CSE 5542 - Real Time Rendering
Week |1, 12, 13,14

PR DEPARTMENT OF

5) G ¢ 4
@)51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Texture Mapping

Courtesy: Ed Angel

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

jorio

Limits of Geometric Modeling

PR DEPARTMENT OF

) PR ¢ 4
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Millions of Polygons/Second

HD MEDIA. ENERGIZED.

DEPARTMENT OF

COMPUTER SCIENCE

T*H'E
4 [0)51(0)
SRS A\ D ENGINEERING

Cannot Do

WIIRCY DEPARTMENT OF

OHIO COMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Use Textures

|

|
T
i: :T’..

P
'
[

I OEPARTMENT OF

T H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Orange

LU OEPARTMENT OF
@)51®] coMPUTER SCIENCE
SIRUIS! AN D ENGINEERING

UNIVERSITY

Orange Spheres

T 'H @ OEPARTMENT OF
@51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

T LR DEPARTMENT OF
@/51®] comMPUTER SCIENCE
SURUBE! A\\D ENGINEERING

UNIVERSITY

Looking Better

) LR DEPARTMENT OF
©)51®] comPUTER SCIENCE
SIRUISY A\\D ENGINEERING

UNIVERSITY

Still Not Enough

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Local Variation

) LR OEPARTMENT OF
®/51®} coMPUTER SCIENCE
SIRUS A\nD ENGINEERING

UNIVERSITY

Texture Mapping

texture image

COMPUTER SCIENCE
AND ENGINEERING

DEPARTMENT OF

E

SIAIE

UNIVERSITY

OHIO

T -

)
- %
- \
| J e \
- - Y ¥
LS g v
» ’ -
* "
Toan 1
1 N
3 /
‘ .
A
-’ -

T H @ OEPARTMENT OF
©)51(®] coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

Not Mercator

|]

LR OEPARTMENT OF

@/51®) coMPUTER SCIENCE
SRWBS! /\\D ENGINEERING

UNIVERSITY

Yet Another Fruit

T H @ OEPARTMENT OF
9/51®] coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Three Types of Mapping

PR DEPARTMENT OF

)
@/51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Generating Textures

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Pictures

T LR DEPARTMENT OF
@/51®] comMPUTER SCIENCE
SIWS! AN D ENGINEERING

UNIVERSITY

Algorithms

PR DEPARTMENT OF
@)51(®] coMPUTER SCIENCE
NPRWIS AND ENGINEERING |

Checkerboard Texture

GLubyte image[64][64][3];

/Il Create a 64 x 64 checkerboard pattern
for (inti=0;i<64;i++) {
for (intj=0;j<64;j++){
GLubyte ¢ = (((i & 0x8) == 0) " ((j & 0x8) == 0)) * 255;
image[i][j]1[0] = ¢;
image[i][j][1] = c;
image[i][j][2] = c;

DEPARTMENT OF

OHIO COMPUTER SCIENCE
NIPRVIS \ND ENGINEERING

Brick Wall

DEPARTMENT OF
COMPUTER SCIENCE
AND ENGINEERING

T @ OEPARTMENT OF
@/51®) coMPUTER SCIENCE
SIS A\ \D ENGINEERING

UNIVERSITY

Marble

WIS DEPARTMENT OF

bk'llO COMPUTER SCIENCE
SURUBE! A\\D ENGINEERING

UNIVERSITY

Texture Mapping

geometric model texture mapped

PRI 0cPARTMENT OF
(@/511®) coMPUTER SCIENCE
NIPRVIS \ND ENGINEERING

Environment Mapping

PR OEPARTMENT OF

T H
(@)5118) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Bump Mapping

PR OEPARTMENT OF

T K
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Three Types

Texture mapping

smooth shading environment bump mapping
mapping

o PESELAEIRY 0cPARTMENT OF
4 [®5118) (0nPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Texture Mapping - Pipeline

Mapping techniques are implemented at the end of the
rendering pipeline

— Very efficient because few polygons make it past the

clipper
Vertices — Geome.try »| Rasterization > Fragmgnt > e
processing processing buffer
| Pixel /
Pixels ———— .
processing

o { Gey };:' I ODEPARTMENT OF
/4 L®)5T®) conPUTER SCIENCE
AND ENGINEERING

Mapping Mechanics

3 or 4 coordinate systems involved

s

2D image

3D surface

@l OEPARTMENT OF

| OHIO

COMPUTER SCIENCE
SURUS \ND ENGINEERING

Texture Mapping

14
A
parametric coordinates
Ll V)
X
t
_>

exture coordinates

world coo

ates

_»

X

‘S

=

.’ys
window coordinates

Coordinate Systems

e Parametric coordinates

— Model curves and surfaces

e Texture coordinates

— ldentify points in image to be mapped
* Object or World Coordinates
— Conceptually, where the mapping takes place

* Screen Coordinates

— Where the final image is really produced

PIREIEY 0cPARTMENT OF
(@)51®) coMPUTER SCIENCE
A BYaWS AN ENGINEERING |

Mapping Functions

Mapping from texture coords to point on surface

* Appear to need three functions

X = x(s,t)
y =y(sY) t
z = z(s,t)

e Other direction needed

@l OEPARTMENT OF

- T H ' E
&N 5'h
s 1OHIO
I
mBLy
et | SIATE

COMPUTER SCIENCE
=~ AND ENGINEERING

Backward Mapping

Mechanics
— Given a pixel want point on object it corresponds
— Given point on object want point in the texture it
corresponds
Need a map of the form
s = s(x,y,z)
t = t(x,y,z)

Such functions are difficult to find in general

(& i PO OEPARTMENT OF
(S%% COMPUTER SCIENCE
4 BUAY AND ENGINEERING |

Two-part mapping

* First map texture to a simple intermediate surface

* Map to cylinder

)

(

Ll

DEPARTMENT OF

COMPUTER SCIENCE
SRS AND ENGINEERING

[oeo

Cylindrical Mapping

parametric cylinder

X =r cos 2T u
y = r sin 2mu
z =v/h

maps rectangle in u,v space to cylinder
of radius r and height h in world coordinates

s—=u
t=v

maps from texture space

{ SOy il OEPARTMENT OF

" '
[0

COMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Spherical Map

We can use a parametric sphere

X = r cos 2mu
y = r sin 27u cos 2mv
Z = r sin 27Tu sin 27tV

in a similar manner to the cylinder
but have to decide where to put
the distortion

Spheres are used in environmental maps

DEPARTMENT OF

TR
@/51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Box Mapping

* Easy to use with simple orthographic projection

* Also used in environment maps

Back

— | Left |Bottom| Right | Top

5 Front

PR DEPARTMENT OF

, TR
(@)5H®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Second Mapping

Map from intermediate object to actual object
— Normals from intermediate to actual
— Normals from actual to intermediate

— Vectors from center of intermediate

actual intermediate

e

@ OEPARTMENT OF |
4 (53171;121[% COMPUTER SCIENCE
BUAYE] AND ENGINEERING |

Aliasing

Point sampling of texture leads to aliasing errors

miss blue stripes point samples in u,v
(or Xx,y,z) space

/1
e e

-5 - {
point samples in texture space

-
<

DEPARTMENT OF

T ¥ B
(531;11.11% COMPUTER SCIENCE
SUBMEE] AND ENGINEERING |

Anti-Aliasing in Textures

point linear
sampling filtering
mipmapped mipmapped
point linear
sampling filtering

41

WIS DEPARTMENT OF

bk'llO COMPUTER SCIENCE
SURUBE! A\\D ENGINEERING

UNIVERSITY

Area Averaging

A better but slower option is to use area averaging

T] -

pixel

preimage

4

Note that preimage of pixel is curved

PR DEPARTMENT OF

-
(@)5¥®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

OpenGL Texture

PR DEPARTMENT OF

| P
(@/51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Basic Stragegy

Three steps
|. Specify texture

* read or generate image
* assign to texture

* enable texturing

2. Assign texture coordinates to vertices

* Proper mapping function is left to application

3. Specify texture parameters
* wrapping, filtering

3 BESLBERE 0cPARTMENT OF
d [®/5108] conMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Texture Mapping

A
[
»

Z X

geometry display

B image

I DEPARTMENT OF

] [e)iTe)

COMPUTER SCIENCE
NIPRVIS \ND ENGINEERING

Texture Example

Screen-space view

Texture-space view

S s i S St Sk S .k S

) O "‘i @ OEPARTMENT OF
@518} cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Texture Mapping in OpenGL

vertices —*|geometry pipeline \

/ fragment
image ' pixel pipeline processo

r

DEPARTMENT OF

COMPUTER SCIENCE
NIPRVIS \ND ENGINEERING

] [e)51(0)

Specifying a Texture Image

* Define a texture image from an array of
texels (texture elements) in CPU memory
Glubyte my_texels[512][512];

* Define as any other pixel map
— Scanned image
— Generate by application code

* Enable texture mapping
— glEnable(GL_TEXTURE_2D)

— OpenGL supports |-4 dimensional texture maps

&S JURELASRY OEPARTMENT OF
(S)DI?‘ICJI% COMPUTER SCIENCE
4 BUaYS] AnD ENGINEERING

Defining a Texture Image

glTexlmage2D(target, level, components, w, h, border, format, type, texels);

target: type of texture, e.g. GL_TEXTURE_2D
level: used for mipmapping

components: elements per texel

w, h: width and height of texels in pixels
border: used for smoothing

format and type: describe texels

texels: pointer to texel array

glTexlmage2D(GL_TEXTURE_2D, 0, 3,512,512, 0, GL_RGB,
GL_UNSIGNED_BYTE, my_texels);

.) U lf :' I ODEPARTMENT OF
4 [®51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Mapping a Texture

* Based on parametric texture coordinates

+ glTexCoord*() specified at each vertex

Texture Space Obiject Space
I, | (s,t) =(0.2,0.8)

C
0,0 1,0 * (0.8,0.4)

50

PURNLURCE OEPARTMENT OF

d [®)51®) coMmPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

GLSL - Typical Code

offset = 0;

GLuint vPosition = glGetAttribLocation(program, "vPosition");

glEnableVertexAttribArray(vPosition);

glVertexAttribPointer(vPosition, 4, GL_FLOAT, GL_ FALSE,
0,BUFFER _OFFSET (offset));

offset += sizeof(points);
GLuint vTexCoord = glGetAttribLocation(program, "vTexCoord");
glEnableVertexAttribArray(viexCoord);
glVertexAttribPointer(vTexCoord, 2,GL_FLOAT,
GL_FALSE, 0, BUFFER OFFSET (offset));

PR DEPARTMENT OF

T H
d [®518] coMmPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Adding Texture Coordinates

void quad(int a,int b,int c,int d)

{
quad_colors[Index] = colors[a];
points[Index] = vertices[a];
tex_coords[Index] = vec2(0.0, 0.0);
index++;
quad_colors[Index] = colors[a];
points[Index] = vertices[b];
tex_coords[Index] = vec2(0.0, 1.0);
Index++;

/| other vertices

}

I OEPARTMENT OF
COMPUTER SCIENCE
MRS AN ENGINEERING

[

Role of Interpolation

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Interpolation

OpenGL uses interpolation to find proper texels from specified
texture coordinates

Can be distorted
texture stretched

over trapezoid
good selection poor selection showing effects of

of tex coordinates of tex coordinates bilinear interpolation

LR DEPARTMENT OF
(@/51®] coMPUTER SCIENCE
SURUIS! AND ENGINEERING |

Interpolation

Figure 1.0 - Affine and perspective texture mapped polygons.

<]

.\.r 1~—— '_/'ﬂ'.'

\'r a L s 'r \; 1—)

o S i N

\"1 e (/ / L}) !

Sz a. Affine texture mapping - notice no perspective cues.
y3 iy

23

b. Perspective texture mapping - notice 3D perspective both near and far.

PR OEPARTMENT OF

@/51(®) coMPUTER SCIENCE
SRS AND ENGINEERING

Control of Texture Mapping

PR DEPARTMENT OF

T*'H
d [95518] comPUTER SCIENCE
' AND ENGINEERING

UNIVERSITY

Texture Parameters

OpenGL has a variety of parameters that determine
how texture is applied

— Wrapping parameters determine what happens if s and t
are outside the (0,1) range

— Filter modes allow us to use area averaging instead of
point samples

— Mipmapping allows us to use textures at multiple
resolutions

— Environment parameters determine how texture
mapping interacts with shading

= PIRIEIIEY o eARTMENT OF
(@)51(®) coMPUTER SCIENCE
J BVaYS AnD ENGINEERING |

Wrapping Mode

Clamping: if s,t > | use |, if s,t <O use 0

Wrapping: use s,t modulo |

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_CLAMP)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, GL_REPEAT)

o mﬂ.
.

GL_REPEAT GL_CLAMP
texture Wrapping Wrapping

S BESSLUERE OEPARTMENT OF
' (S)DACI% COMPUTER SCIENCE
SUAYEE] AND ENGINEERING |

Magnification/Minification

More than one texel can cover a pixel (minification) or
more than one pixel can cover a texel (magnification)

Can use point sampling (nearest texel) or linear filtering
(2 x 2 filter) to obtain texture values

//'
L~ 1
L — 11 | B
Texture Polygon Texture Polygon
Magnification Minification

PR DEPARTMENT OF

1K
d [®57®] coMmPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Filter Modes

Modes determined by

— glTexParameteri(target, type, mode)

glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MAG_FILTER,
GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MIN_FILTER,
GL_LINEAR);

Note that linear filtering requires a border of an
extra texel for filtering at edges (border = |)

.) U }: PR DEPARTMENT OF
d [®151(®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Mipmapped Textures

* Mipmapping allows for prefiltered texture maps of
decreasing resolutions

* Lessens interpolation errors for smaller textured
objects

* Declare mipmap level during texture definition
glTeximage2D(GL_TEXTURE_*D, level, ...)

. PR OEPARTMENT OF
[@)51®] coMPUTER SCIENCE
M BVAYIS AnD ENGINEERING |

MipMaps

_f_i
n

64%64 32x32 16x16

PR DEPARTMENT OF

) G ¢ 4
@)51®) coMPUTER SCIENCE
AND ENGINEERING

Mip-Mapping

S
w
=
o
o
D W
s&EZ
T.TG
Eo =2
o w
=2
S20<

E

UNIVERSITY

SIAIE

OHIO

T -

Mip-Mapping

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Example

point linear
sampling filtering
mipmapped mipmapped
p0|r.1t linear
sampling filtering

65

WIIRCY DEPARTMENT OF

(©1318] CoMPUTER SCIENCE
SURUBE! A\\D ENGINEERING

UNIVERSITY

Texture Functions

* Controls how texture is applied

* glTexEnv{fi}[V](GL_TEXTURE_ENV, prop,
param)

* GL_TEXTURE_ENV_MODE modes
— GL_MODULATE: modulates with computed shade

— GL_BLEND: blends with an environmental color

— GL_REPLACE: use only texture color

— GL(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
GL_MODULATE);

* Set blend color with
GL TEXTURE _ENV_COLOR

e s X.* H E DEPARTMENT OF
(@)51®) coMPUTER SCIENCE
J BVaYS AnD ENGINEERING |

Using Texture Objects

0O NO U1~ WDN —

specify textures in texture objects

set texture filter

set texture function

set texture wrap mode

set optional perspective correction hint
bind texture object

enable texturing

supply texture coordinates for vertex

coordinates can also be generated

AR DEPARTMENT OF
(@)51®) coMPUTER SCIENCE
AND ENGINEERING

Other Texture Features

* Environment Maps

— Start with image of environment through a wide angle
lens

* Can be either a real scanned image or an image created in
OpenGL

— Use this texture to generate a spherical map

— Alternative is to use a cube map

* Multitexturing

— Apply a sequence of textures through cascaded texture
units

= ve] PSR OEPARTMENT OF
A (S)Dh‘j% COMPUTER SCIENCE
4 B8 AN ENGINEERING |

GLSL

PR OEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Samplers

https://www.opengl.org/wiki/Sampler (GLSL)

DEPARTMENT OF

T*H'E
(531711;1[% COMPUTER SCIENCE
SIPRVBS! AND ENGINEERING

Applying Textures

* Textures are applied during fragment shading by a
sampler

* Samplers return a texture color from a texture object

in vec4 color; //color from rasterizer
in vec2 texCoord; //texure coordinate from rasterizer

uniform sampler2D texture; //texture object from application

void main() {
gl_FragColor = color * texture2D(texture, texCoord);

}

o) DEELBRE 0EPARTMENT OF
d [®/51®] coMmPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Vertex Shader

* Usually vertex shader will output texture coordinates to
be rasterized

e Must do all other standard tasks too
— Compute vertex position

— Compute vertex color if needed
in vec4 vPosition; //vertex position in object coordinates
in vec4 vColor; //vertex color from application
in vec2 viexCoord;//texture coordinate from application

out vec4 color;//output color to be interpolated
out vec? texCoord; //output tex coordinate to be
interpolated

o) PRELBERY 0EPARTMENT OF
d [®/5K®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Adding Texture Coordinates

void quad(int a,int b,int c,int d)

{
quad_colors[Index] = colors[a];
points[Index] = vertices[a];
tex_coords[Index] = vec2(0.0, 0.0);
index++;
quad_colors[Index] = colors[a];
points[Index] = vertices[b];
tex_coords[Index] = vec2(0.0, 1.0);
Index++;

/| other vertices

}

I OEPARTMENT OF
COMPUTER SCIENCE
MRS AN ENGINEERING

oo

Texture Object

GLuint textures[1];
glGenTextures(|, textures);

glBindTexture(GL_TEXTURE_2D, textures[0]);
glTexlmage2D(GL_TEXTURE_2D, 0, GL_RGB, TextureSize,
TextureSize, 0, GL_RGB, GL_UNSIGNED_ BYTE, image);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D, GL_ TEXTURE_WRAP_T,
GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D,

GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D,

GL TEXTURE_MIN_FILTER, GL_NEAREST);
glActiveTexture(GL_TEXTUREO);

S BREEEY o:eanmvent oF
d [®)51®] conMPUTER SCIENCE
NIPRVIS \ND ENGINEERING |

Linking with Shaders

GLuint vTexCoord = glGetAttribLocation(program, "vIexCoord");

glEnableVertexAttribArray(viexCoord);

glVertexAttribPointer(vliexCoord, 2, GL_FLOAT, GL_FALSE, 0,
BUFFER OFFSET (offset));

/I Set the value of the fragment shader texture sampler variable
Il ("texture") to the the appropriate texture unit. In this case,
Il zero, for GL_TEXTUREO which was previously set by calling
Il glActiveTexture().

glUniform li(glGetUniformLocation(program, "texture"), 0);

Il OEPARTMENT OF

[oio

COMPUTER SCIENCE
MRS AN ENGINEERING

Vertex Shader Applications

* Moving vertices
— Morphing
— Wave motion
— Fractals
* Lighting
— More realistic models

— Cartoon shaders

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

{ [e)5Te)

Wave Motion Vertex Shader

uniform float time;

uniform float xs, zs, // frequencies
uniform float h;// height scale
uniform mat4 ModelView, Projection;
in vec4 vPosition;

void main() {
vec4 t =vPosition;
t.y = vPosition.y
+ h*sin(time + xs*vPosition.x)
+ h*sin(time + zs*vPosition.z);
gl_Position = Projection*ModelView™t;

}

o) DEELBERE 0EPARTMENT OF
d [®/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Particle System

uniform vec3 init_vel;

uniform float g, m, t;

uniform mat4 Projection, ModelView;

in vPosition;

void main(){

vec3 object pos;

object _pos.x = vPosition.x + vel.x*t;

object pos.y = vPosition.y + vel.y*t
+ g/(2.0*m)*t*t;

object pos.z = vPosition.z + vel.z*t;

gl_Position = Projection™

ModelView*vec4(object_pos,I);

o) PENSLRY 0EPARTMENT OF
d [®/51®] coMPUTER SCIENCE
AND ENGINEERING

Example

http://www.lighthouse3d.com/tutorials/glsl-core-
tutorial/glsl-core-tutorial-texturing-with-images/

PR DEPARTMENT OF

.) G ¢ 4
%j{.ll% COMPUTER SCIENCE
SIPRVBS! AND ENGINEERING

Example

http://www.lighthouse3d.com/tutorials/glsl-tutorial/
simple-texture/

PRI OEPARTMENT OF

(53171;1;11% COMPUTER SCIENCE
M BVAYIS AnD ENGINEERING

Fragment Shader

Texture mapping

smooth shading environment bump mapping
mapping

PR DEPARTMENT OF

s | SO ¢
@)51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Cube Maps

We can form a cube map texture by defining six 2D
texture maps that correspond to the sides of a box

Supported by OpenGL
Also supported in GLSL through cubemap sampler

vec4 texColor = textureCube(mycube, texcoord);

Texture coordinates must be 3D

(TN PRSLIRY OEPARTMENT OF
. -l [®I5t®) coMPUTER SCIENCE
:) | SIATE

AND ENGINEERING

Environment Map

Use reflection vector to locate texture in cube map

DEPARTMENT OF

COMPUTER SCIENCE
W AND ENGINEERING

| le)ite)

Environment Maps with Shaders

* Computed in world coordinates

— keep track of modeling matrix & pass as a uniform
variable

* Use reflection map or refraction map

 Simulate water

PRI 0ceanTMENT OF
(@)51(®) cOMPUTER SCIENCE
NIPRVIS \ND ENGINEERING |

Reflection Map Vertex Shader

uniform mat4 Projection, ModelView, NormalMatrix;
in vec4 vPosition;

in vec4 normal;

out vec3 R;

void main(void)

{
gl _Position = Projection*ModelView*vPosition;
vec3 N = normalize(NormalMatrix*normal);
vec4 eyePos = ModelView*gvPosition;
R = reflect(-eyePos.xyz, N);

o) PRSP 0EPARTMENT OF
d [®/51®) coMPUTER SCIENCE
AND ENGINEERING

Reflection Map Fragment Shader

in vec3 R;
uniform samplerCube texMap;

void main(void)

{

gl_FragColor = textureCube(texMap, R);

}

DEPARTMENT OF

T H ' E
%}j% COMPUTER SCIENCE
SUBMEE] AND ENGINEERING

Bump Mapping

* Perturb normal for each fragment

* Store perturbation as textures

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

| OHIO

Back 2 Orange

) LR OEPARTMENT OF
®/51®} coMPUTER SCIENCE
SIRUS A\nD ENGINEERING

UNIVERSITY

The Orange

* Texture map a photo of an orange onto a surface
— Captures dimples
— Will not be correct if we move viewer or light

— We have shades of dimples rather than their correct
orientation

* |deally perturb normal across surface of object
and compute a new color at each interior point

€T PURLANPRE OEPARTMENT OF
(S)Dh‘%l% COMPUTER SCIENCE
4 BUaYS] AnD ENGINEERING

Bump Mapping (Blinn)

Consider a smooth surface

4 n

(5,0l PINKEPRY CEPARTMENT OF
Y. ff R¥SE®] comPUTER SCIENCE
e A BV AnD eNGINEERING

Rougher Version

PR OEPARTMENT OF

T H
®)511®) cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Equations

p,=[0x/ du, 0y/ ou, 0z/ du]’
p.=[0x/ Ov, oy/ ov, 0z/ ov]!

n=(p,XPp,)/ P, X Py

(5,0l PINKRTRY CEPARTMENT OF
Y. i [®51®] compuTeR sciENCE
b N VRIS \\p ENGINEERING

Tangent Plane

T ’:" @ OEPARTMENT OF
®/911®} (OMPUTER SCIENCE
SRUIS! A ND ENGINEERING

UNIVERSITY

Displacement Function

p =p+duv)n

d(u,v) is the bump or displacement function

d(uv)] << |

o IR 0cPARTMENT OF |
Y. R¥SE®] comPUTER SCIENCE
2 BYaUS AND ENGINEERING

B
e H o IIVERS
SEEmEss UNIVERSITY

Perturbed Normal

n=p ,xp,
p . =p,t (3d/ dun+duv)n,
p.=p,*t(9d/ 9v)n+d(uv)n,

If d is small, we can neglect last term

2l PRRIPRY DEPARTMENT OF |
Yoo 1) coMPUTER SCIENCE
- B BIRVISY 5\ ENGINEERING

B
.."’g== H JIVERS
SE=m=ss UNIVERSITY

Approximating the Normal

y y
n _puxpv

=pn+(0d/dunxp,+(9d dv)nxp,

The vectors n x p, and n x p lie

in the tangent plane

Hence the normal is displaced in the tangent plane
Must precompute the arrays dd/ duand dd/ dv
Finally,we perturb the normal during shading

() Noe) PRNKRTRY OEPARTMENT OF
» St (S)DI?J\'I% COMPUTER SCIENCE
b A B5f5] ANDENGINEERING |

Compositing & Blending

Bl OEPARTMENT OF

T B
(@/51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

A

— Blending for translucent surfaces

— Compositing images

— Antialiasing

PR PR DEPARTMENT OF

@/51®) coMPUTER SCIENCE
AND ENGINEERING

T H @ OEPARTMENT OF
©)51(®] coMPUTER SCIENCE
SIRUIS! AN D ENGINEERING

UNIVERSITY

T 'H @ OEPARTMENT OF
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

A

« Opaque surfaces permit no light to pass through

* Transparent surfaces permit all light to pass

* Translucent surfaces pass some light
translucency = 1 — opacity (a)

b
N\

opaque surface a =1

PR DEPARTMENT OF

. L % ".',
@/51®) coMPUTER SCIENCE
SIRVISY A ND ENGINEERING

UNIVERSITY

Physical Models

Translucency in a physically correct manner is difficult

— the complexity of the internal interactions of light
and matter

— Using a pipeline renderer

I OEPARTMENT OF

2 oo

COMPUTER SCIENCE
SIRVISY A ND ENGINEERING

Hd
4 UNIVERSITY

Compositing Operation

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Rendering Model

* Use A component of RGBA (or RGBa) color for opacity
* During rendering expand to use RGBA values

, blend

— source blending factor destinat
source estination
component component

destination blending

factor Color Buffer

\ 4

\ 4

A 4

A

3 BEELIIRE 0EPARTMENT OF
d [®/55®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Examples

b
R

oy

:

PRSI OEPARTMENT OF

@151®) coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

One Method

RGB(0,0,1,.5)

+ -

RGB(1, 0,0, 5)

RGB(1,0,0, .5
RGB(.33,0, 66,.75)

T H @ OEPARTMENT OF
©)51(®] coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

Blending Equation

We can define source and destination blending factors
for each RGBA component

S =[s, sy S]
d=[d,d,d,d,]
Suppose that the source and destination colors are
b=[b,b, b, b,]
¢ =[c, c, ¢, C,]
Blend as

¢ =[b.s+c.d,b,s+c.d,bys,*c,dy,bs,+c,d,]

ove] PRGLRERY 0ceARTMENT OF
d L®51®) comPUTER SCIENCE
AND ENGINEERING

T
257 N UNIVERSITY

OpenGL

Must enable blending and pick source and destination
factors

glEnable(GL_BLEND)
giBlendFunc(source_factor,
destination_factor)

Only certain factors supported
GL_ZERO, GL_ONE
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA
See Redbook for complete list

[T PN OEPARTMENT OF
(S)Dljﬁﬂ% COMPUTER SCIENCE
A BEV8YS AnD ENGINEERING |

Operator

Aaver B ANS AoutB Aaton B Axor B
-~

2
Opaque Loy) =1
ABNd 8 ! ‘ S v
: |
o~ -~ o - o~
Parsally e N 2o o e
transparan] | | o 0 B
Aand & o | v i i <
o -

Canceposal ’ I’J'-
sub-poocd .
oerlay .

e |

-

WIIRCY DEPARTMENT OF

(©1318] CoMPUTER SCIENCE
SIFRUISY \\D ENGINEERING

UNIVERSITY

Example

Start with the opaque background color (R,,Gy,Bg,)
— Initial destination color
Blend in a translucent polygon with color (R,,G,,B,,a,)

Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA
as the source and destination blending factors

Note this formula is correct if polygon is either opaque or
transparent

= ve] PR OEPARTMENT OF
A %) COMPUTER SCIENCE
4 B8 AN ENGINEERING |

Works Here Too...

RGE(0, 0, 1,.5)

RGB(1, 0,0, 5)

P R %

MIRGB{(.33, 0, 66,.75)

LRCY DEPARTMENT OF

(©1318] CoMPUTER SCIENCE
SIFRUISY \\D ENGINEERING

UNIVERSITY

Clamping and Accuracy

* All RGBA are clamped to the range (0, 1)
* RGBA values 8 bits !

— Loose accuracy after much components together

— Example: add together n images
* Divide all color components by n to avoid clamping
* Blend with source factor = |, destination factor = |

* But division by n loses bits

PRI 0coARTMENT OF
(@)51®) coMPUTER SCIENCE
A BYaWS AN ENGINEERING |

Order Dependency

BBl DEPARTMENT OF

OHIO
SIATE E\az‘ ELI:IEEI:IESECI;IEI\Tg | E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

UNIVERSITY Addison-Wesley 2012

Order Dependency

* Is this image correct?
— Probably not
— Polygons are rendered
in the order they pass
down the pipeline
— Blending functions

are order dependent

@ OEPARTMENT OF

> |OHIO
SIATE

ga?)ﬁ ::Ezsgmg ; E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

UNIVERSITY

HSR with A

Polygons which are opaque & translucent

Opaque polygons block all polygons behind & affect depth
buffer

Translucent polygons should not affect depth buffer

— Render with giIDepthMask(GL_FALSE) which makes depth buffer
read-only

Sort polygons first to remove order dependency

o SRR 0ceARTMENT OF
@)5K®) coMPUTER SCIENCE
M BVAYIS AnD ENGINEERING |

PR DEPARTMENT OF

58] cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Simulate Fog

* Composite with fixed color and have blending factors
depend on depth

— Simulates a fog effect
* Blend source color C, and fog color C; by
C, =fC + (I-f) C
 fis the fog factor
— Exponential
— Gaussian

— Linear (depth cueing)

= oo IR ocoaRTMENT OF
@)5K®) coMPUTER SCIENCE
M BVAYIS AnD ENGINEERING |

F - Fog Functions

Attenuation

Distance

Y PESLEERY 0cPARTMENT OF
4 [®5¥®) onMPUTER SCIENCE
NIPRVIS \ND ENGINEERING

Antialia

Sing

Color a pixel by adding fraction of color to frame buffer

— Fraction depends on percentage of pixel covered by

fragment

— Fraction depends on whether there is overlap

T

no overlap

_—)
/
/

124

/

T

V.

overlap

Vv

- PRI DEPARTMENT OF ‘
(53171;121[% COMPUTER SCIENCE
SUBME] AND ENGINEERING |

Area Averaging

Use average area a;*a,-a,a, as blending factor

I OEPARTMENT OF

-
@/5K®) coMPUTER SCIENCE
AND ENGINEERING

OpenGL Antialiasing

Enable separately for points, lines, or
polygons

glEnable(GL_POINT_SMOOTH);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_POLYGON_SMOOTH);

glEnable(GL_BLEND);
giBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

PLUSPRE DEPARTMENT OF
(@58 coMPUTER SCIENCE
AND ENGINEERING

Accumulation

* Compositing/blending limited by resolution of frame
buffer

— Typically 8 bits per color component

* Accumulation buffer was a high resolution buffer (16 or
more bits per component) that avoided this problem

* Could write into it or read from it with a scale factor

* Slower than direct compositing into the frame buffer

o IR oceARTMENT OF
(@)5K®) coMPUTER SCIENCE
- N BUVIS \\D ENGINEERING |

Particle Systems

R OEPARTMENT OF

T
@)5K®) coMPUTER SCIENCE
AND ENGINEERING

Many Uses

e Used to model

— Natural phenomena
* Clouds

e Terrain

* Plants
— Crowd Scenes

— Real physical processes

Tyl P @ OEPARTMENT OF
) %;1;11% COMPUTER SCIENCE
= |SI AND ENGINEERING

Newtonian Particle

* Particle system is a set of particles
* Each particle is an ideal point mass

* Six degrees of freedom
— Position
— Velocity
¢ Each particle obeys Newtons' law

f = ma

- B T | "E DEPARTMENT OF
(@/5F®) coMPUTER SCIENCE
M BVAYIS AnD ENGINEERING |

Particle Equations

P, = (X» Y Z)
v, =dp, /dt = p, = (dx, /dt, dy, /dt, z /dt)

mv =f

Hard part is defining force vector

e PRI ocearTMENT oF |
Yoo ESES) copMpUTER SCIENCE
o M BUaYS AnD ENGINEERING

Force Vector

* Independent Particles
— Gravity
— Wind forces

— O(n) calulation

* Coupled Particles O(n)
— Meshes
— Spring-Mass Systems

» Coupled Particles O(n?)

— Attractive and repulsive forces

= ye] PRSLUERY 0EPARTMENT OF
A (S)DI?‘[CII% COMPUTER SCIENCE
4 EUaYE Ano EnGineeRING |

Solution of Particle Systems

float time, delta state[6én], force[3n];

state = initial _state();

for(time = t0; time<final_time, time+=delta) {
force = force_function(state, time);

state = ode(force, state, time, delta);
render(state, time)

;

DL DEPARTMENT OF
@)51(®] coMPUTER SCIENCE
NIPRVIS \ND ENGINEERING |

Simple Forces

* Consider force on particle i

f=f(p, v)
* Gravity f,= g

g= (O’ -g’ O)
* Wind forces
* Drag

Pi(to), Vi(to)

DEPARTMENT OF

COMPUTER SCIENCE
W AND ENGINEERING

|OHIO

Meshes

* Connect each particle to its closest neighbors

— O(n) force calculation

* Use spring-mass system

@l OEPARTMENT OF

COMPUTER SCIENCE
M BVAYIS AnD ENGINEERING

Spring Forces

* Assume each particle has unit mass and is
connected to its neighbor(s) by a spring

« Hooke' s law: force proportional to
distance (d = ||p — q||) between the points

Qe *p

‘ S5 PR LR OEPARTMENT OF
Y. R¥SI®] compuTER SCIENCE
b N VRIS \\p ENGINEERING

Hooke’ s Law

Let s be the distance when there is no force
f=-k(|d|-s) d/|d|

k. is the spring constant

d/|d| is a unit vector pointed from p to q

Each interior point in mesh has four forces applied to
it

ove) PARLIRY oceanmment oF ‘
4 [®I51®] compuTER SCIENCE
g2t AND ENGINEERING

Spring Damping

* A pure spring-mass will oscillate forever

* Must add a damping term

f=-(k(d|-s) + k, d-d/|d|)d/|d|

* Must project velocity p-5 \

(p-q)+(p-q)

o IR 0cPARTMENT OF |
Y. R¥SI®] compuTER SCIENCE
L B BVRBS \\p ENGINEERING

i
sSE=p==s” W UNI

Attraction and Repulsion

Inverse square law
f=-kd/|d|’

General case requires O(n?) calculation

In most problems, the drop off is such that not
many particles contribute to the forces on any given
particle

Sorting problem: is it O(n log n)?

Oyl PRRITRY ODEPARTMENT OF
-l [®I51®] comPUTER SCIENCE
NIPRVIS \ND ENGINEERING

Solution of ODEs

* Particle system has 6n ordinary differential
equations

* Write set as du/dt = g(u,t)

* Solve by approximations using Taylor’ s Thm

A
o u(t) + hult)

ult)

uft)

t t+ h

PR DEPARTMENT OF

.) G ¢ 4
%j{.ll% COMPUTER SCIENCE
SIPRVBS! AND ENGINEERING

Euler s Method

u(t + h) = u(t) + h du/dt = u(t) + hg(u, t)

Per step error is O(h?)

Require one force evaluation per time step

Problem is numerical instability

depends on step size

()00 PENEIPRY CEPARTMENT OF |
-, (e %) COMPUTER SCIENCE
& B8V AnEnGINEERING |

Improved Euler

u(t + h) = u(t) + h/2(g(u, t) + g(u, tt+h))

Per step error is O(h3)

Also allows for larger step sizes

But requires two function evaluations per step

Also known as Runge-Kutta method of order 2

()0 PENMIPRY CEPARTMENT OF
Y. A [&5I®] compuTeR sciEncE
i VRIS \\p ENGINEERING

‘~§.,.,- !!!!!!

Contraints

* Easy in computer graphics to ignore physical
reality
* Surfaces are virtual

* Must detect collisions separately if we want exact
solution

 Can approximate with ‘
PP - | e

repulsive forces

o oy BRI 0coanTMENT OF
@)51®) coMPUTER SCIENCE
M BVAYIS AnD ENGINEERING |

Collisions

Once we detect a collision, we can calculate
new path

Use coefficient of resititution
Reflect vertical component

May have to use partial time step

I OEPARTMENT OF

7 | OrHio

COMPUTER SCIENCE
SIRVISY A ND ENGINEERING

Hd
4 UNIVERSITY

Example

P, = (X»Yi Z)
v. = dp, /dt = p, = (dx, /dt, dy, /dt, z,/dt)
m vi‘= f

I:i+|

DEPARTMENT OF

COMPUTER SCIENCE
=~ AND ENGINEERING

Toio

Collision ?

PR OEPARTMENT OF

T*'H
@51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Problem:
Triangle & Ray Distinct Objects

DEPARTMENT OF

T R B
%j{.ll% COMPUTER SCIENCE
SIPRVBS! AND ENGINEERING

Ray/Triangle Intersection

Fast, Minimum Storage Ray/Triangle

Intersection
Tomas NMoller Ben Trumbore
Prosolvia Clarus AB Program of Computer Graphics
Chalmers University of Technology Cornell Umversity
E-mail: tompa@clarus.se E-mail: wbt@graphics.cornell.edu

PR OEPARTMENT OF

d L®51®) comPUTER SCIENCE
/ AND ENGINEERING

UNIVERSITY

Advanced Features of GLSL
TF - Transform Feedback
TBO — Texture Buffer Obejct

(& Sy PERELUNR OEPARTMENT OF
, S (53171;1‘1_1% COMPUTER SCIENCE
. J BUAYS ANDENGINEERING |

v v
N mmmmes I

Chapter 5 J@Jsl=si€iE

Programming Guide
Eighth Edition

The Official Guide to Learning

OpenGL®, Version 4.3

. Dave Shreiner ® Graham Sellers ® John Kessenich ¢ Bill Licea-Kane
g OEPARTMENT OF

O[}/{IO COMPUTER SCIENCE The Khronos OpenGL ARB Working Group
SIS AND ENGINEERING

UNIVERSITY

Fixed Functionality Pipeline

Primitive
Processing

Vertex
Buffer

Objects

Transform
and
Lighting

Primitive

Assembly Rasterizer -

Texture
Environment

Stehel ff Dither

Stencil

T

H
QHIOH

il DEPARTMENT OF

dOMPUTERPSCIENCE

SUBLLE] @YD ENGHNERRING

Programmable Shader Pipeline

Primitive Primitive
Processing Assembly

Rasterizer -

Vertex

Buffer

Objects
Fragment
Shader

Color
Depth Buffer Dither

Stencil Blend

iy, DEPARTMENT OF

dOMPUTERPSCIENCE
SRS D ENGHNEERING

Back2Particles

PRl DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Schema

- - ——— — — — - -

Schematic of the particle system simulator

Flgure 5.19

=
w
=
E
o
D W
55 =
-ITG
e
o w
$29
s o2
o O <

E

SIAIE

UNIVERSITY

OHIO

T -

Geometry Pass

Example 5.8 Vertex Shader Used in Geometry Pass of Particle
System Simulator

#iversion 420 core

uniform matd model matrix;
uniform matd projection _matrix;

layout (location = 0) in vecd position;
layout (location 1) in vec3 normal;

out vecd world space_position;
out vec3 vs_fs normal;

void main(void)

{
vecd pos = (model_matrix =+ (position * vecd (1.0, 1.0, 1.0, 1.0)));
world_space_position = pos;
vs_fs normal = normalize((model_matrix = vecd(normal, 0.0)).xyz);
gl _Position = projection_matrix = pos;

PR DEPARTMENT OF

58] cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Storing Geometry

Example 5.9 Contiguring the Geometry Pass ot the Particle System

Simulator
static const char * varyings2[] =
{
"world_space position"
}i

glTransformFeedbackVaryings (render_prog, 1, varyings2,
GL_INTERLEAVED_ ATTRIBS) ;
glLinkProgram(render_prog) ;

TBO writing

PR DEPARTMENT OF

TR
4 19518) convpUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Transform Feedback

void glTransformFeedbackVaryings(GLuint program,
GLsizei count,
const GLchar ** varyings,
GLenum bufferMode);

Sets the varyings to be recorded by transform feedback for the program
specified by program. count specifies the number of strings contained in
the array varyings, which contains the names of the varyings to be
captured. buferMode is the mode in which the varyings will be
captured—either separate mode (specified by GL_SEPARATE_ATTRIBS) or
interleaved mode (specified by GL_INTERLEAVED_ATTRIBS).

: T 'H @ OEPARTMENT OF
d [®518] comMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Transform feedback?

RedBook says: “Transform Feedback is the process of altering the
rendering pipeline so that primitives processed by a Vertex Shader and
optionally a Geometry Shader will be written to buffer objects. This
allows one to preserve the post-transform rendering state of an object
and resubmit this data multiple times.”

o) PESLUERY 0cPARTMENT OF
d [®/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Transform Feedback diagram

Vertex Attributes

Y

Vertex Shader

T

Geometry Shader

Y

Transform Feedback Mode
Vertex Attributes

Disabled Transform Feedback Buffer

Rasterizer

Y

Fragment Shader

T

Render Output

Y

Pixels

Back Buffer, Texture, Pixel Buffer

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

Absence of Transform Feedback

To update Vertex Buffer Object’s attributes:
|. OpenGL copies VBO from GPU memory to CPU memory

2. Update in CPU and send back

3. Consumes time and bandwidth

& Sy PURELUNRCE OEPARTMENT OF
Y. R¥51®] compuTER SCIENCE
L B BVRBS \\p ENGINEERING

WiE=m==2 N UNI

Role of TF

|. All computations are now conducted in GPU

2. A special buffer after shaders and send transformations

CPU not needed and little application involvement

» @ OEPARTMENT OF ‘
{ %j{.ll% COMPUTER SCIENCE
SRS \ND ENGINEERING

Transform Feedback Examples

- Uses TF to render a particle smoke system with fire spreading

Attain good performance can be by using TF. It controls all of the
particles in this on the GPU.

o) PESLUERY 0cPARTMENT OF
d [®/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Programmer’ s Model

Attributes
(m * vec4)

Vertex Uniforms
(p * vecd)

Primitive
Assembly
& Rasterize

Varyings
(n * vec4)

Frzggment Uniform
(q

vec4) Fragment

Shader

Per-Sample
Operations

@ OEPARTMENT OF —

OHIO
SIATE

COMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Vertex Shader Environment

Attribute O Varying 0

Attribute | Varying |

Attribute 2 Varying 2

Attribute 3 Varying 3

Vertex Shader

Attribute 4
Attribute 5

Varying 4
Varying 5

Attribute m

Varying n

Clip position
Point size

Temporary
variables

) NT ’:‘ @ . DEPARTMENT OF
OISO dohipUTERSCIENCE
‘96‘115 ENDENEUNEERING

Fragment Shader Environment

Varying 0
Varying |
Varying 2

ragment
Color(s

‘ Fragment Depth

Varying 3

Varying 4

Varying 5 Fragment Shader

Varying n

Window coord
Front facing flag

Point coord

Temporary
variables

RIS | 0 pARTMENT OF
OIS @X yoiiPUTERSCIENCE
SR @D ENGHNERRING

Collision Detection

Find intersection of ray with plane

Find actual intersection

1

I:i+|

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

| OHIO

Ray/Triangle Intersection

Fast, Minimum Storage Ray/Triangle

Intersection
Tomas NMoller Ben Trumbore
Prosolvia Clarus AB Program of Computer Graphics
Chalmers University of Technology Cornell Umversity
E-mail: tompa@clarus.se E-mail: wbt@graphics.cornell.edu

PR OEPARTMENT OF

d L®51®) comPUTER SCIENCE
/ AND ENGINEERING

UNIVERSITY

Some Math

A ray R(f) with origin O and normalized direction D is defined as

R(t) =0 +tD

A point, T'(u,v), on a triangle is given by

T(uv)=(1—-u—v)Vyg+uly] +vls,

b

PR DEPARTMENT OF

T*'H
@51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Some Math

interpolation, color interpolation ete. Computing the intersection between the
ray, R(t), and the triangle, 7'(u, v), is equivalent to R(t) = 1'(u,v), which yields:

O+tD=(1—-—u—v)Vy+ulV]+ vV, (3)

Rearranging the terms gives:
=D, Vi =y, ‘é“hJ w | =0 -V (4)

This means the barycentric coordinates (u,v) and the distance, f, from the ray
origin to the intersection point can be found by solving the linear system of
equations above,

@l OEPARTMENT OF

T*'H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Fast Ray-Triangle Intersection

(0]
rro_v
‘ D 0—‘,0 ‘ ‘ M [O ‘o]
Vz 4 v
translation M /
A 7 " 1
Vo

Figure 1: Translation and change of base of the ray origin.

PR DEPARTMENT OF

T*'H
d [95518] comPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Final Computations

el i fon]
| T OxE) B T D | "B " | v

where P = (D x E,) and () =1 x E;. In our implementation we reuse these

PR OEPARTMENT OF

@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Geometry Pass

PG DEPARTMENT OF

@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Vertex Shader

Example 5.8 Vertex Shader Used in Geometry Pass of Particle
System Simulator

#iversion 420 core

uniform matd model matrix;
uniform matd projection_matrix;

layout (location 0) in vecd position;
layout (location = 1) in vec3 normal;

out vecd world_space_position;
out vec3 vs_fs normal;

void main(void)

{
vecd pos = (model_matrix = (position » vecd (1.0, 1.0, 1.0, 1.0)));

world_space_position = pos;
vs_fs_normal = normalize((model_matrix = vecd(normal, 0.0)).xyz);
gl_Position = projection_matrix * pos;

PR DEPARTMENT OF

58] cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Configuring Geometry Pass

Example 5.9 Contiguring the Geometry Pass ot the Particle System
Simulator

static const char * varyings2[] =

{

};

glTransformFeedbackVaryings (render_prog, 1, varyings2,
GL_INTERLEAVED ATTRIBS);

"world_space_ position”

glLinkProgram(render_prog) ;

TBO writing

PR DEPARTMENT OF

T*'H
d [®/51®] comPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Particle Pass

PRl DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Example 5.10

System Simulator

#iversion 420 core

uniform matd model matrix;
uniform matd projection matrix;
uniform int triangle_count;

layout (location

out vecd position_out;
out vec3 velocity_ out;

uniform samplerBuffer geometry_tbof<

0) in vecd position;
layout (location = 1) in vec3 velocity;

Vertex Shader Used in Simulation Pass of Particle

uniform float time_step = 0.02;

bool intersect(vec3 origin,

{

out vec3 point)

vec3 u, v, n;
vec3 w0, w;
float r, a, b;

u= (vl — v0);
v = (v2 — v0);
n = cross(u, v);

w0 = origin — vO0;

a = —dot(n, wl);
b = dot(n, direction);
r=a/ b;

if (r < 0.0 || r > 1.0)
return false;

point = origin + r = direction;

float uu, uv, vv, wu, wv, D;

uu = dot(u, u);
uv = dot(u, v);
vv = dot(v, V);

w = point — v0;

vec3 direction, vec3 v0, vec3 vl, vec3 v2,

Find intersection of ray and plane with triangle
http://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection

Find actual intersection

wu = dot(w, u);

wv = dot(w, V);

D= uv * uv — uu * vv; t 1 (j'x.b;])'b"'_) 1 Q'b?-_;
u | =—\ (DxEy)1T" | =—— 1 P-T |, (6

float s, t; (D x E») - E) - ’) P E,)
v (1'x Ey) - D QD

s = (uv » wv — vv » wu) / D;

if (s < 0.0 || s > 1.0) where P = (D x E,) and Q =71 x E,. In our implementation we reuse these

return false;

t = (uv » wu — uu » wv) / D;
if (t < 0.0 || (s + t) > 1.0)
return false;

return true;

}
vec3 reflect_vector(vec3 v, vec3 n)
{ pd
K
return v — 2.0 = dot(v, n) » n;
}

void main(void)

{
vec3 acceleration = vec3(0.0, —0.3, 0.0);
vec3 new_velocity velocity + acceleration * time_step; P
vecd new_position = position + vecd(new_velocity = time_step, 0.0);°S
vec3 v0, vl, v2;

vec3 point;
int i;
for (i = 0; i < triangle count; i++)
{
v0 = texelFetch(geometry_tbo, i » 3).xyz;

vl = texelFerch(geometry_tho, 1 * 3 + 1).xyz; https://www.opengl.org/sdk/docs/man/html/texelFetch.xhtml
v2 = texelFetch(geometry tbo, 1 * 3 + 2).xyz;
if (intersect(position.xyz, position.xyz — new_position.xyz,

v0, v1, v2, point))

{
vec3 n = normalize(cross(vl — v0, v2 — v0));
new_position = vecd (point »
+ reflect_vector (new_position.xyz — o~
point, n), 1.0);
new_velocity = 0.8 * reflect_vector(new_velocity, n);
}
}
if (new_position.y < —40.0)
{
new_position = vecd (—new_position.x = 0.3, position.y + 80.0,
0.0, 1.0);
new_velocity *= wvec3(0.2, 0.1, —0.3);
}

velocity_out = new_velocity = 0.9999;
position_out = new_position;
gl_Position = projection_matrix * (model_matrix » position); <

Configuring Particle Pass

Example 5.11 Configuring the Simulation Pass of the Particle
System Simulator

static const char * varyings[] =

{
};

"position_out", "velocity_out"

glTransformFeedbackVaryings (update_prog, 2, varyings,
GL_INTERLEAVED_ATTRIBS) ;

glLinkProgram(update_prog) ;

PR OEPARTMENT OF

d [®518] comMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Example 5.12 Main Rendering Loop of the Particle System Simulator

glUseProgram(render_prog) ; ‘45

gluniformMatrix4fv(render model matrix loc, 1, GL_FALSE, model matrix);

gluniformMatrix4fv(render projection _matrix loc, 1, GL_FALSE,
projection_matrix);

glBindvertexArray (render_vao) ;

glBindBufferBase (GL_TRANSFORM_FEEDBACK_BUFFER, 0, geometry_ vbo);
glBeginTransformFeedback (GL_TRIANGLES) ; 4{
object.Render();

glEndTransformFeedback() ; 4{

gluseProgram(update_prog); <€

gluniformMatrix4fv(model _matrix loc, 1, GL_FALSE, model matrix);

glUuniformMatrix4fv(projection _matrix loc, 1, GL_FALSE,
projection_matrix);

gluniformli (triangle_count_loc, object.GetVertexCount() / 3);

if ((frame_count & 1) != 0)

{
glBindvertexArray(vao[1l]);
glBindBufferBase (GL TRANSFORM FEEDBACK BUFFER, 0, vbo[01):

else
{
glBindvertexArray(vao[0]);
glBindBufferBase (GL_TRANSFORM_FEEDBACK_BUFFER, 0, vbo[l]);

glBeginTransformFeedback (GL_POINTS); <€
glDrawArrays (GL_POINTS, 0, min(point_count, (frame_count >> 3)));
glEndTransformFeedback() ;

glBindvertexarray(0);

frame_count++;

Shadows

Figure 7.11 Final rendering of shadow map

PR OEPARTMENT OF

S W)
@/5F®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Shadows & Textures !

DEPARTMENT OF
COMPUTER SCIENCE
4 AND ENGINEERING

Shadows & Textures ?

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Real-time Shadow Techniques

Projected Shadow
planar volumes
shadows
Hybrid
approaches

ap& JENT OF
COMPUTER SCIENCE

AND ENGINEERING

IIIIIIIIIII

Luxo Jr. — The Famous One

* Luxo Jr. has two animated lights and
one overhead light

* Three shadow maps dynamically
generated per frame

* Complex geometry (cords and lamp
arms) all correctly shadowed

* User controls the view, shadowing just
works

yRe:demo. IrrFages are from web cast video

iﬂﬁ:t&mﬁ 1d Japan announcement.)

Shadow Mapping

(x1, y1. z1)

L

> X

oo | N : @ OEPARTMENT OF
4 [@I5F®] coMPUTER SCIENCE
' AND ENGINEERING

UNIVERSITY

Projective Shadows

* Projection of a polygon is a polygon called a shadow

polygon

* Given a point light source and a polygon, the
vertices of the shadow polygon are the projections
of the original polygon’ s vertices from a point
source onto a surface

; 3 PERELISIRE OEPARTMENT OF
: .l [®IsK®] comPUTER SCIENCE
= N RIS D ENGINEERING

Visualizing Shadow Mapping

the point
light source

Il OEPARTMENT OF

[oic

COMPUTER SCIENCE
MRS AN ENGINEERING

Visualizing Shadow Mapping

Compare with and without shadows

with shadows without shadows

3 BESLURE 0cPARTMENT OF
{ (S)DI?‘[CII% COMPUTER SCIENCE
SUBME] AND ENGINEERING |

Shadow Process

|. Put two identical triangles and their colors on GPU
(black for shadow triangle)

Compute two model view matrices as uniforms
Send model view matrix for original triangle
Render original triangle

Send second model view matrix

o kAW

Render shadow triangle
— Note shadow triangle undergoes two transformations

— Note hidden surface removal takes care of depth issues

o) PRELEIRY 0EPARTMENT OF
d [®/5F®) coMPUTER SCIENCE
AND ENGINEERING

Shadow Map Matrices

|. Source at (%, y, z)
Vertex at (X%, Y, z)

3. Consider simple case of shadow projected onto
ground at (x,, 0, z)

Translate source to origin with T(-x, -y, -z)

5. Perspective projection

6. Translate back

oS = O O
S O O O

0
1
0
1

=
I
==

Y

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

oo

Shadow Maps

* Render a scene from a light source; depth buffer will
contain the distances from the source to each fragment.

* Store depths in texture called depth/shadow map

* Render image in shadow map with light - anything lit is not
in shadow.

* Form a shadow map for each source

b UL OEPARTMENT OF
(S)DACI% COMPUTER SCIENCE
) BUAYH AND ENGINEERING |

Example

PRRSLUNSR OEPARTMENT OF

©)51®) coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Shadows

Figure 7.11 Final rendering of shadow map

PR OEPARTMENT OF

; e H;‘
@/5F®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Shadow Map

Figure 7.10 Depth rendering

PR DEPARTMENT OF

T*'H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Final Rendering

* Compare distance from fragment to light source
with distance in the shadow map

* If depth in shadow map is less than distance from
fragment to source, fragment is in shadow (from

this source)
e Otherwise we use rendered color

- PURELUNERE DEPARTMENT OF
(S)DACI% COMPUTER SCIENCE
) BUAYH AND ENGINEERING |

Visualizing Shadow Mapping

Scene with shadows

Notice how Notice how
specular curved surfaces
highlights never cast shadows
appear in on each other
shadows

ve] DPPRELUBERE OEPARTMENT OF
@)51®] coMPUTER SCIENCE
NIPRVIS \ND ENGINEERING |

Applications Side

 Start with vertex in object coordinates
* Want to convert representation to texture coordinates

* Form LookAt matrix from light source to origin in object
coordinates (MVL)

* From projection matrix for light source (PL)

* From a matrix to convert from [-|, |] clip coordinates to
[0, I] texture coordinates

* Concatenate to form object to texture coordinate matrix

(OTC)

= ye] PNELUGRY 0EPARTMENT OF
(S)DAJ% COMPUTER SCIENCE
J BUBMIS AND ENGINEERING |

Visualizing Shadow Mapping

The scene from the light’ s point-of-view

FYI: from the
eye s point-of-view
again

DEPARTMENT OF

T*H'E
d [®518] comPUTER SCIENCE
NIPRVIS \ND ENGINEERING

Visualizing Shadow Mapping

The depth buffer from the light’ s point-of-view

FYI: from the
light’s point-of-view

again

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

JOHIO

Visualizing Shadow Mapping

Projecting the depth map onto the eye’ s view

FYI: depth map for
light’s point-of-view

again

o PRI OEPARTMENT OF
4 [®51®) conmPUTER SCIENCE
NPRWIS AND ENGINEERING

Visualizing Shadow Mapping

Projecting light’ s planar distance onto eye’ s view

PRI OEPARTMENT OF
@)51(®] coMPUTER SCIENCE
NPRWIS AND ENGINEERING

Visualizing Shadow Mapping

Comparing light distance to light depth map

Non-green is

Green is where where shadows

the light planar should be

distance and
the light depth
map are
approximately
equal

= LR OEPARTMENT OF
d ol ROIS1®Y compUTER SCIENCE
i M PR \\D ENGINEERING

Generalized Shadows

Approach was OK for shadows on a single flat surface

e Cannot handle shadows on general objects

» @ OEPARTMENT OF ‘
{ %j{.ll% COMPUTER SCIENCE
SRS \ND ENGINEERING

Projective Textures

DEPARTMENT OF
COMPUTER SCIENCE
4 AND ENGINEERING

Projective Texturing!?

An intuition for projective texturing

— The slide projector analogy

Source: Wolfeang Heidrich [99]

T 'H @ OEPARTMENT OF
@51®] coMPUTER SCIENCE
SIRUS A\nD ENGINEERING

Image Based Lighting

* Project texture onto surface; treat texture as
“slide projector”

* Projective textures and image based lighting

* OpenGL/GLSL — 4D texture coordinates

Oyl PRRITRY ODEPARTMENT OF |
-l [®I51®] compyTER SCIENCE
B BVRBS \\p ENGINEERING

Projective Texturing

Key - perspective-correct texturing?
— Normal 2D texture mapping uses (s, t) coordinates

— 2D perspective-correct texture mapping

* (s, t) should be interpolated linearly in eye-space

* compute per-vertex s/w, t/w, and |/w

linearly interpolate these three parameters over polygon

per-fragment compute s’ = (s/w) / (I/w) and t' = (t/w) / (1/w)

results in per-fragment perspective correct (s , t)

€ S UL OEPARTMENT OF
(S)DACI% COMPUTER SCIENCE
) BUAYH AND ENGINEERING |

Projective Texturing

* Consider homogeneous texture coordinates

— (s, t, r, q) --> (s/q, t/q, r/q)
— Similar to homogeneous clip coordinates where
(X, Y, Z, W) = (X/w, ylw, z/w)

* Project (s/q, t/q, r/q) per-fragment

s W I oceARTMENT OF |
: -l [®I51®] compyTER SCIENCE
B BVRBS \\p ENGINEERING

Projective Texturing

Tricking hardware into doing projective textures

— By interpolating g/w, hardware computes per-fragment
* (s/w)/ (g/w) =s/q
* (t/w) / (q/w) =t/q

— Net result: projective texturing

il OEPARTMENT OF

= |OHIo

COMPUTER SCIENCE
MRS AN ENGINEERING

4D Textures Coordinates

* Texture coordinates (s, t, r, q) affected by perspective
division; actual coordinates (s/q, t/q, r/q) or (s/q, t/q) for
2D textures

* GLSL — textureProj uses the 2D/3D texture coordinate
obtained by a perspective division of a 4D texture
coordinate a texture value from a sampler

color = textureProj(my_sampler, tex coord)

Il OEPARTMENT OF

o — TR
d [e5ie;
Y -

COMPUTER SCIENCE
MRS AND ENGINEERING

Shadow Map Generation

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Matrices

PRl DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Texture Parameters - OpenGL

= Example 7.15 Creating a Framebuffer Object with a Depth Attachment

// Create a depth texture

glGenTextures (l, &depth_texture); <

glBindTexture (GL_TEXTURE_2D, depth_texture); 4{

// Allocate storage for the texture data

glTexImage2D (GL_TEXTURE_ 2D, 0, GL_DEPTH_COMPONENT32,
DEPTH_TEXTURE_SIZE, DEPTH_TEXTURE_SIZE, <
0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);

// Set the default filtering modes

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_ FILTER, GL_LINEAR);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

// Set up depth comparison mode

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_COMPARE_ MODE,

GL_COMPARE_REF_TO_TEXTURE) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);

// Set up wrapping modes

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) ;

glBindTexture (GL_TEXTURE_2D, 0);

// Create FBO to render depth into
glGenFramebuffers(l, &depth_f£fbo);

glBindFramebuffer (GL_FRAMEBUFFER, depth_fbo);
glFramebufferTexture(GL_FRAMEBUFFER,

// Actach the depth texture to it GL_DEPTH_ STENCIL_ATTACHMENT, depth_texture, 0);

—=J1FramebufferTexture (GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,

depth_texture, 0); <<
' // Disable color rendering as there are no color attachments
glprawBuffer (GL_NONE) ;

Check

http://openme.gl/opengl-4-tutorial-code/

glFramebuffer Texture(GL_FRAMEBUFFER,
GL_DEPTH_STENCIL_ATTACHMENT, depth_texture, 0);

DEPARTMENT OF

COMPUTER SCIENCE
NIRVIS /\\D ENGINEERING

oo

Vertex Coordinate Transform

From object to window coordinates

object . | modelview €ye . | projection clip
coordinates matrix coordinates matrix coordinates
(X, , 2, W) (X, ¥, Z, W) (x,¥,z,w)
divide normalized viewport & window (%,2)
R > (X,Y,Z
by w device depth range coordinates
coordinates
(X, ¥, 2)

I OEPARTMENT OF
¢ (S)l%_élcl[% COMPUTER SCIENCE
SURUIE! AND ENGINEERING

Eye Linear Texture Coordinate

Generating texture coordinates from eye-space

eye-linear
— | plane - (s t1q)
equations
object , | modelview |€Y€ > | projection clip
coordinates ~|™Matrix coordinates matrix coordinates
divide normalized iewport & window .)
> > (x,)z
by w device epth range | .oordinates
coordinates

OHIO

UNIVERSITY

PR OEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Transforms

xe
Eye

Ve __ | view Modeling

z, (look at) | | matrix

W, matrix

g 1/2 1/2

Light

2N 172 12| | frustum

7 (projection)
9 1

\

Light
view
(look at)
matrix

Inverse
eye
view
(look at)
matrix

PR DEPARTMENT OF

:

UNIVERSITY

+ H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

Map Generation

Setting Up Matrices

Example 7.16 Setting up the Matrices for Shadow Map Generation
// Time varying light position
vec3 light_position = vec3(

sinf(t » 6.0f » 3.141592f) » 300.0f,

200.0f,
cosf(t ~ 4.0f » 3.141592f) « 100.0f + 250.0f);

// Matrices for rendering the scene
= rotate(t = 720.0f, Y);

mat4 scene_model _matrix =
// Matrices used when rendering from the light’s position
mat4 light_view_matrix = lookat(light_position, wvec3(0.0f), Y);

mat4 light_projection_matrix(frustum(-1.0£, 1.0£, -1.0f, 1.0f,
1.0f, FRUSTUM_DEPTH)) ;

// Now we render from the light’'s position into the depth buffer.
// Select the appropriate program
glUseProgram(render_light_prog); <

gluniformMatrix4fv(render_light_uniforms.MVPMatrix,
1, GL_FALSE,

light_projection_matrix =
light _view matrix « <
scene_model_matrix);

PR DEPARTMENT OF

@51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Simple Shaders

Example 7.17 Simple Shader for Shadow Map Generation

————————————————————— Vertex Shader --————---——————-o oo ——
// Vertex shader for shadow map generation

#version 330 core
uniform matd MVPMatrix;
layout (location = 0) in vecd position;

void main (void)

{

gl Position = MVPMatrix * position; £
——————————————————— Fragment Shader - - ———-----—————- - ——

// Fragment shader for shadow map generation

#version 330 core

layout (location = 0) out vecd color;

void main(void)

{

color = vecd(1.0); <€

{ WO ¢ @ OEPARTMENT OF
@51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Depth Rendering

Example 7.18 Rendering the Scene From the Light’s Point of View

// Bind the "depth only" FBO and set the viewport to the size
// of the depth texture

glBindFramebuffer (GL_FRAMEBUFFER, depth_f£fbo);

glViewport (0, 0, DEPTH_TEXTURE_SIZE, DEPTH_TEXTURE_SIZE);

// Clear
glClearDepth(1.0f) ;
glClear (GL_DEPTH_BUFFER_BIT) ; <<

// Enable polygon offset to resolve depth-fighting isuses
glEnable (GL_POLYGON_OFFSET_FILL) ; <
glPolygonOffset (2.0£, 4.0f);

// Draw from the light’'s point of view

DrawScene (true) ;
glDisable (GL_POLYGON_ OFFSET_ FILL); (

PR DEPARTMENT OF

58] cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

In Practice

* Two Issues
— Constructing the depth map

* use existing hardware depth buffer
* use glPolygonOffset to offset depth value back
* read back the depth buffer contents

— Depth map can be copied to a 2D texture

* unfortunately, depth values tend to require more precision
than 8-bit typical for textures

* depth precision typically 16-bit or 24-bit

=, oy BRI 0ceARTMENT OF |
@)51®) coMPUTER SCIENCE
- N BUVIS \\D ENGINEERING |

glPolygonOffset

* Depth buffer contains “window space” depth values
— Post-perspective divide means non-linear distribution

— glPolygonOffset is guaranteed to be a window space
offset

 Doing a “clip space” glTranslatef is not sufficient
— Common shadow mapping implementation mistake

— Actual bias in depth buffer units will vary over the
frustum

— No way to account for slope of polygon

= es] PRELUIRY OEPARTMENT OF
A (S)DI?‘I\I]% COMPUTER SCIENCE
& BUAYIS AND ENGINEERING |

In Pictures - Pixel Centers

Consider a polygon covering pixels in 2D polygon

Pixel centers

@ OEPARTMENT OF

OHIO

COMPUTER SCIENCE
= AND ENGINEERING

In Pictures - Pixel Centers

Consider a 2" grid for the polygon covering pixels in 2D
K}

>
L 4
*
*
*
.0
*

*
L 4
*
*
*
L 4
L 4
*
.0
L 4

g
.0
.0
L 4

/ |sssssnsssanssnnnnnnnnnnnnnnnns LSTETTS SCLT R EEE R PEERRYPEERR P EEY >

@ OEPARTMENT OF

COMPUTER SCIENCE
NIRVIS /\\D ENGINEERING

In Pictures - Pixel Centers

Change of Z with respect to X

@ OEPARTMENT OF

OHIO

COMPUTER SCIENCE
NPRVBS! \ND ENGINEERING

glPolysonOffset s Slope

* Pixel center is re-sampled to another grid
— For example, the shadow map texture’ s grid!

e The re-sampled depth could be off by
+/-0.5 0z/0x and +/-0.5 0z/dy

e The maximum absolute error would be
| 0.5 9z/ox | +| 0.5 0z/dy | = max(| 0z/ax |, | dz/dy |)

— This assumes the two grids have pixel footprint area
ratios of 1.0

— Otherwise, we might need to scale by the ratio

 Exactly what polygon offset’ s “slope” depth bias does

Il OEPARTMENT OF

[oic

COMPUTER SCIENCE
MRS AN ENGINEERING

Results

How much polygon offset bias depends

Too little bias,
everything begins to

Too much bias, shadow

starts too far back
shadow

e PRy DEPARTMENT OF
OHIO COMPUTERSCI CE
(ALL Y mstm 5

Selecting Depth Map Bias

* Not that hard

— Usually the following works well
* glPolygonOffset(scale = |.1, bias = 4.0)

— Usually better to error on the side of too
much bias

* adjust to suit the shadow issues in your scene

— Depends somewhat on shadow map precision

* more precision requires less of a bias

— When the shadow map is being magnified, a
larger scale is often required

[T PRI OEPARTMENT OF
(S)DACI% COMPUTER SCIENCE
) BUAYH AND ENGINEERING |

Result

Figure 7.10

Depth rendering

O

OHIO
STATE

UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Using Shadow Map

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Matrices

Example 7.19 Matrix Calculations for Shadow Map Rendering

mat4 scene model matrix = rotate(t ~ 720.0f£, Y);
mat4 scene_view_matrix = translate(0.0f£, 0.0£, -3200.0f);
mat4 scene_projection_matrix = frustum(-1.0f, 1.0f, -aspect, aspect,
1.0f, FRUSTUM DEPTH) ;
mat4 scale_bias _matrix = mat4(vec4(0.5f£, 0.0£, 0.0£, 0.0£f),
vec4(0.0£, 0.5f£, 0.0£, 0.0f),
vec4(0.0£, 0.0£, 0.5f£, 0.0f),
vec4(0.5€£, 0.5f, 0.5f, 1.0f));
mat4 shadow_matrix = scale_bias_matrix =
light_projection_matrix =
light_view_matrix;

PR DEPARTMENT OF

58] cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Vertex
Shader

Example 7.20 Vertex Shader for Rendering from Shadow Maps

#version 330 core

uniform matd4d model_matrix;
uniform matd view_matrix;
uniform matd projection_matrix;

uniform matd4d shadow _matrix;

layout (location
layout (location

0) in vecd position;
1) in vec3 normal;

out VS_FS_TINTERFACE

{

vecd shadow_coord;
vec3 world_coord;
vec3 eye_coord;
vec3 normal;

} vertex;

void main (void)

{

vecd world _pos = model_matrix * position;
vecd eye pos = view_matrix * world_pos;
vecd clip pos = projection_matrix * eye_pos;

vertex.world_coord = world_pos.xXyz;
vertex.eye_coord = eye_poOS.XYZ;
vertex.shadow_coord = shadow_matrix * world_pos;

vertex.normal = mat3 (view_matrix * model_matrix) * normal;

gl_Position = clip_pos;

T LR DEPARTMENT OF
@/51®] comMPUTER SCIENCE
SIWS! AN D ENGINEERING

UNIVERSITY

Transforms

xe
Eye

Ve __ | view Modeling

z, (look at) | | matrix

W, matrix

g 1/2 1/2

Light

2N 172 12| | frustum

7 (projection)
9 1

\

Light
view
(look at)
matrix

Inverse
eye
view
(look at)
matrix

PR DEPARTMENT OF

:

UNIVERSITY

+ H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

Map Generation

F ra m e nt Example 7.21 Fragment Shader for Rendering from Shadow Maps
g #version 330 core

uniform sampler2DShadow depth_texture;
: Iq a d E I: uniform vec3 light_position;

uniform vec3 material_ambient;

uniform vec3 material_diffuse;

uniform vec3 material specular;
uniform float material_specular_ power;

layout (location = 0) out vecd color;

in VS_FS_INTERFACE

{
vecd shadow_coord;
vec3 world_coord;
vec3 eye_coord;
vec3 normal;

} fragment;

void main (void)

{
vec3N = fragment.normal;
vec3L=normalize(light_position - fragment.world_coord) ;
vec3R = reflect(-L, N);
vec3 E = normalize(fragment.eye_coord) ;
float NdotL dot (N, L);
float EdotR dot (-E, R);

floatdiffuse = max(NdotL, 0.0);
float specular =max (pow (EdotR, material_specular_ power), 0.0);

float f = textureProj (depth_texture, fragment.shadow_coord) ;

color = vecd (material_ambient +
f *+ (material_diffuse * diffuse +
TR 0connTMENT OF material_specular * specular), 1.0);

Of
SIA

31®) comPUTER SCIEI)
WSl AND ENGINEERID

UNIVERSITY

Chapter 8 K@Jolcsl€:F

Programming Guide
Eighth Edition

The Official Guide to Learning

OpenGL®, Version 4.3

. Dave Shreiner ® Graham Sellers ® John Kessenich ¢ Bill Licea-Kane
g OEPARTMENT OF

O[}/{IO COMPUTER SCIENCE The Khronos OpenGL ARB Working Group
SIS AND ENGINEERING

UNIVERSITY

Procedural Texturing

PR DEPARTMENT OF

T*'H
@)51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Regular Patterns

- r - H DEPARTMENT OF
fom @)@ cOMPUTER SCIENCE
= B BVaUS \\D ENGINEERING

Example 8.1 Vertex Shader for Drawing Stripes

#iversion 330 core

uniform vec3 LightPosition;
uniform vec3 LightColor;
uniform vec3 EyePosition;
uniform vec3 Specular;
uniform vec3 Ambient;

uniform float Kd4d;
uniform matd MvVMatrix;

uniform matd MVPMatrix;
e r eX uniform mat3 NormalMatrix;
in vecd MCVertex;
in vec3 MCNormal;
Shader e
out vec3 DiffuseColor;
out vec3 SpecularColor;

out float TexCoord;

void main()

{
vec3 ecPosition = vec3 (MVMatrix » MCVertex);
vec3 tnorm = normalize(NormalMatrix * MCNormal) ;
vec3 lightvec = normalize(LightPosition - ecPosition);
vec3 viewvec = normalize(EyePosition - ecPosition);
vec3 hvec = normalize(viewvec + lightvec);
float spec = clamp(dot(hvec, tnorm), 0.0, 1.0);
spec = pow(spec, 16.0);
DiffuseColor = LightColor = vec3(Kd = dot(lightvec, tnorm));
DiffuseColor = clamp (Ambient + DiffuseColor, 0.0, 1.0);
SpecularColor = clamp((LightColor * Specular » spec), 0.0, 1.0);
. TexCoord = TexCoord0l.t;
RGN 0EPARTMENT OF
()b“() COMPUTER SCIENCE gl_Position = MVPMatrix » MCVertex;
NPRVBS! \ND ENGINEERING }

Anti-aliasing

— At x

W A -

ol Sinin olux led . -

3Dabx

Figure 8.2 Stripes close-up
(Extreme close-up view of one of the stripes that shows the effect of the
“fuzz” calculation from the stripe shader (courtesy of LightWork Design).)

MY oceARTMENT OF
4 COMPUTER SCIENCE
4 AND ENGINEERING

Example 8.2 Fragment Shader for Drawing Stripes
'S'h'&d'e'p #iversion 330 core

uniform vec3 StripeColor;
uniform vec3 BackColor;

uniform float Width;
uniform float Fuzz;
uniform float Scale;

in vec3 DiffuseColor;
in vec3 SpecularColor;
in float TexCoord;

out vecd FragColor;

void main()

{
float scaledT = fract(TexCoord * Scale);
®» float fracl = clamp (scaledT / Fuzz, 0.0, 1.0);
®» float frac2 = clamp((scaledT - width) / Fuzz, 0.0, 1.0);
fracl = fracl * (1.0 - frac2);
fracl = fracl * fracl * (3.0 - (2.0 * fracl));
H it
In:g:;o(laatlﬁﬁ > vec3 finalColor =mix(BackColor, StripeColor, fracl);
finalColor = finalColor * DiffuseColor + SpecularColor;
FragColor = vecd(finalColor, 1.0);
}
T H @ OEPARTMEN
%}\l[% COMPUTER SCIENCE

AND ENGINEERING

UNIVERSITY

