
CSE 5542 - Real Time Rendering	

	

 	

 	

Week 5	

Slides(Some) Courtesy – ���
E. Angel and D. Shreiner	

Much Content …	

What ?	

4	

Transformations	

Where in OpenGL ?	

In Vertex Shader	

Typical Transform	

Scaling	

10	

Scaling	

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

z

y

x

s
s

s

S = S(sx, sy, sz) =	

x’=sxx	

y’=syx	

z’=szx	

p’=Sp	

Expand or contract along each axis (fixed point of origin)	

Linear Transform - Scaling	

Scaling – This will do !	

3x3	

S =
x 0 0
0 y 0

0 0 z

!

"

#
#
#

$

%

&
&
&

S = x 0
0 y

!

"
#
#

$

%
&
&

2x2	

As Matrices	

14	

Reflection	

corresponds to negative scale factors	

original	

sx = -1 sy = 1	

sx = -1 sy = -1	

 sx = 1 sy = -1	

Rotation	

16	

Rotation (2D)	

Consider rotation about the origin by q degrees	

–  radius stays the same, angle increases by q	

x’=x cos q –y sin q	

y’ = x sin q + y cos q	

x = r cos f	

y = r sin f	

x = r cos (f + q)	

y = r sin (f + q)	

17	

Rotation about z axis	

•  Rotation about z axis in three dimensions leaves all

points with the same z	

–  Equivalent to rotation in two dimensions in
planes of constant z	

– or in homogeneous coordinates	

 p’=Rz(q)p	

x’=x cos q –y sin q	

y’ = x sin q + y cos q	

z’ =z	

18	

Rotation Matrix	

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

θθ

θ−θ

1000
0100
00 cossin
00sin cos

R = Rz(q) =	

Example	

20	

X- & Y-axes	

Same argument as for rotation about z axis	

For rotation about x axis, x is unchanged	

For rotation about y axis, y is unchanged	

R = Rx(q) =	

R = Ry(q) =	

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

θθ

θθ

1000
0 cos sin0
0 sin- cos0
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

θθ

θθ

1000
0 cos0 sin-
0010
0 sin0 cos

Linear Spaces	

22

Recap: Linear Independence
A set of vectors v1, v2, …, vn is linearly
independent if
 α1v1+α2v2+.. αnvn=0 iff α1=α2=…=0

23

Recap: Coordinate Systems
•  A basis v1, v2,…., vn

•  A vector is written v=α1v1+ α2v2 +….+αnvn

•  Scalars {α1, α2, …. Αn}- representation of v given basis
•  Representation as a row or column array of scalars

a=[α1 α2 …. αn]T=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

α

α

α

n

2

1

.

24	

Change of Coordinate Systems	

•  Consider two representations of same vector with

respect to two different bases:	

v=a1v1+ a2v2 +a3v3 = [a1 a2 a3]
 [v1 v2 v3]

T	

=b1u1+ b2u2 +b3u3 = [b1 b2 b3]
 [u1 u2 u3]

T	

	

a=[a1 a2 a3]	

b=[b1 b2 b3]	

where	

25	

Second in Terms of First	

Each of the basis vectors, u1,u2, u3, are vectors that

can be represented in terms of the first basis	

	

	

u1 = g11v1+g12v2+g13v3	

u2 = g21v1+g22v2+g23v3	

u3 = g31v1+g32v2+g33v3	

v	

26	

Recap: Matrix Form 	

The coefficients define a 3 x 3 matrix	

	

	

	

	

and the bases can be related by	

	

a=MTb	

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γγγ

γγγ

γγγ

3231

232221

131211

33

M =	

27	

Translation	

•  Move (translate, displace) a point to a new

location	

•  Displacement determined by a vector d	

– Three degrees of freedom	

–  P’=P+d	

P	

P’	

d	

28

Translating in 3D

object	

 translation: every point displaced	

 by same vector	

Translation	

With 2D/3D Vectors	

x '
y '

z '

!

"

#
#
#

$

%

&
&
&
=
x
y

z

!

"

#
#
#

$

%

&
&
&
+

α
β

χ

!

"

#
#
#

$

%

&
&
&

In Matrix Form	

As Matrices	

As Code	

Homogenous Coordinates	

Homogenous Coordinates	

Allows Linearity	

37	

Homogeneous Coordinates	

Homogeneous coordinates for [x y z]:	

	

p =[x’ y’ z’ w] T =[wx wy wz w] T	

	

Three dimensional point (for w≠0) by	

	

x←x’/w, y←y’/w, z←z’/w	

	

If w=0, the representation is that of a vector	

	

Replaces points in 3D by lines through origin in 4D dimensions	

	

For w=1, the representation of a point is [x y z 1]	

38	

In Computer Graphics	

Homogeneous coordinates key 	

– All standard transformations: rotation, translation, scaling. 	

–  Implemented matrix multiplications with 4 x 4 matrices	

– Hardware pipeline works with 4D representations	

– Orthographic viewing: w=0 – vectors & w=1 – points	

–  For perspective we need a perspective division	

39	

Recap: Frames	

•  A coordinate system is insufficient for points	

•  Origin & basis vectors form a frame	

P0	

v1	

v2	

v3	

40	

Recap : Unified Representation	

•  Frame determined by (P0, v1, v2, v3)	

•  For this frame, every vector can be written as 	

 v=a1v1+ a2v2 +….+anvn	

•  Every point can be written as	

 P = P0 + b1v1+ b2v2 +….+bnvn	

41	

Since 0•P = 0 and 1•P =P	

v=a1v1+ a2v2 +a3v3 = [a1 a2 a3 0]

 [v1 v2 v3 P0]
T	

P = P0 + b1v1+ b2v2 +b3v3= [b1 b2 b3 1]
 [v1 v2 v3 P0]

T	

	

Thus we obtain the four-dimensional homogeneous coordinate

representation	

v = [a1 a2 a3 0]

 T	

p = [b1 b2 b3 1]
 T	

Recap : Unified Representation	

42	

Change of Frames	

•  We can apply a similar process in homogeneous

coordinates to the representations of both points and
vectors	

•  Any point or vector can be represented in either frame	

•  We can represent Q0, u1, u2, u3 in terms of P0, v1, v2, v3 	

Consider two frames:	

(P0, v1, v2, v3)	

(Q0, u1, u2, u3)	

 P0	

 v1	

v2	

v3	

Q0	

u1	

u2	

u3	

43	

One Frame in Terms of Other	

u1 = γ11v1+γ12v2+γ13v3	

u2 = γ21v1+γ22v2+γ23v3	

u3 = γ31v1+γ32v2+γ33v3	

Q0 = γ41v1+γ42v2+γ43v3 +γ44P0	

	

Extending what we did with change of bases	

defining a 4 x 4 matrix	

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1γγγ

0γγγ

0γγγ

0γγγ

434241

333231

232221

131211

M =	

44	

Working with Representations	

Within the two frames any point or vector has a representation

of the same form	

	

a=[a1 a2 a3 a4] in the first frame	

b=[b1 b2 b3 b4] in the second frame	

	

where a4 = b4 = 1 for points and a4 = b4 = 0 for vectors and	

	

	

The matrix M is 4 x 4 and specifies an affine transformation in

homogeneous coordinates	

a=MTb	

45

Affine Transformations
•  Every linear transformation is equivalent

to a change in frames
•  Every affine transformation preserves

lines
•  However, an affine transformation has

only 12 degrees of freedom because 4
of the elements in the matrix are fixed
and are a subset of all possible 4 x 4
linear transformations

General Structure	

SR T
0 0 0 1

!

"

#
#

$

%

&
&

47	

Inverses	

•  Can compute inverses use simple geometric observations	

– Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz) 	

– Rotation: R -1(q) = R(-q)	

•  Holds for any rotation matrix	

• Note that since cos(-q) = cos(q) and sin(-q)=-sin(q)	

R -1(q) = R T(q)	

– Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz) 	

	

 	

 	

	

48	

Concatenation	

•  We can form arbitrary affine transformation matrices by

multiplying together rotation, translation, and scaling matrices	

•  Since same transformation is applied to many vertices, the
cost of forming a matrix M=ABCD is not significant
compared to the cost of computing Mp for many vertices p	

In-situ Transformations	

In Place Scaling	

As Opposed To	

As Matrices and code	

54	

Fixed Point Other Than Origin	

Move fixed point to origin	

Rotate	

Move fixed point back	

M = T(pf) R(θ) T(-pf)	

55	

Order of Transformations	

•  Note that matrix on the right is the first applied	

•  Mathematically, the following are equivalent	

 p’ = ABCp = A(B(Cp))	

•  In terms of column matrices	

 p’T = pTCTBTAT	

	

In Shaders	

uniform mat4 ViewT, ViewR, ModelT, ModelR,
ModelS, Project;	

in vec4 Vertex;	

	

void main()	

{	

 gl_Position = Project	

 * ModelS * ModelR * ModelT	

 * ViewR * ViewT	

 * Vertex;	

}	

57	

General Rotation About Origin	

q	

x	

z	

y	

v	

A rotation by θ about an arbitrary axis	

can be decomposed into the concatenation	

of rotations about the x, y, and z axes	

R(θ) = Rz(θz) Ry(θy) Rx(θx) 	

θx θy θz are called the Euler angles	

Note that rotations do not commute	

We can use rotations in another order but	

with different angles	

59	

Shear	

•  Helpful to add one more basic transformation	

•  Equivalent to pulling faces in opposite directions	

60	

Shear Matrix	

Consider simple shear along x axis	

x’ = x + y cot θ	

y’ = y	

z’ = z	

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ θ

1000
0100
0010
00cot 1

H(q) = 	

Viewing Transform	

62	

World & Camera Frames	

•  Changes in frame are then defined by 4 x 4 matrices	

•  In OpenGL, base frame is the world frame 	

•  Represent entities in the camera frame by changing world
representation using model-view matrix	

•  Initially these frames are the same (M=I)	

Steps	

65

Moving the Camera
If objects are on both sides of z=0, move camera frame

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

1000
d100
0010
0001

M =

Perspective	

P is defined as long as l ≠ r, t ≠ b, and n ≠ f.

Details	

To Note	

z values will end up at 1.0 !	

Lose information about depth	

No scaling result to the [–1.0, 1.0] range	

Two Cases	

Symmetric, centered frustum, where z-axis is centered in
the cone	

	

Asymmetric frustum- view thru a window and near it, but
not toward its middle	

Symmetric Case	

•  Project points in frustum onto near plane	

•  Line from (0, 0, 0) makes ratio of z to x same, and

same for z to y for all points	

•  xproj = x · znear, yproj = y · znear	

•  Scale window size to [–1.0, 1.0]	

Symmetric Case	

Asymmetric	

Parallel Viewing	

P is defined as long as l ≠ r, t ≠ b, and n ≠ f.

Details	

Symmetric	

Asymmetric	

