CSE 5542 - Real Time Rendering Week 4

DEPARTMENT OF
COMPUTER SCIENCE
AND ENGINEERING

Slides(Mostly) Courtesy E. Angel and D. Shreiner

Recap from Recent Past

The Sierpinski Gasket

Sierpinski Vertex Shader

```
// Load shaders and use the resulting shader program
    GLuint program = InitShader( "vshader2l.glsl", "fshader2I.gls|" );
    g|UseProgram( program );
```

attribute vec4 vPosition;
void
main()
\{
gl_Position = vPosition;
\}

Sierpinski Fragment Shader

```
// Load shaders and use the resulting shader program
    GLuint program = InitShader( "vshader2l.glsl", "fshader2I.gls|" );
    glUseProgram( program );
void
main()
{
    gl_FragColor = vec4( I.0, 0.0, 0.0, I.0 );
}
```


Fragment vs Vertex Shader

per vertex lighting

7

per fragment lighting

OpenGL and GLSL

- Shader based OpenGL is based less on a state machine model than a data flow model
- Most state variables, attributes and related pre 3.I

OpenGL functions have been deprecated

- Action happens in shaders
- Job is application is to get data to GPU

GLSL

- C-like with
- Matrix and vector types (2, 3, 4 dimensional)
- Overloaded operators
- C++ like constructors
- Similar to Nvidia's Cg and Microsoft HLSL
- Code sent to shaders as source code

Still Maximal Portability

- Display device independent
- Window system independent
- Operating system independent

A Few More Things

Hardware Rendering Pipeline

OpenGL Primitives

Triangles

- Triangles must be
- Simple: edges cannot cross
- Convex: All points on line segment between two points in a polygon are also in the polygon
- Flat: all vertices are in the same plane
- User must create triangles (triangulation)
- OpenGL contains a tessellator

Space?

point2 vertices[3] = \{point2(0.0, 0.0), point2(0.0, I.0), point2(I.0, I.0)\};

Transform Spaces

Object Space

Screen Space

Coordinate Systems

- The units in points can be object, world, model or problem coordinates
- Viewing specifications are also in object coordinates
- Same for lights
- Eventually pixels will be produced in window coordinates

Default Camera

- Camera at origin in object space pointing in -z direction
- Default viewing volume
- box centered at origin with sides of length 2

Orthographic Viewing

Points projected forward along z axis onto plane $z=0$

AND ENGINEERING

Viewports

- Use partial window for image: glViewport(x,y,w,h)
- w, h - pixel coordinates
- x,y - lower corner

Clipping window

Writing Shaders

Simple Vertex Shader

input from application
in vec4 vPosition; void main(void)
must link to variable in application
$\{$
gl_Position = vPosition;
\}
built in variable

Execution Model

Simple Fragment Program

void main(void)

\{
gl_FragColor $=\operatorname{vec} 4(1.0,0.0,0.0,1.0) ;$
\}

AND ENGINEERING

Execution Model

Data Types

- C types: int, float, bool
- Vectors:
- float vec2, vec3, vec4
- Also int (ivec) and boolean (bvec)
- Matrices: mat2, mat3, mat4
- Stored by columns
- Standard referencing m[row][column]
- C++ style constructors
- vec3 a =vec3(I.0, 2.0, 3.0)
$-\operatorname{vec} 2 \mathrm{~b}=\operatorname{vec} 2(\mathrm{a})$

Pointers

- There are no pointers in GLSL
- C structs which can be copied back from functions
- Matrices and vectors can be passed to and fro GLSL functions, e.g. mat3 func(mat3 a)

Selection and Swizzling

- Access array elements-by-element using [] or selection (.) operator with
$-x, y, z, w$
$-r, g, b, a$
$-s, t, p, q$
$-a[2], a . b, a . z, a . p$ are the same
- Swizzling operator to manipulate components
vec4 a;
a.yz = vec2(I.0, 2.0);

Example: Vertex Shader

```
const vec4 red = vec4(I.0, 0.0, 0.0, I.0);
out vec3 color_out;
void main(void)
{
    gl_Position = vPosition;
    color_out = red;
}
```


Fragment Shader

in vec3 color_out;

void main(void)
\{
gl_FragColor = color_out;
\}
// in latest version use form
// out vec4 fragcolor;
// fragcolor = color_out;

Qualifiers

- GLSL has many qualifiers like const as $\mathrm{C} / \mathrm{C}++$
- Variables can change
- Once per primitive
- Once per vertex
- Once per fragment
- At any time in the application
- Vertex attributes are interpolated by the rasterizer into fragment attributes

Passing values

- Call by value-return
- Variables are copied in
- Returned values are copied back
- Two possibilities
- in
- out

Attribute Qualifier

- Attribute-qualified variables can change at most once per vertex
- User defined (in application program)
- Use in qualifier to get to shader
- in float temperature
- in vec3 velocity

Uniform Qualified

- Variables that are constant for an entire primitive
- Can be changed in application and sent to shaders
- Cannot be changed in shader
- Used to pass information to shader such as the bounding box of a primitive

Example

GLint aParam;
aParam = glGetUniformLocation(myProgObj,
"angle");
/* angle defined in shader */
/* my_angle set in application */
GLfloat my_angle;
my_angle = 5.0 /* or some other value */
gIUniformIf(aParam, my_angle);

Varying Qualified

- Variables passed from vertex to fragment shader
- Automatically interpolated by the rasterizer
- Old style - varying vec4 color
- Use out in vertex shader and in in fragment shader out vec4 color;

Wave Motion Vertex Shader

```
in vec4 vPosition;
uniform float xs, zs, // frequencies
uniform float h; // height scale
void main()
*
    vec4 t = vPosition;
    t.y = vPosition.y
    +h*sin(time + xs*vPosition.x)
    +h*sin(time + zs*vPosition.z);
    gl_Position = t;
}
```


Particle System

in vec3 vPosition;
uniform mat4 ModelViewProjectionMatrix;
uniform vec3 init_vel;
uniform float $\mathrm{g}, \mathrm{m}, \mathrm{t}$;
void main()
\{ vec3 object_pos;
object_pos.x = vPosition.x + vel. x^{*} t;
object_pos.y $=$ vPosition. $y+$ vel. $y^{*} \mathrm{t}$
$+\mathrm{g} /\left(2.0^{*} \mathrm{~m}\right)^{*} \mathrm{t}^{*} \mathrm{t}$;
object_pos.z = vPosition.z + vel. z^{*} t;
gl_Position =
ModeIViewProjectionMatrix*vec4(object_pos,I);
\}

Fragment Shader

/* pass-through fragment shader */
in vec4 color;
void main(void)
\{
gl_FragColor = color;
\}

Vertex Shader Applications

- Moving vertices
- Morphing
- Wave motion
- Fractals
- Lighting
- More realistic models
- Cartoon shaders

Operators and Functions

- Standard C functions
- Trigonometric
- Arithmetic
- Normalize, reflect, length
- Overloading of vector and matrix types mat4 a ;
vec4 b, c, d;
$\mathrm{c}=\mathrm{b}^{*} \mathrm{a}$; // a column vector stored as a Id array
$\mathrm{d}=\mathrm{a} * \mathrm{~b}$; // a row vector stored as a Id array

Adding Color

- Send color to the shaders as a vertex attribute or as a uniform variable
- Choice depends on frequency of change
- Associate a color with each vertex
- Set up an array of same size as positions
- Send to GPU as a vertex buffer object

Setting Colors

typedef vec3 color3;
color3 base_colors[4] = \{color3(I.0, 0.0. 0.0),
color3 colors[NumVertices];
vec3 points[NumVertices];
//in loop setting positions
colors[i] = basecolors[color_index]
position[i] =

Setting Up Buffer Object

//need larger buffer
gIBufferData(GL_ARRAY_BUFFER, sizeof(points) + sizeof(colors), NULL, GL_STATIC_DRAW);
//load data separately
gIBufferSubData(GL_ARRAY_BUFFER, 0 , sizeof(points), points);
glBufferSubData(GL_ARRAY_BUFFER, sizeof(points), sizeof(colors), colors);

Second Vertex Array

// vPosition and vColor identifiers in vertex shader

```
loc = glGetAttribLocation(program, "vPosition");
g|EnableVertexAttribArray(loc);
g|VertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, 0,
    BUFFER_OFFSET(0));
```

loc2 $=$ gIGetAttribLocation(program, "vColor");
g|EnableVertexAttribArray(loc2);
gIVertexAttribPointer(loc2, 3, GL_FLOAT, GL_FALSE, 0 ,
BUFFER_OFFSET(sizeofpoints));

Next Topic - Linear Algebra

Vectors

- Physical definition:
- Direction
- Magnitude
- Examples
- Light Direction
- View Direction
- Normal

Abstract Spaces

- Scalars
- (Linear) Vector Space
- Scalars and vectors
- Affine Space
- Scalars, vectors, and points
- Euclidean Space
- Scalars, vectors, points
- Concept of distance
- Projections

OHIO | OEPaRTMENT of |
| :--- |
| COMPUTER SCIENCE |
| STAIE |
| AND ENGINEERING |

Vectors - Linear Space

- Every vector
- has an inverse
- can be multiplied by a scalar
- There exists a zero vector
- Zero magnitude, undefined orientation
- The sum of any two vectors is a vector - closure

Vector Spaces

■ Vectors $=n$-tuples
$\boldsymbol{x} \boldsymbol{x}=\mathbf{x}=\mathbf{y}=\mathbf{x}$

■ Vector-vector addition

■Scalar-vector multiplication

■ Vector space: $\boldsymbol{W}=$
$\boldsymbol{x}=\mathrm{m}^{2 \times m a n}$

Linear Independence

$$
\begin{aligned}
& \alpha_{1} \vec{u}_{1}+\alpha_{2} \vec{u}_{2}+\cdots+\alpha_{n} \vec{u}_{n}=0 \text { iff } \\
& \alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0 \\
& p=(x, y, z)=x \vec{i}+y \vec{j}+z \vec{k}
\end{aligned}
$$

Vector Spaces

- Dimension
- The greatest number of linearly independent vectors
- Basis $\left\{\beta_{i}\right\}$
- n linearly independent vectors (n : dimension)
- Representation

$$
\vec{v}=\beta_{1} \vec{v}_{1}+\beta_{2} \vec{v}_{2}+\cdots+\beta_{n} \vec{v}_{n}
$$

- Unique expression in terms of the basis vectors
- Change of Basis: Matrix M
- Other basis
$\left[\begin{array}{c}\beta_{1}^{\prime} \\ \beta_{2}^{\prime} \\ \vdots \\ \beta_{n}^{\prime}\end{array}\right]=\mathbf{M}\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n}\end{array}\right]$

$$
\vec{v}=\beta_{1}^{\prime} \vec{v}_{1}^{\prime}+\beta_{2}^{\prime} \vec{v}_{2}^{\prime}+\cdots+\beta_{n}^{\prime} \vec{v}_{n}^{\prime}
$$

Vectors

- These vectors are identical
- Same length and magnitude
- Vectors spaces insufficient for geometry
- Need points

Points

- Location in space
- Operations allowed between points and vectors
- Point-point subtraction yields a vector
- Equivalent to point-vector addition

$$
\begin{gathered}
P \\
\vec{v}=P-Q \\
P=\vec{v}+Q
\end{gathered}
$$

$$
(P-Q)+(Q-R)=(P-R)
$$

Affine Spaces

Frame: a Point P_{0} and a Set of Vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$
Representations of the vector and point: n scalars

$$
\begin{aligned}
\text { Vector } & v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n} \\
\text { Point } & P=P_{0}+\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{n} v_{n}
\end{aligned}
$$

Affine Spaces

- Point + a vector space
- Operations
- Vector-vector addition
- Scalar-vector multiplication
- Point-vector addition
- Scalar-scalar operations
- For any point define
$-1 \cdot P=P$
$-0 \cdot P=0$ (zero vector)

Question

How Far Apart Are Two Points in Affine Spaces?

Operation: Inner (dot) Product

Euclidean (Metric) Spaces

- Magnitude (Iength) of a vector

$$
|v|=\sqrt{v \cdot v}
$$

- Distance between two points

$$
|P-Q|=\sqrt{(P-Q) \cdot(P-Q)}
$$

- Measure of the angle between two vectors

$$
u \cdot v=|u \| v| \cos \theta
$$

- $\cos \theta=0 \rightarrow$ orthogonal
- $\cos \theta=I \rightarrow$ parallel

In Pictures

$$
\left(\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right) \cdot\left(\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right)=a_{x} \cdot b_{x}+a_{y} \cdot b_{y}+a_{z} \cdot b_{z}
$$

Definition

Dot Product (Inner Product)
(Scalar Product)

Geometrical Interpretation

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \mathrm{A}
$$

relationship with angle

$0<\mathbf{a} \cdot \mathbf{b}$

$\mathbf{a} \cdot \mathbf{b}=0$

$\mathbf{a} \cdot \mathbf{b}<0$
oepartment of
COMPUTER SCIENCE

Euclidean Spaces

- Combine two vectors to form a real
$-\alpha, \beta, \gamma, \ldots:$ scalars, u, v, w, \ldots vectors

$$
\begin{aligned}
& u \cdot v=v \cdot u \\
& (\alpha u+\beta v) \cdot w=\alpha u \cdot w+\beta v \cdot w \\
& v \cdot v>0 \text { if } v \neq \mathbf{0} \\
& \mathbf{0} \cdot \mathbf{0}=0
\end{aligned}
$$

Orthogonal: $u \cdot v=0$

Projections

- Problem: Find shortest distance from a point to a line on a plane
- Given Two Vectors $w=\alpha v+u$
- Divide into two parts: one parallel and one orthogonal

$$
\begin{aligned}
& w \cdot v=\alpha v \cdot v+u \cdot v=\alpha v \cdot v \\
& \therefore \alpha=\frac{w \cdot v}{v \cdot v}- \\
& \therefore u=w-\alpha v=w-\frac{w \cdot v}{v \cdot v} v
\end{aligned}
$$

Projection of one vector onto another

Making New Vectors

Cross Product

Cross Product

Definition

$\mathbf{a}=\left(\mathrm{a}_{\mathrm{c}}, \mathrm{a}_{1}, \mathrm{a}_{2}\right) \quad \mathbf{b}=\left(\mathrm{b}_{\mathrm{x}}, \mathrm{b}_{\mathrm{y}}, \mathrm{b}_{2}\right)$
$\begin{aligned} & \text { Cross Product } \\ & \text { (Outer Product) } \\ & \text { (Vector Product) }\end{aligned} \quad \mathbf{a} \times \mathbf{b}=\left(\begin{array}{l}\mathrm{a}_{2} \times \mathrm{b}_{z}-\mathrm{a}_{2} \times \mathrm{b}_{y} \\ \mathrm{a}_{2} \times \mathrm{b}_{z}-\mathrm{a}_{2} \times \mathrm{b}_{z} \\ \mathrm{a}_{2} \times \mathrm{b}_{z}-\mathrm{a}_{2} \times \mathrm{b}_{2}\end{array}\right)$
Geometrical Interpretation

Parametric Forms

Lines, Rays

- Consider all points of the form
$-P(\alpha)=P_{0}+\alpha d$
- Set of all points that pass through P_{0} in the direction of the vector \mathbf{d}

2D Forms for lines

- Two-dimensional forms
- Explicit: $y=m x+h$
- Implicit: $a x+b y+c=0$
- Parametric:

$$
\begin{aligned}
& x(a)=a x_{0}+(1-a) x_{1} \\
& y(a)=a y_{0}+(1-a) y_{1}
\end{aligned}
$$

Rays, Line Segments

If $a>=0$, then $P(a)$ is the ray leaving P_{0} in the direction d

If we use two points to define v, then
$P(a)=Q+a(R-Q)=Q+a v$
$=a R+(I-a) Q$
For $0<=a<=$ I we get all the points on the line segment joining R and Q

Curves

	implicit form
ircle	$x^{2}+y^{2}-r^{2}=0$

$$
\text { ellipse } \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1=0
$$

$$
\text { hyperbola } \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-1=0
$$

parabola

$$
y^{2}-2 p x=0
$$

$$
\begin{gathered}
\text { parametric form } \\
x(t)=r \frac{1-t^{2}}{1+t^{2}} \quad y(t)=r \frac{2 t}{1+t^{2}} \\
x(t)=a \frac{1-t^{2}}{1+t^{2}} \quad y(t)=b \frac{2 t}{1+t^{2}} \\
x(t)=a \frac{1+t^{2}}{1-t^{2}} \quad y(t)=b \frac{2 t}{1-t^{2}} \\
x(t)=\frac{t^{2}}{2 p} \quad y(t)=t
\end{gathered}
$$

Planes

Defined by a point and two vectors or by three points

$P(a, b)=R+a u+b v$

$P(a, b)=R+a(Q-R)+b(P-Q)$

Triangles

for $0<=\alpha, \beta<=$ I, we get all points in triangle

Barycentric Coordinates

Barycentric Coordinates

Triangle is convex
Any point inside can be represented as an affine sum

$$
P\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\alpha A+\beta B+\gamma C
$$

where

$$
\begin{gathered}
\alpha+\beta+\gamma=1 \\
\alpha, \beta, \gamma>=0
\end{gathered}
$$

Barycentric Coordinates

Calculating Areas ?

AND ENGINEERING

Matrices

department of
COMPUTER SCIENCE
AND ENGINEERING

Matrices

- Definitions
- Matrix Operations
- Row and Column Matrices
- Rank
- Change of Representation
- Cross Product

AND ENGINEERING

What is a Matrix?

Elements, organized into rows and columns
columns $\left.\left\lvert\, \begin{array}{ll}\text { rows } \\ c & b \\ c & d\end{array}\right.\right]$

Definitions $\quad \mathrm{A}=\left\lfloor a_{i j}\right\rfloor$

$n \times m$ Array of Scalars (n Rows and m Columns)

- n : row dimension of a matrix, m : column dimension
$-m=n$: square matrix of dimension n
- Element

$$
\left\{a_{i j}\right\}, i=1, \ldots, n, j=1, \ldots, m
$$

- Transpose: interchanging the rows and columns of a matrix $\quad \mathbf{A}^{T}=\left\lfloor a_{j i}\right\rfloor$
- Column Matrices and Row Matrices
- Column matrix ($n \times I$ matrix):
- Row matrix (l $\times n$ matrix):

Basic Operations

Addition, Subtraction, Multiplication

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a-e & b-f \\
c-g & d-h
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]}
\end{aligned}
$$

add elements

subtract elements

Multiply each row by each column

Matrix Operations

+ Scalar-Matrix Multiplication

$$
\alpha \mathbf{A}=\left\lfloor\alpha a_{i j}\right\rfloor
$$

+ Matrix-Matrix Addition

$$
\mathbf{C}=\mathbf{A}+\mathbf{B}=\left\lfloor a_{i j}+b_{i j}\right\rfloor
$$

+ Matrix-Matrix Multiplication
$+\mathrm{A}: n \times I$ matrix, $\mathrm{B}: I \times m \rightarrow \mathrm{C}: n \times m$ matrix

$$
\begin{aligned}
\mathbf{C} & =\mathbf{A B}=\left\lfloor c_{i j}\right] \\
c_{i j} & =\sum_{k=1}^{l} a_{i k} b_{k j}
\end{aligned}
$$

Matrix Operations

+ Properties of Scalar-Matrix Multiplication $\quad \alpha(\beta \mathbf{A})=(\alpha \beta) \mathbf{A}$
+ Properties of Matrix-Matrix Addition $\alpha \beta \mathbf{A}=\beta \alpha \mathbf{A}$
+ Commutative: $\quad \mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
+ Associative: $\quad \mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$
+ Properties of Matrix-Matrix Multiplication

$$
\begin{aligned}
\mathbf{A}(\mathbf{B C}) & =(\mathbf{A B}) \mathbf{C} \\
\mathbf{A B} & \neq \mathbf{B A}
\end{aligned}
$$

+ Identity Matrix I (Square Matrix)

$$
\mathbf{I}=\left[a_{i j}\right] \quad a_{i j}= \begin{cases}1 \text { if } i=j & \mathbf{A I}=\mathbf{A} \\ 0 \text { otherwise } & \mathbf{I B}=\mathbf{B}\end{cases}
$$

Identity Matrix

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Multiplication

- Is $A B=B A$? Maybe, but maybe not!

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{cc}
a e+b g & \ldots \\
\ldots & \ldots .
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
e a+f c & \ldots \\
\ldots & \ldots
\end{array}\right]
$$

- Heads up: multiplication is NOT commutative!

Row and Column Matrices

- Column Matrix
- ${ }^{\top}$: row matrix
- Concatenations
- Associative
- By Row Matrix

$$
\begin{gathered}
(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T} \\
\mathbf{p}^{\prime T}=\mathbf{p}^{T} \mathbf{C}^{T} \mathbf{B}^{T} \mathbf{A}^{T}
\end{gathered}
$$

Inverse of a Matrix

- Identity matrix:
$\mathrm{Al}=\mathrm{A}$
- Some matrices have an inverse, such that:
$\mathrm{AA}^{-1}=1$
- Inversion is tricky:
$(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$
- Derived from non-commutativity property

Determinant of a Matrix

- Used for inversion
- If $\operatorname{det}(A)=0$, then A has no inverse
- Can be found using factorials, pivots, and cofactors!

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

$$
\operatorname{det}(A)=a d-b c
$$

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- And for Areas of Triangles

Area of Triangle - Cramer's Rule

$$
A n s=\frac{1}{2} \cdot\left|\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

Use This Here

Transformations

