CSE 5542 - Real Time Rendering
Week 4

PR DEPARTMENT OF

5) PR ¢ 4
@)51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Slides(Mostly) Courtesy —
E. Angel and D. Shreiner

e PRI ocearTMEnT oF |
Y. R¥SI®] compuTER SCIENCE
o MBS AND ENGINEERING |

Recap from Recent Past

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

The Sierpinski Gasket

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Sierpinski Vertex Shader

Il Load shaders and use the resulting shader program
GLuint program = InitShader("vshader2|.glsl", "fshader21.gls|");
glUseProgram(program);

attribute vec4 vPosition;
void
main()

gl_Position = vPosition;

}

PR OEPARTMENT OF

@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Sierpinski Fragment Shader

Il Load shaders and use the resulting shader program
GLuint program = InitShader("vshader2|.glsl", "fshader21.gls|");
glUseProgram(program);

void

main()

{
gl_FragColor = vec4(1.0,0.0,0.0, 1.0);

}

PR OEPARTMENT OF

@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Fragment vs Vertex Shader

per vertex lighting per fragment lighting

@ OEPARTMENT OF

T H
©)51(®) coMPUTER SCIENCE
NPRVES! \ND ENGINEERING

OpenGL and GLSL

Shader based OpenGL is based less on a state machine
model than a data flow model

Most state variables, attributes and related pre 3.1
OpenGL functions have been deprecated

Action happens in shaders

Job is application is to get data to GPU

PRI 0coARTMENT OF
(@)51(®) coMPUTER SCIENCE
A BYaWS AN ENGINEERING |

GLSL

e C-like with
— Matrix and vector types (2, 3, 4 dimensional)
— Overloaded operators

— C++ like constructors

* Similar to Nvidia’ s Cg and Microsoft HLSL

e Code sent to shaders as source code

I OEPARTMENT OF

2 |oro

COMPUTER SCIENCE
SIRVISY A ND ENGINEERING

Hd
4 UNIVERSITY

Still Maximal Portability

* Display device independent

* Window system independent

* Operating system independent

il OEPARTMENT OF

oic

COMPUTER SCIENCE
MRS AN ENGINEERING

A Few More Things

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Hardware Rendering Pipeline

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels Display
Vertex Fragment T
. utpu
Processor , Rasterizer Processor M p
ergin
(Programmable) (Programmable) ging
3D ‘0@, 3D ‘09 .30 2D array of
,’.3325\ ,’.::Q;}‘\\ color-values
IR TNy TE--lQ0,
host _| vertex | triangle | pixel | memory
interface processing setup processing interface

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

OpenGL Primitives

GL_POINTS / AN

GL LINES GL_LINE_STRIP

A\ : GL_LINE_LOOP
GL_ TRIANGLES -

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

PRI OEPARTMENT OF

@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Triangles

* Triangles must be
— Simple: edges cannot cross

— Convex: All points on line segment between two points in
a polygon are also in the polygon

— Flat: all vertices are in the same plane
* User must create triangles (triangulation)

 OpenGL contains a tessellator

nonsimple polygon nonconvex polygon

-

PR OEPARTMENT OF

T8
d [®/51®) coMmPUTER SCIENCE
* AND ENGINEERING

UNIVERSITY

Space !

point2 vertices[3] = {point2(0.0, 0.0),
point2(0.0, 1.0), point2(1.0, 1.0)};

PR DEPARTMENT OF

Y EIONT
(S)DIT‘ICII% COMPUTER SCIENCE
SRWIS \ND ENGINEERING

Transform Spaces

Object Space ‘ Screen Space

DEPARTMENT OF

COMPUTER SCIENCE
=~ AND ENGINEERING

OHIO

Coordinate Systems

* The units in points can be object, world, model or
problem coordinates

* Viewing specifications are also in object coordinates
* Same for lights

* Eventually pixels will be produced in window
coordinates

S BN 0ceARTMENT OF
4 OHlO COMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Default Camera

* Camera at origin in object
space pointing in -z direction

* Default viewing volume

- box centered at
origin with sides of

I e ngth 2 (left, bottom, near,

(right, top, far)

I OEPARTMENT OF

oo

COMPUTER SCIENCE
MRS AN ENGINEERING

Orthographic Viewing

Points projected forward along z axis onto

plane z=0
Y
A
/ ________ % | | ~Viewing rectangle
Yo : .
/A / s

(x, y, 2)

e { Gey "‘_:' I ODEPARTMENT OF
(@/51®] cOMPUTER SCIENCE
- B BUAYIS AND ENGINEERING

UNIVERSITY

Viewports

* Use partial window for image: glViewport(x,y,w,h)
* w, h — pixel coordinates

* X,y — lower corner

f(\\
»l O P - Viewport
x4 o | _{t~Graphics window
Y 1
&\ jJ
O -
\ /
i |

Clipping window

PR OEPARTMENT OF

(@)51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Writing Shaders

PR DEPARTMENT OF

{ P
@/51®) coMPUTER SCIENCE
AND ENGINEERING

Simple Vertex Shader

input from application
in vec4 vPosition;

\

must link to variable in application

void main(void)

{

gl Position = vPosition;

N

built in variable

@l OEPARTMENT OF

OO

COMPUTER SCIENCE
W AND ENGINEERING

Execution Model

Vertex data
Shader Program

glDrawArrays Vertex

T i'f; @ OEPARTMENT OF
®/51®) coMPUTER SCIENCE
SRWBS! /\\D ENGINEERING

UNIVERSITY

Simple Fragment Program

void main(void)

{
gl _FragColor = vec4(1.0, 0.0, 0.0, 1.0);

J

e RIS ocearTMENT oF |
Y. R¥SI®] comPUTER SCIENCE
L N BRI AnD ENGINEERING |

Execution Model

Shader Program

Fragment Fragment
Color

] PESEIPY 0cPARTMENT OF
®)51(®) cOMPUTER SCIENCE
NPRVBS! AND ENGINEERING

Data Types

* C types: int, float, bool

* Vectors:

— float vec2, vec3, vec4

— Also int (ivec) and boolean (bvec)
* Matrices: mat2, mat3, mat4

— Stored by columns

— Standard referencing m[row][column]
* C++ style constructors

— vec3 a =vec3(1.0, 2.0, 3.0)
— vec2 b = vec2(a)

ye] PR DEPARTMENT OF
-l [®IsH®] coMPUTER SCIENCE
NIPRVIS \ND ENGINEERING

Pointers

* There are no pointers in GLSL
* C structs which can be copied back from functions

* Matrices and vectors can be passed to and fro
GLSL functions, e.g. mat3 func(mat3 a)

PR DEPARTMENT OF

5 - T * }:v
(53171}:11% COMPUTER SCIENCE
4 B8\ Ano EnciNeERING |

Selection and Swizzling

* Access array elements-by-element using [] or
selection (.) operator with

— X, Y, Z, W
_r’g’ b’a

— S, ta P’ CI
—a[2], a.b, a.z, a.p are the same

* Swizzling operator to manipulate components

vec4 a;
a.yz = vec2(1.0, 2.0);

DEPARTMENT OF
COMPUTER SCIENCE
MRS AN ENGINEERING

| RS

Example: Vertex Shader

const vec4 red = vec4(1.0, 0.0, 0.0, 1.0);
out vec3 color_out;
void main(void)
{
gl Position = vPosition;
color_out = red;

J

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

OhiO

Fragment Shader

in vec3 color_out;
void main(void)

gl FragColor = color_out;
// in latest version use form
/I out vec4 fragcolor;

I/ fragcolor = color_out;

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

| (o510

Qualifiers

* GLSL has many qualifiers like const as C/C++

* Variables can change
— Once per primitive
— Once per vertex
— Once per fragment
— At any time in the application

* Vertex attributes are interpolated by the rasterizer into
fragment attributes

PR DEPARTMENT OF

| S o
d [I51®] comPUTER SCIENCE
NIPRVBS! \\D ENGINEERING

UNIVERSITY

Passing values

Call by value-return

Variables are copied in

Returned values are copied back
Two possibilities

— 1IN

— out

PR DEPARTMENT OF

- DR
(531711.11% COMPUTER SCIENCE
SIPRVBS! AND ENGINEERING

Attribute Qualifier

* Attribute-qualified variables can change at most
once per vertex

* User defined (in application program)
— Use in qualifier to get to shader
— in float temperature

— in vec3 velocity

[T PR OEPARTMENT OF
(S)l%il% COMPUTER SCIENCE
4 BUAY AND ENGINEERING |

Uniform Qualified

Variables that are constant for an entire primitive

Can be changed in application and sent to shaders

Cannot be changed in shader

Used to pass information to shader such as the
bounding box of a primitive

O ye] PERPRY DEPARTMENT OF
-l [®IS1®] comPUTER SCIENCE
NIPRVIS \ND ENGINEERING

Example

GLint aParam;

aParam = glGetUniformLocation(myProgOb;j,
"angle");

/* angle defined in shader */

/* my_angle set in application */
GLfloat my angle;

my_angle = 5.0 /* or some other value */

glUniform | f(aParam, my_angle);

.) U }.{._ I ODEPARTMENT OF
d L®)5E®) coMPUTER SCIENCE
AND ENGINEERING

Varying Qualified

* Variables passed from vertex to fragment shader
* Automatically interpolated by the rasterizer
e Old style - varying vec4 color

* Use out in vertex shader and in in fragment shader
out vec4 color;

[T PRI 0EPARTMENT OF
(S)DI}CJI% COMPUTER SCIENCE
4 BUaYS] AnD ENGINEERING

Wave Motion Vertex Shader

in vec4 vPosition;
uniform float xs, zs, // frequencies
uniform float h;// height scale
void main()
{
vec4 t = vPosition;
t.y = vPosition.y
+ h*sin(time + xs*vPosition.x)
+ h*sin(time + zs*vPosition.z);
gl Position = t;

}

PR DEPARTMENT OF

o PR
@/51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Particle System

in vec3 vPosition;

uniform mat4 ModelViewProjectionMatrix;
uniform vec3 init_vel;

uniform float g, m, t;

void main()

{ vec3 object_pos;

object_pos.x = vPosition.x + vel.x*t;
object _pos.y = vPosition.y + vel.y*t

+ g/(2.0*m)*t*¢;
object pos.z = vPosition.z + vel.z*t;
gl _Position =

ModelViewProjectionMatrix*vec4(object_pos,|);

}

.) U }.{; I ODEPARTMENT OF
d L®)51®) coMPUTER SCIENCE
AND ENGINEERING

Fragment Shader

[* pass-through fragment shader */

in vec4 color;
void main(void)

{

gl FragColor = color;

Y F
B8 COMPUTER SCIENCE
SRS’ \\D ENGINEERING

Vertex Shader Applications

* Moving vertices
— Morphing
— Wave motion
— Fractals
* Lighting
— More realistic models

— Cartoon shaders

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

oo

Operators and Functions

 Standard C functions
— Trigonometric
— Arithmetic

— Normalize, reflect, length

* Overloading of vector and matrix types
mat4 a;
vec4 b, ¢, d;
c = b*a; // a column vector stored as a |d array

d = a*b; // a row vector stored as a |d array

PR DEPARTMENT OF

"N R
(S)DI?‘%I% COMPUTER SCIENCE
) BUAYH AND ENGINEERING |

Adding Color

Send color to the shaders as a vertex attribute or
as a unhiform variable

Choice depends on frequency of change
Associate a color with each vertex
Set up an array of same size as positions

Send to GPU as a vertex buffer object

o IR 0:eARTMENT OF
(@)5¥®) coMPUTER SCIENCE
M BVAYIS AnD ENGINEERING |

Setting Colors

typedef vec3 color3;

color3 base_colors[4] = {color3(1.0,0.0.0.0),
color3 colors[NumVertices];

vec3 points[NumVertices];

//in loop setting positions

colors[i] = basecolors[color_index]
position[i] =

I OEPARTMENT OF

. T * ':{."
(@518 coMPUTER SCIENCE
- B BUaIS A\ ENGINEERING

UNIVERSITY

Setting Up Buffer Object

/Ineed larger buffer

glBufferData(GL_ARRAY_BUFFER, sizeof(points) +
sizeof(colors), NULL, GL_STATIC_DRAW);

//load data separately

glBufferSubData(GL_ARRAY_BUFFER, 0,
sizeof(points), points);

glBufferSubData(GL_ARRAY_ BUFFER, sizeof(points),
sizeof(colors), colors);

DEPARTMENT OF
COMPUTER SCIENCE
MRS AN ENGINEERING

JOHIO

Second Vertex Array

/] vPosition and vColor identifiers in vertex shader

loc = glGetAttribLocation(program, “vPosition”);

glEnableVertexAttribArray(loc);

glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, O,
BUFFER OFFSET(0));

loc2 = glGetAttribLocation(program, “vColor”);

glEnableVertexAttribArray(loc2);

glVertexAttribPointer(loc2, 3, GL_FLOAT, GL_FALSE, 0,
BUFFER _OFFSET (sizeofpoints));

DEPARTMENT OF
COMPUTER SCIENCE
MRS AN ENGINEERING

oo

Next Topic — Linear Algebra

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Vectors

* Physical definition:
— Direction
— Magnitude
* Examples
— Light Direction
— View Direction

— Normal

PR DEPARTMENT OF

~fr. v
@/51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Abstract Spaces

e Scalars

* (Linear) Vector Space

— Scalars and vectors

* Affine Space

— Sca

* Euclic

ars, vectors, and points

ean Space

— Sca

ars, vectors, points

— Concept of distance

* Projections

PR DEPARTMENT OF

CEBH T _H
(S)DI?‘[CII% COMPUTER SCIENCE
4 BUBYS AnD ENGINEERING |

Vectors — Linear Space

* Every vector
— has an inverse
— can be multiplied by a scalar
* There exists a zero vector
— Zero magnitude, undefined orientation

* The sum of any two vectors is a vector - closure

AZ)

o 3 OEPARTMENT OF
{ %j{.ll% COMPUTER SCIENCE
SRS \ND ENGINEERING

Vector Spaces

i. Your computer may not have enough memory n the image, or the

| I The image cannot be dis|

d. Restart your ¢ en open the file If the red x still
the image again
—
. °
e image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete
8 he image and then nsert it again
. ° .
The image cannot be displayed. Your computer ma nemory to open the image, or the image may have been corrupted. Restart
x your computer, and then open the file again. If the s, you may have to delete the image and then insert it again.
to open the image, or the image may have been corrupted. Restart your computer, and then open
n insert it again

The
x o

®
B Vector space:

@l OEPARTMENT OF

T - H_
@)51®) coMPUTER SCIENCE
AND ENGINEERING

Linear Independence

p=(x,y,2)= x?+y}:+zlg

DEPARTMENT OF

Y B
d [0518] compuTER SCIENCE
RIS AND ENGINEERING

Vector Spaces

e Dimension

* The greatest number of linearly independent vectors

* Basis 18}
* n linearly independent vectors (n: dimension)
* Representation V=B + LV, + -+ BV
* Unique expression in terms of the basis vectors
. . 1
* Change of Basis: Matrix M P!
2
* Other basis 1 —/ Sl =
V1:V29---9Vn .
— 1—1) —1) —1
V=»LV, + .V, + -+ [V Vid

B
P

[T PRI OEPARTMENT OF
(S)DACI% COMPUTER SCIENCE
) BUAYH AND ENGINEERING |

Vectors

* These vectors are identical
— Same length and magnitude

7
/

* Vectors spaces insufficient for geometry
— Need points

Y PSR 0cPARTMENT OF
4 [®/51®] coMmPUTER SCIENCE
AND ENGINEERING

Points

* Location in space

* Operations allowed between points and
vectors
— Point-point subtraction yields a vector Pl e

— Equivalent to point-vector addition Q

PRI OEPARTMENT OF

(53171;1;11% COMPUTER SCIENCE
M BVAYIS AnD ENGINEERING

Affine Spaces

Frame: a Point/and a Set of Vectors Vv,,V,,...

Representations of the vector and point: n
scalars

v=ayv, +0,v, ++a v,
S P=F +06v,+06v,+-+06V

|

<

=, oy BRI 0ceARTMENT OF |
@)51®) coMPUTER SCIENCE
- N BUVIS \\D ENGINEERING |

Affine Spaces

* Point + a vector space

* Operations
— Vector-vector addition
— Scalar-vector multiplication
— Point-vector addition

— Scalar-scalar operations

* For any point define
— | eP=P

— 0+ P =0 (zero vector)

PR DEPARTMENT OF

(€& 3 | SR O
(S)l%ll% COMPUTER SCIENCE
4 BUAY AND ENGINEERING |

Question

How Far Apart Are Two Points in Affine Spaces ?

Operation: Inner (dot) Product

@l OEPARTMENT OF

- T H "
d [95518] comPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Euclidean (Metric) Spaces

— Magnitude (length) of a vector
M =+V-V
— Distance between two points

P-0|=(P-0)(P-0)

— Measure of the angle between two vectors

U-v= ‘qu‘ cos

* cos & =0 = orthogonal
* cos & = | = parallel

(& Sy PERELUNR OEPARTMENT OF
Y. R¥51®] compuTER SCIENCE
i M BRI D ENGINEERING

‘~§.,.,- !!!!!!

In Pictures

°| b, |=a.b +a,b,+a,b,

Definition a=(a,a,a)
b = (b, b, b))
Dot Product a*b=axb +axb, +axb:

Inner Product

ocalar Product

Geometrical Interpretation a-b=|a||blcosA

if |b] =1 if |a|=1, |b]=1

|a] cos A laj cos A

relationship with angle

@l OEPARTMENT OF

T*'H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Euclidean Spaces

— Combine two vectors to form a real
—a, B, 7, ...:scalars, u, v, w, ...:vectors
U-v=v-u
(au+/)’v)-w=au°w+/3\/°w
v-v>01fv=0
0-0=0

Orthogonal: u'v =0

PR DEPARTMENT OF

T H
%j{.ll% COMPUTER SCIENCE
SIPRVBS! AND ENGINEERING

Projections

* Problem: Find shortest distance from a point to a
line on a plane
* Given Two Vectors w=av+u

— Divide into two parts: one parallel and one orthogonal
W v=av-v+u-v=av-v

w-y
O =
VeV av T
WwW-v Proiecti
U= W—OV =W — V rojection of one
VR vector onto another

- PRI DEPARTMENT OF ‘
(53171;121[% COMPUTER SCIENCE
SUBME] AND ENGINEERING |

Making New Vectors

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Cross Product

-
Padntl i
F
axb é\
9
ad b
1 b / v
n .
oy 4
bxa a
=-aXb

i j k

c=axb=l a a,|=

])_) h‘;

= (a,b, —ab,)i + (ah, —ab,)j+ (ab, —ab)k

@l OEPARTMENT OF

T H
d [®518] comMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Cross Product

Definition a=(a,a,a) b = (b, b, b:)
Cross Product 8% be - & b,
Outer Product axb=| a:xb.-a.xb:
(Vector Product a.xb,-a,xb.

Geometrical Interpretation

- Perpendicular Direction

- Length & Area

Area of Parallelogram
= |a| |b| sinA

|a xb| = |a| |b| sinA | =|axb|

Area of Triangle

= 1/2 x |a| |b| sin A

=laxb|/2
parallel A =180 deg
- Par.
arete 3 jaxb|=0 N laxb|=0
b b e ——
a

e

OHIO
STATE

UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Parametric Forms

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Lines, Rays

* Consider all points of the form
— P(a)=P, + o d
— Set of all points that pass through P, in the
direction of the vector d

PRI OEPARTMENT OF

(53171;1;11% COMPUTER SCIENCE
M BU8VIS AnD ENGINEERING

2D Forms for lines

* Two-dimensional forms
— Explicit: y = mx +h
— Implicit: ax + by +c =0
— Parametric:
x(a) = axy + (1-a)x,
y(a) = ay, * (l-a)y,

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

| [O518

Rays, Line Segments

If a >= 0, then P(a) is the ray leaving P, in the
direction d

If we use two points to define v, then

P(a) = Q +a (R-Q)=Q+av
=aR + (1-2)Q *T ‘;{’P(“)
For 0<=a<=| we get all the

points on the line segment

a=0
joining R and Q A

el PRI OEPARTMENT OF
4 [OIsE®] coMPUTER SCIENCE
NIPRVIS \ND ENGINEERING

Curves

VA

P(x. v)

X
implicit form parametric form
" , , , 1 —1¢t*
ircle 4y —r =0 r(t) =rs ylt) =17
: ¥ oy , 1 —¢?
ellipse —_ 4 = =1 0 xit) a yit) b
} (l" he l } .‘-' Y
xre) = l + !- \
hvperbola _—— =] 0 rt) =a ylt)==b
Vi a? b2 e LAY 1
e i t? .
parabola y* —2pxr =10 z(t) = = ylt) =t
2p

@ OEPARTMENT OF

T*'H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Planes

Defined by a point and two vectors or by three points

P

R u R

P(a,b)=R+au+bv P(a,b)=R+a(Q-R)+b(P-Q)

@l OEPARTMENT OF

| OHiO

COMPUTER SCIENCE
=~ AND ENGINEERING

Triangles

P S{ox) ®

for 0<=q,f<=1, we get all points in triangle

3 PEELBSRY OEPARTMENT OF

@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Barycentric Coordinates

(0,0,1)

(%, %,%)

NS -
~ | <y
/

\ ~ -
RN O F 19) Ry
\\ \\|‘// ///

1 VAN BN VA VA |
(A!%! /t)/‘: : ;‘\(?és /4! /4)
//// \\\ : /// \\\\
//// \\ i // \\\\
-7 \\I,/ N
(0,1,0)/ - % ~N(1,0,0)
(*2,%4,0)

DEPARTMENT OF

COMPUTER SCIENCE
NIPRVIS \ND ENGINEERING

| OHIO

Barycentric Coordinates

Triangle is convex

Any point inside can be represented as an affine sum

P(a,; a, az)=aA + BB +yC
where

a+pP+y=I

a P,y >=0

DEPARTMENT OF

s e l’f" E
(S)l%l% COMPUTER SCIENCE
SUBMEE] AND ENGINEERING

Barycentric Coordinates

Calculating Areas !

@l OEPARTMENT OF

T - H_
(S)D}A{Cll% COMPUTER SCIENCE
SRWIS \ND ENGINEERING

Matrices

PRl DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Matrices

Definitions

Matrix Operations

Row and Column Matrices
Rank

Change of Representation

Cross Product

PR DEPARTMENT OF

.) G ¢ 4
(S)l%'ll% COMPUTER SCIENCE
SUBMEE] AND ENGINEERING |

What is a Matrix?

Elements, organized into rows and columns

FOwsS

a b
c d

columns

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

JOHIO

Definitions A =la]

n x m Array of Scalars (n Rows and m Columns)
— n: row dimension of a matrix, m: column dimension
— m = n: square matrix of dimension n
— Element
{aij}, i=1,....,n, j=1,....m

— Transpose: interchanging the rows and columns of a

matrix Al = _ajl,
e Column Matrices and Row Matrices
— Column matrix (n x | matrix):

— Row matrix (1 x n matrix): b’

o) PRELEERY 0EPARTMENT OF
d (/518 comPpUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Basic Operations

Addition, Subtraction, Multiplication

‘a b] [e f] [a+e b+ f]

+ —]
E d_ < h_ c+g J+ h_ add elements
‘a bl [e f| [a-e b-f"

— = subtract elements
C d_ g h_ c-g d —h_
a blle f _ ae+bg af +bh Multiply each
c d|lg h ce+dg cf +dh row by each

column

DEPARTMENT OF

T*H'E
(S)DI?‘[CII% COMPUTER SCIENCE
SUBMEE] AND ENGINEERING

Matrix Operations

+ Scalar-Matrix Multiplication
aA = _aal]J

+ Matrix-Matrix Addition
C =A+B =_al.j +bl.jJ

+ Matrix-Matrix Multiplication

+A: n x I matrix, B: | x m = C: n x m matrix
C -AB-|c,]

C.. =

iy a,;by;

-

Tyel PENRIYRY OEPARTMENT OF |
, (i (S)DI?‘[CII% COMPUTER SCIENCE
. BeYE] ANDENGINEERING |

CE

Matrix Operations

+ Properties of Scalar-Matrix Multiplication a(/jA) = (a/j)A

oA = PaA
+ Properties of Matrix-Matrix Addition

+ Commutative: A +B =B + A
+ Associative: = A + (B_|_C)= (A_|_B)_|_C

+ Properties of Matrix-Matrix Multiplication
A(BC)=(AB)C

AB = BA
+ Identity Matrix 1 (Square Matrix) Al = A

I [1 1i1fi=j
v v 0 otherwise IB =B

DEPARTMENT OF
COMPUTER SCIENCE
MRS AN ENGINEERING

'JOHIO

ldentity Matrix

1 0 O
1 0
0 1

0
0

PR DEPARTMENT OF

T*'H
d [95518] comPUTER SCIENCE
' AND ENGINEERING

UNIVERSITY

Multiplication

* Is AB = BA? Maybe, but maybe not!

D A e A

* Heads up: multiplication is NOT commutative!

ea+ fc]

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

JOHIO

Row and Column Matrices

— Column Matrix
- p’: row matrix
— Concatenations

— Associative

— By Row Matrix

-
p=|y
Z
p' =Ap
p = ABCp
(AB) =B’A”

Tyel PENRIYRY OEPARTMENT OF |
-l ROU51®] oMPUTER SCIENCE
M BRVBS \\p ENGINEERING

Inverse of a Matrix

— ldentity matrix:
Al =A

— Some matrices have an inverse, such that:
AA- =]

— Inversion is tricky:
(ABC)! = C-'B'A

— Derived from non-commutativity property

Oyl PRRITRY ODEPARTMENT OF |
-l [®I51®] compyTER SCIENCE
B BVRBS \\p ENGINEERING

Determinant of a Matrix

e Used for inversion A=[a b}
* If det(A) = 0, then A has no c d
inverse

 Can be found using det(A) = ad - bc

factorials, pivots, and - 1 [d -b
cofactors! ~ad -be [—c a }

* And for Areas of Triangles

e PSR OEPARTMENT OF |
: -l [®I51®] compyTER SCIENCE
g AND ENGINEERING

Area of Triangle — Cramer’s Rule

X Y1
| ooy o1
V — . y X2’ Y2
Ans = -1 W 1
h A
X35 Y3

DEPARTMENT OF

COMPUTER SCIENCE
NIPRVIS \ND ENGINEERING

i loHIO

Use This Here

PR OEPARTMENT OF

T*'H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Transformations

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

