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Texture Mapping	



Courtesy: Ed Angel	
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Limits of Geometric Modeling	





Millions of Polygons/Second	





Cannot Do	





Use Textures	





Orange	





Orange Spheres	





Texture Mapping	





Looking Better	





Still Not Enough	





Local Variation	





Texture Mapping	





Globe	





Not Mercator	





Yet Another Fruit	
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Three Types of Mapping 



Generating Textures	





Pictures	





Algorithms	





Checkerboard Texture	
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 GLubyte image[64][64][3];	


	


// Create a  64 x 64 checkerboard pattern	


    for ( int i = 0; i < 64; i++ ) {	


        for ( int j = 0; j < 64; j++ ) {	


            GLubyte c = (((i & 0x8) == 0) ^ ((j & 0x8)  == 0)) * 255;	


            image[i][j][0]  = c;	


            image[i][j][1]  = c;	


            image[i][j][2]  = c;	





Brick Wall	





Noise	





Marble	
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Texture Mapping 

geometric model texture mapped 
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Environment Mapping  
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Bump Mapping 
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Three Types 
Texture mapping	



smooth shading	

 environment	


    mapping	



bump mapping	





29 

Texture Mapping - Pipeline 	


Mapping techniques are implemented at the end of the 
rendering pipeline	



– Very efficient because few polygons make it past the 
clipper 	



G eometry
processing

Rasteri z a tion Fra gment
processing

Vertices

Pixel
processing

Pixels

Frame
buffer
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Mapping Mechanics	


3 or 4 coordinate systems involved	



2D image	



3D surface	
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Texture Mapping	



parametric coordinates	



texture coordinates	



world coordinates	


window coordinates	
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Coordinate Systems	


•  Parametric coordinates	



– Model curves and surfaces	



•  Texture coordinates	


–  Identify points in image to be mapped	



•  Object or World Coordinates	


– Conceptually, where the mapping takes place	



•  Screen Coordinates	


– Where the final image is really produced	
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Mapping Functions	


Mapping from texture coords to point on surface	


 	


•  Appear to need three functions	



x  = x(s,t)	


y = y(s,t)	


z = z(s,t)	



•  Other direction needed	


s	



t	



(x,y,z)	
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Backward Mapping	


Mechanics	



–  Given a pixel want point on object it corresponds	


–  Given point on object want point in the texture it 

corresponds	


Need a map of the form 	



s = s(x,y,z)	



t = t(x,y,z)	



Such functions are difficult to find in general 	
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Two-part mapping	


•  First map texture to a simple intermediate surface	



•  Map to cylinder	
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Cylindrical Mapping	


parametric cylinder	



x = r cos 2π u	


y = r sin 2πu	


z = v/h	



maps rectangle in u,v space to cylinder	


of radius r and height h in world coordinates	



s = u	


t = v	



maps from texture space	
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Spherical Map	


We can use a parametric sphere	



x = r cos 2πu	


y = r sin 2πu cos 2πv	


z = r sin 2πu sin 2πv	



in a similar manner to the cylinder	


but have to decide where to put	


the distortion	


	


Spheres are used in environmental maps	
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Box Mapping	


•  Easy to use with simple orthographic projection	


•  Also used in environment maps	
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Second Mapping	


Map from intermediate object to actual object	



– Normals from intermediate to actual	


– Normals from actual to intermediate	



– Vectors from center of intermediate 	



intermediate	

actual	
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Aliasing 
Point sampling of texture leads to aliasing errors 

point samples in u,v  
(or x,y,z) space 

point samples in texture space 

miss blue stripes 
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Anti-Aliasing in Textures	


  point	


sampling	



mipmapped	


   point	


sampling	



mipmapped	


   linear	


  filtering	



   linear	


  filtering	
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Area Averaging 
A better but slower option is to use area averaging 

Note that preimage of pixel is curved 

pixel preimage 
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OpenGL Texture 
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Basic Stragegy	


Three steps 	



1.  Specify  texture	


•  read or generate image	



•  assign to texture	


•  enable texturing	



2.  Assign texture coordinates to vertices	


•  Proper mapping function is left to application	



3.  Specify texture parameters	


•  wrapping, filtering	
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Texture Mapping	



s 

t 

x	



y	



z	



image	



geometry	

 display	
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Texture Example 
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Texture Mapping in OpenGL	



geometry pipeline	

vertices	



pixel pipeline	

image	


fragment
processo

r	
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•  Define a texture image from an array of ���
   texels (texture elements) in CPU memory	


   Glubyte my_texels[512][512];	



•  Define as any other pixel map	


–  Scanned image	



–  Generate by application code	



•  Enable texture mapping	


–  glEnable(GL_TEXTURE_2D)	


–  OpenGL supports 1-4 dimensional texture maps	



Specifying a Texture Image	
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glTexImage2D( target, level, components, w, h, border, format, type, texels );	


	



	

target: type of texture, e.g. GL_TEXTURE_2D	



	

level: used for mipmapping	


	

components: elements per texel	


	

w, h: width and height of texels in pixels	


	

border: used for smoothing 	


	

format and type: describe texels	


	

texels: pointer to texel array	


	


glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0, GL_RGB, 

GL_UNSIGNED_BYTE, my_texels);	


	



Defining a Texture Image	
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•  Based on parametric texture coordinates	


•  glTexCoord*() specified at each vertex	



s	



t	


1, 1	



0, 1	



0, 0	

 1, 0	



(s, t) = (0.2, 0.8)	



(0.4, 0.2)	



(0.8, 0.4)	



A	



B	

 C	



a	



b	


c	



Texture Space	

 Object Space	



Mapping a Texture	
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GLSL - Typical Code	



offset = 0;	


GLuint vPosition = glGetAttribLocation( program, "vPosition" );	


glEnableVertexAttribArray( vPosition );	


glVertexAttribPointer( vPosition, 4, GL_FLOAT, GL_FALSE, 

0,BUFFER_OFFSET(offset) );	


	


offset += sizeof(points);	


GLuint vTexCoord = glGetAttribLocation( program, "vTexCoord" );	


glEnableVertexAttribArray( vTexCoord );	


glVertexAttribPointer( vTexCoord, 2,GL_FLOAT,	


    GL_FALSE, 0, BUFFER_OFFSET(offset) );	





Adding Texture Coordinates	
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void quad( int a, int b, int c, int d )	


{	


    quad_colors[Index] = colors[a];	


    points[Index] = vertices[a];	


    tex_coords[Index] = vec2( 0.0, 0.0 );	


    index++;	


   quad_colors[Index] = colors[a];	


    points[Index] = vertices[b];	


    tex_coords[Index] = vec2( 0.0, 1.0 );	


    Index++;	


	


// other vertices	


}	





Role of Interpolation	
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Interpolation	


OpenGL uses interpolation to find proper texels from specified 

texture coordinates	


Can be distorted	



good selection	


of tex coordinates	



poor selection	


of tex coordinates	



texture stretched	


over trapezoid 	


showing effects of 	


bilinear interpolation	





Interpolation	





Control of Texture Mapping	
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Texture Parameters	


OpenGL has a variety of parameters that determine 
how texture is applied	



– Wrapping parameters determine what happens if s and t 
are outside the (0,1) range	



–  Filter modes allow us to use area averaging instead of 
point samples	



– Mipmapping allows us to use textures at multiple 
resolutions	



–  Environment parameters determine how texture 
mapping interacts with shading	





Wrapping Mode	


Clamping: if s,t > 1 use 1, if s,t <0 use 0	


Wrapping: use s,t modulo 1	



glTexParameteri( GL_TEXTURE_2D, ���
   GL_TEXTURE_WRAP_S, GL_CLAMP )	



glTexParameteri( GL_TEXTURE_2D, ���
   GL_TEXTURE_WRAP_T, GL_REPEAT )	



texture	



s	



t	



GL_CLAMP	


wrapping	



GL_REPEAT	


wrapping	
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Magnification/Minification 

Texture	

 Polygon	


Magnification	

 Minification	



Polygon	

Texture	



More than one texel can cover a pixel (minification) or	


more than one pixel can cover a texel (magnification)	


	


Can use point sampling (nearest texel) or linear filtering	


( 2 x 2 filter) to obtain texture values	
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Filter Modes	



Modes determined by	



–  glTexParameteri( target, type, mode ) 	



glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MAG_FILTER,	


             GL_NEAREST);	



glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MIN_FILTER,	


             GL_LINEAR);	



Note that linear filtering requires a border of an 	


extra texel for filtering at edges (border = 1)	
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Mipmapped Textures	


•  Mipmapping allows for prefiltered texture maps of 

decreasing resolutions	



•  Lessens interpolation errors for smaller textured 
objects	



•  Declare mipmap level during texture definition	


glTexImage2D( GL_TEXTURE_*D, level, … )	



	





MipMaps	





Mip-Mapping	





Mip-Mapping	
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Example	


  point	


sampling	



mipmapped	


   point	


sampling	



mipmapped	


   linear	


  filtering	



   linear	


  filtering	
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Texture Functions	


•  Controls how texture is applied	



•  glTexEnv{fi}[v]( GL_TEXTURE_ENV, prop, 
param ) 	



•  GL_TEXTURE_ENV_MODE  modes	


–  GL_MODULATE: modulates with computed shade 	

	



–  GL_BLEND: blends with an environmental color 	

	



–  GL_REPLACE: use only texture color	


–  GL(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, 

GL_MODULATE);	



•  Set blend color with 
GL_TEXTURE_ENV_COLOR	
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Using Texture Objects	


1.  specify textures in texture objects	


2.  set texture filter 	


3.  set texture function 	


4.  set texture wrap mode	


5.  set optional perspective correction hint	


6.  bind texture object 	


7.  enable texturing	


8.  supply texture coordinates for vertex	



–  coordinates can also be generated	
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Other Texture Features	


•  Environment Maps	



–  Start with image of environment through a wide angle 
lens 	



•  Can be either a real scanned image or an image created in 
OpenGL	



– Use this texture to generate a spherical map	



– Alternative is to use a cube map	



•  Multitexturing	


– Apply a sequence of textures through cascaded texture 

units	





GLSL	





Samplers	



https://www.opengl.org/wiki/Sampler_(GLSL)	





Applying Textures	


•  Textures are applied during fragment shading by a 

sampler	


•  Samplers return a texture color from a texture object	
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in vec4 color;  //color from rasterizer	


in vec2 texCoord; //texure coordinate from rasterizer	


uniform sampler2D texture; //texture object from application	


	


void main()  { 	


    gl_FragColor = color * texture2D( texture, texCoord );	


} 	


	





Vertex Shader	


•  Usually vertex shader will output texture coordinates to 

be rasterized	



•  Must do all other standard tasks too	


– Compute vertex position	


– Compute vertex color if needed	
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in vec4 vPosition; //vertex position in object coordinates	


in vec4 vColor;  //vertex color from application	


in vec2 vTexCoord; //texture coordinate from application 	


	


out vec4 color; //output color to be interpolated	


out vec2 texCoord; //output tex coordinate to be 
interpolated	


	





Adding Texture Coordinates	
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void quad( int a, int b, int c, int d )	


{	


    quad_colors[Index] = colors[a];	


    points[Index] = vertices[a];	


    tex_coords[Index] = vec2( 0.0, 0.0 );	


    index++;	


   quad_colors[Index] = colors[a];	


    points[Index] = vertices[b];	


    tex_coords[Index] = vec2( 0.0, 1.0 );	


    Index++;	


	


// other vertices	


}	





Texture Object	
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   GLuint textures[1];	


    glGenTextures( 1, textures );	


	


    glBindTexture( GL_TEXTURE_2D, textures[0] );	


    glTexImage2D( GL_TEXTURE_2D, 0, GL_RGB, TextureSize, 	


       TextureSize, 0, GL_RGB, GL_UNSIGNED_BYTE, image );	


    glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, 	


        GL_REPEAT );	


    glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, 	


         GL_REPEAT );	


    glTexParameterf( GL_TEXTURE_2D, 	


          GL_TEXTURE_MAG_FILTER, GL_NEAREST );	


    glTexParameterf( GL_TEXTURE_2D, 	


          GL_TEXTURE_MIN_FILTER, GL_NEAREST );	


    glActiveTexture( GL_TEXTURE0 );  	





Linking with Shaders	
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    GLuint vTexCoord = glGetAttribLocation( program, "vTexCoord" );	


    glEnableVertexAttribArray( vTexCoord );	


    glVertexAttribPointer( vTexCoord, 2, GL_FLOAT, GL_FALSE, 0,	


                           BUFFER_OFFSET(offset) );	


	


    // Set the value of the fragment shader texture sampler variable	


    //   ("texture") to the the appropriate texture unit. In this case,	


    //   zero, for GL_TEXTURE0 which was previously set by calling	


    //   glActiveTexture().	


    glUniform1i( glGetUniformLocation(program, "texture"), 0 );	
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Vertex Shader Applications	


•  Moving vertices	



– Morphing 	


– Wave motion	



–  Fractals	



•  Lighting	


– More realistic models	


– Cartoon shaders	
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Wave Motion Vertex Shader	


uniform float time;	


uniform float xs, zs, // frequencies 	


uniform float h; // height scale	


uniform mat4 ModelView, Projection;	


in vec4 vPosition;	


	


void main() {	


  vec4 t =vPosition;	


  t.y = vPosition.y 	


     + h*sin(time + xs*vPosition.x)	


     + h*sin(time + zs*vPosition.z);	


  gl_Position = Projection*ModelView*t;	


}	


	





Particle System	


uniform vec3 init_vel;	


uniform float g, m, t;	


uniform mat4 Projection, ModelView;	


in vPosition;	


void main(){	


vec3 object_pos;	


object_pos.x = vPosition.x + vel.x*t;	


object_pos.y = vPosition.y + vel.y*t 	


       + g/(2.0*m)*t*t;	


object_pos.z = vPosition.z + vel.z*t;	


gl_Position = Projection*	


   ModelView*vec4(object_pos,1);	


}	
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Example	



http://www.lighthouse3d.com/tutorials/glsl-core-
tutorial/glsl-core-tutorial-texturing-with-images/	





Example	



http://www.lighthouse3d.com/tutorials/glsl-tutorial/
simple-texture/	
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Fragment Shader 
Texture mapping	



smooth shading	

 environment	


    mapping	



bump mapping	
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Cube Maps	


•  We can form a cube map texture by defining six 2D 

texture maps that correspond to the sides of a box	


•  Supported by OpenGL	


•  Also supported in GLSL through cubemap sampler	



vec4 texColor = textureCube(mycube, texcoord);	



•  Texture coordinates must be 3D	
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Environment Map	


Use reflection vector to locate texture in cube map	





84 

Environment Maps with Shaders	


•  Computed in world coordinates 	



–  keep track of modeling matrix & pass  as a uniform 
variable	



•  Use reflection map or refraction map 	


•  Simulate water	
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Reflection Map Vertex Shader	


uniform mat4 Projection, ModelView, NormalMatrix;	


in vec4 vPosition;	


in vec4 normal;	


out vec3 R;	


	


void main(void)	


{	


   gl_Position = Projection*ModelView*vPosition;	


   vec3 N = normalize(NormalMatrix*normal);	


   vec4 eyePos = ModelView*gvPosition;	


   R = reflect(-eyePos.xyz, N);	


}	
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Reflection Map Fragment Shader	


in vec3 R;	


uniform samplerCube texMap;	


	


void main(void)	


{	


    gl_FragColor = textureCube(texMap, R);	


}	
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Bump Mapping	


•  Perturb normal for each fragment	


•  Store perturbation as textures	





Back 2 Orange	
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The Orange	



•  Texture map a photo of an orange onto a surface	


– Captures dimples	


– Will not be correct if we move viewer or light	


– We have shades of dimples rather than their correct 

orientation	



•  Ideally perturb normal across surface of object 
and compute a new color at each interior point	
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Bump Mapping (Blinn) 
Consider a smooth surface 

n 

p 
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Rougher Version 

n’ 

p 

p’ 
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Equations	



pu=[ ∂x/ ∂u, ∂y/ ∂u, ∂z/ ∂u]T 

p(u,v) = [x(u,v), y(u,v), z(u,v)]T 

pv=[ ∂x/ ∂v, ∂y/ ∂v, ∂z/ ∂v]T 

n = (pu × pv ) / | pu × pv | 
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Tangent Plane 

pu 

pv 

n 
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Displacement Function	



p’ = p + d(u,v) n	



d(u,v) is the bump or displacement function	


	


|d(u,v)| << 1	
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Perturbed Normal	



n’ = p’u × p’v	



p’u = pu + (∂d/∂u)n + d(u,v)nu	



p’v = pv + (∂d/∂v)n + d(u,v)nv	



If d is small, we can neglect last term	
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Approximating the Normal	


n’ = p’u × p’v	



≈ n + (∂d/∂u)n × pv + (∂d/∂v)n × pu 	


 	



The vectors n × pv  and n × pu lie 	


in the tangent plane 	


Hence the normal is displaced in the tangent plane	


Must precompute the arrays ∂d/ ∂u and ∂d/ ∂v 	



Finally,we perturb the normal during shading	





Compositing & Blending	
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A	


- Blending for translucent surfaces	



- Compositing images	



- Antialiasing	





A	





A	
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A 
•  Opaque surfaces permit no light to pass through 
•  Transparent surfaces permit all light to pass 
•  Translucent surfaces pass some light 
         translucency = 1 – opacity (α) 

opaque surface α =1 
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Physical Models 
Translucency in a physically correct manner is difficult  
 

–  the complexity of the internal interactions of light 
and matter 

– Using a pipeline renderer 



Compositing Operation	
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Rendering Model	


•  Use A component of RGBA (or RGBa) color for opacity	


•  During rendering expand to use RGBA values 	



	


Color Buffer	


	



destination	


component	



blend	



destination blending	


           factor	



source blending factor	


   source	


component	





Examples	





One Method	
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Blending Equation	


We can define source and destination blending factors 
for each RGBA component	


     s = [sr, sg, sb, sa]	


     d = [dr, dg, db, da]	


Suppose that the source and destination colors are	


     b = [br, bg, bb, ba]	


     c = [cr, cg, cb, ca]	


Blend as	


c’ = [br sr+ cr dr, bg sg+ cg dg , bb sb+ cb db , ba sa+ ca da ]	
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OpenGL	


Must enable blending and pick source and destination 
factors	


    glEnable(GL_BLEND)	


     glBlendFunc(source_factor, 	


       destination_factor)	


Only certain factors supported	



GL_ZERO, GL_ONE	


GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA	


GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA	


See Redbook for complete list	





Operator	
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Example	


•  Start with the opaque background color (R0,G0,B0,1) 	



–  Initial destination color	


•  Blend in a translucent polygon with color (R1,G1,B1,a1)	


•  Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA 

as the source and destination blending factors	


         R’

1 = a1 R1 +(1- a1) R0, …… 	


•  Note this formula is correct if polygon is either opaque or 

transparent	





Works Here Too…	
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Clamping and Accuracy	


•  All  RGBA are clamped to the range (0,1)	


•  RGBA values 8 bits !	



–  Loose accuracy after much components together	


–  Example: add together n images	



•  Divide all color components by n to avoid clamping	


•  Blend with source factor = 1, destination factor = 1	



•  But division by n loses bits	
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E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 

Addison-Wesley 2012 

Order Dependency	





119 
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 

Addison-Wesley 2012 

Order Dependency	


•  Is this image correct?	



–  Probably not	


–  Polygons are rendered	



in the order they pass	


down the pipeline	


– Blending functions	



are order dependent	
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HSR with A	


•  Polygons  which are opaque & translucent	


•  Opaque polygons block all polygons behind  & affect depth 

buffer	


•  Translucent polygons should not affect depth buffer	



–  Render with glDepthMask(GL_FALSE) which makes depth buffer 
read-only	



•  Sort polygons first to remove order dependency	





Fog	
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Simulate Fog	


•  Composite with fixed color and have blending factors 

depend on depth	



–  Simulates a fog effect	


•  Blend source color Cs and fog color Cf by 	


                Cs’=f Cs + (1-f) Cf	



•  f is the fog factor	



–  Exponential	



– Gaussian	


–  Linear (depth cueing) 	
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F - Fog Functions	
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Antialiasing 	


Color a pixel by adding fraction of  color to frame buffer	



–  Fraction depends on percentage of pixel covered by 
fragment 	



–  Fraction depends on whether there is overlap	



no overlap	

 overlap	
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 Area Averaging 	


Use average area a1+a2-a1a2 as blending factor	
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OpenGL Antialiasing	


Enable separately for points, lines, or 
polygons	



glEnable(GL_POINT_SMOOTH);	


glEnable(GL_LINE_SMOOTH);	


glEnable(GL_POLYGON_SMOOTH);	


	


glEnable(GL_BLEND);	


glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);	
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Accumulation	


•  Compositing/blending limited by resolution of  frame 

buffer	



– Typically 8 bits per color component	


•  Accumulation buffer was a high resolution buffer (16 or 

more bits per component) that avoided this problem	


•  Could write into it or read from it with a scale factor	


•  Slower than direct compositing into the frame buffer	





Particle Systems	
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Many Uses	


•  Used to model	



– Natural phenomena	


•  Clouds	



•  Terrain	


•  Plants	



– Crowd Scenes	


– Real physical processes	
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Newtonian Particle	


•  Particle system is a set of particles	


•  Each particle is an ideal point mass	


•  Six degrees of freedom	



–  Position	


– Velocity	



•  Each particle obeys Newtons’ law	


                   f = ma	
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Particle Equations	


pi = (xi, yi zi)	


vi = dpi /dt = pi

‘
 = (dxi /dt, dyi /dt , zi /dt)	



	


m vi

‘= fi	



Hard part is defining force vector	





Force Vector	


•  Independent Particles 	



– Gravity	


– Wind forces	



– O(n) calulation	



•  Coupled Particles O(n)	


– Meshes	


–  Spring-Mass Systems	



•  Coupled Particles O(n2)	


– Attractive and repulsive forces	





Solution of Particle Systems	


float time, delta state[6n], force[3n];	


state = initial_state();	


for(time = t0; time<final_time, time+=delta) {	


force =  force_function(state, time);	


state = ode(force, state, time, delta);	


render(state, time)	


}	





Simple Forces	


•  Consider force on particle i	


         fi = fi(pi, vi)	


•  Gravity fi = g	


         g= (0, -g, 0)	


•  Wind forces	


•  Drag	



pi(t0), vi(t0)	





Meshes	


•  Connect each particle to its closest neighbors	



– O(n) force calculation	



•  Use spring-mass system	





Spring Forces	


•  Assume each particle has unit mass and is 

connected to its neighbor(s) by a spring	


•  Hooke’s law: force proportional to 

distance (d = ||p – q||) between the points	





Hooke’s Law	


Let s be the distance when there is no force	


                f = -ks(|d| - s) d/|d|	


ks is the spring constant	


d/|d| is a unit vector pointed from p to q	


	


Each interior point in mesh has four forces applied to 
it	





Spring Damping	


•  A pure spring-mass will oscillate forever	


•  Must add a damping term	



f = -(ks(|d| - s) + kd d·d/|d|)d/|d|	


	


•  Must project velocity	



·	





Attraction and Repulsion	


•  Inverse square law	


              f = -krd/|d|3	



•  General case requires O(n2) calculation	


	


•  In most problems, the drop off is such that not 

many particles contribute to the forces on any given 
particle	



•  Sorting problem: is it O(n log n)?	





Solution of ODEs	


•  Particle system has 6n ordinary differential 

equations	


•  Write set as du/dt = g(u,t)	


•  Solve by approximations using Taylor’s Thm	
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Euler’s Method	


u(t + h) ≈ u(t) + h du/dt = u(t) + hg(u, t)	


	


Per step error is O(h2)	


Require one force evaluation per time step	


	


Problem is numerical instability	


	

depends on step size	
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Improved Euler	


u(t + h) ≈ u(t) + h/2(g(u, t) + g(u, t+h)) 	


	


Per step error is O(h3)	


Also allows for larger step sizes	


But requires two function evaluations per step	


Also known as Runge-Kutta method of order 2	





Contraints	


•  Easy in computer graphics to ignore physical 

reality	


•  Surfaces are virtual	


•  Must detect collisions separately if we want exact 

solution	



•  Can approximate with 	


repulsive forces	
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Collisions	


Once we detect a collision, we can calculate 

new path	


Use coefficient of resititution	


Reflect vertical component	


May have to use partial time step	





Example	


pi = (xi, yi zi)	


vi = dpi /dt = pi

‘
 = (dxi /dt, dyi /dt , zi /dt)	



m vi
‘= fi	



	



	


	



	


Pi	



Pi+1	



vi 	





Collision ?	



Pi	



Pi+1	





Problem: ���
Triangle & Ray Distinct Objects	





Ray/Triangle Intersection	





Advanced Features of GLSL ���
TF - Transform Feedback���
TBO – Texture Buffer Obejct	





Chapter 5	





An Introduction to 
the OpenGL Shading 
Language	
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Fixed Functionality Pipeline	



API	



Transform	


and 	


Lighting	



Rasterizer	

Primitive	


Assembly	



Texture	


Environment	



Depth	


Stencil	



Color	


Sum	



Alpha	


Test	



Fog	



Dither	


Color	


Buffer	


Blend	



Vertex	


Buffer	


Objects	



Vertices	



Triangles/Lines/Points	



Primitive	


Processing	



Frame Buffer	
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Programmable Shader Pipeline	



API	



Vertex	


Shader	

 Rasterizer	

Primitive	



Assembly	



Fragment	


Shader	



Depth	


Stencil	

 Dither	



Color	


Buffer	


Blend	



Vertex	


Buffer	


Objects	



Vertices	



Triangles/Lines/Points	



Primitive	


Processing	



Frame Buffer	

Alpha	


Test	





Back2Particles	





Schema	





Geometry Pass	





Storing Geometry	



TBO writing	





Transform Feedback	





Transform feedback?	


RedBook says: “Transform Feedback is the process of altering the 
rendering pipeline so that primitives processed by a Vertex Shader and 
optionally a Geometry Shader will be written to buffer objects. This 
allows one to preserve the post-transform rendering state of an object 
and resubmit this data multiple times.”	





Transform Feedback diagram	





Absence of Transform Feedback	


To update Vertex Buffer Object’s attributes:	


	


1. OpenGL copies VBO from  GPU memory to CPU memory	



2. Update in CPU and send back	



3. Consumes time and bandwidth	





Role of TF	


1. All computations are now conducted in GPU	



2. A special  buffer after  shaders and send transformations 	



	


	


CPU not needed  and little application involvement	





Transform Feedback Examples	


http://www.youtube.com/watch?v=SiCq8ETTqRk	


- Uses TF to render a particle smoke system with fire spreading	



http://www.youtube.com/watch?v=E636tYOxoVI	



	


Attain good performance can be by using TF. It controls all of the 
particles in this on the GPU.	





Programmer’s Model	



Vertex	


Shader	



Fragment	


Shader	



Primitive	


Assembly	


& Rasterize	



Per-Sample	


Operations	



Attributes	


(m * vec4)	



Vertex Uniforms	


(p * vec4)	



Varyings	


(n * vec4)	



Fragment Uniforms	


(q * vec4)	
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Vertex Shader Environment	



Attribute 0	



Uniforms	

 Textures	



Attribute 1	



Attribute 2	



Attribute 3	



Attribute 4	



Attribute 5	



…	



Attribute m	



Varying 0	



Varying 1	



Varying 2	



Varying 3	



Varying 4	



Varying 5	



…	



Varying n	



Temporary 
variables	



Clip position	



Vertex Shader	



Point size	
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Fragment Shader Environment	


Uniforms	

 Textures	



Temporary 
variables	



Fragment 
Color(s)	



Varying 0	



Varying 1	



Varying 2	



Varying 3	



Varying 4	



Varying 5	



…	



Varying n	



Fragment Shader	



Window coord	



Front facing flag	



Point coord	



Fragment Depth	





Collision Detection	



Pi	



Pi+1	



Find intersection of ray with plane	


	


Find actual intersection	





Ray/Triangle Intersection	





Some Math	





Some Math	





Fast Ray-Triangle Intersection	





Final Computations	





Geometry Pass	





Vertex Shader	





Configuring Geometry Pass	



TBO writing	





Particle Pass	





Find intersection of ray and plane with triangle	


http://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection	



Find actual intersection	





https://www.opengl.org/sdk/docs/man/html/texelFetch.xhtml	





Configuring Particle Pass	







Shadows	



180	





Shadows & Textures ?	





Shadows & Textures ?	





Real-time Shadow Techniques	



Shadow 
volumes 

Light maps 

Projected 
planar 
shadows 

Hybrid 
approaches 



•  Luxo Jr. has two animated lights and 
one overhead light	



•  Three shadow maps dynamically 
generated per frame	



•  Complex geometry (cords and lamp 
arms) all correctly shadowed	



•  User controls the view, shadowing just 
works	



Luxo Jr. – The Famous One	



(Sorry, no demo.  Images are from web cast video 
 of Apple’s MacWorld Japan announcement.) 





Shadow Mapping	
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Projective Shadows	


•  Projection of a polygon is a polygon called a shadow 

polygon	


•  Given a point light source and a polygon, the 

vertices of the shadow polygon are the projections 
of the original polygon’s vertices from a point 
source onto a surface	
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Visualizing Shadow Mapping	



the point 
light source 



Visualizing Shadow Mapping	


Compare with and without shadows	



with shadows without shadows 



Shadow Process	


1.  Put two identical triangles and their colors on GPU 

(black for shadow triangle)	



2.  Compute two model view matrices as uniforms	


3.  Send model view matrix for original triangle	


4.  Render original triangle	



5.  Send second model view matrix	


6.  Render shadow triangle	


–  Note shadow triangle undergoes two transformations	


–  Note hidden surface removal takes care of depth issues	
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Shadow Map Matrices	


1.  Source at (xl, yl, zl)	


2.  Vertex at (x, y, z)	


3.  Consider simple case of shadow projected onto 

ground at (xp, 0, zp)	


4.  Translate source to origin with T(-xl, -yl, -zl)	



5.  Perspective projection	



6.  Translate back 	
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Shadow Maps	


•  Render a scene from a light source; depth buffer will 

contain the distances from the source to each fragment. 	



•  Store depths in texture called depth/shadow map	


•  Render image in shadow map with light - anything lit is not 

in shadow.	



•  Form a shadow map for each source	





Example	





Shadows	
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Shadow Map	





Final Rendering	


•  Compare distance from fragment to  light source 

with distance in the shadow map	


•  If depth in shadow map is less than distance from 

fragment to source,  fragment is in shadow (from 
this source)	



•  Otherwise we use rendered color	





Visualizing Shadow Mapping	


Scene with shadows	



Notice how 
specular 

highlights never 
appear in 
shadows 

Notice how 
curved surfaces 
cast shadows 
on each other 



Applications Side	


•  Start with vertex in object coordinates	


•  Want to convert representation to texture coordinates	


•  Form LookAt matrix from light source to origin in object 

coordinates (MVL)	


•  From projection matrix for light source (PL)	



•  From a matrix to convert from [-1, 1] clip coordinates to 
[0, 1] texture coordinates 	



•  Concatenate to form object to texture coordinate matrix 
(OTC)	





Visualizing Shadow Mapping	


The scene from the light’s point-of-view	



FYI: from the 
eye’s point-of-view 
again 



Visualizing Shadow Mapping	


The depth buffer from the light’s point-of-view	



FYI: from the 
light’s point-of-view 
again 



Visualizing Shadow Mapping	


Projecting the depth map onto the eye’s view	



FYI: depth map for 
light’s point-of-view 
again 



Visualizing Shadow Mapping	


Projecting light’s planar distance onto eye’s view	





Visualizing Shadow Mapping	


Comparing light distance to light depth map 	



Green is where 
the light planar 

distance and 
the light depth 

map are  
approximately 

equal 

Non-green is 
where shadows 
should be 



Generalized Shadows	


•  Approach was OK for shadows on a single flat surface	



•  Cannot handle shadows on general objects	





Projective Textures 	





Projective Texturing?	


An intuition for projective texturing	



–  The slide projector analogy	



Source: Wolfgang Heidrich [99] 



Image Based Lighting	


•  Project  texture onto surface; treat texture as 

“slide projector”	



•  Projective textures and image based lighting 	



•  OpenGL/GLSL – 4D texture coordinates	





Projective Texturing	


Key - perspective-correct texturing?	



– Normal 2D texture mapping uses (s, t) coordinates	


–  2D perspective-correct texture mapping	



•  (s, t) should be interpolated linearly in eye-space	


•  compute per-vertex s/w, t/w, and 1/w	



•  linearly interpolate these three parameters over polygon	



•  per-fragment compute s’ = (s/w) / (1/w) and t’ = (t/w) / (1/w)	


•  results in per-fragment perspective correct (s’, t’)	





Projective Texturing	


•  Consider homogeneous texture coordinates	



–  (s, t, r, q) --> (s/q, t/q, r/q)	


–  Similar to homogeneous clip coordinates where���

(x, y, z, w) = (x/w, y/w, z/w)	



•  Project (s/q, t/q, r/q) per-fragment	





Projective Texturing	


Tricking hardware into doing projective textures	



– By interpolating q/w, hardware computes per-fragment	


•  (s/w) / (q/w) = s/q	



•  (t/w) / (q/w) = t/q	



– Net result:  projective texturing	





4D Textures Coordinates	


•  Texture coordinates (s, t, r, q) affected by perspective 

division;  actual coordinates (s/q, t/q, r/q) or (s/q, t/q) for 
2D textures	



•  GLSL – textureProj  uses the 2D/3D texture coordinate 
obtained by a perspective division of a 4D texture 
coordinate a texture value from a sampler	



color = textureProj(my_sampler, tex_coord)	
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Shadow Map Generation	





Matrices	





Texture Parameters - OpenGL	



glFramebufferTexture(GL_FRAMEBUFFER, 
GL_DEPTH_STENCIL_ATTACHMENT, depth_texture, 0);	





Check	


http://openme.gl/opengl-4-tutorial-code/	



glFramebufferTexture(GL_FRAMEBUFFER, 
GL_DEPTH_STENCIL_ATTACHMENT, depth_texture, 0);	





Vertex Coordinate Transform	


From object  to window coordinates	



object	



coordinates���
(x, y, z, w)	



eye	



coordinates���
(x, y, z, w)	



modelview ���
matrix	



projection ���
matrix	



divide���
by w	



viewport &���
depth range	



normalized 	



device���
coordinates���
(x, y, z)	



clip	



coordinates���
(x, y, z, w)	



window	



coordinates	


(x, y, z)	





Eye Linear Texture Coordinate	


Generating texture coordinates from eye-space	



object 

coordinates 

eye 

coordinates 
modelview 
matrix 

projection 
matrix 

divide 
by w 

viewport & 
depth range 

normalized  

device 
coordinates 

clip 

coordinates 

window 

coordinates 

eye-linear 
plane 
equations 

(s, t, r, q) 

(x, y, z) 



Transforms	



1/2 

1/2 

1/2 

1 

1/2 

1/2 

1/2 
Light 
frustum 
(projection) 
matrix 

Light 
view 
(look at) 
matrix 

Inverse 
eye 
view 
(look at) 
matrix 

Eye 
view 
(look at) 
matrix 

Modeling 
matrix 

xo 
yo 
zo 
wo 

xe 
ye 
ze 
we 

= 

= 
xe 
ye 
ze 
we 

s 
t 
r 
q 

Map Use	



Map Generation	





Setting Up Matrices	





Simple Shaders	





Depth Rendering	





In Practice	


•  Two Issues	



– Constructing the depth map	


•  use existing hardware depth buffer	



•  use glPolygonOffset to offset depth value back	



•  read back the depth buffer contents	



– Depth map can be copied to a 2D texture	


•  unfortunately, depth values tend to require more precision 

than 8-bit typical for textures	



•  depth precision typically 16-bit or 24-bit	





glPolygonOffset���
	


•  Depth buffer contains “window space” depth values	



–  Post-perspective divide means non-linear distribution	


–  glPolygonOffset is guaranteed to be a window space 

offset	



•  Doing a “clip space” glTranslatef is not sufficient	


– Common shadow mapping implementation mistake	



– Actual bias in depth buffer units will vary over the 
frustum	



– No way to account for slope of polygon	





In Pictures - Pixel Centers	


Consider a polygon covering pixels in 2D	



X	



Z	



Pixel centers	



Polygon	





X 

Z 

Consider a 2nd grid for the polygon covering pixels in 2D	



In Pictures - Pixel Centers	





Change of Z  with respect to X	



X 

Z 

∂z/∂x 

In Pictures - Pixel Centers	





glPolygonOffset’s Slope	


•  Pixel center is re-sampled to another grid	



–  For example, the shadow map texture’s grid!	



•  The re-sampled depth could be off by���
     +/-0.5 ∂z/∂x   and  +/-0.5 ∂z/∂y	



•  The maximum absolute error would be���
     | 0.5 ∂z/∂x | + | 0.5 ∂z/∂y | ≈ max( | ∂z/∂x | , | ∂z/∂y | )	



–  This assumes the two grids have pixel footprint area 
ratios of 1.0	



–  Otherwise, we might need to scale by the ratio	



•  Exactly what polygon offset’s “slope” depth bias does	





Results	


How much polygon offset bias depends	



Too little bias, 
everything begins to 
shadow 

Too much bias, shadow 
starts too far back 

Just right 



Selecting Depth Map Bias	


•  Not that hard	



– Usually the following works well	


•  glPolygonOffset(scale = 1.1, bias = 4.0)	



– Usually better to error on the side of too 
much bias	



•  adjust to suit the shadow issues in your scene	



– Depends somewhat on shadow map precision	


•  more precision requires less of a bias	



– When the shadow map is being magnified, a 
larger scale is often required	





Result	





Using Shadow Map	





Matrices 	





Vertex 
Shader	





Transforms	



1/2 
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1 
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(projection) 
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view 
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Modeling 
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Map Use	



Map Generation	





Fragment 
Shader	
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Procedural Texturing	





Regular Patterns	





Vertex 
Shader	





Anti-aliasing 	





Fragment 
Shader	



Hermite 
Interpolation	




