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Much Content …	




What ?	
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Transformations	




Where in OpenGL ?	




In Vertex Shader	




Typical Transform	




Scaling	
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Scaling	
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S = S(sx, sy, sz) =	


x’=sxx	

y’=syx	

z’=szx	


p’=Sp	


Expand or contract along each axis (fixed point of origin)	




Linear Transform - Scaling	




Scaling – This will do !	
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As Matrices	
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Reflection	

corresponds to negative scale factors	


original	
sx = -1 sy = 1	


sx = -1 sy = -1	
 sx = 1 sy = -1	




Rotation	
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Rotation (2D)	

Consider rotation about the origin by q degrees	


–  radius stays the same, angle increases by q	


x’=x cos q –y sin q	

y’ = x sin q + y cos q	


x = r cos f	

y = r sin f	


x = r cos (f + q)	

y = r sin (f + q)	
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Rotation about z axis	

•  Rotation about z axis in three dimensions leaves all 

points with the same z	


–  Equivalent to rotation in two dimensions in 
planes of constant z	


– or in homogeneous coordinates	


        p’=Rz(q)p	


x’=x cos q –y sin q	

y’ = x sin q + y cos q	

z’ =z	
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Rotation Matrix	
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R = Rz(q) =	




Example	
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X- & Y-axes	

Same argument as for rotation about z axis	


For rotation about x axis, x is unchanged	


For rotation about y axis, y is unchanged	


R = Rx(q) =	


R = Ry(q) =	
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Linear Spaces	
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Recap: Linear Independence 
A set of vectors v1, v2, …, vn is linearly 
independent if  
        α1v1+α2v2+.. αnvn=0 iff α1=α2=…=0 
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Recap: Coordinate Systems 
•  A basis v1, v2,…., vn 

•  A vector is written v=α1v1+ α2v2 +….+αnvn 

•  Scalars {α1, α2, …. Αn}- representation of v given basis 
•  Representation as a row or column array of scalars 

a=[α1  α2  …. αn]T= 
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Change of Coordinate Systems	

•  Consider two representations of same vector with 

respect to two different bases:	


v=a1v1+ a2v2 +a3v3 = [a1 a2 a3]
 [v1 v2 v3] 

T	


=b1u1+ b2u2 +b3u3 = [b1 b2 b3]
 [u1 u2 u3] 

T	


	


a=[a1 a2  a3 ]	

b=[b1  b2  b3]	


where	
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Second in Terms of First	

Each of the basis vectors, u1,u2, u3, are vectors that 

can be represented in terms of the first basis	

	

	


u1 = g11v1+g12v2+g13v3	

u2 = g21v1+g22v2+g23v3	

u3 = g31v1+g32v2+g33v3	


v	
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Recap: Matrix Form 	

The coefficients define a 3 x 3 matrix	

	

	

	

	

and the bases can be related by	

	


a=MTb	
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Translation	

•  Move (translate, displace) a point to a new 

location	


•  Displacement determined by a vector d	

– Three degrees of freedom	

–  P’=P+d	


P	


P’	


d	
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Translating in 3D  

object	
 translation: every point displaced	

        by same vector	




Translation	




With 2D/3D Vectors	
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In Matrix Form	




As Matrices	




As Code	




Homogenous Coordinates	




Homogenous Coordinates	




Allows Linearity	




37	


Homogeneous Coordinates	

Homogeneous coordinates for [x y z]:	

	
p =[x’ y’ z’ w] T =[wx wy wz w] T	


	

Three dimensional point (for w≠0) by	

	
x←x’/w, y←y’/w, z←z’/w	

	

If w=0, the representation is that of a vector	

	

Replaces points in 3D by lines through origin in 4D dimensions	

	

For w=1, the representation of a point is [x y z 1]	
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In Computer Graphics	

Homogeneous coordinates key 	


– All standard transformations: rotation, translation, scaling. 	

–  Implemented matrix multiplications with 4 x 4 matrices	


– Hardware pipeline works with 4D representations	

– Orthographic viewing: w=0 – vectors & w=1 – points	

–  For perspective we need a perspective division	
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Recap: Frames	

•  A coordinate system is insufficient for points	


•  Origin & basis vectors form a frame	


P0	


v1	


v2	


v3	
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Recap : Unified Representation	


•  Frame determined by (P0, v1, v2, v3)	


•  For this frame, every vector can be written as 	

     v=a1v1+ a2v2 +….+anvn	


•  Every point can be written as	

     P = P0 + b1v1+ b2v2 +….+bnvn	
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Since 0•P = 0 and 1•P =P	

v=a1v1+ a2v2 +a3v3 = [a1 a2 a3 0 ]

 [v1 v2 v3  P0] 
T	


P = P0 + b1v1+ b2v2 +b3v3= [b1 b2 b3 1 ]
 [v1 v2 v3  P0] 

T	


	

Thus we obtain the four-dimensional homogeneous coordinate 

representation	

v = [a1 a2 a3 0 ]

 T	


p = [b1 b2 b3 1 ]
 T	


Recap : Unified Representation	
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Change of Frames	

•  We can apply a similar process in homogeneous 

coordinates to the representations of both points and 
vectors	


•  Any point or vector can be represented in either frame	

•  We can represent Q0, u1, u2, u3 in terms of P0, v1, v2, v3 	


Consider two frames:	

(P0, v1, v2, v3)	

(Q0, u1, u2, u3)	
 P0	
 v1	


v2	


v3	


Q0	


u1	

u2	


u3	
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One Frame in Terms of Other	


u1 = γ11v1+γ12v2+γ13v3	

u2 = γ21v1+γ22v2+γ23v3	

u3 = γ31v1+γ32v2+γ33v3	

Q0 = γ41v1+γ42v2+γ43v3 +γ44P0	

	


Extending what we did with change of bases	


defining a 4 x 4 matrix	
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Working with Representations	

Within the two frames any point or vector has a representation 

of the same form	

	

a=[a1 a2  a3 a4 ] in the first frame	

b=[b1 b2  b3 b4 ] in the second frame	

	

where a4 = b4 = 1 for points and a4 = b4 = 0 for vectors and	

	

	

The matrix M is 4 x 4 and specifies an affine transformation in 

homogeneous coordinates	


a=MTb	
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Affine Transformations 
•  Every linear transformation is equivalent 

to a change in frames 
•  Every affine transformation preserves 

lines 
•  However, an affine transformation has 

only 12 degrees of freedom because 4 
of the elements in the matrix are fixed 
and are a subset of all possible 4 x 4 
linear transformations 



General Structure	
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Inverses	

•  Can compute inverses use simple geometric observations	


– Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz) 	


– Rotation: R -1(q) = R(-q)	

•  Holds for any rotation matrix	

• Note that since cos(-q) = cos(q) and sin(-q)=-sin(q)	

R -1(q) = R T(q)	


– Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz) 	
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Concatenation	

•  We can form arbitrary affine transformation matrices by 

multiplying together rotation, translation, and scaling matrices	


•  Since same transformation is applied to many vertices, the 
cost of forming a matrix M=ABCD is not significant 
compared to the cost of computing Mp for many vertices p	




In-situ Transformations	




In Place Scaling	




As Opposed To	




As Matrices and code	
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Fixed Point Other Than Origin	

Move fixed point to origin	

Rotate	

Move fixed point back	

M = T(pf) R(θ) T(-pf)	
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Order of Transformations	

•  Note that matrix on the right is the first applied	

•  Mathematically, the following are equivalent	

        p’ = ABCp = A(B(Cp))	

•  In terms of column matrices	

         p’T = pTCTBTAT	

	




In Shaders	


uniform mat4 ViewT, ViewR, ModelT, ModelR, 
ModelS, Project;	

in vec4 Vertex;	

	

void main()	

{	

   gl_Position = Project	

                 * ModelS * ModelR * ModelT	

                 * ViewR * ViewT	

                 * Vertex;	

}	
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General Rotation About Origin	


q	


x	


z	


y	

v	


A rotation by θ about an arbitrary axis	

can be decomposed into the concatenation	

of rotations about the x, y, and z axes	


R(θ) = Rz(θz) Ry(θy) Rx(θx) 	


θx θy θz are called the Euler angles	


Note that rotations do not commute	

We can use rotations in another order but	

with different angles	
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Shear	

•  Helpful to add one more basic transformation	

•  Equivalent to pulling faces in opposite directions	
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Shear Matrix	

Consider simple shear along x axis	


x’ = x + y cot θ	

y’ = y	

z’ = z	
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Viewing Transform	
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World & Camera Frames	

•  Changes in frame are then defined by 4 x 4 matrices	


•  In OpenGL, base frame is the world frame 	


•  Represent entities in the camera frame by changing world 
representation using model-view matrix	


•  Initially these frames are the same (M=I)	






Steps	
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Moving the Camera  
If objects are on both sides of z=0, move camera frame 
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Perspective	


P is defined as long as l ≠ r, t ≠ b, and n ≠ f. 



Details	




To Note	

z values will end up at 1.0 !	

Lose information about depth	

No scaling  result to the [–1.0, 1.0] range	




Two Cases	


Symmetric, centered frustum, where  z-axis is centered in 
the cone	

	

Asymmetric frustum- view thru a window and near it, but 
not toward its middle	




Symmetric Case	

•  Project points in frustum onto near plane	

•  Line from (0, 0, 0) makes ratio of z to x same, and 

same for  z to y for all points	


•  xproj = x · znear,  yproj = y · znear	


•  Scale window size to [–1.0, 1.0]	




Symmetric Case	




Asymmetric	






Parallel Viewing	


P is defined as long as l ≠ r, t ≠ b, and n ≠ f. 



Details	




Symmetric	




Asymmetric	



