} / \partial \mathbf{u} = [\partial \mathbf{x} / \partial \mathbf{u}, \, \partial \mathbf{y} / \partial \mathbf{u}, \, \partial \mathbf{z} / \partial \mathbf{u}] \mathbf{T}$ $\partial \mathbf{p} / \partial \mathbf{v} = [\partial \mathbf{x} / \partial \mathbf{v}, \, \partial \mathbf{y} / \partial \mathbf{v}, \, \partial \mathbf{z} / \partial \mathbf{v}] \mathbf{T}$

Normal given by cross product

 $\boldsymbol{n}=\partial \boldsymbol{p}/\partial \boldsymbol{u}\times\partial \boldsymbol{p}/\partial \boldsymbol{v}$

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

General Case

- We can compute parametric normals for other simple cases
 - Quadrics
 - Parameteric polynomial surfaces
 - Bezier surface patches (Chapter 10)

Shading in OpenGL

Ed Angel

Professor Emeritus of Computer Science University of New Mexico

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Objectives

- Introduce the OpenGL shading methods
 - per vertex vs per fragment shading
 - Where to carry out
- Discuss polygonal shading
 - Flat
 - Smooth
 - Gouraud

OpenGL shading

- Need
 - Normals
 - material properties
 - Lights
- State-based shading functions have been deprecated (glNormal, glMaterial, glLight)
- Get computer in application or send attributes to shaders

Normalization

- Cosine terms in lighting calculations can be computed using dot product
- Unit length vectors simplify calculation
- Usually we want to set the magnitudes to have unit length but
 - Length can be affected by transformations
 - Note that scaling does not preserved length
- GLSL has a normalization function

Normal for Triangle

Note that right-hand rule determines outward face

Specifying a Point Light Source

 For each light source, we can set an RGBA for the diffuse, specular, and ambient components, and for the position

```
vec4 diffuse0 =vec4(1.0, 0.0, 0.0, 1.0);
vec4 ambient0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 specular0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 light0_pos =vec4(1.0, 2.0, 3,0, 1.0);
```


Distance and Direction

- The source colors are specified in RGBA
- The position is given in homogeneous coordinates
 - If w =1.0, we are specifying a finite location
 - If w =0.0, we are specifying a parallel source with the given direction vector
- The coefficients in distance terms are usually quadratic (1/(a+b*d+c*d*d)) where d is the distance from the point being rendered to the light source

Spotlights

- Derive from point source
 - Direction
 - Cutoff
 - Attenuation Proportional to cos^αΦ

Global Ambient Light

- Ambient light depends on color of light sources
 - A red light in a white room will cause a red ambient term that disappears when the light is turned off
- A global ambient term that is often helpful for testing

Moving Light Sources

- Light sources are geometric objects whose positions or directions are affected by the model-view matrix
- Depending on where we place the position (direction) setting function, we can
 - Move the light source(s) with the object(s)
 - Fix the object(s) and move the light source(s)
 - Fix the light source(s) and move the object(s)
 - Move the light source(s) and object(s)

AND ENGINEERING AND ENGINEERING AND ENGINEERING

Material Properties

- Material properties should match the terms in the light model
- Reflectivities
- w component gives opacity

```
vec4 ambient = vec4(0.2, 0.2, 0.2, 1.0);
vec4 diffuse = vec4(1.0, 0.8, 0.0, 1.0);
vec4 specular = vec4(1.0, 1.0, 1.0, 1.0);
GLfloat shine = 100.0
```

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Front and Back Faces

- Every face has a front and back
- For many objects, we never see the back face so we don't care how or if it's rendered
- If it matters, we can handle in shader

back faces not visible

back faces visible

Emissive Term

- We can simulate a light source in OpenGL by giving a material an emissive component
- This component is unaffected by any sources or transformations

Transparency

- Material properties are specified as RGBA values
- The A value can be used to make the surface translucent
- The default is that all surfaces are opaque regardless of A
- Later we will enable blending and use this feature

Polygonal Shading

- In per vertex shading, shading calculations are done for each vertex
 - Vertex colors become vertex shades and can be sent to the vertex shader as a vertex attribute
 - Alternately, we can send the parameters to the vertex shader and have it compute the shade
- By default, vertex shades are interpolated across an object if passed to the fragment

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Can also use uniformis and black an

Polygon Normals

- Triangles have a single normal
 - Shades at the vertices as computed by the Phong model can be almost same
 - Identical for a distant viewer (default) or if there is no specular componen⁺
- Consider model of sphere
- Want different normals at each vertex even though this concept is not quite

correct mathematically

Smooth Shading

- We can set a new normal at each vertex
- Easy for sphere model
 - If centered at origin n =
 p
- Now smooth shading works

• Note *silhouette edge*

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Mesh Shading

- The previous example is not general because we knew the normal at each vertex analytically
- For polygonal models, Gouraud proposed we use the average of the normals around a mesh vert

$$\mathbf{n} = (\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4) / |\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4|$$

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Gouraud and Phong Shading

- Gouraud Shading
 - Find average normal at each vertex (vertex normals)
 - Apply modified Phong model at each vertex
 - Interpolate vertex shades across each polygon

Addison-Wesley 2012

- Phong shading
 - Find vertex normals
 - Interpolate vertex normals across edges
 - Interpolate edge normals across polygon

Comparison

- If the polygon mesh approximates surfaces with a high curvatures, Phong shading may look smooth while Gouraud shading may show edges
- Phong shading requires much more work than Gouraud shading
 - Until recently not available in real time systems
 - Now can be done using fragment shaders
- Both need data structures to represent meshes

so we can obtain vertex normals

Vertex Lighting Shaders I

// vertex shader
in vec4 vPosition;
in vec3 vNormal;
out vec4 color; //vertex shade

// light and material properties uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct; uniform mat4 ModelView; uniform mat4 Projection; uniform vec4 LightPosition; uniform float Shininess;

Vertex Lighting Shaders II

```
void main()
{
    // Transform vertex position into eye coordinates
    vec3 pos = (ModelView * vPosition).xyz;
```

```
vec3 L = normalize( LightPosition.xyz - pos );
vec3 E = normalize( -pos );
vec3 H = normalize( L + E );
```

// Transform vertex normal into eye coordinates
vec3 N = normalize(ModelView*vec4(vNormal, 0.0)).xyz;

Vertex Lighting Shaders III

// Compute terms in the illumination equation
 vec4 ambient = AmbientProduct;

float Kd = max(dot(L, N), 0.0); vec4 diffuse = Kd*DiffuseProduct; float Ks = pow(max(dot(N, H), 0.0), Shininess); vec4 specular = Ks * SpecularProduct; if(dot(L, N) < 0.0) specular = vec4(0.0, 0.0, 0.0, 1.0); gl_Position = Projection * ModelView * vPosition;

```
color = ambient + diffuse + specular;
color.a = 1.0;
```


Vertex Lighting Shaders IV

// fragment shader

in vec4 color;

```
void main()
{
    gl_FragColor = color;
}
```


Fragment Lighting Shaders I

// vertex shader
in vec4 vPosition;
in vec3 vNormal;

// output values that will be interpolatated per-fragment
out vec3 fN;
out vec3 fE;
out vec3 fL;

uniform mat4 ModelView; uniform vec4 LightPosition; <u>uniform mat4 Projection:</u>

Fragment Lighting Shaders II

```
void main()
{
    fN = vNormal;
    fE = vPosition.xyz;
    fL = LightPosition.xyz;

    if( LightPosition.w != 0.0 ) {
        fL = LightPosition.xyz - vPosition.xyz -
```

DEPARTMENT OF

COMPUTER SCIENCE

AND ENGINEERING

fL = LightPosition.xyz - vPosition.xyz;
}

gl_Position = Projection*ModelView*vPosition;

Fragment Lighting Shaders III

// fragment shader

// per-fragment interpolated values from the vertex shader in vec3 fN; in vec3 fL; in vec3 fE;

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct; uniform mat4 ModelView; uniform vec4 LightPosition; uniform float Shininess;

Fragment Lighting Shaders IV

```
void main()
```

{

```
// Normalize the input lighting vectors
```

```
vec3 N = normalize(fN);
vec3 E = normalize(fE);
vec3 L = normalize(fL);
```

```
vec3 H = normalize( L + E );
vec4 ambient = AmbientProduct;
```


Fragment Lighting Shaders V

```
float Kd = max(dot(L, N), 0.0);
vec4 diffuse = Kd*DiffuseProduct;
```

ND ENGINEERING

float Ks = pow(max(dot(N, H), 0.0), Shininess); vec4 specular = Ks*SpecularProduct;

// discard the specular highlight if the light's behind the vertex
if(dot(L, N) < 0.0)
 specular = vec4(0.0, 0.0, 0.0, 1.0);</pre>

gl_FragColor = ambient + diffuse + specular; gl_FragColor.a = 1.0;