
CSE 5542 - Real Time Rendering	


	

 	

 	

Week 4	





Slides(Mostly) Courtesy – ���
E. Angel and D. Shreiner	





Recap from Recent Past	





The Sierpinski Gasket	





Sierpinski Vertex Shader	



	


attribute vec4 vPosition;	


void	


main()	


{	


    gl_Position = vPosition;	


}	



…	


// Load shaders and use the resulting shader program	


    GLuint program = InitShader( "vshader21.glsl", "fshader21.glsl" );	


    glUseProgram( program );	


..	





Sierpinski Fragment Shader	



void	


main()	


{	


    gl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );	


}	



…	


// Load shaders and use the resulting shader program	


    GLuint program = InitShader( "vshader21.glsl", "fshader21.glsl" );	


    glUseProgram( program );	


..	
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Fragment vs Vertex Shader 	



per vertex lighting	

 per fragment lighting	





OpenGL and GLSL	


•  Shader based OpenGL is based less on a state machine 

model than a data flow model	



•  Most state variables, attributes and related pre 3.1 
OpenGL functions have been deprecated	



•  Action happens in shaders	


•  Job is application is to get data to GPU	
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GLSL	


•  C-like with 	



– Matrix and vector types (2, 3, 4 dimensional)	


– Overloaded operators	



– C++ like constructors	



•  Similar to Nvidia’s Cg and Microsoft HLSL	


•  Code sent to shaders as source code	
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Still Maximal Portability 	


•  Display device independent 	



•  Window system independent 	



•  Operating system independent 	





A Few More Things	





Hardware Rendering Pipeline 	



host	


interface	



vertex	


processing	



triangle	


setup	



pixel	


 processing 	



memory	


interface	
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OpenGL Primitives 

GL_TRIANGLE_STRIP	

 GL_TRIANGLE_FAN	



GL_POINTS	



GL_LINES	



GL_LINE_LOOP	



GL_LINE_STRIP	



GL_TRIANGLES	





14 

Triangles 
•  Triangles must be	



–  Simple: edges cannot cross	



–  Convex: All points on line segment between two points in 
a polygon are also in the polygon	



–  Flat: all vertices are in the same plane	



•  User must create triangles (triangulation)	


•  OpenGL  contains a tessellator	



nonsimple polygon	

 nonconvex polygon	





Space ?	



point2 vertices[3] = {point2(0.0, 0.0),	


      point2( 0.0, 1.0), point2(1.0, 1.0)};	





Transform Spaces	



Object Space	

 Screen Space	
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Coordinate Systems	



•  The units in points can be object, world, model or 
problem coordinates	



•  Viewing specifications are also in object coordinates	



•  Same for lights	



•  Eventually pixels will be produced in window 
coordinates 	
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Default Camera	



•  Camera at  origin in object ���
space pointing in -z direction	


	


•  Default viewing volume	


  - box centered at  ���

origin with sides of 	


  length 2	
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Orthographic Viewing 

z=0 

z=0 

Points projected forward along z axis onto 
plane z=0 
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Viewports	


•  Use partial window for image: glViewport(x,y,w,h)	


•  w, h – pixel coordinates	


•  x,y – lower corner	
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Writing Shaders	
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Simple Vertex Shader	


	


in vec4 vPosition;	


void main(void)	


{	


    gl_Position = vPosition;	


}	
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Execution Model	



Vertex	


Shader	



GPU	



Primitive	


Assembly	



Application	


Program	



glDrawArrays	

 Vertex	



Vertex data	


Shader Program	
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Simple Fragment Program 
void main(void) 
{ 
  gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0); 
} 
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Execution Model	



Fragment	


Shader	



Application	



Frame Buffer	

Rasterizer	



Fragment	

 Fragment	


Color	



Shader Program	
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Data Types	


•  C types: int, float, bool	


•  Vectors: 	



–  float vec2, vec3, vec4	


– Also int (ivec) and boolean (bvec)	



•  Matrices: mat2, mat3, mat4	


–  Stored by columns	


–  Standard referencing m[row][column]	



•  C++ style constructors	


–  vec3 a =vec3(1.0, 2.0, 3.0)	


–  vec2 b = vec2(a)	
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Pointers	


•  There are no pointers in GLSL	



•  C structs which can be copied back from functions	



•  Matrices and vectors can be passed to and fro 
GLSL functions, e.g.  mat3 func(mat3 a)	
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Selection and Swizzling	


•  Access array elements-by-element using [] or 

selection (.) operator with 	


–  x, y, z, w	


–  r, g, b, a	


–  s, t, p, q	


–  a[2], a.b, a.z, a.p are the same	



•  Swizzling operator to manipulate components	


vec4 a;	


a.yz = vec2(1.0, 2.0);	
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Example: Vertex Shader	


const vec4 red = vec4(1.0, 0.0, 0.0, 1.0);	


out vec3 color_out;	


void main(void)	


{	


  gl_Position = vPosition;	


  color_out = red;	


}	
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Fragment Shader	


in vec3 color_out;	


void main(void)	


{	


  gl_FragColor = color_out;	


}	


// in latest version use form	


// out vec4 fragcolor;	


// fragcolor = color_out;	
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Qualifiers	


•  GLSL has many qualifiers like const as C/C++	



•  Variables can change	


–  Once per primitive	


–  Once per vertex	


–  Once per fragment	


–  At any time in the application	



•  Vertex attributes are interpolated by the rasterizer into 
fragment attributes	
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Passing values	


•  Call by value-return	


•  Variables are copied in	


•  Returned values are copied back	


•  Two possibilities	



–  in	


– out	
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Attribute Qualifier	



•  Attribute-qualified variables can change at most 
once per vertex	



•  User defined (in application program) 	


– Use in qualifier to get to shader	


–  in float temperature	


–  in vec3 velocity	





34	



Uniform Qualified	


•  Variables that are constant for an entire primitive	



•  Can be changed in application and sent to shaders	



•  Cannot be changed in shader	



•  Used to pass information to shader such as the 
bounding box of a primitive	





Example	



GLint aParam;	


aParam = glGetUniformLocation(myProgObj, 	


     "angle");	


/* angle defined in shader */	


	


/* my_angle set in application */	


GLfloat my_angle;	


my_angle = 5.0 /* or some other value */	


	


glUniform1f(aParam, my_angle);	
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Varying Qualified	


•  Variables passed from vertex to fragment shader	



•  Automatically interpolated by the rasterizer	



•  Old style - varying vec4 color	



•  Use out in vertex shader and in in fragment shader 
out vec4 color;	



	





Wave Motion Vertex Shader	


in vec4 vPosition;	


uniform float xs, zs, // frequencies 	


uniform float h; // height scale	


void main()	


{	


  vec4 t = vPosition;	


  t.y = vPosition.y 	


     + h*sin(time + xs*vPosition.x)	


     + h*sin(time + zs*vPosition.z);	


  gl_Position = t;	


}	
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Particle System	


in vec3 vPosition;	


uniform mat4 ModelViewProjectionMatrix;	


uniform vec3 init_vel;	


uniform float g, m, t;	


void main()	


{ vec3 object_pos;	


object_pos.x = vPosition.x + vel.x*t;	


object_pos.y = vPosition.y + vel.y*t 	


       + g/(2.0*m)*t*t;	


object_pos.z = vPosition.z + vel.z*t;	


gl_Position = 	


  ModelViewProjectionMatrix*vec4(object_pos,1);	


}	
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Fragment Shader	



/* pass-through fragment shader */	


	


in vec4 color;	


void main(void)	


{	


     gl_FragColor = color;	


}	
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Vertex Shader Applications	


•  Moving vertices	



– Morphing 	


– Wave motion	



–  Fractals	



•  Lighting	


– More realistic models	


– Cartoon shaders	
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Operators and Functions	


•  Standard C functions	



– Trigonometric	


– Arithmetic	



– Normalize, reflect, length	



•  Overloading of vector and matrix types	


mat4 a;	


vec4 b, c, d;	



c = b*a; // a column vector stored as a 1d array	


d = a*b; // a row vector stored as a 1d array	





Adding Color	


•  Send color to the shaders as a vertex attribute or 

as a uniform variable 	


•  Choice depends on frequency of change	


•  Associate a color with each vertex	


•  Set up an array of same size as positions	



•  Send to GPU as a vertex buffer object	
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Setting Colors	
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typedef  vec3 color3;	


color3 base_colors[4] = {color3(1.0, 0.0. 0.0), ….	


color3 colors[NumVertices];	


vec3 points[NumVertices];	


	


//in loop setting positions	


	


colors[i] = basecolors[color_index]	


position[i] = ……. 	


	





Setting Up Buffer Object	
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//need larger buffer	


	


glBufferData(GL_ARRAY_BUFFER, sizeof(points) + 	


   sizeof(colors), NULL, GL_STATIC_DRAW);	


	


//load data separately	


	


glBufferSubData(GL_ARRAY_BUFFER, 0, 	


   sizeof(points), points);	


glBufferSubData(GL_ARRAY_BUFFER, sizeof(points), 	


   sizeof(colors), colors);	


	


	





Second Vertex Array	
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// vPosition and vColor identifiers in vertex shader	


	


	


loc = glGetAttribLocation(program, “vPosition”);	


glEnableVertexAttribArray(loc);	


glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, 0,	


    BUFFER_OFFSET(0));	


	


loc2 = glGetAttribLocation(program, “vColor”);	


glEnableVertexAttribArray(loc2);	


glVertexAttribPointer(loc2, 3, GL_FLOAT, GL_FALSE, 0,	


    BUFFER_OFFSET(sizeofpoints));	


	





Next Topic – Linear Algebra	
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Vectors	


•  Physical definition: 	



– Direction	


– Magnitude	



•  Examples 	


–  Light Direction	


– View Direction	


– Normal 	





Abstract Spaces	


•  Scalars	


•  (Linear) Vector Space	



–  Scalars and vectors	



•  Affine Space	


–  Scalars, vectors, and points	



•  Euclidean Space	


–  Scalars, vectors, points	


– Concept of distance	



•  Projections	
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Vectors – Linear Space	


•  Every vector	



–  has an inverse	


–  can be multiplied by a scalar	



•  There exists a zero vector	



– Zero magnitude, undefined orientation	


•  The sum of any two vectors is a vector - closure	



v	

 -v	

 αv	


v	



u	



w	





Vector Spaces	


n Vectors = n-tuples	



n Vector-vector addition	



n Scalar-vector multiplication	



n Vector space: 	



The image cannot be displayed. Your computer may not have enough memory to open the image, or the 
image may have been corrupted. Restart your computer, and then open the file again. If the red x still 
appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete 
the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart 
your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The image 
cannot be 
displayed. 
Your 
computer 
may not 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open 
the file again. If the red x still appears, you may have to delete the image and then insert it again.



Linear Independence	



Vectors are linear independent if the only set of scalars	


         iff	

02211 =+++ nnuuu !

"
!!

ααα

021 ==== nααα !

p = (x, y, z) = x
!
i + y
!
j + z
!
k



Vector Spaces	


•  Dimension	



•  The greatest number of linearly independent vectors	



•  Basis	


•  n linearly independent vectors (n: dimension)	



•  Representation 	


•  Unique expression in terms of the basis vectors	



•  Change of Basis: Matrix M	


•  Other basis                    	
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Vectors 	


•  These vectors are identical	



–  Same length and magnitude	



•  Vectors spaces insufficient for geometry	


– Need points	





Points	


•  Location in space	


•  Operations allowed between points and 

vectors	


–  Point-point subtraction yields a vector	



–  Equivalent to point-vector addition 	



QPv −=
!

QvP +=
!

( ) ( ) ( )RPRQQP −=−+−



Affine Spaces	


Frame: a Point   and a Set of Vectors	


Representations of the vector and point: n 
scalars	



nn

nn

vvvPP
vvvv
βββ
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!

!

22110

2211Vector	



Point	



0P nvvv !
…

!! ,,, 21
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Affine Spaces	


•  Point + a vector space	


•  Operations	



– Vector-vector addition	


–  Scalar-vector multiplication	



–  Point-vector addition	


–  Scalar-scalar operations	



•  For any point define	



–  1 • P = P	


–  0 • P = 0 (zero vector)	





Question	


How Far Apart Are Two Points in Affine Spaces ?	


	


Operation: Inner (dot) Product	





Euclidean (Metric) Spaces	


– Magnitude (length) of a vector	


	



– Distance between two points	



– Measure of the angle between two vectors	



•  cosθ = 0 è orthogonal	



•  cosθ = 1 è parallel	



( ) ( )QPQPQP −⋅−=−

θcosvuvu =⋅

vvv ⋅=



In Pictures	





Euclidean Spaces	


– Combine two vectors to form a real	


– α, β, γ, …: scalars,  u, v, w, …:vectors	
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0
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0vvv
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βαβα

0=⋅vuOrthogonal:	





Projections	


•  Problem: Find shortest distance from a point to a 

line on a plane	


•  Given Two Vectors	



– Divide into two parts: one parallel and one orthogonal	



Projection of one	


vector onto another	



uvw +=α
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⋅
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v
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Making New Vectors	





Cross Product	





Cross Product	





Parametric Forms	
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Lines, Rays	


•  Consider all points of the form	



–  P(α)=P0 + α d	


–  Set of all points that pass through P0 in the 

direction of the vector d	
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2D Forms for lines	


•  Two-dimensional forms	



–  Explicit: y = mx +h	


–  Implicit: ax + by +c =0	


–  Parametric: 	


        x(a) = ax0 + (1-a)x1	



        y(a) = ay0 + (1-a)y1	
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Rays, Line Segments	


If a >= 0, then P(a) is the ray leaving P0 in the 
direction d	


If we use two points to define v, then	


P( a) = Q + a (R-Q)=Q+av	


=aR + (1-a)Q	



For 0<=a<=1 we get all the	


points on the line segment	



joining R and Q	





Curves 
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Planes	


Defined by a point and two vectors or by three points	



P(a,b)=R+au+bv	

 P(a,b)=R+a(Q-R)+b(P-Q)	



u	



v	



R	



P	



R	



Q	





71	



Triangles	



convex sum of P and Q	



convex sum of S(a) and R	



for 0<=α,β<=1, we get all points in triangle	





Barycentric Coordinates	





Barycentric Coordinates	


Triangle is convex	


Any point inside can be represented as an affine sum	


	


P(α1, α2, α3)=α A + βB + γC	


where 	


   α + β + γ = 1	


    α, β, γ >=0	
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Barycentric Coordinates	



Calculating Areas ?	





Matrices	





Matrices	


•  Definitions	


•  Matrix Operations	


•  Row and Column Matrices	


•  Rank	


•  Change of Representation	


•  Cross Product	





What is a Matrix?	


Elements, organized into rows and columns	



⎥
⎦

⎤
⎢
⎣

⎡

dc
ba

rows	



columns	





Definitions	


n x m Array of Scalars (n Rows and m Columns)	



–  n: row dimension of a matrix, m: column dimension	


– m = n: square matrix of dimension n	



–  Element 	



–  Transpose: interchanging the rows and columns of a 
matrix	



•  Column Matrices and Row Matrices	



– Column matrix (n x 1 matrix):	


–  Row matrix (1 x n matrix):	
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Basic Operations	


Addition, Subtraction, Multiplication	
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Matrix Operations	


+ Scalar-Matrix Multiplication	



+ Matrix-Matrix Addition	



+ Matrix-Matrix Multiplication	


+ A: n x l matrix, B: l x m è C: n x m matrix	
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Matrix Operations 	


+  Properties of Scalar-Matrix Multiplication	


	



+  Properties of Matrix-Matrix Addition	


+ Commutative:	


+ Associative:	



+  Properties of Matrix-Matrix Multiplication	



+  Identity Matrix I (Square Matrix)	
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Identity Matrix	
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Multiplication	


•  Is AB = BA?  Maybe, but maybe not!	



•  Heads up: multiplication is NOT commutative!	
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Row and Column Matrices	


- Column Matrix	



- pT: row matrix 	



- Concatenations	


- Associative	



- By Row Matrix	
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Inverse of a Matrix	


-  Identity matrix: ���

AI = A	


- Some matrices have an inverse, such that: ���

AA-1 = I	



-  Inversion is tricky: ���
(ABC)-1 = C-1B-1A-1	



- Derived from non-commutativity property	





Determinant of a Matrix	


•  Used for inversion	


•  If det(A) = 0, then A has no 

inverse	


•  Can be found using 

factorials, pivots, and 
cofactors!	



•  And for Areas of Triangles	
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Area of Triangle – Cramer’s Rule	



x1, y1 

x2, y2 

x3, y3 



Use This Here	





Transformations	




