
CSE 5542 - Real Time Rendering	

	

 	

 	

Week 4	

Slides(Mostly) Courtesy – ���
E. Angel and D. Shreiner	

Recap from Recent Past	

The Sierpinski Gasket	

Sierpinski Vertex Shader	

	

attribute vec4 vPosition;	

void	

main()	

{	

 gl_Position = vPosition;	

}	

…	

// Load shaders and use the resulting shader program	

 GLuint program = InitShader("vshader21.glsl", "fshader21.glsl");	

 glUseProgram(program);	

..	

Sierpinski Fragment Shader	

void	

main()	

{	

 gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);	

}	

…	

// Load shaders and use the resulting shader program	

 GLuint program = InitShader("vshader21.glsl", "fshader21.glsl");	

 glUseProgram(program);	

..	

7	

Fragment vs Vertex Shader 	

per vertex lighting	

 per fragment lighting	

OpenGL and GLSL	

•  Shader based OpenGL is based less on a state machine

model than a data flow model	

•  Most state variables, attributes and related pre 3.1
OpenGL functions have been deprecated	

•  Action happens in shaders	

•  Job is application is to get data to GPU	

8	

GLSL	

•  C-like with 	

– Matrix and vector types (2, 3, 4 dimensional)	

– Overloaded operators	

– C++ like constructors	

•  Similar to Nvidia’s Cg and Microsoft HLSL	

•  Code sent to shaders as source code	

9	

Still Maximal Portability 	

•  Display device independent 	

•  Window system independent 	

•  Operating system independent 	

A Few More Things	

Hardware Rendering Pipeline 	

host	

interface	

vertex	

processing	

triangle	

setup	

pixel	

 processing 	

memory	

interface	

13

OpenGL Primitives

GL_TRIANGLE_STRIP	

 GL_TRIANGLE_FAN	

GL_POINTS	

GL_LINES	

GL_LINE_LOOP	

GL_LINE_STRIP	

GL_TRIANGLES	

14

Triangles
•  Triangles must be	

–  Simple: edges cannot cross	

–  Convex: All points on line segment between two points in
a polygon are also in the polygon	

–  Flat: all vertices are in the same plane	

•  User must create triangles (triangulation)	

•  OpenGL contains a tessellator	

nonsimple polygon	

 nonconvex polygon	

Space ?	

point2 vertices[3] = {point2(0.0, 0.0),	

 point2(0.0, 1.0), point2(1.0, 1.0)};	

Transform Spaces	

Object Space	

 Screen Space	

17	

Coordinate Systems	

•  The units in points can be object, world, model or
problem coordinates	

•  Viewing specifications are also in object coordinates	

•  Same for lights	

•  Eventually pixels will be produced in window
coordinates 	

18	

Default Camera	

•  Camera at origin in object ���
space pointing in -z direction	

	

•  Default viewing volume	

 - box centered at ���

origin with sides of 	

 length 2	

19

Orthographic Viewing

z=0

z=0

Points projected forward along z axis onto
plane z=0

20	

Viewports	

•  Use partial window for image: glViewport(x,y,w,h)	

•  w, h – pixel coordinates	

•  x,y – lower corner	

21	

Writing Shaders	

22	

Simple Vertex Shader	

	

in vec4 vPosition;	

void main(void)	

{	

 gl_Position = vPosition;	

}	

23	

Execution Model	

Vertex	

Shader	

GPU	

Primitive	

Assembly	

Application	

Program	

glDrawArrays	

 Vertex	

Vertex data	

Shader Program	

24

Simple Fragment Program
void main(void)
{
 gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}

25	

Execution Model	

Fragment	

Shader	

Application	

Frame Buffer	

Rasterizer	

Fragment	

 Fragment	

Color	

Shader Program	

26	

Data Types	

•  C types: int, float, bool	

•  Vectors: 	

–  float vec2, vec3, vec4	

– Also int (ivec) and boolean (bvec)	

•  Matrices: mat2, mat3, mat4	

–  Stored by columns	

–  Standard referencing m[row][column]	

•  C++ style constructors	

–  vec3 a =vec3(1.0, 2.0, 3.0)	

–  vec2 b = vec2(a)	

27	

Pointers	

•  There are no pointers in GLSL	

•  C structs which can be copied back from functions	

•  Matrices and vectors can be passed to and fro
GLSL functions, e.g. mat3 func(mat3 a)	

28	

Selection and Swizzling	

•  Access array elements-by-element using [] or

selection (.) operator with 	

–  x, y, z, w	

–  r, g, b, a	

–  s, t, p, q	

–  a[2], a.b, a.z, a.p are the same	

•  Swizzling operator to manipulate components	

vec4 a;	

a.yz = vec2(1.0, 2.0);	

29	

Example: Vertex Shader	

const vec4 red = vec4(1.0, 0.0, 0.0, 1.0);	

out vec3 color_out;	

void main(void)	

{	

 gl_Position = vPosition;	

 color_out = red;	

}	

30	

Fragment Shader	

in vec3 color_out;	

void main(void)	

{	

 gl_FragColor = color_out;	

}	

// in latest version use form	

// out vec4 fragcolor;	

// fragcolor = color_out;	

31	

Qualifiers	

•  GLSL has many qualifiers like const as C/C++	

•  Variables can change	

–  Once per primitive	

–  Once per vertex	

–  Once per fragment	

–  At any time in the application	

•  Vertex attributes are interpolated by the rasterizer into
fragment attributes	

32	

Passing values	

•  Call by value-return	

•  Variables are copied in	

•  Returned values are copied back	

•  Two possibilities	

–  in	

– out	

33	

Attribute Qualifier	

•  Attribute-qualified variables can change at most
once per vertex	

•  User defined (in application program) 	

– Use in qualifier to get to shader	

–  in float temperature	

–  in vec3 velocity	

34	

Uniform Qualified	

•  Variables that are constant for an entire primitive	

•  Can be changed in application and sent to shaders	

•  Cannot be changed in shader	

•  Used to pass information to shader such as the
bounding box of a primitive	

Example	

GLint aParam;	

aParam = glGetUniformLocation(myProgObj, 	

 "angle");	

/* angle defined in shader */	

	

/* my_angle set in application */	

GLfloat my_angle;	

my_angle = 5.0 /* or some other value */	

	

glUniform1f(aParam, my_angle);	

	

35	

36	

Varying Qualified	

•  Variables passed from vertex to fragment shader	

•  Automatically interpolated by the rasterizer	

•  Old style - varying vec4 color	

•  Use out in vertex shader and in in fragment shader
out vec4 color;	

	

Wave Motion Vertex Shader	

in vec4 vPosition;	

uniform float xs, zs, // frequencies 	

uniform float h; // height scale	

void main()	

{	

 vec4 t = vPosition;	

 t.y = vPosition.y 	

 + h*sin(time + xs*vPosition.x)	

 + h*sin(time + zs*vPosition.z);	

 gl_Position = t;	

}	

	

37	

Particle System	

in vec3 vPosition;	

uniform mat4 ModelViewProjectionMatrix;	

uniform vec3 init_vel;	

uniform float g, m, t;	

void main()	

{ vec3 object_pos;	

object_pos.x = vPosition.x + vel.x*t;	

object_pos.y = vPosition.y + vel.y*t 	

 + g/(2.0*m)*t*t;	

object_pos.z = vPosition.z + vel.z*t;	

gl_Position = 	

 ModelViewProjectionMatrix*vec4(object_pos,1);	

}	

	

38	

Fragment Shader	

/* pass-through fragment shader */	

	

in vec4 color;	

void main(void)	

{	

 gl_FragColor = color;	

}	

	

39	

Vertex Shader Applications	

•  Moving vertices	

– Morphing 	

– Wave motion	

–  Fractals	

•  Lighting	

– More realistic models	

– Cartoon shaders	

40	

41	

Operators and Functions	

•  Standard C functions	

– Trigonometric	

– Arithmetic	

– Normalize, reflect, length	

•  Overloading of vector and matrix types	

mat4 a;	

vec4 b, c, d;	

c = b*a; // a column vector stored as a 1d array	

d = a*b; // a row vector stored as a 1d array	

Adding Color	

•  Send color to the shaders as a vertex attribute or

as a uniform variable 	

•  Choice depends on frequency of change	

•  Associate a color with each vertex	

•  Set up an array of same size as positions	

•  Send to GPU as a vertex buffer object	

42	

Setting Colors	

43	

typedef vec3 color3;	

color3 base_colors[4] = {color3(1.0, 0.0. 0.0), ….	

color3 colors[NumVertices];	

vec3 points[NumVertices];	

	

//in loop setting positions	

	

colors[i] = basecolors[color_index]	

position[i] = ……. 	

	

Setting Up Buffer Object	

44	

//need larger buffer	

	

glBufferData(GL_ARRAY_BUFFER, sizeof(points) + 	

 sizeof(colors), NULL, GL_STATIC_DRAW);	

	

//load data separately	

	

glBufferSubData(GL_ARRAY_BUFFER, 0, 	

 sizeof(points), points);	

glBufferSubData(GL_ARRAY_BUFFER, sizeof(points), 	

 sizeof(colors), colors);	

	

	

Second Vertex Array	

45	

// vPosition and vColor identifiers in vertex shader	

	

	

loc = glGetAttribLocation(program, “vPosition”);	

glEnableVertexAttribArray(loc);	

glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, 0,	

 BUFFER_OFFSET(0));	

	

loc2 = glGetAttribLocation(program, “vColor”);	

glEnableVertexAttribArray(loc2);	

glVertexAttribPointer(loc2, 3, GL_FLOAT, GL_FALSE, 0,	

 BUFFER_OFFSET(sizeofpoints));	

	

Next Topic – Linear Algebra	

47	

Vectors	

•  Physical definition: 	

– Direction	

– Magnitude	

•  Examples 	

–  Light Direction	

– View Direction	

– Normal 	

Abstract Spaces	

•  Scalars	

•  (Linear) Vector Space	

–  Scalars and vectors	

•  Affine Space	

–  Scalars, vectors, and points	

•  Euclidean Space	

–  Scalars, vectors, points	

– Concept of distance	

•  Projections	

49	

Vectors – Linear Space	

•  Every vector	

–  has an inverse	

–  can be multiplied by a scalar	

•  There exists a zero vector	

– Zero magnitude, undefined orientation	

•  The sum of any two vectors is a vector - closure	

v	

 -v	

 αv	

v	

u	

w	

Vector Spaces	

n Vectors = n-tuples	

n Vector-vector addition	

n Scalar-vector multiplication	

n Vector space: 	

The image cannot be displayed. Your computer may not have enough memory to open the image, or the
image may have been corrupted. Restart your computer, and then open the file again. If the red x still
appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete
the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart
your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The image
cannot be
displayed.
Your
computer
may not

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open
the file again. If the red x still appears, you may have to delete the image and then insert it again.

Linear Independence	

Vectors are linear independent if the only set of scalars	

 iff	

02211 =+++ nnuuu !

"
!!

ααα

021 ==== nααα !

p = (x, y, z) = x
!
i + y
!
j + z
!
k

Vector Spaces	

•  Dimension	

•  The greatest number of linearly independent vectors	

•  Basis	

•  n linearly independent vectors (n: dimension)	

•  Representation 	

•  Unique expression in terms of the basis vectors	

•  Change of Basis: Matrix M	

•  Other basis 	

nnvvvv !
"

!!!
βββ +++= 2211

{ }iβ

nvvv !
…

!!
ʹ′ʹ′ʹ′ ,,, 21

nnvvvv !
"

!!!
ʹ′ʹ′++ʹ′ʹ′+ʹ′ʹ′= βββ 2211

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ʹ′

ʹ′

ʹ′

nn β

β
β

β

β
β

!!
2

1

2

1

M

53	

Vectors 	

•  These vectors are identical	

–  Same length and magnitude	

•  Vectors spaces insufficient for geometry	

– Need points	

Points	

•  Location in space	

•  Operations allowed between points and

vectors	

–  Point-point subtraction yields a vector	

–  Equivalent to point-vector addition 	

QPv −=
!

QvP +=
!

() () ()RPRQQP −=−+−

Affine Spaces	

Frame: a Point and a Set of Vectors	

Representations of the vector and point: n
scalars	

nn

nn

vvvPP
vvvv
βββ

ααα

++++=

+++=

!

!

22110

2211Vector	

Point	

0P nvvv !
…

!! ,,, 21

56	

Affine Spaces	

•  Point + a vector space	

•  Operations	

– Vector-vector addition	

–  Scalar-vector multiplication	

–  Point-vector addition	

–  Scalar-scalar operations	

•  For any point define	

–  1 • P = P	

–  0 • P = 0 (zero vector)	

Question	

How Far Apart Are Two Points in Affine Spaces ?	

	

Operation: Inner (dot) Product	

Euclidean (Metric) Spaces	

– Magnitude (length) of a vector	

	

– Distance between two points	

– Measure of the angle between two vectors	

•  cosθ = 0 è orthogonal	

•  cosθ = 1 è parallel	

() ()QPQPQP −⋅−=−

θcosvuvu =⋅

vvv ⋅=

In Pictures	

Euclidean Spaces	

– Combine two vectors to form a real	

– α, β, γ, …: scalars, u, v, w, …:vectors	

	

()

0
 if 0

=⋅

≠>⋅

⋅+⋅=⋅+

⋅=⋅

00
0vvv

wvwuwvu
uvvu

βαβα

0=⋅vuOrthogonal:	

Projections	

•  Problem: Find shortest distance from a point to a

line on a plane	

•  Given Two Vectors	

– Divide into two parts: one parallel and one orthogonal	

Projection of one	

vector onto another	

uvw +=α

vvvuvvvw ⋅=⋅+⋅=⋅ αα

vv
vw
⋅

⋅
=∴α

v
vv
vwwvwu
⋅

⋅
−=−=∴ α

Making New Vectors	

Cross Product	

Cross Product	

Parametric Forms	

66	

Lines, Rays	

•  Consider all points of the form	

–  P(α)=P0 + α d	

–  Set of all points that pass through P0 in the

direction of the vector d	

67	

2D Forms for lines	

•  Two-dimensional forms	

–  Explicit: y = mx +h	

–  Implicit: ax + by +c =0	

–  Parametric: 	

 x(a) = ax0 + (1-a)x1	

 y(a) = ay0 + (1-a)y1	

68	

Rays, Line Segments	

If a >= 0, then P(a) is the ray leaving P0 in the
direction d	

If we use two points to define v, then	

P(a) = Q + a (R-Q)=Q+av	

=aR + (1-a)Q	

For 0<=a<=1 we get all the	

points on the line segment	

joining R and Q	

Curves

70	

Planes	

Defined by a point and two vectors or by three points	

P(a,b)=R+au+bv	

 P(a,b)=R+a(Q-R)+b(P-Q)	

u	

v	

R	

P	

R	

Q	

71	

Triangles	

convex sum of P and Q	

convex sum of S(a) and R	

for 0<=α,β<=1, we get all points in triangle	

Barycentric Coordinates	

Barycentric Coordinates	

Triangle is convex	

Any point inside can be represented as an affine sum	

	

P(α1, α2, α3)=α A + βB + γC	

where 	

 α + β + γ = 1	

 α, β, γ >=0	

	

73	

Barycentric Coordinates	

Calculating Areas ?	

Matrices	

Matrices	

•  Definitions	

•  Matrix Operations	

•  Row and Column Matrices	

•  Rank	

•  Change of Representation	

•  Cross Product	

What is a Matrix?	

Elements, organized into rows and columns	

⎥
⎦

⎤
⎢
⎣

⎡

dc
ba

rows	

columns	

Definitions	

n x m Array of Scalars (n Rows and m Columns)	

–  n: row dimension of a matrix, m: column dimension	

– m = n: square matrix of dimension n	

–  Element 	

–  Transpose: interchanging the rows and columns of a
matrix	

•  Column Matrices and Row Matrices	

– Column matrix (n x 1 matrix):	

–  Row matrix (1 x n matrix):	

{ } mjniaij ,,1 ,,,1 , …… ==

[]ija=A

[]jiT a=A

[]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

n

i

b

b
b

b
!
2

1

b
Tb

Basic Operations	

Addition, Subtraction, Multiplication	

⎥
⎦

⎤
⎢
⎣

⎡

++

++
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡

hdgc
fbea

hg
fe

dc
ba

⎥
⎦

⎤
⎢
⎣

⎡

−−

−−
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥
⎦

⎤
⎢
⎣

⎡

hdgc
fbea

hg
fe

dc
ba

⎥
⎦

⎤
⎢
⎣

⎡

++

++
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

dhcfdgce
bhafbgae

hg
fe

dc
ba

add elements	

subtract elements	

Multiply each
row by each

column	

Matrix Operations	

+ Scalar-Matrix Multiplication	

+ Matrix-Matrix Addition	

+ Matrix-Matrix Multiplication	

+ A: n x l matrix, B: l x m è C: n x m matrix	

[]ijaαα =A

[]ijij ba +=+= BAC

[]

∑
=

=

==
l

k
kjikij

ij

bac

c

1

ABC

Matrix Operations 	

+  Properties of Scalar-Matrix Multiplication	

	

+  Properties of Matrix-Matrix Addition	

+ Commutative:	

+ Associative:	

+  Properties of Matrix-Matrix Multiplication	

+  Identity Matrix I (Square Matrix)	

	

() ()
AA
AA

βααβ
αββα

=

=

ABBA +=+
() () CBACBA ++=++

() ()
BAAB

CABBCA
≠

=

[]
⎩
⎨
⎧ =

==
otherwise 0

 if 1
 ,

ji
aa ijijI BIB

AAI
=

=

Identity Matrix	

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

100
010
001

I

Multiplication	

•  Is AB = BA? Maybe, but maybe not!	

•  Heads up: multiplication is NOT commutative!	

⎥
⎦

⎤
⎢
⎣

⎡ +
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

......

...bgae
hg
fe

dc
ba

⎥
⎦

⎤
⎢
⎣

⎡ +
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

......

...fcea
dc
ba

hg
fe

Row and Column Matrices	

- Column Matrix	

- pT: row matrix 	

- Concatenations	

- Associative	

- By Row Matrix	

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

z
y
x

p

ABCpp
App

=ʹ′

=ʹ′

()
TTTTT

TTT

ABCpp
ABAB

=ʹ′

=

Inverse of a Matrix	

-  Identity matrix: ���

AI = A	

- Some matrices have an inverse, such that: ���

AA-1 = I	

-  Inversion is tricky: ���
(ABC)-1 = C-1B-1A-1	

- Derived from non-commutativity property	

Determinant of a Matrix	

•  Used for inversion	

•  If det(A) = 0, then A has no

inverse	

•  Can be found using

factorials, pivots, and
cofactors!	

•  And for Areas of Triangles	

⎥
⎦

⎤
⎢
⎣

⎡
=

dc
ba

A

bcadA −=)det(

⎥
⎦

⎤
⎢
⎣

⎡

−

−

−
=−

ac
bd

bcad
A 11

Area of Triangle – Cramer’s Rule	

x1, y1

x2, y2

x3, y3

Use This Here	

Transformations	

