CSE 5542 - Real Time Rendering Week 5

department of
COMPUTER SCIENCE
AND ENGINEERING

Slides(Some) Courtesy E. Angel and D. Shreiner

Much Content ...

What?

department of
COMPUTER SCIENCE
AND ENGINEERING

Transformations

Ninereinenent

In Vertex Shader

```
#version 330 core
uniform mat4 Transform; // stays the same for many vertices
    // (primitive granularity)
in vec4 Vertex; // per-vertex data sent each time this
    // shader is run
void main()
{
    gl_Position = Transform * Vertex;
}
```


Typical Transform

$$
\left[\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right]\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right) \rightarrow\left(\begin{array}{ccccccc}
a x & + & b y & + & c z & + & d w \\
e x & + & f y & + & g z & + & h w \\
i x & + & j y & + & k z & + & l w \\
m x & + & n y & + & o z & + & p w
\end{array}\right)
$$

Scaling

Figure 5.9. Scaling an object to three times its size (Note that if the object is off center, this also moves its center three times further from

Scaling

Expand or contract along each axis (fixed point of origin)
$x^{\prime}=s_{x} x$
$y^{\prime}=s_{y} x$
$z^{\prime}=s_{z} x$
$p^{\prime}=s_{p}$
$\mathrm{S}=\mathrm{S}\left(\mathrm{s}_{x}, \mathrm{~s}_{y}, \mathrm{~s}_{z}\right)=\left[\begin{array}{cccc}s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Linear Transform - Scaling

Scaling

$$
S=\left[\begin{array}{cccc}
x & 0 & 0 & 1 \\
0 & y & 0 & 1 \\
0 & 0 & z & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and, } S^{-1}=\left[\begin{array}{cccc}
\frac{1}{x} & 0 & 0 & 1 \\
0 & \frac{1}{y} & 0 & 1 \\
0 & 0 & \frac{1}{z} & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Scaling - This will do!

$$
\left.S=\begin{array}{ccc}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right] \quad S=\left[\begin{array}{cc}
x & 0 \\
0 & y
\end{array}\right]
$$

As Matrices

$$
\begin{aligned}
S & =\left[\begin{array}{llll}
3.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 3.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 3.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0
\end{array}\right] \\
\left(\begin{array}{c}
3 x \\
3 y \\
3 z \\
1
\end{array}\right) & =\left[\begin{array}{llll}
3.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 3.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 3.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0
\end{array}\right]\left(\begin{array}{c}
x \\
y \\
z \\
1.0
\end{array}\right)
\end{aligned}
$$

Reflection

corresponds to negative scale factors

Rotation

Figure 5.11. Rotation (Rotating an object 50 degrees in the $x y$ plane, around the z axis. Note if the object is off center, it also revolves the object around the point $(0,0,0)$.)

Rotation (2D)

Consider rotation about the origin by q degrees

- radius stays the same, angle increases by q

Rotation about \mathbf{z} axis

- Rotation about z axis in three dimensions leaves all points with the same z
- Equivalent to rotation in two dimensions in planes of constant z

$$
\begin{aligned}
& x^{\prime}=x \cos q-y \sin q \\
& y^{\prime}=x \sin q+y \cos q \\
& z^{\prime}=z
\end{aligned}
$$

- or in homogeneous coordinates

$$
\mathbf{p}^{\prime}=\mathbf{R}_{\mathbf{z}}(\mathrm{q}) \mathbf{p}
$$

Rotation Matrix

$$
\mathbf{R}=\mathbf{R}_{\mathbf{z}}(\mathrm{q})=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example

$$
\left(\begin{array}{c}
\cos 50 \cdot x-\sin 50 \cdot y \\
\sin 50 \cdot x+\cos 50 \cdot y \\
z \\
1.0
\end{array}\right)=\left[\begin{array}{cccc}
\cos 50 & -\sin 50 & 0.0 & 0.0 \\
\sin 50 & \cos 50 & 0.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0
\end{array}\right]\left(\begin{array}{c}
x \\
y \\
z \\
1.0
\end{array}\right)
$$

X- \& Y-axes

Same argument as for rotation about z axis

For rotation about x axis, x is unchanged
For rotation about y axis, y is unchanged

$$
\begin{aligned}
& \mathbf{R}=\mathbf{R}_{x}(\mathrm{q})=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{R}=\mathbf{R}_{\mathbf{y}}(\mathrm{q})=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Linear Spaces

$\left[\begin{array}{llll}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right) \rightarrow\left(\begin{array}{ccccccc}a x & + & b y & + & c z & + & d w \\ e x & + & f y & + & g z & + & h w \\ i x & + & j y & + & k z & + & l w \\ m x & + & n y & + & o z & + & p w\end{array}\right)$

Now, some observations.

- Each component of the new vector is a linear function of all the components of the old vector, hence the need for 16 values in the matrix.
- The multiplication always takes the vector $(0,0,0,0)$ to $(0,0,0,0)$. This is characteristic of linear transformations and shows that if this was a 3×3 matrix times a three-component vector, why translation (moving) can't be done with a matrix multiply. We'll see how translating a three-component vector becomes possible with a 4×4 matrix and homogeneous coordinates.

Recap: Linear Independence

A set of vectors $v_{1}, v_{2}, \ldots, v_{\mathrm{n}}$ is linearly independent if

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+. . \alpha_{\mathrm{n}} v_{\mathrm{n}}=0 \text { iff } \alpha_{1}=\alpha_{2}=\ldots=0
$$

Recap: Coordinate Systems

- A basis $v_{1}, v_{2}, \ldots ., v_{\mathrm{n}}$
- A vector is written $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}$
- Scalars $\left\{\alpha_{1}, \alpha_{2}, \ldots . A_{n}\right\}$ - representation of v given basis
- Representation as a row or column array of scalars

$$
\mathbf{a}=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \ldots . & \alpha_{\mathrm{n}}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\cdot \\
\alpha_{\mathrm{n}}
\end{array}\right]
$$

Change of Coordinate Systems

- Consider two representations of same vector with respect to two different bases:

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] \\
& \mathbf{b}=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& v=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]^{\top} \\
& =b_{1} u_{1}+b_{2} u_{2}+b_{3} u_{3}=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]^{\top}
\end{aligned}
$$

Second in Terms of First

Each of the basis vectors, $\mathrm{ul}, \mathrm{u} 2, \mathrm{u} 3$, are vectors that can be represented in terms of the first basis

$$
\begin{aligned}
& u_{1}=g_{11} v_{1}+g_{12} v_{2}+g_{13} v_{3} \\
& u_{2}=g_{21} v_{1}+g_{22} v_{2}+g_{23} v_{3} \\
& u_{3}=g_{31} v_{1}+g_{32} v_{2}+g_{33} v_{3}
\end{aligned}
$$

Recap: Matrix Form

The coefficients define a 3×3 matrix

$$
\boldsymbol{M}=\left[\begin{array}{lll}
\gamma_{11} & \gamma_{12} & \gamma_{13} \\
\gamma_{21} & \gamma_{22} & \gamma_{23} \\
\gamma_{31} & \gamma_{32} & \gamma_{33}
\end{array}\right]
$$

and the bases can be related by

$$
\mathbf{a}=\mathbf{M}^{\top} \mathbf{b}
$$

Translation

- Move (translate, displace) a point to a new location

- Displacement determined by a vector d
- Three degrees of freedom
$-P^{\prime}=P+d$

Translating in 3D

object

translation: every point displaced by same vector

Translation

Figure 5.8. Translating an object 2.5 in the x direction

With 2D/3D Vectors

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\left[\begin{array}{l}
\alpha \\
\beta \\
\chi
\end{array}\right]
$$

In Matrix Form

Translation

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{array}\right] \text { and, } T^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & -x \\
0 & 1 & 0 & -y \\
0 & 0 & 1 & -z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

As Matrices

$$
\left(\begin{array}{c}
x+2.5 \\
y \\
z \\
1.0
\end{array}\right)=\left[\begin{array}{llll}
1.0 & 0.0 & 0.0 & 2.5 \\
0.0 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0
\end{array}\right]\left(\begin{array}{c}
x \\
y \\
z \\
1.0
\end{array}\right)
$$

department of
COMPUTER SCIENCE
AND ENGINEERING

As Code

```
// Application (C++) code
#include "vmath.h"
// Make a transformation matrix that translates coordinates by (1, 2, 3)
vmath::mat4 translationMatrix = vmath::translate(1.0, 2.0, 3,0);
// Set this matrix into the current program.
glUniformMatrix4fv(matrix_loc, 1, GL_FALSE, translationMatrix);
```


Homogenous Coordinates

department of
COMPUTER SCIENCE
AND ENGINEERING

Homogenous Coordinates

Allows Linearity

$\left[\begin{array}{llll}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right) \rightarrow\left(\begin{array}{ccccccc}a x & + & b y & + & c z & + & d w \\ e x & + & f y & + & g z & + & h w \\ i x & + & j y & + & k z & + & l w \\ m x & + & n y & + & o z & + & p w\end{array}\right)$

Now, some observations.

- Each component of the new vector is a linear function of all the components of the old vector, hence the need for 16 values in the matrix.
- The multiplication always takes the vector $(0,0,0,0)$ to $(0,0,0,0)$. This is characteristic of linear transformations and shows that if this was a 3×3 matrix times a three-component vector, why translation (moving) can't be done with a matrix multiply. We'll see how translating a three-component vector becomes possible with a 4×4 matrix and homogeneous coordinates.

Homogeneous Coordinates

Homogeneous coordinates for [xyz]:

$$
\mathbf{p}=\left[\begin{array}{llll}
x^{\prime} & y^{\prime} & z^{\prime} & w
\end{array}\right]^{\top}=\left[\begin{array}{lll}
w x & w y & w z \\
w
\end{array}\right]^{\top}
$$

Three dimensional point (for $w \neq 0$) by

$$
x \leftarrow x^{\prime} / w, y \leftarrow y^{\prime} / w, z \leftarrow z^{\prime} / w
$$

If $w=0$, the representation is that of a vector

Replaces points in 3D by lines through origin in 4D dimensions

For $\mathrm{w}=\mathrm{I}$, the representation of a point is $[\mathrm{xyz} \mathrm{z}$]

In Computer Graphics

Homogeneous coordinates key

- All standard transformations: rotation, translation, scaling.
- Implemented matrix multiplications with 4×4 matrices
- Hardware pipeline works with 4D representations
- Orthographic viewing: w=0 - vectors \& w=I - points
- For perspective we need a perspective division

Recap: Frames

- A coordinate system is insufficient for points
- Origin \& basis vectors form a frame

Recap : Unified Representation

- Frame determined by $\left(\mathrm{P}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$
- For this frame, every vector can be written as

$$
v=a_{1} v_{1}+a_{2} v_{2}+\ldots .+a_{n} v_{n}
$$

- Every point can be written as

$$
P=P_{0}+b_{1} v_{1}+b_{2} v_{2}+\ldots+b_{n} v_{n}
$$

Recap : Unified Representation

Since $0 \cdot P=0$ and $I \cdot P=P$
$v=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array} P_{0}\right]^{\top}$
$P=P_{0}+b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3}=\left[b_{1} b_{2} b_{3} \quad l\right]\left[v_{1} v_{2} v_{3} P_{0}\right]^{\top}$

Thus we obtain the four-dimensional homogeneous coordinate representation

$$
\begin{aligned}
& \mathbf{v}=\left[\begin{array}{llll}
a_{1} & a_{2} & a_{3} & 0
\end{array}\right]^{\top} \\
& \mathbf{p}=\left[\begin{array}{llll}
b_{1} & b_{2} & b_{3} & l
\end{array}\right]^{\top}
\end{aligned}
$$

Change of Frames

- We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames:
$\left(P_{0}, v_{1}, v_{2}, v_{3}\right)$
$\left(\mathrm{Q}_{0}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$

- Any point or vector can be reßbesented in either frame
- We can represent $Q_{0}, u_{1}, u_{2}, u_{3}$ in terms of $P_{0}, v_{1}, v_{2}, v_{3}$

One Frame in Terms of Other

Extending what we did with change of bases

$$
\begin{aligned}
& u_{1}=\gamma_{11} v_{1}+\gamma_{12} v_{2}+\gamma_{13} v_{3} \\
& u_{2}=\gamma_{21} v_{1}+\gamma_{22} v_{2}+\gamma_{23} v_{3} \\
& u_{3}=\gamma_{31} v_{1}+\gamma_{32} v_{2}+\gamma_{33} v_{3} \\
& Q_{0}=\gamma_{41} v_{1}+\gamma_{42} v_{2}+\gamma_{43} v_{3}+\gamma_{44} P_{0}
\end{aligned}
$$

defining a 4×4 matrix

$$
\boldsymbol{M}=\left[\begin{array}{llll}
\gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\
\gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\
\gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\
\gamma_{41} & \gamma_{42} & \gamma_{43} & 1
\end{array}\right]
$$

Working with Representations

Within the two frames any point or vector has a representation of the same form
$\mathbf{a}=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array} a_{4}\right]$ in the first frame
$\mathbf{b}=\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array} b_{4}\right]$ in the second frame
where $a_{4}=b_{4}=I$ for points and $a_{4}=b_{4}=0$ for vectors and

$$
\mathbf{a}=\mathbf{M}^{\top} \mathbf{b}
$$

The matrix \mathbf{M} is 4×4 and specifies an affine transformation in homogeneous coordinates

Affine Transformations

- Every linear transformation is equivalent to a change in frames
- Every affine transformation preserves lines
- However, an affine transformation has only 12 degrees of freedom because 4 of the elements in the matrix are fixed and are a subset of all possible 4×4 linear transformations

General Structure

$$
\left[\begin{array}{cccc}
& S R & & T \\
& & 0 & 0 \\
& 1
\end{array}\right]
$$

Inverses

- Can compute inverses use simple geometric observations
- Translation: $\mathbf{T}^{-1}\left(d_{x}, d_{y}, d_{z}\right)=\mathbf{T}\left(-d_{x},-d_{y},-d_{z}\right)$
- Rotation: $\mathbf{R}^{-1}(\mathrm{q})=\mathbf{R}(-q)$
- Holds for any rotation matrix
- Note that since $\cos (-q)=\cos (q)$ and $\sin (-q)=-\sin (q)$
$\mathbf{R}^{-1}(\mathrm{q})=\mathbf{R}^{\top}$ (q)
- Scaling: $\mathbf{S}^{-1}\left(s_{x}, s_{y}, s_{z}\right)=\mathbf{S}\left(\mathrm{I} / \mathrm{s}_{\mathrm{x}}, \mathrm{I} / \mathrm{s}_{\mathrm{y}}, \mathrm{I} / \mathrm{s}_{\mathrm{z}}\right)$

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Since same transformation is applied to many vertices, the cost of forming a matrix $\mathbf{M}=\mathbf{A B C D}$ is not significant compared to the cost of computing Mp for many vertices \mathbf{p}

In-situ Transformations

In DIace Scailio

Figure 5.10. Scaling an object in place (Scale in place by moving to ($0,0,0$), scaling, and then moving it back.)

As Opposed To

AND ENGINEERING

As Matrices and code

$$
v^{\prime}=T^{-1}(S(T v))
$$

or

$$
v^{\prime}=\left(T^{-1} \mathrm{~S} T\right) v
$$

which allows for pre-multiplication of the three matrices into a single matrix.

$$
\begin{gathered}
M=T^{1} S T \\
v^{\prime}=M v
\end{gathered}
$$

M now does the complete job of scaling an off-center object.

```
vmath::mat4 translateMatrix = vmath::translate(1.0, 2.0, 3,0);
vmath::mat4 scaleMatriu = vmath::scale(5.0) ;
vmath::mat4 scaleTranslateMatrix = scaleMatrix * translateMatriu;
```


Figure 5.12. Rotating in place (Rotating an object in place by moving it to ($0,0,0$), rotating, and then moving it back.)

Fixed Point Other Than Origin

Move fixed point to origin
Rotate
Move fixed point back
$\mathbf{M}=\mathbf{T}\left(p_{f}\right) \mathbf{R}(\theta) \mathbf{T}\left(-p_{f}\right)$

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent

$$
\mathbf{p}^{\prime}=\mathbf{A B C p}=\mathbf{A}(\mathbf{B}(\mathbf{C p}))
$$

- In terms of column matrices

$$
\mathbf{p}^{\top}=\mathbf{p}^{\top} \mathbf{C}^{\top} \mathbf{B}^{\top} \mathbf{A}^{\top}
$$

In Shaders

uniform mat4 ViewT,ViewR, ModelT, ModelR, ModelS, Project; in vec4 Vertex;
void main()
$\{$
gl_Position = Project

* ModeIS * ModeIR * ModelT
*ViewR *ViewT
* Vertex;
\}

General Rotation About Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes
$\mathbf{R}(\theta)=\mathbf{R}_{z}\left(\theta_{z}\right) \mathbf{R}_{y}\left(\theta_{y}\right) \mathbf{R}_{x}\left(\theta_{x}\right)$
$\theta_{x} \theta_{y} \theta_{z}$ are called the Euler angles
Note that rotations do not commute We can use rotations in another order but with different angles

Let $v=(x, y, z)^{\top}$, and $u=v /\|v\|=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)^{\top}$. Also let

$$
S=\left[\begin{array}{ccc}
0 & -z^{\prime} & y^{\prime} \\
z^{\prime} & 0 & -x^{\prime} \\
-y^{\prime} & x^{\prime} & 0
\end{array}\right]
$$

and,
where

$$
u u^{\top}=\left[\begin{array}{lll}
x^{2} & x y & x z \\
x y & y^{2} & y z \\
x z & y z & z^{2}
\end{array}\right]
$$

$$
R=\left[\begin{array}{llll}
m & m & m & 0 \\
m & m & m & 0 \\
m & m & m & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

DEPARTMENT OF
COMPUTER SCIENCE
AND ENGINEERING

Shear

- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along x axis

$$
\begin{aligned}
& x^{\prime}=x+y \cot \theta \\
& y^{\prime}=y \\
& z^{\prime}=z
\end{aligned}
$$

$$
\mathbf{H}(\mathrm{q})=\left[\begin{array}{cccc}
1 & \cot \theta & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Viewing Transform

World \& Camera Frames

- Changes in frame are then defined by 4×4 matrices
- In OpenGL, base frame is the world frame
- Represent entities in the camera frame by changing world representation using model-view matrix
- Initially these frames are the same ($\mathbf{M}=\mathbf{I}$)

Figure 5.1. Steps in configuring and positioning the viewing frustum

Steps

1. Move your camera to the location you want to shoot from and point the camera the desired direction (viewing transformation).
2. Move the subject to be photographed into the desired location in the scene (modeling transformation).
3. Choose a camera lens or adjust the zoom (projection transformation).
4. Take the picture (apply the transformations).
5. Stretch or shrink the resulting image to the desired picture size (viewport transformation). For 3D graphics, this also includes stretching or shrinking the depth (depth-range scaling). This is not to be confused with Step 3, which selected how much of the scene to capture, not how much to stretch the result.

Moving the Camera

If objects are on both sides of $z=0$, move camera frame

(a)
(b)

Figure 5.2. Coordinate systems required by OpenGL (The coordinate systems are the boxes on the left. The central boxes transform from one coordinate system to the next. Units are described to the right.)

DerSDective

$P=\left[\begin{array}{cccc}\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\ 0 & 0 & -1 & 0\end{array}\right]$
P is defined as long as $l \neq r, t \neq b$, and $n \neq f$.

Details

$$
\left[\begin{array}{llll}
1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 0.0
\end{array}\right]\left(\begin{array}{c}
x \\
y \\
z \\
1.0
\end{array}\right) \rightarrow\left(\begin{array}{l}
x \\
y \\
z \\
z
\end{array}\right)
$$

To Note

z values will end up at 1.0 !
Lose information about depth
No scaling result to the [-I.0, I.0] range

Two Cases

Symmetric, centered frustum, where z-axis is centered in the cone

Asymmetric frustum- view thru a window and near it, but not toward its middle

Symmetric Case

- Project points in frustum onto near plane
- Line from $(0,0,0)$ makes ratio of z to x same, and same for z to y for all points
$\frac{z_{\text {near }}}{z}=\frac{x_{\text {prof }}}{x} \quad \frac{z_{\text {near }}}{z}=\frac{y_{\text {prol }}}{y}$
- $\mathrm{xproj}=\mathrm{x} \cdot \mathrm{znear}$, yproj $=\mathrm{y} \cdot \mathrm{znear}$
- Scale window size to [-I.0, I.0]

$$
\left[\begin{array}{cccc}
\frac{z_{\text {near }}}{\text { width/2 }} & 0.0 & 0.0 & 0.0 \\
0.0 & \frac{z_{\text {near }}}{\text { height } / 2} & 0.0 & 0.0 \\
0.0 & 0.0 & -\frac{z_{\text {fur }}+z_{\text {near }}}{z_{\text {fur }}-z_{\text {near }}} & \frac{2 z_{\text {fur }}}{z_{\text {fur }}-z_{\text {near }}} \\
0.0 & 0.0 & -1.0 & 0.0
\end{array}\right]
$$

Symmetric Case

$$
\left[\begin{array}{cccc}
\frac{Z_{\text {near }}}{\text { width } 2} & 0.0 & 0.0 & 0.0 \\
0.0 & \frac{Z_{\text {near }}}{\text { height } / 2} & 0.0 & 0.0 \\
0.0 & 0.0 & -\frac{z_{\text {furr }}+Z_{\text {near }}}{Z_{\text {far }}-} \frac{z_{\text {near }}}{} & \frac{2 z_{\text {fur }} z_{\text {near }}}{z_{\text {fur }}-z_{\text {near }}} \\
0.0 & 0.0 & -1.0 & 0.0
\end{array}\right]
$$

Asymmetric

$$
\left[\begin{array}{ccc}
\frac{z_{\text {near }}}{\text { width } / 2} & 0.0 & \frac{\text { left }+ \text { right }}{\text { width } / 2} \\
0.0 & \frac{z_{\text {near }}}{\text { height } / 2} & \frac{\text { top }+ \text { bottom }}{\text { height } / 2} \\
0.0 & 0.0 & -\frac{z_{\text {far }}+z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}} \\
0.0 & 0.0 & -1.0
\end{array}\right.
$$

DaMдief Niewing

$$
P=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & -\frac{2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Orthographic Projection: Camera positioned infinitely far away at $z=\infty$

P is defined as long as $1 \neq \mathrm{r}, \mathrm{t} \neq \mathrm{b}$, and $\mathrm{n} \neq \mathrm{f}$.

Details

department of
COMPUTER SCIENCE

Symmetric

$$
\left[\begin{array}{cccc}
\frac{1}{\text { width } / 2} & 0.0 & 0.0 & 0.0 \\
0.0 & \frac{1}{\text { height } / 2} & 0.0 & 0.0 \\
0.0 & 0.0 & -\frac{1}{\left(z_{\text {far }}-z_{\text {near }}\right) / 2} & -\frac{z_{\text {far }}+z_{\text {near }}}{z_{\text {far }}-Z_{\text {near }}} \\
0.0 & 0.0 & 0.0 & 1.0
\end{array}\right]
$$

Asymmetric

$$
\left[\begin{array}{cccc}
\frac{1}{(\text { right }- \text { left }) / 2} & 0.0 & 0.0 & -\frac{\text { right }+ \text { left }}{\text { right }- \text { left }} \\
0.0 & \frac{1}{(\text { top-bottom }) / 2} & 0.0 & -\frac{\text { top }+ \text { bottom }}{\text { top }- \text { bottom }} \\
0.0 & 0.0 & -\frac{1}{\left(z_{\text {far }}-z_{\text {near }}\right) / 2} & -\frac{z_{\text {far }}+z_{\text {near }}}{z_{\text {far }}-z_{\text {near }}} \\
0.0 & 0.0 & 0.0 & 1.0
\end{array}\right]
$$

