
CSE 5542 - Real Time Rendering	

	

 	

 	

Week 2	

Graphics Processing	

2

Physical Approaches	

3

Projection-Based	

4

Projection	

3D objects -> 2D image	

–  Perspective	

–  Parallel/Orthographic	

5	

The Hardware	

6	

The API/System	

7	

The Graphics Pipeline	

8	

Object & Primitive & Vertex	

9	

http://www.3dcadbrowser.com/download.aspx?3dmodel=27814	

Object & Triangles & Vertices	

http://www.mathworks.com/matlabcentral/fileexchange/37004-uniform-sampling-of-a-sphere	

Primitives	

11	

Example (old style)	

glBegin(GL_POLYGON)	

	

glVertex3f(0.0, 0.0, 0.0);	

	

glVertex3f(0.0, 1.0, 0.0);	

	

glVertex3f(0.0, 0.0, 1.0);	

glEnd();	

12	

type of object	

location of vertex	

end of object definition	

Example (GPU based)	

•  Put geometric data in an array	

	

	

	

•  Send array to GPU	

•  Tell GPU to render as triangle	

13	

vec3 points[3];	

points[0] = vec3(0.0, 0.0, 0.0);	

points[1] = vec3(0.0, 1.0, 0.0);	

points[2] = vec3(0.0, 0.0, 1.0);	

	

Camera Specification	

•  Six degrees of freedom	

–  Position of center of lens	

– Orientation	

•  Lens	

•  Film size	

•  Orientation of film plane	

14	

Materials	

Optical properties	

– Absorption/Reflection: color Scattering	

•  Diffuse	

•  Specular	

•  Transparent	

– Texture	

– …	

15	

Lights	

Types 	

–  Point sources vs distributed sources	

–  Spot lights	

– Near and far sources	

– Color properties	

16	

Vertex Processing	

Polygon Soup	

Vertex Processing	

•  Define object representations from one coordinate

system to another	

–  Object coordinates	

–  World Coordinates	

–  Camera (eye) coordinates	

–  Screen coordinates	

•  Enter Linear algebra – Transformations	

•  Material properties	

18	

World 	

	

Primitive Assembly	

Vertices collected into geometric objects	

–  Line segments	

–  Polygons	

– Curves and surfaces	

20	

Clipping	

Rasterization	

•  Output are fragments	

•  Fragments == potential pixels	

–  Location in frame buffer	

–  Color and depth attributes at vertices	

–  Hidden surface removal ?	

•  Vertex attributes are interpolated over objects	

22	

Fragment Processing	

23	

The Graphics Pipeline	

What is Missing ?	

Not Quite ?	

Next ?	

My Desktop	

My Desktop	

Chipset Model: 	

AMD Radeon HD 6770M	

 Type: 	

GPU	

 Bus: 	

PCIe	

 PCIe Lane Width: 	

x16	

 VRAM (Total): 	

512 MB	

 Vendor: 	

ATI (0x1002)	

 Device ID: 	

0x6740	

 Revision ID: 	

0x0000	

 ROM Revision: 	

113-C0170F-170	

 EFI Driver Version: 	

01.00.544	

 Displays:	

iMac:	

 Display Type: 	

LCD	

 Resolution: 	

2560 x 1440	

 Pixel Depth: 	

32-Bit Color (ARGB8888)	

 Main Display: 	

Yes	

 Mirror: 	

Off	

 Online: 	

Yes	

 Built-In: 	

Yes	

Fancy Stuff !	

AMD RADEON™ 	

	

HD 6770 GPU	

ENGINE CLOCK 	

Up to 850MHz	

MEMORY 	

512MB or 1GB DDR3 or GDDR5	

MEMORY CLOCK 	

1200MHz	

MEMORY BANDWIDTH 76.8 GB/s (maximum)	

SINGLE PRECISION COMPUTE POWER 	

1.36 TFLOPs	

TERASCALE 2 UNIFIED PROCESSING ARCHITECTURE 	

	

800 Stream Processors	

40 Texture Units	

64 Z/Stencil ROP Units	

16 Color ROP Units	

BUS INTERFACE PCI Express 2.1 x16	

OPENGL 4.1 SUPPORT 	

Yes	

IMAGE QUALITY ENHANCEMENT TECHNOLOGY 	

	

Up to 24x multi-sample and super-sample anti-aliasing modes	

Adaptive anti-aliasing	

16x angle independent anisotropic texture filtering	

128-bit floating point HDR rendering	

CUTTING-EDGE INTEGRATED DISPLAY SUPPORT 	

	

Integrated DisplayPort Output	

Max resolution: 2560x1600 per display	

HDMI® (With 3D, Deep Color and x.v.Color™)	

Max resolution: 1920x1200	

Integrated Dual-link DVI with HDCP	

Max resolution: 2560x1600	

Integrated VGA	

Max resolution: 2048x1536	

INTEGRATED HD AUDIO CONTROLLER	

	

Output protected high bit rate 7.1 channel surround sound
over HDMI or DisplayPort with no additional cables
required	

Supports AC-3, AAC, Dolby TrueHD and DTS Master Audio
formats	

AMD TECHNOLOGIES 	

	

AMD Eyefinity multidisplay technology2	

Native support for up to 5 simultaneous displays	

Independent resolutions, refresh rates, color controls and
video overlays	

Display grouping	

Combine multiple displays to behave like a single large
display	

AMD App Acceleration3	

OpenCL 1.1 Support	

DirectCompute 11	

Accelerated video encoding, transcoding and upscaling	

UVD 2 dedicated video playback accelerator	

H.264	

VC-1	

MPEG-2	

H.264 MVC (Blu-ray 3D)5	

Adobe Flash	

Enhanced Video Quality features	

Advanced post-processing and scaling	

Dynamic contrast enhancement and color correction	

Brighter whites processing (Blue Stretch)	

Independent video gamma control	

Dynamic video range control	

Dual-stream HD (1080p) playback support	

DXVA 1.0 & 2.0 support	

 	

AMD HD3D technology5	

Stereoscopic 3D display/glasses support	

Blu-ray 3D support	

Stereoscopic 3D gaming	

3rd party Stereoscopic 3D middleware software support	

AMD CrossFire™ multi-GPU technology6	

Dual GPU scaling	

AMD PowerPlay™ power management technology4	

Dynamic power management with low power idle state	

Ultra-low power state support for multi-GPU configurations	

	

 	

AMD Catalyst™ software and HD video configuration software	

Unified graphics display drivers	

Certified for Windows 7, Windows Vista, and Windows XP	

AMD CatalystTM Control Center	

Software application and user interface for setup, configuration and accessing
special features of AMD Radeon products.	

Computer Graphics Hardware: ���
An Overview	

Many Thanks to Prof. Han-wei Shen, CSE, OSU	

Graphics System	

Input devices	

CPU/Memory	

GPU	

Monitor	

Raster Graphics System	

Frame buffer	

video controller	

x	

y	

DAC	

A	

To Note	

ü  Raster: An array of picture elements	

ü  Based on raster-scan TV technology 	

ü  The screen & rendering consists of discrete pixels	

ü  Each pixel has a small display area 	

The Frame Buffer	

Frame buffer	

video controller	

x	

y	

DAC	

A	

Frame Buffer 	

•  Low-latency memory to hold pixel attributes 	

–  color, alpha, depth, stencil mask, who-knows-what 	

•  Performance depends on	

–  Size: screen resolution 	

– Depth: color level	

–  Speed: refresh speed	

	

Depth	

+  bit/pixel: black and white	

+  8 bits/pixel: 256 levels of gray or color pallet index	

+  24 bits/pixel: 16 million colors 	

Image Digitization - Recap	

Sampling: Resolution	

Quantization: Measured Value	

Image Digitization-Recap	

Sampling	

 Quantization	

The Architecture	

(A way too) Simple Graphik System 	

System bus	

CPU	

 Main Memory	

Frame	

 buffer	

Scan 	

Controller	

Frame buffer is part of main memory	

Problem? 	

Dedicated memory 	

System bus	

CPU	

 Main Memory	

Frame	

 buffer	

Scan 	

Controller	

Video memory: On-board frame buffer: much faster to access	

Graphics Accelerator	

System bus	

CPU	

 Main Memory	

Graphics Memory/	

Frame buffer	

Scan 	

Controller	

Graphics	

Processor	

A dedicated processor for graphics processing	

Graphics Bus Interface 	

CPU	

 Main Memory	

Graphics Memory/	

Frame buffer	

Scan 	

Controller	

Graphics	

Processor	

PCI based technology 	

PCIe (8 GB/s) 	

System Bus 	

Other 	

Peripherals	

Graphics Accelerators

(Massively) Parallel Processors	

Stream Processing	

A Roadmap	

The Main Drivers	

GPU = General Purpose Units !	

My Own nVidia	

The Existentialist GPU

http://www.anandtech.com/show/4225/the-ipad-2-review/5	

Multi-Core Galore	

Largest Chip on Mother Board	

►  128 streaming floating point processors @1.5Ghz	

►  1.5 Gb Shared RAM with 86Gb/s bandwidth	

►  500 Gflop on one chip (single precision)	

 nVidia G80 GPU (2006)	

nVidia G80 GPU	

L2

FB

SP SP

L1

TF

T
hr

ea
d

Pr
oc

es
so

r

Vtx Thread Issue

Setup / Rstr / ZCull

Prim Thread Issue Frag Thread Issue

Data Assembler

Application

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Vertex assembly	

Primitive assembly	

Rasterization	

Fragment operations	

Vertex operations	

Application	

Primitive operations	

Framebuffer	

 nVidia Fermi GPU (2009)	

 nVidia Fermi GPU (2009)	

nVidia Kepler GK110 (2012)	

CPU/GPU Performance Gap	

Why are GPUs Fast ?	

Moore’s Law ++	

Modern GPU has more ALU’s	

Stream Processing	

Single Chip Design	

The Scourge	

Pros Und Cons !	

•  Very Efficient For	

–  Fast Parallel Floating Point Processing	

–  Single Instruction Multiple Data Operations	

–  High Computation per Memory Access	

	

•  Not As Efficient For	

–  Double Precision	

–  Logical Operations on Integer Data	

–  Branching-Intensive Operations	

–  Random Access, Memory-Intensive Operations 	

The Rendering Pipeline	

•  Three conceptual stages 	

•  A stage is pipeline & runs in parallel	

•  Performance set by slowest stage 	

•  Modern graphics systems: 	

–  Software	

–  hardware 	

 	

 	

 	

Application	

Geometry	

Rasteriazer	

Image	

Eine modern GPU	

64bits to	

memory	

64bits to	

memory	

64bits to	

memory	

64bits to	

memory	

Input from CPU	

Host interface	

Vertex processing	

Triangle setup	

Pixel processing	

Memory Interface	

Hardware Rendering Pipeline 	

host	

interface	

vertex	

processing	

triangle	

setup	

pixel	

 processing 	

memory	

interface	

Host Interface	

ü Communication bridge between CPU & GPU	

ü Input: Commands from CPU; geometry information
from memory	

ü Output: Stream of vertices in object space with
associated information - normals, texture coordinates,
per vertex color etc.	

host	

interface	

vertex	

processing	

triangle	

setup	

pixel	

 processing 	

memory	

interface	

Transform Spaces	

Object Space	

Vertex Processing	

ü Input: Vertices from host interface in object space	

ü  Output: Vertices in screen space - No new vertices; no

vertices are discarded	

ü Operations: Simple linear transformation, or a complex
operation morphing effects	

ü What: Normals, texcoords etc are also transformed	

host	

interface	

vertex	

processing	

triangle	

setup	

pixel	

 processing 	

memory	

interface	

Transform Spaces	

Object Space	

 Screen Space	

Triangle Setup	

ü Input: Screen space geometry	

ü Output: Raster/Pixels or Fragments	

ü Operation: Each fragment has attributes computed with
perspective-correct interpolation of triangle vertices	

host	

interface	

vertex	

processing	

triangle	

setup	

pixel	

 processing 	

memory	

interface	

Transform Spaces	

Screen Space	

 Raster/Fragment	

Triangle Setup - Optimizations	

ü O 1: Cull back-facing or outside viewing
frustum	

ü O 2: Hidden Surface Removal	

ü O 3: Fragment is generated if and only if its
center is inside the triangle	

host	

interface	

vertex	

processing	

triangle	

setup	

pixel	

 processing 	

memory	

interface	

Fragment Processing	

ü Input: Fragments & attributes - position, normal, texcoord
etc.	

ü Output: Final color for pixel	

ü Operations: Texture mapping & math operations	

ü Caveat: Bottleneck(s)	

host	

interface	

vertex	

processing	

triangle	

setup	

pixel	

 processing 	

memory	

interface	

Memory Interface	

ü Input: Fragment 	

ü Output: framebuffer operations	

host	

interface	

vertex	

processing	

triangle	

setup	

pixel	

 processing 	

memory	

interface	

Programmability	

ü Vertex, fragment processing, triangle set-up programmable	

ü Programs executed for every vertex and every fragment	

ü Fully customizable geometry and shading effects 	

host	

interface	

vertex	

processing	

triangle	

setup	

pixel	

 processing 	

memory	

interface	

Advanced Musings	

(courtesy: nvidia)	

(courtesy: nvidia)	

(courtesy: nvidia)

(courtesy: nvidia)	

(courtesy: nvidia)	

The Holy Grail - Realism

(courtesy: nvidia)

Software	

GL���
OpenGL ���

GLSL ���
WebGL	

95	

WebGL	

Execution in Browser	

96	

Application
program

Browser Web
Server

Canvas

HTML
JS

files

URL

Web Page

JS Engine

CPU/GPU

Framebuffer

97	

A OpenGL Simple Program 	

Generate a square on a solid background	

Back In My Day J	

#include <GL/glut.h>	

void mydisplay(){	

	

glClear(GL_COLOR_BUFFER_BIT);	

	

glBegin(GL_QUAD;	

	

 	

glVertex2f(-0.5, -0.5);	

	

 	

glVertex2f(-0,5, 0,5);	

	

 	

glVertex2f(0.5, 0.5);	

	

 	

glVertex2f(0.5, -0.5);	

	

glEnd()	

}	

int main(int argc, char** argv){	

	

glutCreateWindow("simple"); 	

	

glutDisplayFunc(mydisplay); 	

	

glutMainLoop();	

}	

99	

What happened?	

•  Most OpenGL functions deprecated	

–  immediate vs retained mode	

– make use of GPU	

•  Makes heavy use of state variable default values that
no longer exist	

– Viewing	

– Colors	

– Window parameters	

•  However, processing loop is the same	

100	

Event Loop	

•  Remember that the sample program

specifies a render function which is a event
listener or callback function	

–  Every program should have a render callback	

–  For a static application we need only execute

the render function once	

–  In a dynamic application, the render function
can call itself recursively but each redrawing of
the display must be triggered by an event	

101	

Lack of Object Orientation	

•  All versions of OpenGL are not object
oriented so that there are multiple functions
for a given logical function	

•  Example: sending values to shaders	

– gl.uniform3f 	

– gl.uniform2i 	

– gl.uniform3dv	

•  Underlying storage mode is the same	

	

102	

WebGL function format	

gl.uniform3f(x,y,z)	

belongs to WebGL canvas	

function name	

x,y,z are variables	

gl.uniform3fv(p)	

p is an array	

dimension	

103	

WebGL constants	

•  Most constants are defined in the canvas object 	

–  In desktop OpenGL, they were in #include files such
as gl.h	

•  Examples	

– desktop OpenGL	

•  glEnable(GL_DEPTH_TEST);	

– WebGL	

•  gl.enable(gl.DEPTH_TEST)	

– gl.clear(gl.COLOR_BUFFER_BIT)	

WebGL and GLSL	

•  WebGL requires shaders and is based less

on a state machine model than a data flow
model	

•  Most state variables, attributes and related
pre 3.1 OpenGL functions have been
deprecated	

•  Action happens in shaders	

•  Job of application is to get data to GPU	

104	

GLSL	

•  OpenGL Shading Language	

•  C-like with 	

– Matrix and vector types (2, 3, 4 dimensional)	

– Overloaded operators	

– C++ like constructors	

•  Similar to Nvidia’s Cg and Microsoft HLSL	

•  Code sent to shaders as source code	

•  WebGL functions compile, link and get

information to shaders	

105	

Square Program

Angel and Shreiner: Interactive Computer Graphics 7E ©
Addison-Wesley 2015

WebGL	

•  Five steps	

– Describe page (HTML file)	

•  request WebGL Canvas	

•  read in necessary files	

– Define shaders (HTML file)	

•  could be done with a separate file (browser

dependent)	

– Compute or specify data (JS file)	

–  Send data to GPU (JS file)	

– Render data (JS file)	

square.html	

<!DOCTYPE html>	

<html>	

<head>	

<script id="vertex-shader" type="x-shader/x-vertex">	

	

attribute vec4 vPosition;	

void main()	

{	

 gl_Position = vPosition;	

}	

</script>	

	

<script id="fragment-shader" type="x-shader/x-fragment">	

	

precision mediump float;	

	

void main()	

{	

 gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);	

}	

</script>	

Shaders	

•  We assign names to the shaders that we can use in the JS

file	

•  These are trivial pass-through (do nothing) shaders that
which set the two required built-in variables	

–  gl_Position	

–  gl_FragColor	

•  Note both shaders are full programs	

•  Note vector type vec2	

•  Must set precision in fragment shader	

Angel and Shreiner: Interactive Computer Graphics 7E ©
Addison-Wesley 2015 	

square.html (cont)	

<script type="text/javascript" src="../Common/webgl-utils.js"></script>	

<script type="text/javascript" src="../Common/initShaders.js"></script>	

<script type="text/javascript" src="../Common/MV.js"></script>	

<script type="text/javascript" src="square.js"></script>	

</head>	

	

<body>	

<canvas id="gl-canvas" width="512" height="512">	

Oops ... your browser doesn't support the HTML5 canvas element	

</canvas>	

</body>	

</html>	

Files	

•  ../Common/webgl-utils.js: Standard utilities for

setting up WebGL context in Common directory
on website	

•  ../Common/initShaders.js: contains JS and WebGL
code for reading, compiling and linking the shaders 	

•  ../Common/MV.js: our matrix-vector package	

•  square.js: the application file	

square.js	

var gl;	

var points;	

	

window.onload = function init(){	

var canvas = document.getElementById("gl-canvas");	

 	

 gl = WebGLUtils.setupWebGL(canvas);	

 if (!gl) { alert("WebGL isn't available");	

 }	

 // Four Vertices	

	

 var vertices = [

 vec2(-0.5, -0.5),	

 vec2(-0.5, 0.5),	

 vec2(0.5, 0.5),	

 vec2(0.5, -0.5)	

];	

 	

Notes	

•  onload: determines where to start execution

when all code is loaded	

•  canvas gets WebGL context from HTML file	

•  vertices use vec2 type in MV.js	

•  JS array is not the same as a C or Java array	

– object with methods	

–  vertices.length // 4	

•  Values in clip coordinates	

square.js (cont)	

 	

 // Configure WebGL	

 	

 gl.viewport(0, 0, canvas.width, canvas.height);	

 gl.clearColor(0.0, 0.0, 0.0, 1.0);	

	

 // Load shaders and initialize attribute buffers	

	

 var program = initShaders(gl, "vertex-shader", "fragment-shader");	

 gl.useProgram(program);	

	

 // Load the data into the GPU	

	

 var bufferId = gl.createBuffer();	

 gl.bindBuffer(gl.ARRAY_BUFFER, bufferId);	

 gl.bufferData(gl.ARRAY_BUFFER, flatten(vertices), gl.STATIC_DRAW);	

	

 // Associate out shader variables with our data buffer	

	

 var vPosition = gl.getAttribLocation(program, "vPosition");	

 gl.vertexAttribPointer(vPosition, 2, gl.FLOAT, false, 0, 0);	

 gl.enableVertexAttribArray(vPosition); 	

Notes	

•  initShaders used to load, compile and link

shaders to form a program object	

•  Load data onto GPU by creating a vertex buffer

object on the GPU	

– Note use of flatten() to convert JS array to an array of

float32’s	

•  Finally we must connect variable in program with
variable in shader	

–  need name, type, location in buffer	

square.js (cont)	

 	

 render();	

};	

	

function render() {	

 gl.clear(gl.COLOR_BUFFER_BIT);	

 gl.drawArrays(gl.TRIANGLE_FAN, 0, 4);	

}	

0

1 2

3

Triangles, Fans or Strips	

 	

gl.drawArrays(gl.TRIANGLES, 0, 6); // 0, 1, 2, 0, 2, 3 	

0

1 2

3
 	

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4); // 0, 1, 3, 2	

 	

gl.drawArrays(gl.TRIANGLE_FAN, 0, 4); // 0, 1 , 2, 3	

0

1 2

3

BigBang of *GL*	

119

OpenGL Architecture

120

Graphical APIs
•  1973 - two committees to propose a standard

graphics API
– Graphical Kernel System (GKS)

•  2D but contained good workstation model
– Core

•  Both 2D and 3D
– GKS adopted as IS0 and later ANSI standard

(1980s)
•  GKS not easily extended to 3D (GKS-3D)

– Far behind hardware development

121	

PHIGS and X	

•  Programmers Hierarchical Graphics System

(PHIGS)	

– Arose from CAD community	

– Database model with retained graphics (structures)	

•  X Window System	

– DEC/MIT effort	

– Client-server architecture with graphics	

•  PEX combined the two	

– Not easy to use (all the defects of each)	

122	

SGI and GL	

•  Silicon Graphics (SGI) revolutionized the graphics

workstation by implementing the pipeline in
hardware (1982)	

•  To access the system, application programmers
used a library called GL	

•  With GL, it was relatively simple to program three
dimensional interactive applications 	

OpenGL	

The success of GL lead to OpenGL (1992), a

platform-independent API that was 	

–  Easy to use	

– Close enough to the hardware to get excellent
performance	

–  Focus on rendering	

– Omitted windowing and input to avoid window

system dependencies 	

124	

OpenGL Evolution	

Originally controlled by an Architectural Review Board
(ARB)	

– Members included SGI, Microsoft, Nvidia, HP, 3DLabs,
IBM,…….	

– Now Khronos Group	

– Was relatively stable (through version 2.5)	

•  Backward compatible	

•  Evolution reflected new hardware capabilities	

–  3D texture mapping and texture objects	

–  Vertex and fragment programs	

– Allows platform specific features through extensions	

Modern OpenGL	

•  Performance is achieved by using GPU rather than

CPU	

•  Control GPU through programs called shaders	

•  Application’s job is to send data to GPU	

•  GPU does all rendering	

125	

Immediate Mode Graphics	

•  Geometry specified by vertices 	

–  Locations in space(2 or 3 dimensional)	

–  Points, lines, circles, polygons, curves, surfaces	

•  Immediate mode	

–  Each time a vertex is specified in application, its

location is sent to the GPU	

– Old style uses glVertex	

– Creates bottleneck between CPU and GPU	

– Removed from OpenGL 3.1 and OpenGL ES 2.0	

126	

Retained Mode Graphics	

•  Put all vertex attribute data in array	

•  Send array to GPU to be rendered

immediately	

•  Almost OK but problem is we would have

to send array over each time we need
another render of it	

•  Better to send array over and store on
GPU for multiple renderings	

127	

OpenGL 3.1	

•  Totally shader-based	

– No default shaders	

–  Each application must provide both a vertex and a

fragment shader	

•  No immediate mode	

•  Few state variables	

•  Most 2.5 functions deprecated	

•  Backward compatibility not required	

–  Exists a compatibility extension	

128	

Other Versions	

•  OpenGL ES 	

–  Embedded systems	

–  Version 1.0 simplified OpenGL 2.1	

–  Version 2.0 simplified OpenGL 3.1	

•  Shader based	

•  WebGL 	

–  Javascript implementation of ES 2.0	

–  Supported on newer browsers	

•  OpenGL 4.1, 4.2, …..	

–  Add geometry, tessellation, compute shaders	

129	

Software Organization	

The End	

Next – Sierpinski in GLSL	

