
CSE 5542 - Real Time Rendering	

	

 	

 	

Week 6-7-8	

OpenGL Perspective
Matrix	

Courtesy: Prof. H-W. Shen	

Perspective Transform	

Modeling	

Parametric Curve	

Parametric Curve	

Cubic Parametric Curves	

Control Points	

Bezier	

Parametric Surface 	

Parametric Surface	

Bezier Surface Patches	

Subdivision	

Code	

Code for GL	

	

Courtesy:	

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/	

GLM	

OpenGL Mathematics (GLM) is a header only C++ mathematics library
for graphics software based on the OpenGL Shading Language (GLSL).	

	

Provides classes and functions designed and implemented following as
strictly as possible the GLSL conventions and functionalities.	

	

When a programmer knows GLSL, he knows GLM as well, making it
really easy to use.	

glm::mat4 myMatrix;	

glm::vec4 myVector;	

	

// fill myMatrix and myVector somehow	

	

glm::vec4 transformedVector = myMatrix * myVector;	

	

 // Again, in this order ! this is important.	

C++	

GLSL	

mat4 myMatrix;	

vec4 myVector;	

	

// fill myMatrix and myVector somehow	

vec4 transformedVector = myMatrix * myVector; 	

	

// Yeah, it's pretty much the same than GLM	

Identity	

glm::mat4 myIdentityMatrix = glm::mat4(1.0f);	

Translate	

GLM -	

#include <glm/transform.hpp> // after <glm/glm.hpp>	

glm::mat4 myMatrix = glm::translate(10.0f, 0.0f, 0.0f);	

glm::vec4 myVector(10.0f, 10.0f, 10.0f, 0.0f);	

glm::vec4 transformedVector = myMatrix * myVector; 	

GLSL - 	

vec4 transformedVector = myMatrix * myVector;	

Scaling	

// Use #include <glm/gtc/matrix_transform.hpp> and #include
<glm/gtx/transform.hpp>	

	

glm::mat4 myScalingMatrix = glm::scale(2.0f, 2.0f ,2.0f);	

Rotation	

// Use #include <glm/gtc/matrix_transform.hpp> and #include
<glm/gtx/transform.hpp>	

	

glm::vec3 myRotationAxis(??, ??, ??);	

	

glm::rotate(angle_in_degrees, myRotationAxis);	

Accumulating Transforms	

TransformedVector = ���
TranslationMatrix * RotationMatrix * ScaleMatrix * OriginalVector;	

In Code	

GLM	

	

glm::mat4 myModelMatrix = myTranslationMatrix * myRotationMatrix *
myScaleMatrix;	

	

glm::vec4 myTransformedVector = myModelMatrix * myOriginalVector;	

GLSL	

	

mat4 transform = mat2 * mat1;	

vec4 out_vec = transform * in_vec;	

In Diagrams	

In Pictures	

Camera/Eye Space	

glm::mat4 ViewMatrix = glm::translate(-3.0f, 0.0f ,0.0f);	

Camera/Eye Space	

glm::mat4 CameraMatrix = glm::LookAt (

 cameraPosition, // the position of your camera, in world space	

 cameraTarget, // where you want to look at, in world space	

 upVector // probably glm::vec3(0,1,0), 	

	

 	

// but (0,-1,0) would make you looking upside-down	

);	

Transform objects from world to eye space 	

36	

gluLookAt	

LookAt(eye, at, up)	

Camera Coordinate Frame

Camera Space	

Right hand coordinate system 	

!n = at − eye
!n =
!n
!n

!u = up× !n
v = !n × !u

Old Style	

void display() 	

{	

 glClear(GL_COLOR_BUFFER_BIT); 	

 glMatrixMode(GL_MODELVIEW); 	

 glLoadIdentity(); 	

 gluLookAt(0,0,1,0,0,0,0,1,0); 	

 …	

}	

New World

view = glm::lookAt(glm::vec3(0.0, 2.0, 2.0), glm::vec3(0.0, 0.0, 0.0), glm::vec3(0.0,
1.0, 0.0)); 	

- Create a view matrix 	

- Combine with modeling matrices	

 glm::mat4 model = glm::mat4(1.0f); 	

 model = glm::rotate(model, angle, glm::vec3(0.0f, 0.0f, 1.0f)); 	

 model = glm::scale(model, scale_size, scale_size, scale_size); 	

	

 glm::mat4 modelview = view * model; 	

Working with Old World
 glMatrixMode(GL_MODELVIEW); 	

 glLoadMatrixf(&modelview[0][0]);	

	

// begin to draw your geometry 	

… 	

Projection Matrices	

Demo

In Code	

// Generates a really hard-to-read matrix, but a normal, standard 4x4 matrix nonetheless	

	

glm::mat4 projectionMatrix = glm::perspective(

	

 FoV, // The horizontal Field of View, in degrees : the amount of "zoom". 	

	

 // Think "camera lens". Usually between 90° (extra wide) and 30° (quite zoomed in)	

 4.0f / 3.0f, // Aspect Ratio. Depends on the size of your window. 	

	

 //Notice that 4/3 == 800/600 == 1280/960, sounds familiar ?	

 0.1f, // Near clipping plane. Keep as big as possible, or you'll get precision issues.	

 	

 100.0f // Far clipping plane. Keep as little as possible.	

);	

Effect	

In Diagrams	

More Code	

C++ : compute the matrix	

	

glm::mat4 MVPmatrix = projection * view * model; 	

// Remember : inverted !	

// GLSL : apply it	

transformed_vertex = MVP * in_vertex;	

Combined 	

Generate Matrix	

// Projection matrix : 45° 	

//Field of View, 4:3 ratio, display range : 0.1 unit <-> 100 units	

glm::mat4 Projection = glm::perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.0f);	

	

// Camera matrix	

glm::mat4 View = glm::lookAt(

 glm::vec3(4,3,3), // Camera is at (4,3,3), in World Space	

 glm::vec3(0,0,0), // and looks at the origin	

 glm::vec3(0,1,0) // Head is up (set to 0,-1,0 to look upside-down)	

);	

// Model matrix : an identity matrix (model will be at the origin)	

glm::mat4 Model = glm::mat4(1.0f); // Changes for each model !	

// Our ModelViewProjection : multiplication of our 3 matrices	

glm::mat4 MVP = Projection * View * Model; 	

// Remember, matrix multiplication is the other way around	

GLSL Takes Over	

// Get a handle for our "MVP" uniform.	

// Only at initialisation time.	

GLuint MatrixID = glGetUniformLocation(programID, "MVP");	

 	

// Send our transformation to the currently bound shader,	

// in the "MVP" uniform	

// For each model you render, since the MVP will be different 	

// (at least the M part)	

	

glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]);	

Use It	

in vec3 vertexPosition_modelspace;	

uniform mat4 MVP;	

 	

void main(){ 	

// Output position of the vertex, in clip space : MVP * position	

	

 vec4 v = vec4(vertexPosition_modelspace,1); 	

	

// Transform an homogeneous 4D vector, remember ?	

 gl_Position = MVP * v;	

	

}	

Old Style	

55
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

OpenGL Orthogonal Viewing

Ortho(left,right,bottom,top,near,far)

near and far measured from camera

56	

OpenGL Perspective	

Frustum(left,right,bottom,top,near,far)	

57	

Using Field of View	

•  With Frustum it is often difficult to get the
desired view	

•  Perpective(fovy, aspect, near, far) often provides a
better interface	

aspect = w/h	

front plane	

Old Style	

void display() 	

{	

 glClear(GL_COLOR_BUFFER_BIT); 	

 glMatrixMode(GL_PROJETION); 	

 glLoadIdentity(); 	

 gluPerspective(fove, aspect, near, far); 	

 glMatrixMode(GL_MODELVIEW); 	

 glLoadIdentity(); 	

 gluLookAt(0,0,1,0,0,0,0,1,0); 	

 my_display(); // your display routine	

}	

Can Still GLM

 projection = glm::perspective(60.0f,1.0f,.1f,100.0f); 	

 glm::mat4 projection = glm::mat4(1.0f); 	

 glMatrixMode(GL_PROJECTION);	

 glLoadMatrixf(&projection[0][0]); 	

-  Set up the projection matrix 	

-  Load the matrix to GL_PROJECTION	

Next	

61	

Why we need shading	

•  Just attach color glColor	

•  But	

62

Shading
•  Why does the shape ?	

	

•  Light-material interaction at points -> different color or shade	

•  Factor 	

–  Light sources	

–  Material properties	

–  Location of viewer	

–  Surface orientation	

63

Global Effects	

translucent surface	

shadow	

multiple reflection	

64	

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012	

Light Sources	

General Difficult !	

65	

Simple Light Sources	

Point Sources	

Point source	

Model with position and color	

Distant source = infinite
distance away (parallel)	

Spot Light	

Spotlight	

Restrict light from ideal point
source	

Ambient	

Ambient light	

	

Same amount of light in scene	

	

Model contribution of all
sources and reflecting surfaces	

Indirect/Direct Light	

Scatter (reflect) & Absporb	

Light strikes object - is partially absorbed & partially scattered (reflected)	

Color !	

Amount reflected determines the color and brightness of
the object	

Red surface appears red in white light - red component is
reflected and rest is absorbed	

73	

The Surface	

Reflected light is scattered depending on smoothness
and orientation of the surface	

74

Surface Type - Smooth
•  Very Smooth - more reflected light concentrated in

one direction – like a perfect mirror

TBT - specular	

76

Surface Type - Rough
Scatters light in all directions

rough surface

77

Smooth vs. Rough

Smooth vs. Rough	

The Phong Illumination Model	

80	

Phong Model	

A simple local model that can be computed rapidly	

•  Has three components	

– Diffuse	

–  Specular	

– Ambient	

•  Uses four vectors 	

– To source	

– To viewer	

– Normal	

–  Perfect reflector	

81	

Ideal Reflector	

•  Normal is determined by local orientation	

•  Angle of incidence = angle of relection	

•  The three vectors must be coplanar	

Computing r
Want all three to be unit length

82

r = 2(l•n)n− l

Diffuse	

84

Lambertian Surface	

Amount reflected is proportional to vertical component of
incoming light	

–  reflected light ~cos θi	

–  cos θi = l · n if vectors normalized	

– Three coefficients, kr, kb, kg that measure each color

component is reflected	

Specular or Glossy Surface	

Specular Surfaces
Specular highlights due to incoming light being reflected in
directions close to the direction of a perfect reflection

Not Ideal Mirror

specular
highlight

87

Specular Reflections

φ	

Ir ~ ks I cosαφ	

shininess coef	

absorption coef	

incoming intensity	

reflected	

intensity	

88

The Shininess Coefficient
•  α between

– 100 and 200 correspond to metals
–  5 and 10 give surface that look like plastic	

cosα φ	

φ	

 90 -90

89

Ambient Light	

•  Result of multiple interactions between (large) light

sources and objects in environment	

•  Amount and color depend on both color of light(s)

and material properties of the object	

•  Add ka Ia to diffuse and specular terms	

reflection coef	

 intensity of ambient light	

90	

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012	

Distance Terms	

- Light from a point source that reaches a surface is
inversely proportional to the square of the distance
between them	

- We can add a factor of the form 1/(ad + bd +cd2) to	

the diffuse and specular terms	

- The constant and linear terms soften the effect of the

point source	

91
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Light Source As	

•  We add results from each light source	

•  Each light source has separate diffuse, specular, and

ambient terms to allow for maximum flexibility
even though this form does not have a physical
justification	

•  Separate red, green and blue components	

•  Hence, 9 coefficients for each point source	

–  Idr, Idg, Idb, Isr, Isg, Isb, Iar, Iag, Iab	

92

Material Properties	

•  Material properties match light source

properties	

– Nine absorbtion coefficients	

•  kdr, kdg, kdb, ksr, ksg, ksb, kar, kag, kab	

–  Shininess coefficient a 	

93

Adding Components	

For each light source and each color component,

the Phong model can be written (without the
distance terms) as	

I =kd Id l · n + ks Is (v · r)a + ka Ia	

	

For each color component	

we add contributions from	

all sources	

94
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Modified Phong Model
•  The specular term in the Phong model

is problematic because it requires the
calculation of a new reflection vector
and view vector for each vertex

•  Blinn suggested an approximation using
the halfway vector that is more efficient

96
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

The Halfway Vector
•  h is normalized vector halfway between

l and v

h = (l + v)/ | l + v |

97
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Using the halfway vector
•  Replace (v · r)α by (n · h)β	

•  β is chosen to match shineness
•  Note that halfway angle is half of angle

between r and v if vectors are coplanar
•  Resulting model is known as the

modified Phong or Blinn lighting model
– Specified in OpenGL standard

98
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Example

Only differences in
these teapots are
the parameters
in the modified
Phong model

99
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Computation of Vectors

•  l and v are specified by the application
•  Can computer r from l and n
•  Problem is determining n
•  For simple surfaces is can be determined but

how we determine n differs depending on
underlying representation of surface

•  OpenGL leaves determination of normal to
application
–  Exception for GLU quadrics and Bezier surfaces was

deprecated

100
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Plane Normals
•  Equation of plane: ax+by+cz+d = 0
•  From Chapter 3 we know that plane is

determined by three points p0, p2, p3 or
normal n and p0

•  Normal can be obtained by

n = (p2-p0) × (p1-p0)

101
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Normal to Sphere
•  Implicit function f(x,y.z)=0
•  Normal given by gradient
•  Sphere f(p)=p·p-1
•  n = [∂f/∂x, ∂f/∂y, ∂f/∂z]T=p

102
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Parametric Form
•  For sphere

•  Tangent plane determined by vectors

•  Normal given by cross product

x=x(u,v)=cos u sin v
y=y(u,v)=cos u cos v
z= z(u,v)=sin u

∂p/∂u = [∂x/∂u, ∂y/∂u, ∂z/∂u]T
∂p/∂v = [∂x/∂v, ∂y/∂v, ∂z/∂v]T

n = ∂p/∂u × ∂p/∂v

103
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

General Case
•  We can compute parametric normals for

other simple cases
– Quadrics
– Parameteric polynomial surfaces

•  Bezier surface patches (Chapter 10)

Shading in OpenGL
Ed Angel

Professor Emeritus of Computer Science
University of New Mexico

104
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

105
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Objectives
•  Introduce the OpenGL shading methods

– per vertex vs per fragment shading
– Where to carry out

•  Discuss polygonal shading
– Flat
– Smooth
– Gouraud

106
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

OpenGL shading
•  Need

–  Normals
–  material properties
–  Lights

-  State-based shading functions have
been deprecated (glNormal,
glMaterial, glLight)

-  Get computer in application or send
attributes to shaders

107
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Normalization
•  Cosine terms in lighting calculations can be

computed using dot product
•  Unit length vectors simplify calculation
•  Usually we want to set the magnitudes to have

unit length but
– Length can be affected by transformations
– Note that scaling does not preserved

length
•  GLSL has a normalization function

108
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Normal for Triangle

p0

p1

p2

n
plane n ·(p - p0) = 0

n = (p2 - p0) ×(p1 - p0)

normalize n ← n/ |n|

p

Note that right-hand rule determines outward face

109
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Specifying a Point Light
Source

•  For each light source, we can set an RGBA for
the diffuse, specular, and ambient components,
and for the position

vec4 diffuse0 =vec4(1.0, 0.0, 0.0, 1.0);
vec4 ambient0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 specular0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 light0_pos =vec4(1.0, 2.0, 3,0, 1.0);

110
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Distance and Direction
•  The source colors are specified in RGBA
•  The position is given in homogeneous

coordinates
–  If w =1.0, we are specifying a finite location
–  If w =0.0, we are specifying a parallel

source with the given direction vector
•  The coefficients in distance terms are usually

quadratic (1/(a+b*d+c*d*d)) where d is the
distance from the point being rendered to the
light source

111
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Spotlights

•  Derive from point source
– Direction
– Cutoff
– Attenuation Proportional to

cosαφ	

θ	

-θ	

 φ	

112
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Global Ambient Light
•  Ambient light depends on color of light

sources
– A red light in a white room will cause a red

ambient term that disappears when the
light is turned off

•  A global ambient term that is often
helpful for testing

113
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Moving Light Sources

•  Light sources are geometric objects whose
positions or directions are affected by the
model-view matrix

•  Depending on where we place the position
(direction) setting function, we can
– Move the light source(s) with the object(s)
– Fix the object(s) and move the light source(s)
– Fix the light source(s) and move the object(s)
– Move the light source(s) and object(s)

independently

114
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Material Properties
•  Material properties should match the terms in

the light model
•  Reflectivities
•  w component gives opacity

vec4 ambient = vec4(0.2, 0.2, 0.2, 1.0);
vec4 diffuse = vec4(1.0, 0.8, 0.0, 1.0);
vec4 specular = vec4(1.0, 1.0, 1.0, 1.0);
GLfloat shine = 100.0

115
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Front and Back Faces
•  Every face has a front and back
•  For many objects, we never see the back face

so we don’t care how or if it’s rendered
•  If it matters, we can handle in shader

back faces not visible back faces visible

116
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Emissive Term
•  We can simulate a light source in

OpenGL by giving a material an
emissive component

•  This component is unaffected by any
sources or transformations

117
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Transparency
•  Material properties are specified as

RGBA values
•  The A value can be used to make the

surface translucent
•  The default is that all surfaces are

opaque regardless of A
•  Later we will enable blending and use

this feature

118
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Polygonal Shading
•  In per vertex shading, shading calculations are

done for each vertex
– Vertex colors become vertex shades and

can be sent to the vertex shader as a vertex
attribute

– Alternately, we can send the parameters to
the vertex shader and have it compute the
shade

•  By default, vertex shades are interpolated
across an object if passed to the fragment
shader as a varying variable (smooth shading)

•  We can also use uniform variables to shade
with a single shade (flat shading)

119
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Polygon Normals
•  Triangles have a single normal

– Shades at the vertices as computed by the
Phong model can be almost same

–  Identical for a distant viewer (default) or if
there is no specular component

•  Consider model of sphere
•  Want different normals at
each vertex even though
this concept is not quite
correct mathematically

120
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Smooth Shading

•  We can set a new
normal at each vertex

•  Easy for sphere model
–  If centered at origin n =

p
•  Now smooth shading

works
•  Note silhouette edge

121
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Mesh Shading
•  The previous example is not general

because we knew the normal at each
vertex analytically

•  For polygonal models, Gouraud
proposed we use the average of the
normals around a mesh vertex

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|

122
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Gouraud and Phong
Shading

•  Gouraud Shading
– Find average normal at each vertex (vertex

normals)
– Apply modified Phong model at each vertex
–  Interpolate vertex shades across each polygon

•  Phong shading
– Find vertex normals
–  Interpolate vertex normals across edges
–  Interpolate edge normals across polygon
– Apply modified Phong model at each fragment

123
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Comparison
•  If the polygon mesh approximates surfaces with

a high curvatures, Phong shading may look
smooth while Gouraud shading may show
edges

•  Phong shading requires much more work than
Gouraud shading
– Until recently not available in real time

systems
– Now can be done using fragment shaders

•  Both need data structures to represent meshes
so we can obtain vertex normals

Vertex Lighting Shaders I

124
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

// vertex shader
in vec4 vPosition;
in vec3 vNormal;
out vec4 color; //vertex shade

// light and material properties
uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;
uniform mat4 Projection;
uniform vec4 LightPosition;
uniform float Shininess;

Vertex Lighting Shaders II

125
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

void main()
{
 // Transform vertex position into eye coordinates
 vec3 pos = (ModelView * vPosition).xyz;

 vec3 L = normalize(LightPosition.xyz - pos);
 vec3 E = normalize(-pos);
 vec3 H = normalize(L + E);

 // Transform vertex normal into eye coordinates
 vec3 N = normalize(ModelView*vec4(vNormal, 0.0)).xyz;

Vertex Lighting Shaders III

126
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

// Compute terms in the illumination equation
 vec4 ambient = AmbientProduct;

 float Kd = max(dot(L, N), 0.0);
 vec4 diffuse = Kd*DiffuseProduct;
 float Ks = pow(max(dot(N, H), 0.0), Shininess);
 vec4 specular = Ks * SpecularProduct;
 if(dot(L, N) < 0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);
 gl_Position = Projection * ModelView * vPosition;

 color = ambient + diffuse + specular;
 color.a = 1.0;
}

Vertex Lighting Shaders IV

127
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

// fragment shader

in vec4 color;

void main()
{
 gl_FragColor = color;
}

Fragment Lighting
Shaders I

128
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

// vertex shader
in vec4 vPosition;
in vec3 vNormal;

// output values that will be interpolatated per-fragment
out vec3 fN;
out vec3 fE;
out vec3 fL;

uniform mat4 ModelView;
uniform vec4 LightPosition;
uniform mat4 Projection;

Fragment Lighting
Shaders II

129
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

void main()
{
 fN = vNormal;
 fE = vPosition.xyz;
 fL = LightPosition.xyz;

 if(LightPosition.w != 0.0) {

 fL = LightPosition.xyz - vPosition.xyz;
 }

 gl_Position = Projection*ModelView*vPosition;
}

Fragment Lighting
Shaders III

130
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

// fragment shader

// per-fragment interpolated values from the vertex shader
in vec3 fN;
in vec3 fL;
in vec3 fE;

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;
uniform vec4 LightPosition;
uniform float Shininess;

Fragment Lighting
Shaders IV

131
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

void main()
{
 // Normalize the input lighting vectors

 vec3 N = normalize(fN);
 vec3 E = normalize(fE);
 vec3 L = normalize(fL);

 vec3 H = normalize(L + E);
 vec4 ambient = AmbientProduct;

Fragment Lighting
Shaders V

132
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

float Kd = max(dot(L, N), 0.0);
 vec4 diffuse = Kd*DiffuseProduct;

 float Ks = pow(max(dot(N, H), 0.0), Shininess);
 vec4 specular = Ks*SpecularProduct;

 // discard the specular highlight if the light's behind the vertex
 if(dot(L, N) < 0.0)

 specular = vec4(0.0, 0.0, 0.0, 1.0);

 gl_FragColor = ambient + diffuse + specular;
 gl_FragColor.a = 1.0;
}

