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Much Content …	





What ?	
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Transformations	





Where in OpenGL ?	





In Vertex Shader	





Typical Transform	





Scaling	
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Scaling	
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S = S(sx, sy, sz) =	



x’=sxx	


y’=syx	


z’=szx	



p’=Sp	



Expand or contract along each axis (fixed point of origin)	





Linear Transform - Scaling	





Scaling – This will do !	
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As Matrices	
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Reflection	


corresponds to negative scale factors	



original	

sx = -1 sy = 1	



sx = -1 sy = -1	

 sx = 1 sy = -1	





Rotation	
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Rotation (2D)	


Consider rotation about the origin by q degrees	



–  radius stays the same, angle increases by q	



x’=x cos q –y sin q	


y’ = x sin q + y cos q	



x = r cos f	


y = r sin f	



x = r cos (f + q)	


y = r sin (f + q)	
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Rotation about z axis	


•  Rotation about z axis in three dimensions leaves all 

points with the same z	



–  Equivalent to rotation in two dimensions in 
planes of constant z	



– or in homogeneous coordinates	



        p’=Rz(q)p	



x’=x cos q –y sin q	


y’ = x sin q + y cos q	


z’ =z	
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Rotation Matrix	
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Example	
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X- & Y-axes	


Same argument as for rotation about z axis	



For rotation about x axis, x is unchanged	



For rotation about y axis, y is unchanged	



R = Rx(q) =	



R = Ry(q) =	
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Linear Spaces	
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Recap: Linear Independence 
A set of vectors v1, v2, …, vn is linearly 
independent if  
        α1v1+α2v2+.. αnvn=0 iff α1=α2=…=0 
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Recap: Coordinate Systems 
•  A basis v1, v2,…., vn 

•  A vector is written v=α1v1+ α2v2 +….+αnvn 

•  Scalars {α1, α2, …. Αn}- representation of v given basis 
•  Representation as a row or column array of scalars 

a=[α1  α2  …. αn]T= 
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Change of Coordinate Systems	


•  Consider two representations of same vector with 

respect to two different bases:	



v=a1v1+ a2v2 +a3v3 = [a1 a2 a3]
 [v1 v2 v3] 

T	



=b1u1+ b2u2 +b3u3 = [b1 b2 b3]
 [u1 u2 u3] 

T	



	



a=[a1 a2  a3 ]	


b=[b1  b2  b3]	



where	
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Second in Terms of First	


Each of the basis vectors, u1,u2, u3, are vectors that 

can be represented in terms of the first basis	


	


	



u1 = g11v1+g12v2+g13v3	


u2 = g21v1+g22v2+g23v3	


u3 = g31v1+g32v2+g33v3	



v	
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Recap: Matrix Form 	


The coefficients define a 3 x 3 matrix	


	


	


	


	


and the bases can be related by	


	



a=MTb	
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Translation	


•  Move (translate, displace) a point to a new 

location	



•  Displacement determined by a vector d	


– Three degrees of freedom	


–  P’=P+d	



P	



P’	



d	
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Translating in 3D  

object	

 translation: every point displaced	


        by same vector	





Translation	





With 2D/3D Vectors	
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In Matrix Form	





As Matrices	





As Code	





Homogenous Coordinates	





Homogenous Coordinates	





Allows Linearity	
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Homogeneous Coordinates	


Homogeneous coordinates for [x y z]:	


	

p =[x’ y’ z’ w] T =[wx wy wz w] T	



	


Three dimensional point (for w≠0) by	


	

x←x’/w, y←y’/w, z←z’/w	


	


If w=0, the representation is that of a vector	


	


Replaces points in 3D by lines through origin in 4D dimensions	


	


For w=1, the representation of a point is [x y z 1]	
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In Computer Graphics	


Homogeneous coordinates key 	



– All standard transformations: rotation, translation, scaling. 	


–  Implemented matrix multiplications with 4 x 4 matrices	



– Hardware pipeline works with 4D representations	


– Orthographic viewing: w=0 – vectors & w=1 – points	


–  For perspective we need a perspective division	
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Recap: Frames	


•  A coordinate system is insufficient for points	



•  Origin & basis vectors form a frame	



P0	



v1	



v2	



v3	
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Recap : Unified Representation	



•  Frame determined by (P0, v1, v2, v3)	



•  For this frame, every vector can be written as 	


     v=a1v1+ a2v2 +….+anvn	



•  Every point can be written as	


     P = P0 + b1v1+ b2v2 +….+bnvn	
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Since 0•P = 0 and 1•P =P	


v=a1v1+ a2v2 +a3v3 = [a1 a2 a3 0 ]

 [v1 v2 v3  P0] 
T	



P = P0 + b1v1+ b2v2 +b3v3= [b1 b2 b3 1 ]
 [v1 v2 v3  P0] 

T	



	


Thus we obtain the four-dimensional homogeneous coordinate 

representation	


v = [a1 a2 a3 0 ]

 T	



p = [b1 b2 b3 1 ]
 T	



Recap : Unified Representation	
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Change of Frames	


•  We can apply a similar process in homogeneous 

coordinates to the representations of both points and 
vectors	



•  Any point or vector can be represented in either frame	


•  We can represent Q0, u1, u2, u3 in terms of P0, v1, v2, v3 	



Consider two frames:	


(P0, v1, v2, v3)	


(Q0, u1, u2, u3)	

 P0	

 v1	



v2	



v3	



Q0	



u1	


u2	



u3	
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One Frame in Terms of Other	



u1 = γ11v1+γ12v2+γ13v3	


u2 = γ21v1+γ22v2+γ23v3	


u3 = γ31v1+γ32v2+γ33v3	


Q0 = γ41v1+γ42v2+γ43v3 +γ44P0	


	



Extending what we did with change of bases	



defining a 4 x 4 matrix	
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Working with Representations	


Within the two frames any point or vector has a representation 

of the same form	


	


a=[a1 a2  a3 a4 ] in the first frame	


b=[b1 b2  b3 b4 ] in the second frame	


	


where a4 = b4 = 1 for points and a4 = b4 = 0 for vectors and	


	


	


The matrix M is 4 x 4 and specifies an affine transformation in 

homogeneous coordinates	



a=MTb	
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Affine Transformations 
•  Every linear transformation is equivalent 

to a change in frames 
•  Every affine transformation preserves 

lines 
•  However, an affine transformation has 

only 12 degrees of freedom because 4 
of the elements in the matrix are fixed 
and are a subset of all possible 4 x 4 
linear transformations 



General Structure	
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Inverses	


•  Can compute inverses use simple geometric observations	



– Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz) 	



– Rotation: R -1(q) = R(-q)	


•  Holds for any rotation matrix	


• Note that since cos(-q) = cos(q) and sin(-q)=-sin(q)	


R -1(q) = R T(q)	



– Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz) 	
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Concatenation	


•  We can form arbitrary affine transformation matrices by 

multiplying together rotation, translation, and scaling matrices	



•  Since same transformation is applied to many vertices, the 
cost of forming a matrix M=ABCD is not significant 
compared to the cost of computing Mp for many vertices p	





In-situ Transformations	





In Place Scaling	





As Opposed To	





As Matrices and code	
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Fixed Point Other Than Origin	


Move fixed point to origin	


Rotate	


Move fixed point back	


M = T(pf) R(θ) T(-pf)	
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Order of Transformations	


•  Note that matrix on the right is the first applied	


•  Mathematically, the following are equivalent	


        p’ = ABCp = A(B(Cp))	


•  In terms of column matrices	


         p’T = pTCTBTAT	


	





In Shaders	



uniform mat4 ViewT, ViewR, ModelT, ModelR, 
ModelS, Project;	


in vec4 Vertex;	


	


void main()	


{	


   gl_Position = Project	


                 * ModelS * ModelR * ModelT	


                 * ViewR * ViewT	


                 * Vertex;	


}	





57	



General Rotation About Origin	



q	



x	



z	



y	


v	



A rotation by θ about an arbitrary axis	


can be decomposed into the concatenation	


of rotations about the x, y, and z axes	



R(θ) = Rz(θz) Ry(θy) Rx(θx) 	



θx θy θz are called the Euler angles	



Note that rotations do not commute	


We can use rotations in another order but	


with different angles	
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Shear	


•  Helpful to add one more basic transformation	


•  Equivalent to pulling faces in opposite directions	
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Shear Matrix	


Consider simple shear along x axis	



x’ = x + y cot θ	


y’ = y	


z’ = z	
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Viewing Transform	
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World & Camera Frames	


•  Changes in frame are then defined by 4 x 4 matrices	



•  In OpenGL, base frame is the world frame 	



•  Represent entities in the camera frame by changing world 
representation using model-view matrix	



•  Initially these frames are the same (M=I)	







Steps	
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Moving the Camera  
If objects are on both sides of z=0, move camera frame 
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Perspective	



P is defined as long as l ≠ r, t ≠ b, and n ≠ f. 



Details	





To Note	


z values will end up at 1.0 !	


Lose information about depth	


No scaling  result to the [–1.0, 1.0] range	





Two Cases	



Symmetric, centered frustum, where  z-axis is centered in 
the cone	


	


Asymmetric frustum- view thru a window and near it, but 
not toward its middle	





Symmetric Case	


•  Project points in frustum onto near plane	


•  Line from (0, 0, 0) makes ratio of z to x same, and 

same for  z to y for all points	



•  xproj = x · znear,  yproj = y · znear	



•  Scale window size to [–1.0, 1.0]	





Symmetric Case	





Asymmetric	







Parallel Viewing	



P is defined as long as l ≠ r, t ≠ b, and n ≠ f. 



Details	





Symmetric	





Asymmetric	




