CSE 5542 - Real Time Rendering
Week 3 & 4

PR DEPARTMENT OF

5) PR ¢ 4
@)51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Slides(Mostly) Courtesy —
E. Angel and D. Shreiner

e PRI ocearTMEnT oF |
Y. R¥SI®] compuTER SCIENCE
o MBS AND ENGINEERING |

Program Execution

* WebGL runs in browser

— complex interaction with OS, Window system,
browser, & code (HTML and)S)

* Simple model
— Start with HTML file

— files read in asynchronously

— start with onload function

* event driven input

s B PR DEPARTMENT OF
@)51®) coMPUTER SCIENCE
M BVAYIS AnD ENGINEERING |

Hardware Rendering Pipeline

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels Display
Vertex Fragment T
. utpu
Processor , Rasterizer Processor M p
ergin
(Programmable) (Programmable) ging
3D ‘0@, 3D ‘09 .30 2D array of
,’.3325\ ,’.::Q;}‘\\ color-values
IR TNy TE--lQ0,
host _| vertex | triangle | pixel | memory
interface processing setup processing interface

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Space !

point2 vertices[3] = {point2(0.0, 0.0),
point2(0.0, 1.0), point2(1.0, 1.0)};

PR DEPARTMENT OF

Y EIONT
(S)DIT‘ICII% COMPUTER SCIENCE
SRWIS \ND ENGINEERING

Coordinate Systems

* Units in points - object, world, model problem coordinates
* Viewing specifications are also in object coordinates

* Same for lights

* Eventually pixels will be produced in window coordinates

* WebGL - internal representations not visible to application
but important in shaders

=V yel] PRELSERY 0OEPARTMENT OF
A (S)DI}CII% COMPUTER SCIENCE
4 B8 AN ENGINEERING |

Transform Spaces

Object Space ‘ Screen Space

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels Display
Vertex Fragment T
. utpu
Processor _ Rasterizer Processor , M p
ergin
(Programmable) (Programmable) ging —=
3D /’05\.\30 ‘09 .3D 2D array of
/ 00@ . / 900 y
/00000 90000 color-values
"‘--QQ \ ---_Q(;)‘:‘

Most important is clib coordinates

PR DEPARTMENT OF

OHIO
STATE

UNIVERSITY

COMPUTER SCIENCE
AND ENGINEERING

Shaders — Clip Space

* Vertex shader must output in clip coordinates

* Input to fragment shader from rasterizer is in
window coordinates

* Application can provide vertex data in any
coordinate system

* Shader must eventually produce gl Position in clip
coordinates

= ye] PNELUGRY 0EPARTMENT OF
(S)DAJ% COMPUTER SCIENCE
J BUBMIS AND ENGINEERING |

Viewports

* Not use entire window for image:
gl.viewport(x,y,w,h)

* Values in pixels (window coordinates)

f(\\
»l O P - Viewport
x f w | _{t~Graphics window

Y 1

&\ jJ
O -

\ /

i |

Clipping window

PR DEPARTMENT OF

- T*'H
@)51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

WebGL Camera

* Camera at origin in object
space pointing in -z direction

* Default viewing volume

- box centered at
origin with sides of

length 2

(left, bottom, near,

(right, top, far)

» @ OEPARTMENT OF ‘
4 (S%% COMPUTER SCIENCE
SRWIS \ND ENGINEERING

Transformations & Viewing

* WebGL - projection with matrix (transformation) before
rasterization

* Pre 3.1 OpenGL- transformation functions which have been
deprecated
— glRotate

— glTranslate

* Three choices in WebGL
— Application code
— GLSL functions
— MV.,js

3 BESLURE 0cPARTMENT OF
{ (S)DI?‘[CII% COMPUTER SCIENCE
SUBME] AND ENGINEERING |

Orthographic Viewing

Points projected forward along z axis onto plane z=0

| | ~Viewing rectangle

X

7=()

z=0
(x,y,0)
/.
¥
Z
(x, 5, 2)

OHiO
STATE

V)

DEPARTMENT OF

COMPUTER SCIENCE

AND ENGINEERING

Shaders

PRl DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Fragment vs Vertex Shader

per vertex lighting per fragment lighting

@ OEPARTMENT OF

T H
©)51(®) coMPUTER SCIENCE
NPRVES! \ND ENGINEERING

Fragment Shader Applications

Texture mapping

smooth shading environment bump mapping
mapping

DEPARTMENT OF

| OHIO COMPUTER SCIENCE
MRS AN ENGINEERING

Other Vertex Shaders

* Moving vertices
— Morphing
— Wave motion
— Fractals
* Lighting
— More realistic models

— Cartoon shaders

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

{ [e510)

Shader Evolution

* First programmable shaders were programmed in
an assembly-like manner

* OpenGL extensions added functions for vertex
and fragment shaders

* Cg (C for graphics) C-like language for
programming shaders
— Works with both OpenGL and DirectX

— Interface to OpenGL complex

o OpenGL Shadlng Language (GLSL)

, OHIO COMPUTER SCIENCE
b N BVAYIS \\D ENGINEERING

SE==m==r" N UNI

OpenGL and GLSL

Shader based OpenGL is based less on a state machine
model than a data flow model

Most state variables, attributes and related pre 3.1
OpenGL functions have been deprecated

Action happens in shaders

Job is application is to get data to GPU

5 ye] PRELIERY OEPARTMENT OF
A (S)DH‘CJI% COMPUTER SCIENCE
4 B8 AN ENGINEERING |

GLSL

OpenGL Shading Language
* Part of OpenGL 2.0 and up
High level C-like language

New data types
— Matrices

— Vectors

— Samplers

o 3 OEPARTMENT OF
§ %;1;11% COMPUTER SCIENCE
SURUIE! AND ENGINEERING

GLSL

e C-like with
— Matrix and vector types (2, 3, 4 dimensional)
— Overloaded operators

— C++ like constructors
* Similar to Nvidia’ s Cg and Microsoft HLSL
e Code sent to shaders as source code

* As of OpenGL 3.1, application must provide
shaders

- B) U }vf PR OEPARTMENT OF
(@)51®) coMPUTER SCIENCE
M BVAYIS AnD ENGINEERING |

Simple Vertex Shader

input from application
attribute vec4 vPosition;

VOI d Mmain (VO I d) must link to variable in application

{

gl Position = vPosition;

built in variable

@l OEPARTMENT OF

'|OHIO

COMPUTER SCIENCE
USJ.;AC[-E AND ENGINEERING

Execution Model

Vertex data

Shader Program-

gl.drawArrays Vertex

T H @ OEPARTMENT OF
4 195518 conmpUTER SCIENCE
- N BYaWS AND ENGINEERING

Simple Fragment Program

precision mediump float;

void main(void)

{
gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

J

e PRI ocearTMEnT oF |
Y. R¥SI®] compuTER SCIENCE
L N BRI AnD ENGINEERING

Execution Model

Shader Program

Fragment Fragment
Color

T H @ OEPARTMENT OF
4 [95518) coMmPUTER SCIENCE
NPRVBS! AND ENGINEERING

Still Maximal Portability

* Display device independent

* Window system independent

* Operating system independent

il OEPARTMENT OF

oic

COMPUTER SCIENCE
MRS AN ENGINEERING

Eine Example

PG DEPARTMENT OF

| [®518] comPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

The Sierpinski Gasket

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

init()

var program = initShaders(gl, "vertex-shader", "fragment-shader");
gl.useProgram(program);

PR DEPARTMENT OF

< T*'H
d L®51®) comPUTER SCIENCE
/ AND ENGINEERING

UNIVERSITY

Sierpinski Gasket (2D)

 Start with a triangle

e Connect bisectors of sides and remove central
triangle

* Repeat

@ OEPARTMENT OF

JOHIO

COMPUTER SCIENCE
NPRVBS! \ND ENGINEERING

Example

Five subdivisions

L L
LHALALLL LA

-, (o) [€)5108] CoMPUTER SCIENCE
k. B BVAYS AnD ENGINEERING

SEm=m==2” W UNI

Gasket == fractal

* Consider the filled area (black) and the
perimeter (the length of all the lines around
the filled triangles)

* As we continue subdividing A4
— the area goes to zero S
AALALAAA

— but the perimeter goes to infinity
* This is not an ordinary geometric object

— It is neither two- nor three-dimensional

* Itis a fractal (fractional dimension) object

= es] PRELUIRY OEPARTMENT OF
A (S)DI?‘I\I]% COMPUTER SCIENCE
& BUAYIS AND ENGINEERING |

Example

http://www.cs.unm.edu/~angel/VWebGL/7E/02/gasket2.html
http://www.cs.unm.edu/~angel/VWWebGL/7E/02/gasket2.js

PR DEPARTMENT OF

) PR ¢
d [95108] conmpuTER SCIENCE
A BUAYE AnD ENGINEERING |

Gasket Program

« HTML file

— Same as in other examples
— Pass through vertex shader

— Fragment shader sets color
— Read in JS file

PR DEPARTMENT OF

5) G ¢ 4
@)51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Gasket Program

var points = [];
var NumTimesToSubdivide = 5;

[* initial triangle */

var vertices = [

vec2(-1, -1),
vec2(0, 1),
vec2(I, -1)

];

divideTriangle(vertices[0],vertices[],
vertices[2], NumTimesToSubdivide);

PR DEPARTMENT OF

5) G ¢ 4
@)51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Draw one triangle

/* display one triangle */

function triangle(a, b, c){
points.push(a, b, ¢);

}

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

| OHIO

Triangle Subdivision

function divideTriangle(a, b, ¢, count){
Il check for end of recursion
if (count ===0) {
triangle(a, b, ¢);
}
else {
//bisect the sides
var ab = mix(a, b, 0.5);
var ac = mix(a, ¢, 0.5);
var bc = mix(b, ¢, 0.5);
--count;
Il three new triangles
divideTriangle(a, ab, ac, count-1);
divideTriangle(c, ac, bc, count-1);
divideTriangle(b, bc, ab, count-1);

}
}

PR LR DEPARTMENT OF
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

init()

var program = initShaders(gl, "vertex-shader", "fragment-
shader");
gl.useProgram(program);
var bufferld = gl.createBuffer();
gl.bindBuffer(gl ARRAY_BUFFER, bufferld)
gl.bufferData(g ARRAY_BUFFER, flatten(points),
gl.STATIC_DRAW);

var vPosition = gl.getAttribLocation(program, "vPosition");
gl.vertexAttribPointer(vPosition, 2, gl. FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vPosition);

render();

T DL DEPARTMENT OF
ol [®I51®] conMpyTER SCIENCE
- N BYRBSY \\D ENGINEERING

Render Function

function render(){
gl.clear(gl. COLOR_BUFFER _BIT);

gl.drawArrays(gl. TRIANGLES, 0, points.length);
}

Ve DL OEPARTMENT OF |
/4 [®151®] comPUTER SCIENCE
NIPRVIS \ND ENGINEERING

Shaders

attribute vec4 vPosition;
void main()

{
gl PointSize = 1.0;
gl Position = vPosition;

}

precision mediump float;

void main()

{

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

o 3 OEPARTMENT OF
4 %;1;11% COMPUTER SCIENCE
SRS \ND ENGINEERING

Other Examples

http://www.cs.unm.edu/~angel/VWebGL/7E/02/gasket | .html
http://www.cs.unm.edu/~angel/WebGL/7E/02/gasket | .js

) ot SIREIRY 0:eaRTMENT OF |
-, () 9)51®] coMPUTER SCIENCE
b B BRI \\p ENGINEERING

‘E._.. -----------

=

Similarly

http://www.cs.unm.edu/~angel/VWebGL/7E/02/gasket | v2.html

http://www.cs.unm.edu/~angel/WebGL/7E/02/gasket | v2.js

) ot SIREIRY 0:eaRTMENT OF
o %}ﬁ% COMPUTER SCIENCE
b W BUaWsl A\ ENGINEERING

neEEEE”

Psychedelic Gaskets

http://www.cs.unm.edu/~angel/VWebGL/7E/02/gasket3.html

http://www.cs.unm.edu/~angel/VWebGL/7E/02/gasket3.js

s S 2t Ak el .
P SR S TRCY R0 RIFRLY A P AT Gt
R SERER ~JA PO TR B RSN SV A T RS ¥

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

JOHIO

3D Gaskets

PRSI OEPARTMENT OF

@151®) coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Many More Examples

http://www.cs.unm.edu/~angel/VWebGL/7E/CLASS/

ey PERSLRY 0cPARTMENT OF |
- (S (53]%% COMPUTER SCIENCE
& BUR S AND ENGINEERING

Shaders

attribute vec4 vPosition;
void main()

{
gl PointSize = 1.0;
gl Position = vPosition;

}

precision mediump float;

void main()

{

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

o 3 OEPARTMENT OF
4 %;1;11% COMPUTER SCIENCE
SRS \ND ENGINEERING

Caveats

http://www.cs.unm.edu/~angel/VWebGL/7E/
code_ updates.pdf

PRI OEPARTMENT OF

: %j&% COMPUTER SCIENCE
M BVAYIS AnD ENGINEERING

In Code

http://www.cs.unm.edu/~angel/VWebGL/7E/02/gasket4.html
http://www.cs.unm.edu/~angel/WebGL/7E/02/gasket4.js

o, o REEMERY 0cPARTMENT OF
-, () 9)51®] coMPUTER SCIENCE
b N BV \\D ENGINEERING

neEEEE”

GLSL Programming Language

PR DEPARTMENT OF

) PR ¢ 4
d [95518] comPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Data Types

* C types: int, float, bool

* Vectors:

— float vec2, vec3, vec4

— Also int (ivec) and boolean (bvec)
* Matrices: mat2, mat3, mat4

— Stored by columns

— Standard referencing m[row][column]
* C++ style constructors

— vec3 a =vec3(1.0, 2.0, 3.0)
— vec2 b = vec2(a)

Oyl PREYRY DEPARTMENT OF
.l [®I5H®) comPUTER SCIENCE
NIPRVIS \ND ENGINEERING

Pointers

There are no pointers in GLSL
C structs which can be copied back from functions

Matrices and vectors can be passed to and fro
GLSL functions, e.g. mat3 func(mat3 a)

Variables passed by copying

O ye] PRI DEPARTMENT OF |
.l [®Is¥®] conMPyTER SCIENCE
B BVRBS \\p ENGINEERING

Qualifiers

GLSL has same qualifiers such as const as C/C++
* Need others due to nature of execution model

* Variables can change
— Once per primitive
— Once per vertex
— Once per fragment
— At any time in the application

Vertex attributes interpolated by rasterizer into fragment
attributes

o) PRELEERY 0EPARTMENT OF
d [®/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Passing values

* Call by value-return

* Variables are copied in

* Returned values are copied back

DEPARTMENT OF

COMPUTER SCIENCE
it AND ENGINEERING

N OHO

Attribute Qualifier

» Attribute-qualified variables change at most once per
vertex

* Built-in variables, gl Position, most deprecated
* User defined (in application program)

— attribute float temperature

— attribute vec3 velocity

— recent versions of GLSL

* in and out qualifiers to get to and from shaders

= es] PRELUIRY OEPARTMENT OF
A (S)DI?‘I\I]% COMPUTER SCIENCE
& BUAYIS AND ENGINEERING |

Uniform Qualified

* Variables constant for an entire primitive

* Changed in application and sent to shaders

Not changed in shader

* Pass information to shader, time or bounding box, of a
primitive or transformation matrices

o) PRELBPRY 0EPARTMENT OF
d 19518 conmpuTER SCIENCE
AND ENGINEERING

UNIVERSITY

Varying Qualified

* Variables passed from vertex shader to fragment shader

* Automatically interpolated by the rasterizer
* With WebGL, GLSL uses varying qualifier in both shaders

varying vec4 color;

* More recent versions of WebGL use out in vertex shader
and in_in the fragment shader

out vec4 color; //vertex shader

in vec4 color; // fragment shader

= ye] PPEIARY DEPARTMENT OF
A (S)DI?‘ICJI% COMPUTER SCIENCE
4 B8 AN ENGINEERING |

Naming Convention

* Attributes to vertex shader have names beginning with v
(v Position, vColor) in both application & shader

— Note these are different entities with the same name

* Variable variables begin with f (fColor) in both shaders

— must have same name

 Uniform variables are unadorned and can have the same
name in application and shaders

= o] PSR DEPARTMENT OF
A (S)DI?‘ICII% COMPUTER SCIENCE
4 B8 AN ENGINEERING |

Example: Vertex Shader

attribute vec4 vColor;
varying vec4 fColor;
void main()

{

gl Position = vPosition;

fColor = vColor;

J

DEPARTMENT OF

T*H'E
%}ﬁ% COMPUTER SCIENCE
SIPRVBS! AND ENGINEERING

Fragment Shader

precision mediump float;

varying vec3 fColor;

void main()

{
gl FragColor = fColor;

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

JOHIO

Wave Motion — Varying Qualified

in vec4 vPosition;
uniform float xs, zs, // frequencies
uniform float h;// height scale
void main()
{
vec4 t = vPosition;
t.y = vPosition.y
+ h*sin(time + xs*vPosition.x)
+ h*sin(time + zs*vPosition.z);
gl Position = t;

}

PR DEPARTMENT OF

. e
@)5¥®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Another Example- Particles

in vec3 vPosition;

uniform mat4 ModelViewProjectionMatrix;
uniform vec3 init_vel;

uniform float g, m, t;

void main()

{ vec3 object_pos;

object_pos.x = vPosition.x + vel.x*t;
object _pos.y = vPosition.y + vel.y*t

+ g/(2.0*m)*t*¢;
object pos.z = vPosition.z + vel.z*t;
gl _Position =

ModelViewProjectionMatrix*vec4(object_pos,|);

}

PR DEPARTMENT OF

R
d L®51®) coMPUTER SCIENCE
B8} AND ENGINEERING

Particles Fragment Shader

[* pass-through fragment shader */

in vec4 color;
void main(void)

{

gl FragColor = color;

J

PRI DEPARTMENT OF
(53112"'% COMPUTER SCIENCE
SUSSIE] AND ENGINEERING |

Sending a Uniform Variable

GLint aParam;

aParam = glGetUniformLocation(myProgOb;j,
"angle");

/* angle defined in shader */

/* my_angle set in application */
GLfloat my angle;

my_angle = 5.0 /* or some other value */

glUniform | f(aParam, my_angle);

il OEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

Sending a Uniform Variable - 2

// in application
vec4 color = vec4(1.0, 0.0, 0.0, 1.0);

colorLoc = gl.getUniformLocation(program, “color");
gl.uniform4f(colorlLoc, color);

/Il in fragment shader (similar in vertex shader)

uniform vec4 color;

void main()

{

gl_FragColor = color;

}

o) PRELEERY 0EPARTMENT OF
{ (S)l%ll% COMPUTER SCIENCE
SUBME] AND ENGINEERING |

Adding Color

Send color to the shaders as a vertex attribute or
as a unhiform variable

Choice depends on frequency of change
Associate a color with each vertex
Set up an array of same size as positions

Send to GPU as a vertex buffer object

= .) U fi“' I OEPARTMENT OF
(@)51®) coMPUTER SCIENCE
M BVAYIS AnD ENGINEERING |

Setting Colors

typedef vec3 color3;

color3 base_colors[4] = {color3(1.0,0.0.0.0),
color3 colors[NumVertices];

vec3 points[NumVertices];

//in loop setting positions

colors[i] = basecolors[color_index]
position[i] =

I OEPARTMENT OF

g B
(@578 coMPUTER SCIENCE
- B BUaIS A\ ENGINEERING

UNIVERSITY

Packing Colors in Application

var cBuffer = gl.createBuffer();
gl.bindBuffer(g. ARRAY BUFFER, cBuffer);

gl.bufferData(gl ARRAY_BUFFER, flatten(colors),
gl.STATIC_DRAW);

var vColor = gl.getAttribLocation(program, "vColor");
gl.vertexAttribPointer(vColor, 3, gl. FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vColor);

DEPARTMENT OF

COMPUTER SCIENCE
SURUS \ND ENGINEERING

[odi

Operators and Functions

» Standard C functions
— Trigonometric
— Arithmetic
— Normalize, reflect, length
» Overloading of vector and matrix types
mat4 a;
vec4 b, ¢, d;
c = b*a; // a column vector stored as a |d array

d = a*b; // a row vector stored as a |d array

b UL OEPARTMENT OF
(S)DACI% COMPUTER SCIENCE
) BUAYH AND ENGINEERING |

Swizzling and Selection

* Can refer to array elements by element using [] or
selection (.) operator with

- X, Y, Z, W
-r,gb,a
-Stpq
—a[2], a.b, a.z, a.p are the same

* Swizzling operator lets us manipulate components
vec4 a, b;
a.yz = vec2(1.0, 2.0, 3.0, 4.0);

b = a.yxzw;

DEPARTMENT OF
COMPUTER SCIENCE
MRS AN ENGINEERING

'JOHIO

Looking Closely at Code

PR DEPARTMENT OF

) G ¢ 4
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Looking Closely

gl.useProgram(program);

var bufferld = gl.createBuffer();
gl.bindBuffer(g. ARRAY BUFFER, bufferld);
gl.bufferData(gl ARRAY_ BUFFER, flatten(points), gl. STATIC _DRAW);

var vPosition = gl.getAttribLocation(program, "vPosition");
gl.vertexAttribPointer(vPosition, 2, gl. FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vPosition);

https://www.khronos.org/opengles/sdk/docs/

DEPARTMENT OF

T*H'E
d [®551®] conPUTER SCIENCE
SIS AND ENGINEERING

bufferld = gl.createBuffer();

Create a buffer object using createBuffer()

ey PERSLRY 0cPARTMENT OF |
- (S (53]%% COMPUTER SCIENCE
& BUR S AND ENGINEERING

Looking Closely (2)

gl.useProgram(program);

var bufferld = gl.createBuffer();
gl.bindBuffer(g. ARRAY BUFFER, bufferld);
gl.bufferData(gl ARRAY_ BUFFER, flatten(points), gl. STATIC _DRAW);

var vPosition = gl.getAttribLocation(program, "vPosition");
gl.vertexAttribPointer(vPosition, 2, gl. FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vPosition);

DEPARTMENT OF

COMPUTER SCIENCE
SIS AND ENGINEERING

| OHIO

¢l.bindBuffer(gl ARRAY BUFFER, bufferld)

- bind a named buffer object
void g|BindBuffer(GLenum target, GLuint buffer)

Parameters

* Target - Specifies the target to which the buffer object is bound. The symbolic
constant must be GL_ARRAY_BUFFER or GL_ELEMENT_ARRAY_BUFFER.

* Buffer - Specifies the name of a buffer object.

glBindBuffer lets you create or use a named buffer object.

Calling gIBindBuffer with target set to GL_ ARRAY_BUFFER or
GL_ELEMENT _ ARRAY_BUFFER and buffer set to the name of the new buffer object

binds the buffer object name to the target. When a buffer object is bound to a target,
the previous binding for that target is automatically broken.

https://www.khronos.org/opengles/sdk/docs/man/xhtml/g|BindBuffer.xml

3 PESELUERE OEPARTMENT OF
4 (S)DACI% COMPUTER SCIENCE
SUAYEE] AND ENGINEERING |

Looking Closely (3)

gl.useProgram(program);

var bufferld = gl.createBuffer();
gl.bindBuffer(g. ARRAY BUFFER, bufferld);
gl.bufferData(gl. ARRAY BUFFER, flatten(points), g. STATIC DRAW);

var vPosition = gl.getAttribLocation(program, "vPosition");
gl.vertexAttribPointer(vPosition, 2, gl. FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vPosition);

DEPARTMENT OF

COMPUTER SCIENCE
SIS AND ENGINEERING

| OHIO

gl.bufferData(g ARRAY BUFFER, flatten(points),
gl.STATIC_DRAW);

glBufferData — creates and initializes a buffer object’s data store

void glBufferData(GLenum target,Glsizeiptr size, const GLvoid *
data,Glenum usage);

https://www.opengl.org/sdk/docs/man3/xhtml/glBufferData.xml

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

'JOHIO

glBufferData Parameters

Target - Specifies the target buffer object. The symbolic constant must be
GL_ARRAY_BUFFER, GL_COPY_READ_BUFFER,
GL_COPY_WRITE_BUFFER, GL_ELEMENT ARRAY_BUFFER,
GL_PIXEL_PACK_BUFFER, GL_PIXEL UNPACK _BUFFER,
GL_TEXTURE_BUFFER, GL_TRANSFORM_FEEDBACK BUFFER, or
GL_UNIFORM_BUFFER.

Size - Specifies the size in bytes of the buffer object's new data store.

Data - Specifies a pointer to data that will be copied into the data store for
initialization, or NULL if no data is to be copied.

Usage -Specifies the expected usage pattern of the data store. The symbolic
constant must be GL_STREAM_DRAW, GL_STREAM_READ,

GL_STREAM_COPY, GL_STATIC_DRAW, GL STATIC_READ,
GL_STATIC_COPY, GL_ DYNAMIC_DRAW, GL_DYNAMIC_READ, or

GL _DYNAMIC_ COPY.

= ye] PNELUGRY 0EPARTMENT OF
(S)DAJ% COMPUTER SCIENCE
J BUBMIS AND ENGINEERING |

Looking Closely(4)

gl.useProgram(program);

var bufferld = gl.createBuffer();
gl.bindBuffer(g. ARRAY BUFFER, bufferld);
gl.bufferData(gl ARRAY_ BUFFER, flatten(points), gl. STATIC _DRAW);

var vPosition = gl.getAttribLocation(program, "vPosition");
gl.vertexAttribPointer(vPosition, 2, gl. FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vPosition);

DEPARTMENT OF

COMPUTER SCIENCE
SIS AND ENGINEERING

| OHIO

gl.getAttribLocation(program, vPosition");

- Returns location of an attribute variable
- gl.getAttribLocation(Gluint program,const Glchar *name);
- Parameters

- Program — specifies the program object to be queried

- Name — null terminated string containing the name of attribute variable
whose location is to be queried

Description - glGetAttribLocation queries the previously linked program object
specified by program for the attribute variable specified by name and returns the
index of the generic vertex attribute that is bound to that attribute variable. If
name is a matrix attribute variable, the index of the first column of the matrix is
returned. If the named attribute variable is not an active attribute in the specified
program object or if name starts with the reserved prefix "gl ", a value of -1 is
returned.

https://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetAttribLocation.xml

n PR DEPARTMENT OF
| OHIO COMPUTER SCIENCE
NPRWIS AND ENGINEERING |

Looking Closely(5)

gl.useProgram(program);

var bufferld = gl.createBuffer();
gl.bindBuffer(g. ARRAY BUFFER, bufferld);
gl.bufferData(gl ARRAY_ BUFFER, flatten(points), gl. STATIC _DRAW);

var vPosition = gl.getAttribLocation(program, "vPosition");
gl.vertexAttribPointer(vPosition, 2, g. FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vPosition);

DEPARTMENT OF

COMPUTER SCIENCE
SIS AND ENGINEERING

| OHIO

gl.vertexAttribPointer(vPosition,2,gl.FLOAT, false, 0,0)

- define an array of generic vertex attribute data

void glVertexAttribPointer(GLuint index, GLint size,GLenum type,GLboolean normalized,GLsizei
stride, const GLvoid * pointer);

Parameters
Index - Specifies the index of the generic vertex attribute to be modified.

Size - Specifies the number of components per generic vertex attribute. Must be |, 2, 3, or 4. The
initial value is 4.

Type - Specifies the data type of each component in the array. Symbolic constants GL_BYTE,
GL_UNSIGNED_ BYTE, GL_SHORT, GL_UNSIGNED_ SHORT, GL_FIXED, or GL_FLOAT are
accepted. The initial value is GL_FLOAT.

Normalized - Specifies whether fixed-point data values should be normalized (GL_TRUE) or
converted directly as fixed-point values (GL_FALSE) when they are accessed.

Stride - Specifies the byte offset between consecutive generic vertex attributes. If stride is 0, the
generic vertex attributes are understood to be tightly packed in the array. The initial value is 0.

Pointer - Specifies a pointer to the first component of the first generic vertex attribute in the arr:
The initial value is O.

DL DEPARTMENT OF
@)51(®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

glVertexAttribPointer (2)

glVertexAttribPointer specifies the location and data format of the
array of generic vertex attributes at index index to use when
rendering. size specifies the number of components per attribute
and must be 1, 2, 3, or 4. type specifies the data type of each
component, and stride specifies the byte stride from one attribute
to the next, allowing vertices and attributes to be packed into a
single array or stored in separate arrays. If set to GL_TRUE,
normalized indicates that values stored in an integer format are to
be mapped to the range [-1,1] (for signed values) or [0,1] (for
unsigned values) when they are accessed and converted to floating
point. Otherwise, values will be converted to floats directly
without normalization.

DL DEPARTMENT OF
@)51(®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Looking Closely(5)

gl.useProgram(program);

var bufferld = gl.createBuffer();
gl.bindBuffer(g. ARRAY BUFFER, bufferld);
gl.bufferData(gl ARRAY_ BUFFER, flatten(points), gl. STATIC _DRAW);

var vPosition = gl.getAttribLocation(program, "vPosition");
gl.vertexAttribPointer(vPosition, 2, gl. FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vPosition);

DEPARTMENT OF

COMPUTER SCIENCE
SIS AND ENGINEERING

| OHIO

gl.enableVertexAttribArray(vPosition);

- Enable or disable a generic vertex attribute array
void glEnableVertexAttribArray(GLuint index);
void glDisableVertexAttribArray(GLuint index);

Parameters

Index - Specifies the index of the generic vertex attribute to be enabled or
disabled.

Description - glEnableVertexAttribArray enables the generic vertex attribute
array specified by index. gIDisableVertexAttribArray disables the generic
vertex attribute array specified by index. By default, all client-side capabilities
are disabled, including all generic vertex attribute arrays.

https://www.khronos.org/opengles/sdk/docs/man/xhtml/
glEnableVertexAttribArray.xml

DL DEPARTMENT OF
@)51(®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

3D Gasket

PRl DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

3D Gasket

* We can subdivide each of the four faces

/\

* Appears as if we remove a solid tetrahedron from
the center leaving four smaller tetrahedra

* Code almost identical to 2D example

I OEPARTMENT OF

7| Orio

COMPUTER SCIENCE
SIRVISY A ND ENGINEERING

Hd
4 UNIVERSITY

Moving to 3D

3D points and a tetrahedron

var vertices = |

vec3(0.0000, 0.0000, -1.0000),
vec3(0.0000, 0.9428, 0.3333),

vec3(-0.8165, -0.4714, 0.3333),
vec3(0.8165, -0.4714, 0.3333)
1;

subdivide each face

(o RETIIRY oceanTMENT OF |
Y. R¥SI®] compuTER SCIENCE
b N BRNIS D ENGINEERING

WiE=m==2 N UNI

Almost Correct

Because the triangles are drawn in the order they are
specified in the program, the front triangles are not always
rendered in front of triangles behind them

AR / get this 7 %
A A
Iﬁy A w want this ﬂy o &

PURELUIRCY DEPARTMENT OF

@51®] coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

Hidden-Surface Removal

* We want to see only those surfaces in front of other surfaces

OpenGL uses a hidden-surface method called the z-buffer
algorithm that saves depth information as objects are
rendered so that only the front objects appear in the image

\

(5, T LR DEPARTMENT OF
@)51®] coMPUTER SCIENCE
- N BUVIS \\D ENGINEERING |

z-buffer Algorithm

* The algorithm uses an extra buffer, the z-buffer, to store
depth information as geometry travels down the pipeline

* Depth buffer is required to be available in WebGL
* It must be

— Enabled
+ gl.enable(gl.DEPTH_TEST)

— Cleared in for each render
* gl.clear(gl. COLOR_BUFFER BIT | g. DEPTH BUFFER BIT)

\ DL DEPARTMENT OF
4 [®1518] conmPUTER SCIENCE
SVRWS! \ND ENGINEERING

Surface vs Volume Subdivision

* Previous Example — divided surface of each face
* Divide volume using same midpoints
* Midpoints four smaller tetrahedrons for each vertex

* Smaller tetrahedrons removes a volume in the middle

I OEPARTMENT OF
{ (S)Dh‘j% COMPUTER SCIENCE
BUAUE] AND ENGINEERING

Volume Subdivision

\v\‘\v\ \«\
171‘171‘1\1

1vA1

»

\

\v\‘\
AP

\MA

fo

171‘

{
i

>

XK

@ OEPARTMENT OF

OHIO

COMPUTER SCIENCE
AND ENGINEERING

)
It ll“‘%

o
QA
essazes) N CTATE
G
UNIVERSITY

GLSL Shaders - Loading

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Linking Shaders w/ Application

* Read shaders

* Compile shaders

* Create a program object
* Link everything together

* Link variables in application with variables
in shaders

— Vertex attributes

— Uniform variables

‘ e) U |’_{ PR DEPARTMENT OF
: .l [®I5K®] coMPUTER SCIENCE
= B BYRABS \\D ENGINEERING

Program Obiject

Container for shaders

— Can contain multiple shaders
— Other GLSL functions

var program = gl.createProgram();

gl.attachShader(program, vertShdr);
gl.attachShader(program, fragShdr);
gl.linkProgram(program);

ey PERSLRY 0cPARTMENT OF |
Yoo Rs1®) copvpuTER SCIENCE
- BURAIS! \\D ENGINEERING

v
e . AL
NSE=EEsr” UNIVERSITY

Our fav program

var program = initShaders(gl, "vertex-shader”,
"fragment-shader”);
gl.useProgram(program);

DEPARTMENT OF

COMPUTER SCIENCE
SIS AND ENGINEERING

| OHIO

Reading a Shader

* Shaders are added to the program object and
compiled

* Usual method of passing a shader is as a null-
terminated string using the function

* gl.shaderSource(fragShdr, fragElem.text);

* If shader is in HTML file, we can get it into
application by getElementByld method

e |f the shader is in a file, we can write a reader
to convert the file to a string

Tyel PENRIYRY OEPARTMENT OF
4 L9551®] coppUTER SCIENCE
NPRWIS AND ENGINEERING

HTML example

function initShaders(gl, vertexShaderld, fragmentShaderld)
{ var vertShdr; var fragShdr;
var vertElem = document.getElementByld(vertexShaderld);
if (!vertElem) {
alert("Unable to load vertex shader " + vertexShaderld); return -1;

}

else {

vertShdr = gl.createShader(gl. VERTEX_SHADER);

gl.shaderSource(vertShdr, vertElem.text);

gl.compileShader(vertShdr);

if (!gl.getShaderParameter(vertShdr, gl. COMPILE_STATUS)) {
var msg = "Vertex shader failed to compile. The error log is:"

+ "<pre>" + gl.getShaderInfoLog(vertShdr) + "</pre>";

alert(msg);

return -|;

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Adding a Vertex Shader

var vertShdr;
var vertElem =

document.getElementByld(vertexShaderld);
vertShdr = gl.createShader(gl. VERTEX_ SHADER);

gl.shaderSource(vertShdr, vertElem.text);
gl.compileShader(vertShdr);

// after program object created
gl.attachShader(program, vertShdr);

il OEPARTMENT OF

[oic

COMPUTER SCIENCE
MRS AN ENGINEERING

Shader Reader

Following code may be a security issue with some
browsers if you try to run it locally

— Cross Origin Request

function getShader(gl, shaderName, type) {
var shader = gl.createShader(type);
shaderScript = loadFileAJAX(shaderName);
if (!shaderScript) {
alert("Could not find shader source:
"+shaderName);

Il OEPARTMENT OF

[oic

COMPUTER SCIENCE
MRS AN ENGINEERING

Precision Declaration

* In GLSL for WebGL we must specify desired
precision in fragment shaders

— artifact inherited from OpenGL ES

— ES must run on very simple embedded devices that may
not support 32-bit floating point

— All implementations must support mediump
— No default for float in fragment shader

* Can use preprocessor directives (#ifdef) to check if
highp supported and, if not, default to mediump

() N PERTYRY DEPARTMENT OF
ol RSO coMPUTER SCIENCE
b N BVRIS D ENGINEERING

SE==sE=2” N UNI

Pass Through Fragment Shader

#ifdef GL_FRAGMENT_SHADER PRECISION_HIGH
precision highp float;
Helse

precision mediump float;
#endif

varying vec4 fcolor;
void main(void)

{

gl _FragColor = fcolor;

}

DEPARTMENT OF

T K E
(S%AJME) COMPUTER SCIENCE
SUBMEE] AND ENGINEERING

Next Topic — Linear Algebra

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Vectors

* Physical definition:
— Direction
— Magnitude
* Examples
— Light Direction
— View Direction

— Normal

PR OEPARTMENT OF

- | S 1 YN
@/51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Abstract Spaces

e Scalars

* (Linear) Vector Space

— Scalars and vectors

* Affine Space

— Sca

* Euclic

ars, vectors, and points

ean Space

— Sca

ars, vectors, points

— Concept of distance

* Projections

PR DEPARTMENT OF

CEBH T _H
(S)DI?‘[CII% COMPUTER SCIENCE
4 BUBYS AnD ENGINEERING |

Vectors — Linear Space

105

* Every vector
— has an inverse
— can be multiplied by a scalar
* There exists a zero vector
— Zero magnitude, undefined orientation

* The sum of any two vectors is a vector - closure

AZ)

o 3 OEPARTMENT OF
{ %j{.ll% COMPUTER SCIENCE
SRS \ND ENGINEERING

Vector Spaces

B Vectors = n-tuples V=V, VgV,
B Vector-vector addition
U+ v = (ul,uz,...,un)+(V1,V2,.~->Vn)
= (2, + Vv s + Vv, ., +V,)

B Scalar-vector multiplication

av=(av,,av,,...,av,)
B Vector space:
Rn

U=0o,Uu, +o,uU, + -+, uU

n n

el DERELUBERCE 0EPARTMENT OF |
(53171;121[% COMPUTER SCIENCE
SUBME] AND ENGINEERING |

Linear Independence

p=(x,y,2)= x?+y}:+zlg

DEPARTMENT OF

Y B
d [0518] compuTER SCIENCE
RIS AND ENGINEERING

Vector Spaces

e Dimension

* The greatest number of linearly independent vectors

* Basis 18}
* n linearly independent vectors (n: dimension)
* Representation V=BV 4BV, ++ BV
* Unique expression in terms of the basis vectors
* Change of Basis: Matrix M]
* Other basis Sy =1 /3?2’ - M

VisVsrseoonV

n
! —/

Y B,

V=P8V + LBV, + -+

g -

P

[T PRI OEPARTMENT OF
(S)DACI% COMPUTER SCIENCE
) BUAYH AND ENGINEERING |

Matrices - Change of Basis

Change of Basis: Matrix M

>/ =/ —

VI,VZ,..., .

V — '3/_’I+BI —/

*Other basis

DEPARTMENT OF

|OHIO COMPUTER SCIENCE
SVRWS! \ND ENGINEERING

Vectors

* These vectors are identical
— Same length and magnitude

7
/

* Vectors spaces insufficient for geometry
— Need points

S BEELEERE 0cPARTMENT OF
4 [®518] oMPUTER SCIENCE
AND ENGINEERING

Points

* Location in space

* Operations allowed between points and
vectors
— Point-point subtraction yields a vector Pl e

— Equivalent to point-vector addition Q

PRI OEPARTMENT OF

(53171;1;11% COMPUTER SCIENCE
M BVAYIS AnD ENGINEERING

Affine Spaces

Frame: a Point/and a Set of Vectors Vv,,V,,...

Representations of the vector and point: n
scalars

v=ayv, +0,v, ++a v,
S P=F +06v,+06v,+-+06V

|

<

=, oy BRI 0ceARTMENT OF |
@)51®) coMPUTER SCIENCE
- N BUVIS \\D ENGINEERING |

Affine Spaces

* Point + a vector space

* Operations
— Vector-vector addition
— Scalar-vector multiplication
— Point-vector addition

— Scalar-scalar operations

* For any point define
— | eP=P

— 0+ P =0 (zero vector)

PR DEPARTMENT OF

(&< g TR)
%“iﬁ% COMPUTER SCIENCE
4 BUBYS AnD ENGINEERING |

Question

How Far Apart Are Two Points in Affine Spaces ?

Operation: Inner (dot) Product

@l OEPARTMENT OF

- T H "
d [95518] comPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Euclidean (Metric) Spaces

— Magnitude (length) of a vector
M =+V-V
— Distance between two points

P-0|=(P-0)(P-0)

— Measure of the angle between two vectors

U-v= ‘qu‘ cos

* cos & =0 = orthogonal
* cos & = | = parallel

(& Sy PERELUNR OEPARTMENT OF
Y. R¥51®] compuTER SCIENCE
i M BRI D ENGINEERING

‘~§.,.,- !!!!!!

In Pictures

°| b, |=a.b +a,b,+a,b,

Definition a=(a,a,a)
b = (b, b, b))
Dot Product a*b=axb +axb, +axb:

Inner Product

ocalar Product

Geometrical Interpretation a-b=|a||blcosA

if |b] =1 if |a|=1, |b]=1

|a] cos A laj cos A

relationship with angle

@l OEPARTMENT OF

T*'H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Euclidean Spaces

— Combine two vectors to form a real
—a, B, 7, ...:scalars, u, v, w, ...:vectors
U-v=v-u
(au+/)’v)-w=au°w+/3\/°w
v-v>01fv=0
0-0=0

Orthogonal: u'v =0

PR DEPARTMENT OF

T H
%j{.ll% COMPUTER SCIENCE
SIPRVBS! AND ENGINEERING

Projections

* Problem: Find shortest distance from a point to a
line on a plane
* Given Two Vectors w=av+u

— Divide into two parts: one parallel and one orthogonal
W v=av-v+u-v=av-v

w-y
O =
VeV av T
WwW-v Proiecti
U= W—OV =W — V rojection of one
VR vector onto another

- PRI DEPARTMENT OF ‘
(53171;121[% COMPUTER SCIENCE
SUBME] AND ENGINEERING |

Making New Vectors

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Cross Product

-
Padntl i
F
axb é\
9
ad b
1 b / v
n .
oy 4
bxa a
=-aXb

i j k

c=axb=l a a,|=

])_) h‘;

= (a,b, —ab,)i + (ah, —ab,)j+ (ab, —ab)k

@l OEPARTMENT OF

T H
d [®518] comMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Cross Product

Definition a=(a,a,a) b = (b, b, b:)
Cross Product 8% be - & b,
Outer Product axb=| a:xb.-a.xb:
(Vector Product a.xb,-a,xb.

Geometrical Interpretation

- Perpendicular Direction

- Length & Area

Area of Parallelogram
= |a| |b| sinA

|a xb| = |a| |b| sinA | =|axb|

Area of Triangle

= 1/2 x |a| |b| sin A

=laxb|/2
parallel A =180 deg
- Par.
arete 3 jaxb|=0 N laxb|=0
b b e ——
a

e

OHIO
STATE

UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Parametric Forms

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Lines, Rays

* Consider all points of the form
— P(a)=P, + o d
— Set of all points that pass through P, in the
direction of the vector d

PR OEPARTMENT OF

(SDDIj;lISE) COMPUTER SCIENCE
M BVAYIS AnD ENGINEERING

2D Forms for lines

* Two-dimensional forms
— Explicit: y = mx +h
— Implicit: ax + by +c =0
— Parametric:
x(a) = axy + (1-a)x,
y(a) = ay, * (l-a)y,

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

JOHIO

Rays, Line Segments

If a >= 0, then P(a) is the ray leaving P, in the
direction d

If we use two points to define v, then

P(a) = Q +a (R-Q)=Q+av
=aR + (1-2)Q *T ‘;{’P(“)
For 0<=a<=| we get all the

points on the line segment

a=0
joining R and Q A

Tye] PERDEY OEPARTMENT OF
4 [®I5E®] coMPUTER SCIENCE
NIPRVIS \ND ENGINEERING

Curves

VA

P(x. v)

X
implicit form parametric form
" , , , 1 —1¢t*
ircle 4y —r =0 r(t) =rs ylt) =17
: ¥ oy , 1 —¢?
ellipse —_ 4 = =1 0 xit) a yit) b
} (l" he l } .‘-' Y
xre) = l + !- \
hvperbola _—— =] 0 rt) =a ylt)==b
Vi a? b2 e LAY 1
e i t? .
parabola y* —2pxr =10 z(t) = = ylt) =t
2p

@ OEPARTMENT OF

T*'H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Planes

Defined by a point and two vectors or by three points

P

R u R

P(a,b)=R+au+bv P(a,b)=R+a(Q-R)+b(P-Q)

@l OEPARTMENT OF

| OHIO

COMPUTER SCIENCE
=~ AND ENGINEERING

Triangles

P S{ox) Q

for 0<=q,f<=1, we get all points in triangle

R OEPARTMENT OF

! P
4 [®)51®) coMmPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Barycentric Coordinates

(0,0,1)

(%, %,%)

NS -
~ | <y
/

\ ~ -
RN O F 19) Ry
\\ \\|‘// ///

1 VAN BN VA VA |
(A!%! /t)/‘: : ;‘\(?és /4! /4)
//// \\\ : /// \\\\
//// \\ i // \\\\
-7 \\I,/ N
(0,1,0)/ - % ~N(1,0,0)
(*2,%4,0)

DEPARTMENT OF

COMPUTER SCIENCE
NIPRVIS \ND ENGINEERING

| OHIO

Barycentric Coordinates

Triangle is convex

Any point inside can be represented as an affine sum

P(a,; a, az)=aA + BB +yC
where

a+pP+y=I

a P,y >=0

DEPARTMENT OF

DE R
%) COMPUTER SCIENCE
SUBMEE] AND ENGINEERING

Barycentric Coordinates

Calculating Areas !

@l OEPARTMENT OF

T - H_
(S)D}A{Cll% COMPUTER SCIENCE
SRWIS \ND ENGINEERING

Matrices

PRl DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Matrices

Definitions

Matrix Operations

Row and Column Matrices
Rank

Change of Representation

Cross Product

PR DEPARTMENT OF

.) G ¢ 4
(S)l%'ll% COMPUTER SCIENCE
SUBMEE] AND ENGINEERING |

What is a Matrix?

Elements, organized into rows and columns

FOwsS

a b
c d

columns

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

JOHIO

Definitions A =la]

n x m Array of Scalars (n Rows and m Columns)
— n: row dimension of a matrix, m: column dimension
— m = n: square matrix of dimension n
— Element
{aij}, i=1,....,n, j=1,....m

— Transpose: interchanging the rows and columns of a

matrix Al = _ajl,
e Column Matrices and Row Matrices
— Column matrix (n x | matrix):

— Row matrix (1 x n matrix): b’

o) PRELEERY 0EPARTMENT OF
d (/518 comPpUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Basic Operations

Addition, Subtraction, Multiplication

‘a b] [e f] [a+e b+ f]

+ —]
E d_ < h_ c+g J+ h_ add elements
‘a bl [e f| [a-e b-f"

— = subtract elements
C d_ g h_ c-g d —h_
a blle f _ ae+bg af +bh Multiply each
c d|lg h ce+dg cf +dh row by each

column

DEPARTMENT OF

T*H'E
(S)DI?‘[CII% COMPUTER SCIENCE
SUBMEE] AND ENGINEERING

Matrix Operations

+ Scalar-Matrix Multiplication
aA = _aal]J

+ Matrix-Matrix Addition
C =A+B =_al.j +bl.jJ

+ Matrix-Matrix Multiplication

+A: n x I matrix, B: | x m = C: n x m matrix
C -AB-|c,]

C.. =

iy a,;by;

-

Tyel PENRIYRY OEPARTMENT OF |
, (i (S)DI?‘[CII% COMPUTER SCIENCE
. BeYE] ANDENGINEERING |

CE

Matrix Operations

+ Properties of Scalar-Matrix Multiplication a(/jA) = (a/j)A

oA = PaA
+ Properties of Matrix-Matrix Addition

+ Commutative: A +B =B + A
+ Associative: = A + (B_|_C)= (A_|_B)_|_C

+ Properties of Matrix-Matrix Multiplication
A(BC)=(AB)C

AB = BA
+ Identity Matrix 1 (Square Matrix) Al = A

I [1 1i1fi=j
v v 0 otherwise IB =B

DEPARTMENT OF
COMPUTER SCIENCE
MRS AN ENGINEERING

'JOHIO

ldentity Matrix

1 0 O
1 0
0 1

0
0

PR DEPARTMENT OF

T*'H
d [95518] comPUTER SCIENCE
' AND ENGINEERING

UNIVERSITY

Multiplication

* Is AB = BA? Maybe, but maybe not!

D A e A

* Heads up: multiplication is NOT commutative!

ea+ fc]

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

JOHIO

Row and Column Matrices

— Column Matrix
- p’: row matrix
— Concatenations

— Associative

— By Row Matrix

-
p=|y
Z
p' =Ap
p = ABCp
(AB) =B’A”

Tyel PENRIYRY OEPARTMENT OF |
-l ROU51®] oMPUTER SCIENCE
M BRVBS \\p ENGINEERING

Inverse of a Matrix

— ldentity matrix:
Al =A

— Some matrices have an inverse, such that:
AA- =]

— Inversion is tricky:
(ABC)! = C-'B'A

— Derived from non-commutativity property

Oyl PRRITRY ODEPARTMENT OF |
-l [®I51®] compyTER SCIENCE
B BVRBS \\p ENGINEERING

Determinant of a Matrix

e Used for inversion A=[a b}
* If det(A) = 0, then A has no c d
inverse

 Can be found using det(A) = ad - bc

factorials, pivots, and - 1 [d -b
cofactors! ~ad -be [—c a }

* And for Areas of Triangles

e PSR OEPARTMENT OF |
: -l [®I51®] compyTER SCIENCE
g AND ENGINEERING

Area of Triangle — Cramer’s Rule

X Y1
| ooy o1
V — . y X2’ Y2
Ans = -1 W 1
h A
X35 Y3

DEPARTMENT OF

COMPUTER SCIENCE
NIPRVIS \ND ENGINEERING

i loHIO

Use This Here

PR OEPARTMENT OF

T*'H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Change of Representation ()

Change between the Two Bases

{ul,uz,...,un} {V19V29"’9vn}

Vv=o4u, +O0LU, + -+ O U,

V=LV + LV, + 0+ BV,

— Representations of v

a=|la, a, ... a,f b=[5 5 ... B

— Expression of {“1»”2»---»”71} in the basis {vl,vz,...,vn}

U, =YV T ViV o+ V0V, i=19°~-9n

DEPARTMENT OF

T*H'E
(S)DI?‘[CII% COMPUTER SCIENCE
SUBMEE] AND ENGINEERING

Change of Representation

- A= [yij}n X N matrix

— and a=[al.] b=[/5i]

— By direct substitution
(U, | R
a u.z _p’ V.z
ul’l Vn

a’ A

U,
u,
U,
Uu
7| Us
v=a .
Uu
B 7
Vl o
v
2 T
“|l=Db

or

il OEPARTMENT OF

[oic

COMPUTER SCIENCE
MRS AN ENGINEERING

Transformations

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

