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Recap from Recent Past	




The Sierpinski Gasket	




Sierpinski Vertex Shader	


	

attribute vec4 vPosition;	

void	

main()	

{	

    gl_Position = vPosition;	

}	


…	

// Load shaders and use the resulting shader program	

    GLuint program = InitShader( "vshader21.glsl", "fshader21.glsl" );	

    glUseProgram( program );	

..	




Sierpinski Fragment Shader	


void	

main()	

{	

    gl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );	

}	


…	

// Load shaders and use the resulting shader program	

    GLuint program = InitShader( "vshader21.glsl", "fshader21.glsl" );	

    glUseProgram( program );	

..	
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Fragment vs Vertex Shader 	


per vertex lighting	
 per fragment lighting	




OpenGL and GLSL	

•  Shader based OpenGL is based less on a state machine 

model than a data flow model	


•  Most state variables, attributes and related pre 3.1 
OpenGL functions have been deprecated	


•  Action happens in shaders	

•  Job is application is to get data to GPU	
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GLSL	

•  C-like with 	


– Matrix and vector types (2, 3, 4 dimensional)	

– Overloaded operators	


– C++ like constructors	


•  Similar to Nvidia’s Cg and Microsoft HLSL	

•  Code sent to shaders as source code	
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Still Maximal Portability 	

•  Display device independent 	


•  Window system independent 	


•  Operating system independent 	




A Few More Things	




Hardware Rendering Pipeline 	


host	

interface	


vertex	

processing	


triangle	

setup	


pixel	

 processing 	


memory	

interface	
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OpenGL Primitives 

GL_TRIANGLE_STRIP	
 GL_TRIANGLE_FAN	


GL_POINTS	


GL_LINES	


GL_LINE_LOOP	


GL_LINE_STRIP	


GL_TRIANGLES	




14 

Triangles 
•  Triangles must be	


–  Simple: edges cannot cross	


–  Convex: All points on line segment between two points in 
a polygon are also in the polygon	


–  Flat: all vertices are in the same plane	


•  User must create triangles (triangulation)	

•  OpenGL  contains a tessellator	


nonsimple polygon	
 nonconvex polygon	




Space ?	


point2 vertices[3] = {point2(0.0, 0.0),	

      point2( 0.0, 1.0), point2(1.0, 1.0)};	




Transform Spaces	


Object Space	
 Screen Space	
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Coordinate Systems	


•  The units in points can be object, world, model or 
problem coordinates	


•  Viewing specifications are also in object coordinates	


•  Same for lights	


•  Eventually pixels will be produced in window 
coordinates 	
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Default Camera	


•  Camera at  origin in object ���
space pointing in -z direction	

	

•  Default viewing volume	

  - box centered at  ���

origin with sides of 	

  length 2	
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Orthographic Viewing 

z=0 

z=0 

Points projected forward along z axis onto 
plane z=0 
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Viewports	

•  Use partial window for image: glViewport(x,y,w,h)	

•  w, h – pixel coordinates	

•  x,y – lower corner	
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Writing Shaders	
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Simple Vertex Shader	

	

in vec4 vPosition;	

void main(void)	

{	

    gl_Position = vPosition;	

}	




23	


Execution Model	


Vertex	

Shader	


GPU	


Primitive	

Assembly	


Application	

Program	


glDrawArrays	
 Vertex	


Vertex data	

Shader Program	
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Simple Fragment Program 
void main(void) 
{ 
  gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0); 
} 
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Execution Model	


Fragment	

Shader	


Application	


Frame Buffer	
Rasterizer	


Fragment	
 Fragment	

Color	


Shader Program	
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Data Types	

•  C types: int, float, bool	

•  Vectors: 	


–  float vec2, vec3, vec4	

– Also int (ivec) and boolean (bvec)	


•  Matrices: mat2, mat3, mat4	

–  Stored by columns	

–  Standard referencing m[row][column]	


•  C++ style constructors	

–  vec3 a =vec3(1.0, 2.0, 3.0)	

–  vec2 b = vec2(a)	
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Pointers	

•  There are no pointers in GLSL	


•  C structs which can be copied back from functions	


•  Matrices and vectors can be passed to and fro 
GLSL functions, e.g.  mat3 func(mat3 a)	
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Selection and Swizzling	

•  Access array elements-by-element using [] or 

selection (.) operator with 	

–  x, y, z, w	

–  r, g, b, a	

–  s, t, p, q	

–  a[2], a.b, a.z, a.p are the same	


•  Swizzling operator to manipulate components	

vec4 a;	

a.yz = vec2(1.0, 2.0);	
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Example: Vertex Shader	

const vec4 red = vec4(1.0, 0.0, 0.0, 1.0);	

out vec3 color_out;	

void main(void)	

{	

  gl_Position = vPosition;	

  color_out = red;	

}	
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Fragment Shader	

in vec3 color_out;	

void main(void)	

{	

  gl_FragColor = color_out;	

}	

// in latest version use form	

// out vec4 fragcolor;	

// fragcolor = color_out;	
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Qualifiers	

•  GLSL has many qualifiers like const as C/C++	


•  Variables can change	

–  Once per primitive	

–  Once per vertex	

–  Once per fragment	

–  At any time in the application	


•  Vertex attributes are interpolated by the rasterizer into 
fragment attributes	
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Passing values	

•  Call by value-return	

•  Variables are copied in	

•  Returned values are copied back	

•  Two possibilities	


–  in	

– out	
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Attribute Qualifier	


•  Attribute-qualified variables can change at most 
once per vertex	


•  User defined (in application program) 	

– Use in qualifier to get to shader	

–  in float temperature	

–  in vec3 velocity	
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Uniform Qualified	

•  Variables that are constant for an entire primitive	


•  Can be changed in application and sent to shaders	


•  Cannot be changed in shader	


•  Used to pass information to shader such as the 
bounding box of a primitive	




Example	


GLint aParam;	

aParam = glGetUniformLocation(myProgObj, 	

     "angle");	

/* angle defined in shader */	

	

/* my_angle set in application */	

GLfloat my_angle;	

my_angle = 5.0 /* or some other value */	

	

glUniform1f(aParam, my_angle);	
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Varying Qualified	

•  Variables passed from vertex to fragment shader	


•  Automatically interpolated by the rasterizer	


•  Old style - varying vec4 color	


•  Use out in vertex shader and in in fragment shader 
out vec4 color;	


	




Wave Motion Vertex Shader	

in vec4 vPosition;	

uniform float xs, zs, // frequencies 	

uniform float h; // height scale	

void main()	

{	

  vec4 t = vPosition;	

  t.y = vPosition.y 	

     + h*sin(time + xs*vPosition.x)	

     + h*sin(time + zs*vPosition.z);	

  gl_Position = t;	

}	
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Particle System	

in vec3 vPosition;	

uniform mat4 ModelViewProjectionMatrix;	

uniform vec3 init_vel;	

uniform float g, m, t;	

void main()	

{ vec3 object_pos;	

object_pos.x = vPosition.x + vel.x*t;	

object_pos.y = vPosition.y + vel.y*t 	

       + g/(2.0*m)*t*t;	

object_pos.z = vPosition.z + vel.z*t;	

gl_Position = 	

  ModelViewProjectionMatrix*vec4(object_pos,1);	

}	
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Fragment Shader	


/* pass-through fragment shader */	

	

in vec4 color;	

void main(void)	

{	

     gl_FragColor = color;	

}	

	


39	




Vertex Shader Applications	

•  Moving vertices	


– Morphing 	

– Wave motion	


–  Fractals	


•  Lighting	

– More realistic models	

– Cartoon shaders	
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Operators and Functions	

•  Standard C functions	


– Trigonometric	

– Arithmetic	


– Normalize, reflect, length	


•  Overloading of vector and matrix types	

mat4 a;	

vec4 b, c, d;	


c = b*a; // a column vector stored as a 1d array	

d = a*b; // a row vector stored as a 1d array	




Adding Color	

•  Send color to the shaders as a vertex attribute or 

as a uniform variable 	

•  Choice depends on frequency of change	

•  Associate a color with each vertex	

•  Set up an array of same size as positions	


•  Send to GPU as a vertex buffer object	
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Setting Colors	
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typedef  vec3 color3;	

color3 base_colors[4] = {color3(1.0, 0.0. 0.0), ….	

color3 colors[NumVertices];	

vec3 points[NumVertices];	

	

//in loop setting positions	

	

colors[i] = basecolors[color_index]	

position[i] = ……. 	

	




Setting Up Buffer Object	
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//need larger buffer	

	

glBufferData(GL_ARRAY_BUFFER, sizeof(points) + 	

   sizeof(colors), NULL, GL_STATIC_DRAW);	

	

//load data separately	

	

glBufferSubData(GL_ARRAY_BUFFER, 0, 	

   sizeof(points), points);	

glBufferSubData(GL_ARRAY_BUFFER, sizeof(points), 	

   sizeof(colors), colors);	

	

	




Second Vertex Array	
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// vPosition and vColor identifiers in vertex shader	

	

	

loc = glGetAttribLocation(program, “vPosition”);	

glEnableVertexAttribArray(loc);	

glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, 0,	

    BUFFER_OFFSET(0));	

	

loc2 = glGetAttribLocation(program, “vColor”);	

glEnableVertexAttribArray(loc2);	

glVertexAttribPointer(loc2, 3, GL_FLOAT, GL_FALSE, 0,	

    BUFFER_OFFSET(sizeofpoints));	

	




Next Topic – Linear Algebra	
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Vectors	

•  Physical definition: 	


– Direction	

– Magnitude	


•  Examples 	

–  Light Direction	

– View Direction	

– Normal 	




Abstract Spaces	

•  Scalars	

•  (Linear) Vector Space	


–  Scalars and vectors	


•  Affine Space	

–  Scalars, vectors, and points	


•  Euclidean Space	

–  Scalars, vectors, points	

– Concept of distance	


•  Projections	
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Vectors – Linear Space	

•  Every vector	


–  has an inverse	

–  can be multiplied by a scalar	


•  There exists a zero vector	


– Zero magnitude, undefined orientation	

•  The sum of any two vectors is a vector - closure	


v	
 -v	
 αv	

v	


u	


w	




Vector Spaces	

n Vectors = n-tuples	


n Vector-vector addition	


n Scalar-vector multiplication	


n Vector space: 	


The image cannot be displayed. Your computer may not have enough memory to open the image, or the 
image may have been corrupted. Restart your computer, and then open the file again. If the red x still 
appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete 
the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart 
your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The image 
cannot be 
displayed. 
Your 
computer 
may not 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open 
the file again. If the red x still appears, you may have to delete the image and then insert it again.



Linear Independence	


Vectors are linear independent if the only set of scalars	

         iff	
02211 =+++ nnuuu !

"
!!

ααα
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p = (x, y, z) = x
!
i + y
!
j + z
!
k



Vector Spaces	

•  Dimension	


•  The greatest number of linearly independent vectors	


•  Basis	

•  n linearly independent vectors (n: dimension)	


•  Representation 	

•  Unique expression in terms of the basis vectors	


•  Change of Basis: Matrix M	

•  Other basis                    	
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Vectors 	

•  These vectors are identical	


–  Same length and magnitude	


•  Vectors spaces insufficient for geometry	

– Need points	




Points	

•  Location in space	

•  Operations allowed between points and 

vectors	

–  Point-point subtraction yields a vector	


–  Equivalent to point-vector addition 	


QPv −=
!

QvP +=
!

( ) ( ) ( )RPRQQP −=−+−



Affine Spaces	

Frame: a Point   and a Set of Vectors	

Representations of the vector and point: n 
scalars	


nn

nn

vvvPP
vvvv
βββ

ααα

++++=

+++=

!

!

22110

2211Vector	


Point	


0P nvvv !
…

!! ,,, 21
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Affine Spaces	

•  Point + a vector space	

•  Operations	


– Vector-vector addition	

–  Scalar-vector multiplication	


–  Point-vector addition	

–  Scalar-scalar operations	


•  For any point define	


–  1 • P = P	

–  0 • P = 0 (zero vector)	




Question	

How Far Apart Are Two Points in Affine Spaces ?	

	

Operation: Inner (dot) Product	




Euclidean (Metric) Spaces	

– Magnitude (length) of a vector	

	


– Distance between two points	


– Measure of the angle between two vectors	


•  cosθ = 0 è orthogonal	


•  cosθ = 1 è parallel	


( ) ( )QPQPQP −⋅−=−

θcosvuvu =⋅

vvv ⋅=



In Pictures	




Euclidean Spaces	

– Combine two vectors to form a real	

– α, β, γ, …: scalars,  u, v, w, …:vectors	


	


( )

0
 if  0

=⋅

≠>⋅

⋅+⋅=⋅+

⋅=⋅

00
0vvv

wvwuwvu
uvvu

βαβα

0=⋅vuOrthogonal:	




Projections	

•  Problem: Find shortest distance from a point to a 

line on a plane	

•  Given Two Vectors	


– Divide into two parts: one parallel and one orthogonal	


Projection of one	

vector onto another	


uvw +=α

vvvuvvvw ⋅=⋅+⋅=⋅ αα

vv
vw
⋅

⋅
=∴α

v
vv
vwwvwu
⋅

⋅
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Making New Vectors	




Cross Product	




Cross Product	




Parametric Forms	
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Lines, Rays	

•  Consider all points of the form	


–  P(α)=P0 + α d	

–  Set of all points that pass through P0 in the 

direction of the vector d	
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2D Forms for lines	

•  Two-dimensional forms	


–  Explicit: y = mx +h	

–  Implicit: ax + by +c =0	

–  Parametric: 	

        x(a) = ax0 + (1-a)x1	


        y(a) = ay0 + (1-a)y1	
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Rays, Line Segments	

If a >= 0, then P(a) is the ray leaving P0 in the 
direction d	

If we use two points to define v, then	

P( a) = Q + a (R-Q)=Q+av	

=aR + (1-a)Q	


For 0<=a<=1 we get all the	

points on the line segment	


joining R and Q	




Curves 
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Planes	

Defined by a point and two vectors or by three points	


P(a,b)=R+au+bv	
 P(a,b)=R+a(Q-R)+b(P-Q)	


u	


v	


R	


P	


R	


Q	
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Triangles	


convex sum of P and Q	


convex sum of S(a) and R	


for 0<=α,β<=1, we get all points in triangle	




Barycentric Coordinates	




Barycentric Coordinates	

Triangle is convex	

Any point inside can be represented as an affine sum	

	

P(α1, α2, α3)=α A + βB + γC	

where 	

   α + β + γ = 1	

    α, β, γ >=0	
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Barycentric Coordinates	


Calculating Areas ?	




Matrices	




Matrices	

•  Definitions	

•  Matrix Operations	

•  Row and Column Matrices	

•  Rank	

•  Change of Representation	

•  Cross Product	




What is a Matrix?	

Elements, organized into rows and columns	


⎥
⎦

⎤
⎢
⎣

⎡

dc
ba

rows	


columns	




Definitions	

n x m Array of Scalars (n Rows and m Columns)	


–  n: row dimension of a matrix, m: column dimension	

– m = n: square matrix of dimension n	


–  Element 	


–  Transpose: interchanging the rows and columns of a 
matrix	


•  Column Matrices and Row Matrices	


– Column matrix (n x 1 matrix):	

–  Row matrix (1 x n matrix):	
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Basic Operations	

Addition, Subtraction, Multiplication	
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Matrix Operations	

+ Scalar-Matrix Multiplication	


+ Matrix-Matrix Addition	


+ Matrix-Matrix Multiplication	

+ A: n x l matrix, B: l x m è C: n x m matrix	


[ ]ijaαα =A

[ ]ijij ba +=+= BAC
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Matrix Operations 	

+  Properties of Scalar-Matrix Multiplication	

	


+  Properties of Matrix-Matrix Addition	

+ Commutative:	

+ Associative:	


+  Properties of Matrix-Matrix Multiplication	


+  Identity Matrix I (Square Matrix)	
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Identity Matrix	
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Multiplication	

•  Is AB = BA?  Maybe, but maybe not!	


•  Heads up: multiplication is NOT commutative!	
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Row and Column Matrices	

- Column Matrix	


- pT: row matrix 	


- Concatenations	

- Associative	


- By Row Matrix	
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Inverse of a Matrix	

-  Identity matrix: ���

AI = A	

- Some matrices have an inverse, such that: ���

AA-1 = I	


-  Inversion is tricky: ���
(ABC)-1 = C-1B-1A-1	


- Derived from non-commutativity property	




Determinant of a Matrix	

•  Used for inversion	

•  If det(A) = 0, then A has no 

inverse	

•  Can be found using 

factorials, pivots, and 
cofactors!	


•  And for Areas of Triangles	
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Area of Triangle – Cramer’s Rule	


x1, y1 

x2, y2 

x3, y3 



Use This Here	




Transformations	



