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Texture Mapping	


Courtesy: Ed Angel	
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Limits of Geometric Modeling	




Millions of Polygons/Second	




Cannot Do	




Use Textures	




Orange	




Orange Spheres	




Texture Mapping	




Looking Better	




Still Not Enough	




Local Variation	




Texture Mapping	




Globe	




Not Mercator	




Yet Another Fruit	
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Three Types of Mapping 



Generating Textures	




Pictures	




Algorithms	




Checkerboard Texture	
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 GLubyte image[64][64][3];	

	

// Create a  64 x 64 checkerboard pattern	

    for ( int i = 0; i < 64; i++ ) {	

        for ( int j = 0; j < 64; j++ ) {	

            GLubyte c = (((i & 0x8) == 0) ^ ((j & 0x8)  == 0)) * 255;	

            image[i][j][0]  = c;	

            image[i][j][1]  = c;	

            image[i][j][2]  = c;	




Brick Wall	




Noise	




Marble	
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Texture Mapping 

geometric model texture mapped 
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Environment Mapping  
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Bump Mapping 



28 

Three Types 
Texture mapping	


smooth shading	
 environment	

    mapping	


bump mapping	
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Texture Mapping - Pipeline 	

Mapping techniques are implemented at the end of the 
rendering pipeline	


– Very efficient because few polygons make it past the 
clipper 	


G eometry
processing

Rasteri z a tion Fra gment
processing

Vertices

Pixel
processing

Pixels

Frame
buffer
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Mapping Mechanics	

3 or 4 coordinate systems involved	


2D image	


3D surface	
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Texture Mapping	


parametric coordinates	


texture coordinates	


world coordinates	

window coordinates	
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Coordinate Systems	

•  Parametric coordinates	


– Model curves and surfaces	


•  Texture coordinates	

–  Identify points in image to be mapped	


•  Object or World Coordinates	

– Conceptually, where the mapping takes place	


•  Screen Coordinates	

– Where the final image is really produced	
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Mapping Functions	

Mapping from texture coords to point on surface	

 	

•  Appear to need three functions	


x  = x(s,t)	

y = y(s,t)	

z = z(s,t)	


•  Other direction needed	

s	


t	


(x,y,z)	
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Backward Mapping	

Mechanics	


–  Given a pixel want point on object it corresponds	

–  Given point on object want point in the texture it 

corresponds	

Need a map of the form 	


s = s(x,y,z)	


t = t(x,y,z)	


Such functions are difficult to find in general 	
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Two-part mapping	

•  First map texture to a simple intermediate surface	


•  Map to cylinder	
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Cylindrical Mapping	

parametric cylinder	


x = r cos 2π u	

y = r sin 2πu	

z = v/h	


maps rectangle in u,v space to cylinder	

of radius r and height h in world coordinates	


s = u	

t = v	


maps from texture space	




37	


Spherical Map	

We can use a parametric sphere	


x = r cos 2πu	

y = r sin 2πu cos 2πv	

z = r sin 2πu sin 2πv	


in a similar manner to the cylinder	

but have to decide where to put	

the distortion	

	

Spheres are used in environmental maps	
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Box Mapping	

•  Easy to use with simple orthographic projection	

•  Also used in environment maps	
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Second Mapping	

Map from intermediate object to actual object	


– Normals from intermediate to actual	

– Normals from actual to intermediate	


– Vectors from center of intermediate 	


intermediate	
actual	
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Aliasing 
Point sampling of texture leads to aliasing errors 

point samples in u,v  
(or x,y,z) space 

point samples in texture space 

miss blue stripes 
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Anti-Aliasing in Textures	

  point	

sampling	


mipmapped	

   point	

sampling	


mipmapped	

   linear	

  filtering	


   linear	

  filtering	
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Area Averaging 
A better but slower option is to use area averaging 

Note that preimage of pixel is curved 

pixel preimage 
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OpenGL Texture 
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Basic Stragegy	

Three steps 	


1.  Specify  texture	

•  read or generate image	


•  assign to texture	

•  enable texturing	


2.  Assign texture coordinates to vertices	

•  Proper mapping function is left to application	


3.  Specify texture parameters	

•  wrapping, filtering	
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Texture Mapping	


s 

t 

x	


y	


z	


image	


geometry	
 display	
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Texture Example 
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Texture Mapping in OpenGL	


geometry pipeline	
vertices	


pixel pipeline	
image	

fragment
processo

r	
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•  Define a texture image from an array of ���
   texels (texture elements) in CPU memory	

   Glubyte my_texels[512][512];	


•  Define as any other pixel map	

–  Scanned image	


–  Generate by application code	


•  Enable texture mapping	

–  glEnable(GL_TEXTURE_2D)	

–  OpenGL supports 1-4 dimensional texture maps	


Specifying a Texture Image	
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glTexImage2D( target, level, components, w, h, border, format, type, texels );	

	


	
target: type of texture, e.g. GL_TEXTURE_2D	


	
level: used for mipmapping	

	
components: elements per texel	

	
w, h: width and height of texels in pixels	

	
border: used for smoothing 	

	
format and type: describe texels	

	
texels: pointer to texel array	

	

glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0, GL_RGB, 

GL_UNSIGNED_BYTE, my_texels);	

	


Defining a Texture Image	
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•  Based on parametric texture coordinates	

•  glTexCoord*() specified at each vertex	


s	


t	

1, 1	


0, 1	


0, 0	
 1, 0	


(s, t) = (0.2, 0.8)	


(0.4, 0.2)	


(0.8, 0.4)	


A	


B	
 C	


a	


b	

c	


Texture Space	
 Object Space	


Mapping a Texture	
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GLSL - Typical Code	


offset = 0;	

GLuint vPosition = glGetAttribLocation( program, "vPosition" );	

glEnableVertexAttribArray( vPosition );	

glVertexAttribPointer( vPosition, 4, GL_FLOAT, GL_FALSE, 

0,BUFFER_OFFSET(offset) );	

	

offset += sizeof(points);	

GLuint vTexCoord = glGetAttribLocation( program, "vTexCoord" );	

glEnableVertexAttribArray( vTexCoord );	

glVertexAttribPointer( vTexCoord, 2,GL_FLOAT,	

    GL_FALSE, 0, BUFFER_OFFSET(offset) );	




Adding Texture Coordinates	
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void quad( int a, int b, int c, int d )	

{	

    quad_colors[Index] = colors[a];	

    points[Index] = vertices[a];	

    tex_coords[Index] = vec2( 0.0, 0.0 );	

    index++;	

   quad_colors[Index] = colors[a];	

    points[Index] = vertices[b];	

    tex_coords[Index] = vec2( 0.0, 1.0 );	

    Index++;	

	

// other vertices	

}	




Role of Interpolation	
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Interpolation	

OpenGL uses interpolation to find proper texels from specified 

texture coordinates	

Can be distorted	


good selection	

of tex coordinates	


poor selection	

of tex coordinates	


texture stretched	

over trapezoid 	

showing effects of 	

bilinear interpolation	




Interpolation	




Control of Texture Mapping	
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Texture Parameters	

OpenGL has a variety of parameters that determine 
how texture is applied	


– Wrapping parameters determine what happens if s and t 
are outside the (0,1) range	


–  Filter modes allow us to use area averaging instead of 
point samples	


– Mipmapping allows us to use textures at multiple 
resolutions	


–  Environment parameters determine how texture 
mapping interacts with shading	




Wrapping Mode	

Clamping: if s,t > 1 use 1, if s,t <0 use 0	

Wrapping: use s,t modulo 1	


glTexParameteri( GL_TEXTURE_2D, ���
   GL_TEXTURE_WRAP_S, GL_CLAMP )	


glTexParameteri( GL_TEXTURE_2D, ���
   GL_TEXTURE_WRAP_T, GL_REPEAT )	


texture	


s	


t	


GL_CLAMP	

wrapping	


GL_REPEAT	

wrapping	
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Magnification/Minification 

Texture	
 Polygon	

Magnification	
 Minification	


Polygon	
Texture	


More than one texel can cover a pixel (minification) or	

more than one pixel can cover a texel (magnification)	

	

Can use point sampling (nearest texel) or linear filtering	

( 2 x 2 filter) to obtain texture values	
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Filter Modes	


Modes determined by	


–  glTexParameteri( target, type, mode ) 	


glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MAG_FILTER,	

             GL_NEAREST);	


glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MIN_FILTER,	

             GL_LINEAR);	


Note that linear filtering requires a border of an 	

extra texel for filtering at edges (border = 1)	
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Mipmapped Textures	

•  Mipmapping allows for prefiltered texture maps of 

decreasing resolutions	


•  Lessens interpolation errors for smaller textured 
objects	


•  Declare mipmap level during texture definition	

glTexImage2D( GL_TEXTURE_*D, level, … )	


	




MipMaps	




Mip-Mapping	




Mip-Mapping	
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Example	

  point	

sampling	


mipmapped	

   point	

sampling	


mipmapped	

   linear	

  filtering	


   linear	

  filtering	
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Texture Functions	

•  Controls how texture is applied	


•  glTexEnv{fi}[v]( GL_TEXTURE_ENV, prop, 
param ) 	


•  GL_TEXTURE_ENV_MODE  modes	

–  GL_MODULATE: modulates with computed shade 	
	


–  GL_BLEND: blends with an environmental color 	
	


–  GL_REPLACE: use only texture color	

–  GL(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, 

GL_MODULATE);	


•  Set blend color with 
GL_TEXTURE_ENV_COLOR	
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Using Texture Objects	

1.  specify textures in texture objects	

2.  set texture filter 	

3.  set texture function 	

4.  set texture wrap mode	

5.  set optional perspective correction hint	

6.  bind texture object 	

7.  enable texturing	

8.  supply texture coordinates for vertex	


–  coordinates can also be generated	




68 

Other Texture Features	

•  Environment Maps	


–  Start with image of environment through a wide angle 
lens 	


•  Can be either a real scanned image or an image created in 
OpenGL	


– Use this texture to generate a spherical map	


– Alternative is to use a cube map	


•  Multitexturing	

– Apply a sequence of textures through cascaded texture 

units	




GLSL	




Samplers	


https://www.opengl.org/wiki/Sampler_(GLSL)	




Applying Textures	

•  Textures are applied during fragment shading by a 

sampler	

•  Samplers return a texture color from a texture object	
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in vec4 color;  //color from rasterizer	

in vec2 texCoord; //texure coordinate from rasterizer	

uniform sampler2D texture; //texture object from application	

	

void main()  { 	

    gl_FragColor = color * texture2D( texture, texCoord );	

} 	

	




Vertex Shader	

•  Usually vertex shader will output texture coordinates to 

be rasterized	


•  Must do all other standard tasks too	

– Compute vertex position	

– Compute vertex color if needed	
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in vec4 vPosition; //vertex position in object coordinates	

in vec4 vColor;  //vertex color from application	

in vec2 vTexCoord; //texture coordinate from application 	

	

out vec4 color; //output color to be interpolated	

out vec2 texCoord; //output tex coordinate to be 
interpolated	

	




Adding Texture Coordinates	
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void quad( int a, int b, int c, int d )	

{	

    quad_colors[Index] = colors[a];	

    points[Index] = vertices[a];	

    tex_coords[Index] = vec2( 0.0, 0.0 );	

    index++;	

   quad_colors[Index] = colors[a];	

    points[Index] = vertices[b];	

    tex_coords[Index] = vec2( 0.0, 1.0 );	

    Index++;	

	

// other vertices	

}	




Texture Object	
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   GLuint textures[1];	

    glGenTextures( 1, textures );	

	

    glBindTexture( GL_TEXTURE_2D, textures[0] );	

    glTexImage2D( GL_TEXTURE_2D, 0, GL_RGB, TextureSize, 	

       TextureSize, 0, GL_RGB, GL_UNSIGNED_BYTE, image );	

    glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, 	

        GL_REPEAT );	

    glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, 	

         GL_REPEAT );	

    glTexParameterf( GL_TEXTURE_2D, 	

          GL_TEXTURE_MAG_FILTER, GL_NEAREST );	

    glTexParameterf( GL_TEXTURE_2D, 	

          GL_TEXTURE_MIN_FILTER, GL_NEAREST );	

    glActiveTexture( GL_TEXTURE0 );  	




Linking with Shaders	


75 

    GLuint vTexCoord = glGetAttribLocation( program, "vTexCoord" );	

    glEnableVertexAttribArray( vTexCoord );	

    glVertexAttribPointer( vTexCoord, 2, GL_FLOAT, GL_FALSE, 0,	

                           BUFFER_OFFSET(offset) );	

	

    // Set the value of the fragment shader texture sampler variable	

    //   ("texture") to the the appropriate texture unit. In this case,	

    //   zero, for GL_TEXTURE0 which was previously set by calling	

    //   glActiveTexture().	

    glUniform1i( glGetUniformLocation(program, "texture"), 0 );	
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Vertex Shader Applications	

•  Moving vertices	


– Morphing 	

– Wave motion	


–  Fractals	


•  Lighting	

– More realistic models	

– Cartoon shaders	
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Wave Motion Vertex Shader	

uniform float time;	

uniform float xs, zs, // frequencies 	

uniform float h; // height scale	

uniform mat4 ModelView, Projection;	

in vec4 vPosition;	

	

void main() {	

  vec4 t =vPosition;	

  t.y = vPosition.y 	

     + h*sin(time + xs*vPosition.x)	

     + h*sin(time + zs*vPosition.z);	

  gl_Position = Projection*ModelView*t;	

}	

	




Particle System	

uniform vec3 init_vel;	

uniform float g, m, t;	

uniform mat4 Projection, ModelView;	

in vPosition;	

void main(){	

vec3 object_pos;	

object_pos.x = vPosition.x + vel.x*t;	

object_pos.y = vPosition.y + vel.y*t 	

       + g/(2.0*m)*t*t;	

object_pos.z = vPosition.z + vel.z*t;	

gl_Position = Projection*	

   ModelView*vec4(object_pos,1);	

}	
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Example	


http://www.lighthouse3d.com/tutorials/glsl-core-
tutorial/glsl-core-tutorial-texturing-with-images/	




Example	


http://www.lighthouse3d.com/tutorials/glsl-tutorial/
simple-texture/	
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Fragment Shader 
Texture mapping	


smooth shading	
 environment	

    mapping	


bump mapping	
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Cube Maps	

•  We can form a cube map texture by defining six 2D 

texture maps that correspond to the sides of a box	

•  Supported by OpenGL	

•  Also supported in GLSL through cubemap sampler	


vec4 texColor = textureCube(mycube, texcoord);	


•  Texture coordinates must be 3D	
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Environment Map	

Use reflection vector to locate texture in cube map	
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Environment Maps with Shaders	

•  Computed in world coordinates 	


–  keep track of modeling matrix & pass  as a uniform 
variable	


•  Use reflection map or refraction map 	

•  Simulate water	
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Reflection Map Vertex Shader	

uniform mat4 Projection, ModelView, NormalMatrix;	

in vec4 vPosition;	

in vec4 normal;	

out vec3 R;	

	

void main(void)	

{	

   gl_Position = Projection*ModelView*vPosition;	

   vec3 N = normalize(NormalMatrix*normal);	

   vec4 eyePos = ModelView*gvPosition;	

   R = reflect(-eyePos.xyz, N);	

}	
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Reflection Map Fragment Shader	

in vec3 R;	

uniform samplerCube texMap;	

	

void main(void)	

{	

    gl_FragColor = textureCube(texMap, R);	

}	
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Bump Mapping	

•  Perturb normal for each fragment	

•  Store perturbation as textures	




Back 2 Orange	
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The Orange	


•  Texture map a photo of an orange onto a surface	

– Captures dimples	

– Will not be correct if we move viewer or light	

– We have shades of dimples rather than their correct 

orientation	


•  Ideally perturb normal across surface of object 
and compute a new color at each interior point	
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Bump Mapping (Blinn) 
Consider a smooth surface 

n 

p 
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Rougher Version 

n’ 

p 

p’ 
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Equations	


pu=[ ∂x/ ∂u, ∂y/ ∂u, ∂z/ ∂u]T 

p(u,v) = [x(u,v), y(u,v), z(u,v)]T 

pv=[ ∂x/ ∂v, ∂y/ ∂v, ∂z/ ∂v]T 

n = (pu × pv ) / | pu × pv | 
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Tangent Plane 

pu 

pv 

n 
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Displacement Function	


p’ = p + d(u,v) n	


d(u,v) is the bump or displacement function	

	

|d(u,v)| << 1	
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Perturbed Normal	


n’ = p’u × p’v	


p’u = pu + (∂d/∂u)n + d(u,v)nu	


p’v = pv + (∂d/∂v)n + d(u,v)nv	


If d is small, we can neglect last term	




98 

Approximating the Normal	

n’ = p’u × p’v	


≈ n + (∂d/∂u)n × pv + (∂d/∂v)n × pu 	

 	


The vectors n × pv  and n × pu lie 	

in the tangent plane 	

Hence the normal is displaced in the tangent plane	

Must precompute the arrays ∂d/ ∂u and ∂d/ ∂v 	


Finally,we perturb the normal during shading	




Compositing & Blending	
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A	

- Blending for translucent surfaces	


- Compositing images	


- Antialiasing	




A	




A	




106 

A 
•  Opaque surfaces permit no light to pass through 
•  Transparent surfaces permit all light to pass 
•  Translucent surfaces pass some light 
         translucency = 1 – opacity (α) 

opaque surface α =1 
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Physical Models 
Translucency in a physically correct manner is difficult  
 

–  the complexity of the internal interactions of light 
and matter 

– Using a pipeline renderer 



Compositing Operation	
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Rendering Model	

•  Use A component of RGBA (or RGBa) color for opacity	

•  During rendering expand to use RGBA values 	


	

Color Buffer	

	


destination	

component	


blend	


destination blending	

           factor	


source blending factor	

   source	

component	




Examples	




One Method	
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Blending Equation	

We can define source and destination blending factors 
for each RGBA component	

     s = [sr, sg, sb, sa]	

     d = [dr, dg, db, da]	

Suppose that the source and destination colors are	

     b = [br, bg, bb, ba]	

     c = [cr, cg, cb, ca]	

Blend as	

c’ = [br sr+ cr dr, bg sg+ cg dg , bb sb+ cb db , ba sa+ ca da ]	
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OpenGL	

Must enable blending and pick source and destination 
factors	

    glEnable(GL_BLEND)	

     glBlendFunc(source_factor, 	

       destination_factor)	

Only certain factors supported	


GL_ZERO, GL_ONE	

GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA	

GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA	

See Redbook for complete list	




Operator	
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Example	

•  Start with the opaque background color (R0,G0,B0,1) 	


–  Initial destination color	

•  Blend in a translucent polygon with color (R1,G1,B1,a1)	

•  Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA 

as the source and destination blending factors	

         R’

1 = a1 R1 +(1- a1) R0, …… 	

•  Note this formula is correct if polygon is either opaque or 

transparent	




Works Here Too…	
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Clamping and Accuracy	

•  All  RGBA are clamped to the range (0,1)	

•  RGBA values 8 bits !	


–  Loose accuracy after much components together	

–  Example: add together n images	


•  Divide all color components by n to avoid clamping	

•  Blend with source factor = 1, destination factor = 1	


•  But division by n loses bits	




118 
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 

Addison-Wesley 2012 

Order Dependency	
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E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 

Addison-Wesley 2012 

Order Dependency	

•  Is this image correct?	


–  Probably not	

–  Polygons are rendered	


in the order they pass	

down the pipeline	

– Blending functions	


are order dependent	
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HSR with A	

•  Polygons  which are opaque & translucent	

•  Opaque polygons block all polygons behind  & affect depth 

buffer	

•  Translucent polygons should not affect depth buffer	


–  Render with glDepthMask(GL_FALSE) which makes depth buffer 
read-only	


•  Sort polygons first to remove order dependency	




Fog	
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Simulate Fog	

•  Composite with fixed color and have blending factors 

depend on depth	


–  Simulates a fog effect	

•  Blend source color Cs and fog color Cf by 	

                Cs’=f Cs + (1-f) Cf	


•  f is the fog factor	


–  Exponential	


– Gaussian	

–  Linear (depth cueing) 	
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F - Fog Functions	
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Antialiasing 	

Color a pixel by adding fraction of  color to frame buffer	


–  Fraction depends on percentage of pixel covered by 
fragment 	


–  Fraction depends on whether there is overlap	


no overlap	
 overlap	
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 Area Averaging 	

Use average area a1+a2-a1a2 as blending factor	
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OpenGL Antialiasing	

Enable separately for points, lines, or 
polygons	


glEnable(GL_POINT_SMOOTH);	

glEnable(GL_LINE_SMOOTH);	

glEnable(GL_POLYGON_SMOOTH);	

	

glEnable(GL_BLEND);	

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);	
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Accumulation	

•  Compositing/blending limited by resolution of  frame 

buffer	


– Typically 8 bits per color component	

•  Accumulation buffer was a high resolution buffer (16 or 

more bits per component) that avoided this problem	

•  Could write into it or read from it with a scale factor	

•  Slower than direct compositing into the frame buffer	




Particle Systems	
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Many Uses	

•  Used to model	


– Natural phenomena	

•  Clouds	


•  Terrain	

•  Plants	


– Crowd Scenes	

– Real physical processes	
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Newtonian Particle	

•  Particle system is a set of particles	

•  Each particle is an ideal point mass	

•  Six degrees of freedom	


–  Position	

– Velocity	


•  Each particle obeys Newtons’ law	

                   f = ma	
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Particle Equations	

pi = (xi, yi zi)	

vi = dpi /dt = pi

‘
 = (dxi /dt, dyi /dt , zi /dt)	


	

m vi

‘= fi	


Hard part is defining force vector	




Force Vector	

•  Independent Particles 	


– Gravity	

– Wind forces	


– O(n) calulation	


•  Coupled Particles O(n)	

– Meshes	

–  Spring-Mass Systems	


•  Coupled Particles O(n2)	

– Attractive and repulsive forces	




Solution of Particle Systems	

float time, delta state[6n], force[3n];	

state = initial_state();	

for(time = t0; time<final_time, time+=delta) {	

force =  force_function(state, time);	

state = ode(force, state, time, delta);	

render(state, time)	

}	




Simple Forces	

•  Consider force on particle i	

         fi = fi(pi, vi)	

•  Gravity fi = g	

         g= (0, -g, 0)	

•  Wind forces	

•  Drag	


pi(t0), vi(t0)	




Meshes	

•  Connect each particle to its closest neighbors	


– O(n) force calculation	


•  Use spring-mass system	




Spring Forces	

•  Assume each particle has unit mass and is 

connected to its neighbor(s) by a spring	

•  Hooke’s law: force proportional to 

distance (d = ||p – q||) between the points	




Hooke’s Law	

Let s be the distance when there is no force	

                f = -ks(|d| - s) d/|d|	

ks is the spring constant	

d/|d| is a unit vector pointed from p to q	

	

Each interior point in mesh has four forces applied to 
it	




Spring Damping	

•  A pure spring-mass will oscillate forever	

•  Must add a damping term	


f = -(ks(|d| - s) + kd d·d/|d|)d/|d|	

	

•  Must project velocity	


·	




Attraction and Repulsion	

•  Inverse square law	

              f = -krd/|d|3	


•  General case requires O(n2) calculation	

	

•  In most problems, the drop off is such that not 

many particles contribute to the forces on any given 
particle	


•  Sorting problem: is it O(n log n)?	




Solution of ODEs	

•  Particle system has 6n ordinary differential 

equations	

•  Write set as du/dt = g(u,t)	

•  Solve by approximations using Taylor’s Thm	
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Euler’s Method	

u(t + h) ≈ u(t) + h du/dt = u(t) + hg(u, t)	

	

Per step error is O(h2)	

Require one force evaluation per time step	

	

Problem is numerical instability	

	
depends on step size	
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Improved Euler	

u(t + h) ≈ u(t) + h/2(g(u, t) + g(u, t+h)) 	

	

Per step error is O(h3)	

Also allows for larger step sizes	

But requires two function evaluations per step	

Also known as Runge-Kutta method of order 2	




Contraints	

•  Easy in computer graphics to ignore physical 

reality	

•  Surfaces are virtual	

•  Must detect collisions separately if we want exact 

solution	


•  Can approximate with 	

repulsive forces	
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Collisions	

Once we detect a collision, we can calculate 

new path	

Use coefficient of resititution	

Reflect vertical component	

May have to use partial time step	




Example	

pi = (xi, yi zi)	

vi = dpi /dt = pi

‘
 = (dxi /dt, dyi /dt , zi /dt)	


m vi
‘= fi	


	


	

	


	

Pi	


Pi+1	


vi 	




Collision ?	


Pi	


Pi+1	




Problem: ���
Triangle & Ray Distinct Objects	




Ray/Triangle Intersection	




Advanced Features of GLSL ���
TF - Transform Feedback���
TBO – Texture Buffer Obejct	




Chapter 5	
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Fixed Functionality Pipeline	


API	


Transform	

and 	

Lighting	


Rasterizer	
Primitive	

Assembly	


Texture	

Environment	


Depth	

Stencil	


Color	

Sum	


Alpha	

Test	


Fog	


Dither	

Color	

Buffer	

Blend	


Vertex	

Buffer	

Objects	


Vertices	


Triangles/Lines/Points	


Primitive	

Processing	


Frame Buffer	




An Introduction to 
the OpenGL Shading 
Language	


152	


Programmable Shader Pipeline	


API	


Vertex	

Shader	
 Rasterizer	
Primitive	


Assembly	


Fragment	

Shader	


Depth	

Stencil	
 Dither	


Color	

Buffer	

Blend	


Vertex	

Buffer	

Objects	


Vertices	


Triangles/Lines/Points	


Primitive	

Processing	


Frame Buffer	
Alpha	

Test	




Back2Particles	




Schema	




Geometry Pass	




Storing Geometry	


TBO writing	




Transform Feedback	




Transform feedback?	

RedBook says: “Transform Feedback is the process of altering the 
rendering pipeline so that primitives processed by a Vertex Shader and 
optionally a Geometry Shader will be written to buffer objects. This 
allows one to preserve the post-transform rendering state of an object 
and resubmit this data multiple times.”	




Transform Feedback diagram	




Absence of Transform Feedback	

To update Vertex Buffer Object’s attributes:	

	

1. OpenGL copies VBO from  GPU memory to CPU memory	


2. Update in CPU and send back	


3. Consumes time and bandwidth	




Role of TF	

1. All computations are now conducted in GPU	


2. A special  buffer after  shaders and send transformations 	


	

	

CPU not needed  and little application involvement	




Transform Feedback Examples	

http://www.youtube.com/watch?v=SiCq8ETTqRk	

- Uses TF to render a particle smoke system with fire spreading	


http://www.youtube.com/watch?v=E636tYOxoVI	


	

Attain good performance can be by using TF. It controls all of the 
particles in this on the GPU.	




Programmer’s Model	


Vertex	

Shader	


Fragment	

Shader	


Primitive	

Assembly	

& Rasterize	


Per-Sample	

Operations	


Attributes	

(m * vec4)	


Vertex Uniforms	

(p * vec4)	


Varyings	

(n * vec4)	


Fragment Uniforms	

(q * vec4)	
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Vertex Shader Environment	


Attribute 0	


Uniforms	
 Textures	


Attribute 1	


Attribute 2	


Attribute 3	


Attribute 4	


Attribute 5	


…	


Attribute m	


Varying 0	


Varying 1	


Varying 2	


Varying 3	


Varying 4	


Varying 5	


…	


Varying n	


Temporary 
variables	


Clip position	


Vertex Shader	


Point size	
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Fragment Shader Environment	

Uniforms	
 Textures	


Temporary 
variables	


Fragment 
Color(s)	


Varying 0	


Varying 1	


Varying 2	


Varying 3	


Varying 4	


Varying 5	


…	


Varying n	


Fragment Shader	


Window coord	


Front facing flag	


Point coord	


Fragment Depth	




Collision Detection	


Pi	


Pi+1	


Find intersection of ray with plane	

	

Find actual intersection	




Ray/Triangle Intersection	




Some Math	




Some Math	




Fast Ray-Triangle Intersection	




Final Computations	




Geometry Pass	




Vertex Shader	




Configuring Geometry Pass	


TBO writing	




Particle Pass	




Find intersection of ray and plane with triangle	

http://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection	


Find actual intersection	




https://www.opengl.org/sdk/docs/man/html/texelFetch.xhtml	




Configuring Particle Pass	






Shadows	
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Shadows & Textures ?	




Shadows & Textures ?	




Real-time Shadow Techniques	


Shadow 
volumes 

Light maps 

Projected 
planar 
shadows 

Hybrid 
approaches 



•  Luxo Jr. has two animated lights and 
one overhead light	


•  Three shadow maps dynamically 
generated per frame	


•  Complex geometry (cords and lamp 
arms) all correctly shadowed	


•  User controls the view, shadowing just 
works	


Luxo Jr. – The Famous One	


(Sorry, no demo.  Images are from web cast video 
 of Apple’s MacWorld Japan announcement.) 





Shadow Mapping	
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Projective Shadows	

•  Projection of a polygon is a polygon called a shadow 

polygon	

•  Given a point light source and a polygon, the 

vertices of the shadow polygon are the projections 
of the original polygon’s vertices from a point 
source onto a surface	
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Visualizing Shadow Mapping	


the point 
light source 



Visualizing Shadow Mapping	

Compare with and without shadows	


with shadows without shadows 



Shadow Process	

1.  Put two identical triangles and their colors on GPU 

(black for shadow triangle)	


2.  Compute two model view matrices as uniforms	

3.  Send model view matrix for original triangle	

4.  Render original triangle	


5.  Send second model view matrix	

6.  Render shadow triangle	

–  Note shadow triangle undergoes two transformations	

–  Note hidden surface removal takes care of depth issues	
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Shadow Map Matrices	

1.  Source at (xl, yl, zl)	

2.  Vertex at (x, y, z)	

3.  Consider simple case of shadow projected onto 

ground at (xp, 0, zp)	

4.  Translate source to origin with T(-xl, -yl, -zl)	


5.  Perspective projection	


6.  Translate back 	
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Shadow Maps	

•  Render a scene from a light source; depth buffer will 

contain the distances from the source to each fragment. 	


•  Store depths in texture called depth/shadow map	

•  Render image in shadow map with light - anything lit is not 

in shadow.	


•  Form a shadow map for each source	




Example	




Shadows	
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Shadow Map	




Final Rendering	

•  Compare distance from fragment to  light source 

with distance in the shadow map	

•  If depth in shadow map is less than distance from 

fragment to source,  fragment is in shadow (from 
this source)	


•  Otherwise we use rendered color	




Visualizing Shadow Mapping	

Scene with shadows	


Notice how 
specular 

highlights never 
appear in 
shadows 

Notice how 
curved surfaces 
cast shadows 
on each other 



Applications Side	

•  Start with vertex in object coordinates	

•  Want to convert representation to texture coordinates	

•  Form LookAt matrix from light source to origin in object 

coordinates (MVL)	

•  From projection matrix for light source (PL)	


•  From a matrix to convert from [-1, 1] clip coordinates to 
[0, 1] texture coordinates 	


•  Concatenate to form object to texture coordinate matrix 
(OTC)	




Visualizing Shadow Mapping	

The scene from the light’s point-of-view	


FYI: from the 
eye’s point-of-view 
again 



Visualizing Shadow Mapping	

The depth buffer from the light’s point-of-view	


FYI: from the 
light’s point-of-view 
again 



Visualizing Shadow Mapping	

Projecting the depth map onto the eye’s view	


FYI: depth map for 
light’s point-of-view 
again 



Visualizing Shadow Mapping	

Projecting light’s planar distance onto eye’s view	




Visualizing Shadow Mapping	

Comparing light distance to light depth map 	


Green is where 
the light planar 

distance and 
the light depth 

map are  
approximately 

equal 

Non-green is 
where shadows 
should be 



Generalized Shadows	

•  Approach was OK for shadows on a single flat surface	


•  Cannot handle shadows on general objects	




Projective Textures 	




Projective Texturing?	

An intuition for projective texturing	


–  The slide projector analogy	


Source: Wolfgang Heidrich [99] 



Image Based Lighting	

•  Project  texture onto surface; treat texture as 

“slide projector”	


•  Projective textures and image based lighting 	


•  OpenGL/GLSL – 4D texture coordinates	




Projective Texturing	

Key - perspective-correct texturing?	


– Normal 2D texture mapping uses (s, t) coordinates	

–  2D perspective-correct texture mapping	


•  (s, t) should be interpolated linearly in eye-space	

•  compute per-vertex s/w, t/w, and 1/w	


•  linearly interpolate these three parameters over polygon	


•  per-fragment compute s’ = (s/w) / (1/w) and t’ = (t/w) / (1/w)	

•  results in per-fragment perspective correct (s’, t’)	




Projective Texturing	

•  Consider homogeneous texture coordinates	


–  (s, t, r, q) --> (s/q, t/q, r/q)	

–  Similar to homogeneous clip coordinates where���

(x, y, z, w) = (x/w, y/w, z/w)	


•  Project (s/q, t/q, r/q) per-fragment	




Projective Texturing	

Tricking hardware into doing projective textures	


– By interpolating q/w, hardware computes per-fragment	

•  (s/w) / (q/w) = s/q	


•  (t/w) / (q/w) = t/q	


– Net result:  projective texturing	




4D Textures Coordinates	

•  Texture coordinates (s, t, r, q) affected by perspective 

division;  actual coordinates (s/q, t/q, r/q) or (s/q, t/q) for 
2D textures	


•  GLSL – textureProj  uses the 2D/3D texture coordinate 
obtained by a perspective division of a 4D texture 
coordinate a texture value from a sampler	


color = textureProj(my_sampler, tex_coord)	


211 



Shadow Map Generation	




Matrices	




Texture Parameters - OpenGL	


glFramebufferTexture(GL_FRAMEBUFFER, 
GL_DEPTH_STENCIL_ATTACHMENT, depth_texture, 0);	




Check	

http://openme.gl/opengl-4-tutorial-code/	


glFramebufferTexture(GL_FRAMEBUFFER, 
GL_DEPTH_STENCIL_ATTACHMENT, depth_texture, 0);	




Vertex Coordinate Transform	

From object  to window coordinates	


object	


coordinates���
(x, y, z, w)	


eye	


coordinates���
(x, y, z, w)	


modelview ���
matrix	


projection ���
matrix	


divide���
by w	


viewport &���
depth range	


normalized 	


device���
coordinates���
(x, y, z)	


clip	


coordinates���
(x, y, z, w)	


window	


coordinates	

(x, y, z)	




Eye Linear Texture Coordinate	

Generating texture coordinates from eye-space	


object 

coordinates 

eye 

coordinates 
modelview 
matrix 

projection 
matrix 

divide 
by w 

viewport & 
depth range 

normalized  

device 
coordinates 

clip 

coordinates 

window 

coordinates 

eye-linear 
plane 
equations 

(s, t, r, q) 

(x, y, z) 



Transforms	


1/2 

1/2 

1/2 

1 

1/2 

1/2 

1/2 
Light 
frustum 
(projection) 
matrix 

Light 
view 
(look at) 
matrix 

Inverse 
eye 
view 
(look at) 
matrix 

Eye 
view 
(look at) 
matrix 

Modeling 
matrix 

xo 
yo 
zo 
wo 

xe 
ye 
ze 
we 

= 

= 
xe 
ye 
ze 
we 

s 
t 
r 
q 

Map Use	


Map Generation	




Setting Up Matrices	




Simple Shaders	




Depth Rendering	




In Practice	

•  Two Issues	


– Constructing the depth map	

•  use existing hardware depth buffer	


•  use glPolygonOffset to offset depth value back	


•  read back the depth buffer contents	


– Depth map can be copied to a 2D texture	

•  unfortunately, depth values tend to require more precision 

than 8-bit typical for textures	


•  depth precision typically 16-bit or 24-bit	




glPolygonOffset���
	

•  Depth buffer contains “window space” depth values	


–  Post-perspective divide means non-linear distribution	

–  glPolygonOffset is guaranteed to be a window space 

offset	


•  Doing a “clip space” glTranslatef is not sufficient	

– Common shadow mapping implementation mistake	


– Actual bias in depth buffer units will vary over the 
frustum	


– No way to account for slope of polygon	




In Pictures - Pixel Centers	

Consider a polygon covering pixels in 2D	


X	


Z	


Pixel centers	


Polygon	




X 

Z 

Consider a 2nd grid for the polygon covering pixels in 2D	


In Pictures - Pixel Centers	




Change of Z  with respect to X	


X 

Z 

∂z/∂x 

In Pictures - Pixel Centers	




glPolygonOffset’s Slope	

•  Pixel center is re-sampled to another grid	


–  For example, the shadow map texture’s grid!	


•  The re-sampled depth could be off by���
     +/-0.5 ∂z/∂x   and  +/-0.5 ∂z/∂y	


•  The maximum absolute error would be���
     | 0.5 ∂z/∂x | + | 0.5 ∂z/∂y | ≈ max( | ∂z/∂x | , | ∂z/∂y | )	


–  This assumes the two grids have pixel footprint area 
ratios of 1.0	


–  Otherwise, we might need to scale by the ratio	


•  Exactly what polygon offset’s “slope” depth bias does	




Results	

How much polygon offset bias depends	


Too little bias, 
everything begins to 
shadow 

Too much bias, shadow 
starts too far back 

Just right 



Selecting Depth Map Bias	

•  Not that hard	


– Usually the following works well	

•  glPolygonOffset(scale = 1.1, bias = 4.0)	


– Usually better to error on the side of too 
much bias	


•  adjust to suit the shadow issues in your scene	


– Depends somewhat on shadow map precision	

•  more precision requires less of a bias	


– When the shadow map is being magnified, a 
larger scale is often required	




Result	




Using Shadow Map	




Matrices 	




Vertex 
Shader	




Transforms	


1/2 

1/2 

1/2 

1 

1/2 

1/2 

1/2 
Light 
frustum 
(projection) 
matrix 

Light 
view 
(look at) 
matrix 

Inverse 
eye 
view 
(look at) 
matrix 

Eye 
view 
(look at) 
matrix 

Modeling 
matrix 

xo 
yo 
zo 
wo 

xe 
ye 
ze 
we 

= 

= 
xe 
ye 
ze 
we 

s 
t 
r 
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Map Use	


Map Generation	




Fragment 
Shader	
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Procedural Texturing	




Regular Patterns	




Vertex 
Shader	




Anti-aliasing 	




Fragment 
Shader	


Hermite 
Interpolation	



