
CSE 5542 - Real Time Rendering	

	

 	

 	

Week 11, 12, 13,14	

Texture Mapping	

Courtesy: Ed Angel	

2

Limits of Geometric Modeling	

Millions of Polygons/Second	

Cannot Do	

Use Textures	

Orange	

Orange Spheres	

Texture Mapping	

Looking Better	

Still Not Enough	

Local Variation	

Texture Mapping	

Globe	

Not Mercator	

Yet Another Fruit	

17

Three Types of Mapping

Generating Textures	

Pictures	

Algorithms	

Checkerboard Texture	

21

 GLubyte image[64][64][3];	

	

// Create a 64 x 64 checkerboard pattern	

 for (int i = 0; i < 64; i++) {	

 for (int j = 0; j < 64; j++) {	

 GLubyte c = (((i & 0x8) == 0) ^ ((j & 0x8) == 0)) * 255;	

 image[i][j][0] = c;	

 image[i][j][1] = c;	

 image[i][j][2] = c;	

Brick Wall	

Noise	

Marble	

25

Texture Mapping

geometric model texture mapped

26

Environment Mapping

27

Bump Mapping

28

Three Types
Texture mapping	

smooth shading	

 environment	

 mapping	

bump mapping	

29

Texture Mapping - Pipeline 	

Mapping techniques are implemented at the end of the
rendering pipeline	

– Very efficient because few polygons make it past the
clipper 	

G eometry
processing

Rasteri z a tion Fra gment
processing

Vertices

Pixel
processing

Pixels

Frame
buffer

30

Mapping Mechanics	

3 or 4 coordinate systems involved	

2D image	

3D surface	

31	

Texture Mapping	

parametric coordinates	

texture coordinates	

world coordinates	

window coordinates	

32	

Coordinate Systems	

•  Parametric coordinates	

– Model curves and surfaces	

•  Texture coordinates	

–  Identify points in image to be mapped	

•  Object or World Coordinates	

– Conceptually, where the mapping takes place	

•  Screen Coordinates	

– Where the final image is really produced	

33	

Mapping Functions	

Mapping from texture coords to point on surface	

 	

•  Appear to need three functions	

x = x(s,t)	

y = y(s,t)	

z = z(s,t)	

•  Other direction needed	

s	

t	

(x,y,z)	

34

Backward Mapping	

Mechanics	

–  Given a pixel want point on object it corresponds	

–  Given point on object want point in the texture it

corresponds	

Need a map of the form 	

s = s(x,y,z)	

t = t(x,y,z)	

Such functions are difficult to find in general 	

	

	

35	

Two-part mapping	

•  First map texture to a simple intermediate surface	

•  Map to cylinder	

36

Cylindrical Mapping	

parametric cylinder	

x = r cos 2π u	

y = r sin 2πu	

z = v/h	

maps rectangle in u,v space to cylinder	

of radius r and height h in world coordinates	

s = u	

t = v	

maps from texture space	

37	

Spherical Map	

We can use a parametric sphere	

x = r cos 2πu	

y = r sin 2πu cos 2πv	

z = r sin 2πu sin 2πv	

in a similar manner to the cylinder	

but have to decide where to put	

the distortion	

	

Spheres are used in environmental maps	

38	

Box Mapping	

•  Easy to use with simple orthographic projection	

•  Also used in environment maps	

39	

Second Mapping	

Map from intermediate object to actual object	

– Normals from intermediate to actual	

– Normals from actual to intermediate	

– Vectors from center of intermediate 	

intermediate	

actual	

40

Aliasing
Point sampling of texture leads to aliasing errors

point samples in u,v
(or x,y,z) space

point samples in texture space

miss blue stripes

41	

Anti-Aliasing in Textures	

 point	

sampling	

mipmapped	

 point	

sampling	

mipmapped	

 linear	

 filtering	

 linear	

 filtering	

42

Area Averaging
A better but slower option is to use area averaging

Note that preimage of pixel is curved

pixel preimage

43

OpenGL Texture

44

Basic Stragegy	

Three steps 	

1.  Specify texture	

•  read or generate image	

•  assign to texture	

•  enable texturing	

2.  Assign texture coordinates to vertices	

•  Proper mapping function is left to application	

3.  Specify texture parameters	

•  wrapping, filtering	

45

Texture Mapping	

s

t

x	

y	

z	

image	

geometry	

 display	

46

Texture Example

47

Texture Mapping in OpenGL	

geometry pipeline	

vertices	

pixel pipeline	

image	

fragment
processo

r	

48

•  Define a texture image from an array of ���
 texels (texture elements) in CPU memory	

 Glubyte my_texels[512][512];	

•  Define as any other pixel map	

–  Scanned image	

–  Generate by application code	

•  Enable texture mapping	

–  glEnable(GL_TEXTURE_2D)	

–  OpenGL supports 1-4 dimensional texture maps	

Specifying a Texture Image	

49

glTexImage2D(target, level, components, w, h, border, format, type, texels);	

	

	

target: type of texture, e.g. GL_TEXTURE_2D	

	

level: used for mipmapping	

	

components: elements per texel	

	

w, h: width and height of texels in pixels	

	

border: used for smoothing 	

	

format and type: describe texels	

	

texels: pointer to texel array	

	

glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0, GL_RGB,

GL_UNSIGNED_BYTE, my_texels);	

	

Defining a Texture Image	

50	

•  Based on parametric texture coordinates	

•  glTexCoord*() specified at each vertex	

s	

t	

1, 1	

0, 1	

0, 0	

 1, 0	

(s, t) = (0.2, 0.8)	

(0.4, 0.2)	

(0.8, 0.4)	

A	

B	

 C	

a	

b	

c	

Texture Space	

 Object Space	

Mapping a Texture	

51

GLSL - Typical Code	

offset = 0;	

GLuint vPosition = glGetAttribLocation(program, "vPosition");	

glEnableVertexAttribArray(vPosition);	

glVertexAttribPointer(vPosition, 4, GL_FLOAT, GL_FALSE,

0,BUFFER_OFFSET(offset));	

	

offset += sizeof(points);	

GLuint vTexCoord = glGetAttribLocation(program, "vTexCoord");	

glEnableVertexAttribArray(vTexCoord);	

glVertexAttribPointer(vTexCoord, 2,GL_FLOAT,	

 GL_FALSE, 0, BUFFER_OFFSET(offset));	

Adding Texture Coordinates	

52

void quad(int a, int b, int c, int d)	

{	

 quad_colors[Index] = colors[a];	

 points[Index] = vertices[a];	

 tex_coords[Index] = vec2(0.0, 0.0);	

 index++;	

 quad_colors[Index] = colors[a];	

 points[Index] = vertices[b];	

 tex_coords[Index] = vec2(0.0, 1.0);	

 Index++;	

	

// other vertices	

}	

Role of Interpolation	

54	

Interpolation	

OpenGL uses interpolation to find proper texels from specified

texture coordinates	

Can be distorted	

good selection	

of tex coordinates	

poor selection	

of tex coordinates	

texture stretched	

over trapezoid 	

showing effects of 	

bilinear interpolation	

Interpolation	

Control of Texture Mapping	

57	

Texture Parameters	

OpenGL has a variety of parameters that determine
how texture is applied	

– Wrapping parameters determine what happens if s and t
are outside the (0,1) range	

–  Filter modes allow us to use area averaging instead of
point samples	

– Mipmapping allows us to use textures at multiple
resolutions	

–  Environment parameters determine how texture
mapping interacts with shading	

Wrapping Mode	

Clamping: if s,t > 1 use 1, if s,t <0 use 0	

Wrapping: use s,t modulo 1	

glTexParameteri(GL_TEXTURE_2D, ���
 GL_TEXTURE_WRAP_S, GL_CLAMP)	

glTexParameteri(GL_TEXTURE_2D, ���
 GL_TEXTURE_WRAP_T, GL_REPEAT)	

texture	

s	

t	

GL_CLAMP	

wrapping	

GL_REPEAT	

wrapping	

59	

Magnification/Minification

Texture	

 Polygon	

Magnification	

 Minification	

Polygon	

Texture	

More than one texel can cover a pixel (minification) or	

more than one pixel can cover a texel (magnification)	

	

Can use point sampling (nearest texel) or linear filtering	

(2 x 2 filter) to obtain texture values	

	

60

Filter Modes	

Modes determined by	

–  glTexParameteri(target, type, mode) 	

glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MAG_FILTER,	

 GL_NEAREST);	

glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MIN_FILTER,	

 GL_LINEAR);	

Note that linear filtering requires a border of an 	

extra texel for filtering at edges (border = 1)	

61

Mipmapped Textures	

•  Mipmapping allows for prefiltered texture maps of

decreasing resolutions	

•  Lessens interpolation errors for smaller textured
objects	

•  Declare mipmap level during texture definition	

glTexImage2D(GL_TEXTURE_*D, level, …)	

	

MipMaps	

Mip-Mapping	

Mip-Mapping	

65	

Example	

 point	

sampling	

mipmapped	

 point	

sampling	

mipmapped	

 linear	

 filtering	

 linear	

 filtering	

66

Texture Functions	

•  Controls how texture is applied	

•  glTexEnv{fi}[v](GL_TEXTURE_ENV, prop,
param) 	

•  GL_TEXTURE_ENV_MODE modes	

–  GL_MODULATE: modulates with computed shade 	

	

–  GL_BLEND: blends with an environmental color 	

	

–  GL_REPLACE: use only texture color	

–  GL(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,

GL_MODULATE);	

•  Set blend color with
GL_TEXTURE_ENV_COLOR	

	

67

Using Texture Objects	

1.  specify textures in texture objects	

2.  set texture filter 	

3.  set texture function 	

4.  set texture wrap mode	

5.  set optional perspective correction hint	

6.  bind texture object 	

7.  enable texturing	

8.  supply texture coordinates for vertex	

–  coordinates can also be generated	

68

Other Texture Features	

•  Environment Maps	

–  Start with image of environment through a wide angle
lens 	

•  Can be either a real scanned image or an image created in
OpenGL	

– Use this texture to generate a spherical map	

– Alternative is to use a cube map	

•  Multitexturing	

– Apply a sequence of textures through cascaded texture

units	

GLSL	

Samplers	

https://www.opengl.org/wiki/Sampler_(GLSL)	

Applying Textures	

•  Textures are applied during fragment shading by a

sampler	

•  Samplers return a texture color from a texture object	

71

in vec4 color; //color from rasterizer	

in vec2 texCoord; //texure coordinate from rasterizer	

uniform sampler2D texture; //texture object from application	

	

void main() { 	

 gl_FragColor = color * texture2D(texture, texCoord);	

} 	

	

Vertex Shader	

•  Usually vertex shader will output texture coordinates to

be rasterized	

•  Must do all other standard tasks too	

– Compute vertex position	

– Compute vertex color if needed	

72	

in vec4 vPosition; //vertex position in object coordinates	

in vec4 vColor; //vertex color from application	

in vec2 vTexCoord; //texture coordinate from application 	

	

out vec4 color; //output color to be interpolated	

out vec2 texCoord; //output tex coordinate to be
interpolated	

	

Adding Texture Coordinates	

73

void quad(int a, int b, int c, int d)	

{	

 quad_colors[Index] = colors[a];	

 points[Index] = vertices[a];	

 tex_coords[Index] = vec2(0.0, 0.0);	

 index++;	

 quad_colors[Index] = colors[a];	

 points[Index] = vertices[b];	

 tex_coords[Index] = vec2(0.0, 1.0);	

 Index++;	

	

// other vertices	

}	

Texture Object	

74	

 GLuint textures[1];	

 glGenTextures(1, textures);	

	

 glBindTexture(GL_TEXTURE_2D, textures[0]);	

 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, TextureSize, 	

 TextureSize, 0, GL_RGB, GL_UNSIGNED_BYTE, image);	

 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, 	

 GL_REPEAT);	

 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, 	

 GL_REPEAT);	

 glTexParameterf(GL_TEXTURE_2D, 	

 GL_TEXTURE_MAG_FILTER, GL_NEAREST);	

 glTexParameterf(GL_TEXTURE_2D, 	

 GL_TEXTURE_MIN_FILTER, GL_NEAREST);	

 glActiveTexture(GL_TEXTURE0); 	

Linking with Shaders	

75

 GLuint vTexCoord = glGetAttribLocation(program, "vTexCoord");	

 glEnableVertexAttribArray(vTexCoord);	

 glVertexAttribPointer(vTexCoord, 2, GL_FLOAT, GL_FALSE, 0,	

 BUFFER_OFFSET(offset));	

	

 // Set the value of the fragment shader texture sampler variable	

 // ("texture") to the the appropriate texture unit. In this case,	

 // zero, for GL_TEXTURE0 which was previously set by calling	

 // glActiveTexture().	

 glUniform1i(glGetUniformLocation(program, "texture"), 0);	

76

Vertex Shader Applications	

•  Moving vertices	

– Morphing 	

– Wave motion	

–  Fractals	

•  Lighting	

– More realistic models	

– Cartoon shaders	

77

Wave Motion Vertex Shader	

uniform float time;	

uniform float xs, zs, // frequencies 	

uniform float h; // height scale	

uniform mat4 ModelView, Projection;	

in vec4 vPosition;	

	

void main() {	

 vec4 t =vPosition;	

 t.y = vPosition.y 	

 + h*sin(time + xs*vPosition.x)	

 + h*sin(time + zs*vPosition.z);	

 gl_Position = Projection*ModelView*t;	

}	

	

Particle System	

uniform vec3 init_vel;	

uniform float g, m, t;	

uniform mat4 Projection, ModelView;	

in vPosition;	

void main(){	

vec3 object_pos;	

object_pos.x = vPosition.x + vel.x*t;	

object_pos.y = vPosition.y + vel.y*t 	

 + g/(2.0*m)*t*t;	

object_pos.z = vPosition.z + vel.z*t;	

gl_Position = Projection*	

 ModelView*vec4(object_pos,1);	

}	

	

 78

Example	

http://www.lighthouse3d.com/tutorials/glsl-core-
tutorial/glsl-core-tutorial-texturing-with-images/	

Example	

http://www.lighthouse3d.com/tutorials/glsl-tutorial/
simple-texture/	

81

Fragment Shader
Texture mapping	

smooth shading	

 environment	

 mapping	

bump mapping	

82

Cube Maps	

•  We can form a cube map texture by defining six 2D

texture maps that correspond to the sides of a box	

•  Supported by OpenGL	

•  Also supported in GLSL through cubemap sampler	

vec4 texColor = textureCube(mycube, texcoord);	

•  Texture coordinates must be 3D	

83

Environment Map	

Use reflection vector to locate texture in cube map	

84

Environment Maps with Shaders	

•  Computed in world coordinates 	

–  keep track of modeling matrix & pass as a uniform
variable	

•  Use reflection map or refraction map 	

•  Simulate water	

85

Reflection Map Vertex Shader	

uniform mat4 Projection, ModelView, NormalMatrix;	

in vec4 vPosition;	

in vec4 normal;	

out vec3 R;	

	

void main(void)	

{	

 gl_Position = Projection*ModelView*vPosition;	

 vec3 N = normalize(NormalMatrix*normal);	

 vec4 eyePos = ModelView*gvPosition;	

 R = reflect(-eyePos.xyz, N);	

}	

	

86

Reflection Map Fragment Shader	

in vec3 R;	

uniform samplerCube texMap;	

	

void main(void)	

{	

 gl_FragColor = textureCube(texMap, R);	

}	

	

87

Bump Mapping	

•  Perturb normal for each fragment	

•  Store perturbation as textures	

Back 2 Orange	

91	

The Orange	

•  Texture map a photo of an orange onto a surface	

– Captures dimples	

– Will not be correct if we move viewer or light	

– We have shades of dimples rather than their correct

orientation	

•  Ideally perturb normal across surface of object
and compute a new color at each interior point	

92

Bump Mapping (Blinn)
Consider a smooth surface

n

p

93

Rougher Version

n’

p

p’

94

Equations	

pu=[∂x/ ∂u, ∂y/ ∂u, ∂z/ ∂u]T

p(u,v) = [x(u,v), y(u,v), z(u,v)]T

pv=[∂x/ ∂v, ∂y/ ∂v, ∂z/ ∂v]T

n = (pu × pv) / | pu × pv |

95

Tangent Plane

pu

pv

n

96

Displacement Function	

p’ = p + d(u,v) n	

d(u,v) is the bump or displacement function	

	

|d(u,v)| << 1	

97

Perturbed Normal	

n’ = p’u × p’v	

p’u = pu + (∂d/∂u)n + d(u,v)nu	

p’v = pv + (∂d/∂v)n + d(u,v)nv	

If d is small, we can neglect last term	

98

Approximating the Normal	

n’ = p’u × p’v	

≈ n + (∂d/∂u)n × pv + (∂d/∂v)n × pu 	

 	

The vectors n × pv and n × pu lie 	

in the tangent plane 	

Hence the normal is displaced in the tangent plane	

Must precompute the arrays ∂d/ ∂u and ∂d/ ∂v 	

Finally,we perturb the normal during shading	

Compositing & Blending	

102

103	

A	

- Blending for translucent surfaces	

- Compositing images	

- Antialiasing	

A	

A	

106

A
•  Opaque surfaces permit no light to pass through
•  Transparent surfaces permit all light to pass
•  Translucent surfaces pass some light
 translucency = 1 – opacity (α)

opaque surface α =1

107

Physical Models
Translucency in a physically correct manner is difficult

–  the complexity of the internal interactions of light
and matter

– Using a pipeline renderer

Compositing Operation	

109	

Rendering Model	

•  Use A component of RGBA (or RGBa) color for opacity	

•  During rendering expand to use RGBA values 	

	

Color Buffer	

	

destination	

component	

blend	

destination blending	

 factor	

source blending factor	

 source	

component	

Examples	

One Method	

112	

Blending Equation	

We can define source and destination blending factors
for each RGBA component	

 s = [sr, sg, sb, sa]	

 d = [dr, dg, db, da]	

Suppose that the source and destination colors are	

 b = [br, bg, bb, ba]	

 c = [cr, cg, cb, ca]	

Blend as	

c’ = [br sr+ cr dr, bg sg+ cg dg , bb sb+ cb db , ba sa+ ca da]	

	

	

113	

OpenGL	

Must enable blending and pick source and destination
factors	

 glEnable(GL_BLEND)	

 glBlendFunc(source_factor, 	

 destination_factor)	

Only certain factors supported	

GL_ZERO, GL_ONE	

GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA	

GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA	

See Redbook for complete list	

Operator	

115

Example	

•  Start with the opaque background color (R0,G0,B0,1) 	

–  Initial destination color	

•  Blend in a translucent polygon with color (R1,G1,B1,a1)	

•  Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA

as the source and destination blending factors	

 R’

1 = a1 R1 +(1- a1) R0, …… 	

•  Note this formula is correct if polygon is either opaque or

transparent	

Works Here Too…	

117	

Clamping and Accuracy	

•  All RGBA are clamped to the range (0,1)	

•  RGBA values 8 bits !	

–  Loose accuracy after much components together	

–  Example: add together n images	

•  Divide all color components by n to avoid clamping	

•  Blend with source factor = 1, destination factor = 1	

•  But division by n loses bits	

118
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Order Dependency	

119
E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

Order Dependency	

•  Is this image correct?	

–  Probably not	

–  Polygons are rendered	

in the order they pass	

down the pipeline	

– Blending functions	

are order dependent	

120	

HSR with A	

•  Polygons which are opaque & translucent	

•  Opaque polygons block all polygons behind & affect depth

buffer	

•  Translucent polygons should not affect depth buffer	

–  Render with glDepthMask(GL_FALSE) which makes depth buffer
read-only	

•  Sort polygons first to remove order dependency	

Fog	

122	

Simulate Fog	

•  Composite with fixed color and have blending factors

depend on depth	

–  Simulates a fog effect	

•  Blend source color Cs and fog color Cf by 	

 Cs’=f Cs + (1-f) Cf	

•  f is the fog factor	

–  Exponential	

– Gaussian	

–  Linear (depth cueing) 	

123	

F - Fog Functions	

124	

Antialiasing 	

Color a pixel by adding fraction of color to frame buffer	

–  Fraction depends on percentage of pixel covered by
fragment 	

–  Fraction depends on whether there is overlap	

no overlap	

 overlap	

125	

 Area Averaging 	

Use average area a1+a2-a1a2 as blending factor	

126	

OpenGL Antialiasing	

Enable separately for points, lines, or
polygons	

glEnable(GL_POINT_SMOOTH);	

glEnable(GL_LINE_SMOOTH);	

glEnable(GL_POLYGON_SMOOTH);	

	

glEnable(GL_BLEND);	

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);	

127	

Accumulation	

•  Compositing/blending limited by resolution of frame

buffer	

– Typically 8 bits per color component	

•  Accumulation buffer was a high resolution buffer (16 or

more bits per component) that avoided this problem	

•  Could write into it or read from it with a scale factor	

•  Slower than direct compositing into the frame buffer	

Particle Systems	

128	

Many Uses	

•  Used to model	

– Natural phenomena	

•  Clouds	

•  Terrain	

•  Plants	

– Crowd Scenes	

– Real physical processes	

130	

Newtonian Particle	

•  Particle system is a set of particles	

•  Each particle is an ideal point mass	

•  Six degrees of freedom	

–  Position	

– Velocity	

•  Each particle obeys Newtons’ law	

 f = ma	

131	

Particle Equations	

pi = (xi, yi zi)	

vi = dpi /dt = pi

‘
 = (dxi /dt, dyi /dt , zi /dt)	

	

m vi

‘= fi	

Hard part is defining force vector	

Force Vector	

•  Independent Particles 	

– Gravity	

– Wind forces	

– O(n) calulation	

•  Coupled Particles O(n)	

– Meshes	

–  Spring-Mass Systems	

•  Coupled Particles O(n2)	

– Attractive and repulsive forces	

Solution of Particle Systems	

float time, delta state[6n], force[3n];	

state = initial_state();	

for(time = t0; time<final_time, time+=delta) {	

force = force_function(state, time);	

state = ode(force, state, time, delta);	

render(state, time)	

}	

Simple Forces	

•  Consider force on particle i	

 fi = fi(pi, vi)	

•  Gravity fi = g	

 g= (0, -g, 0)	

•  Wind forces	

•  Drag	

pi(t0), vi(t0)	

Meshes	

•  Connect each particle to its closest neighbors	

– O(n) force calculation	

•  Use spring-mass system	

Spring Forces	

•  Assume each particle has unit mass and is

connected to its neighbor(s) by a spring	

•  Hooke’s law: force proportional to

distance (d = ||p – q||) between the points	

Hooke’s Law	

Let s be the distance when there is no force	

 f = -ks(|d| - s) d/|d|	

ks is the spring constant	

d/|d| is a unit vector pointed from p to q	

	

Each interior point in mesh has four forces applied to
it	

Spring Damping	

•  A pure spring-mass will oscillate forever	

•  Must add a damping term	

f = -(ks(|d| - s) + kd d·d/|d|)d/|d|	

	

•  Must project velocity	

·	

Attraction and Repulsion	

•  Inverse square law	

 f = -krd/|d|3	

•  General case requires O(n2) calculation	

	

•  In most problems, the drop off is such that not

many particles contribute to the forces on any given
particle	

•  Sorting problem: is it O(n log n)?	

Solution of ODEs	

•  Particle system has 6n ordinary differential

equations	

•  Write set as du/dt = g(u,t)	

•  Solve by approximations using Taylor’s Thm	

141	

Euler’s Method	

u(t + h) ≈ u(t) + h du/dt = u(t) + hg(u, t)	

	

Per step error is O(h2)	

Require one force evaluation per time step	

	

Problem is numerical instability	

	

depends on step size	

142	

Improved Euler	

u(t + h) ≈ u(t) + h/2(g(u, t) + g(u, t+h)) 	

	

Per step error is O(h3)	

Also allows for larger step sizes	

But requires two function evaluations per step	

Also known as Runge-Kutta method of order 2	

Contraints	

•  Easy in computer graphics to ignore physical

reality	

•  Surfaces are virtual	

•  Must detect collisions separately if we want exact

solution	

•  Can approximate with 	

repulsive forces	

144	

Collisions	

Once we detect a collision, we can calculate

new path	

Use coefficient of resititution	

Reflect vertical component	

May have to use partial time step	

Example	

pi = (xi, yi zi)	

vi = dpi /dt = pi

‘
 = (dxi /dt, dyi /dt , zi /dt)	

m vi
‘= fi	

	

	

	

	

Pi	

Pi+1	

vi 	

Collision ?	

Pi	

Pi+1	

Problem: ���
Triangle & Ray Distinct Objects	

Ray/Triangle Intersection	

Advanced Features of GLSL ���
TF - Transform Feedback���
TBO – Texture Buffer Obejct	

Chapter 5	

An Introduction to
the OpenGL Shading
Language	

151	

Fixed Functionality Pipeline	

API	

Transform	

and 	

Lighting	

Rasterizer	

Primitive	

Assembly	

Texture	

Environment	

Depth	

Stencil	

Color	

Sum	

Alpha	

Test	

Fog	

Dither	

Color	

Buffer	

Blend	

Vertex	

Buffer	

Objects	

Vertices	

Triangles/Lines/Points	

Primitive	

Processing	

Frame Buffer	

An Introduction to
the OpenGL Shading
Language	

152	

Programmable Shader Pipeline	

API	

Vertex	

Shader	

 Rasterizer	

Primitive	

Assembly	

Fragment	

Shader	

Depth	

Stencil	

 Dither	

Color	

Buffer	

Blend	

Vertex	

Buffer	

Objects	

Vertices	

Triangles/Lines/Points	

Primitive	

Processing	

Frame Buffer	

Alpha	

Test	

Back2Particles	

Schema	

Geometry Pass	

Storing Geometry	

TBO writing	

Transform Feedback	

Transform feedback?	

RedBook says: “Transform Feedback is the process of altering the
rendering pipeline so that primitives processed by a Vertex Shader and
optionally a Geometry Shader will be written to buffer objects. This
allows one to preserve the post-transform rendering state of an object
and resubmit this data multiple times.”	

Transform Feedback diagram	

Absence of Transform Feedback	

To update Vertex Buffer Object’s attributes:	

	

1. OpenGL copies VBO from GPU memory to CPU memory	

2. Update in CPU and send back	

3. Consumes time and bandwidth	

Role of TF	

1. All computations are now conducted in GPU	

2. A special buffer after shaders and send transformations 	

	

	

CPU not needed and little application involvement	

Transform Feedback Examples	

http://www.youtube.com/watch?v=SiCq8ETTqRk	

- Uses TF to render a particle smoke system with fire spreading	

http://www.youtube.com/watch?v=E636tYOxoVI	

	

Attain good performance can be by using TF. It controls all of the
particles in this on the GPU.	

Programmer’s Model	

Vertex	

Shader	

Fragment	

Shader	

Primitive	

Assembly	

& Rasterize	

Per-Sample	

Operations	

Attributes	

(m * vec4)	

Vertex Uniforms	

(p * vec4)	

Varyings	

(n * vec4)	

Fragment Uniforms	

(q * vec4)	

An Introduction to
the OpenGL Shading
Language	

164	

Vertex Shader Environment	

Attribute 0	

Uniforms	

 Textures	

Attribute 1	

Attribute 2	

Attribute 3	

Attribute 4	

Attribute 5	

…	

Attribute m	

Varying 0	

Varying 1	

Varying 2	

Varying 3	

Varying 4	

Varying 5	

…	

Varying n	

Temporary
variables	

Clip position	

Vertex Shader	

Point size	

An Introduction to
the OpenGL Shading
Language	

165	

Fragment Shader Environment	

Uniforms	

 Textures	

Temporary
variables	

Fragment
Color(s)	

Varying 0	

Varying 1	

Varying 2	

Varying 3	

Varying 4	

Varying 5	

…	

Varying n	

Fragment Shader	

Window coord	

Front facing flag	

Point coord	

Fragment Depth	

Collision Detection	

Pi	

Pi+1	

Find intersection of ray with plane	

	

Find actual intersection	

Ray/Triangle Intersection	

Some Math	

Some Math	

Fast Ray-Triangle Intersection	

Final Computations	

Geometry Pass	

Vertex Shader	

Configuring Geometry Pass	

TBO writing	

Particle Pass	

Find intersection of ray and plane with triangle	

http://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection	

Find actual intersection	

https://www.opengl.org/sdk/docs/man/html/texelFetch.xhtml	

Configuring Particle Pass	

Shadows	

180	

Shadows & Textures ?	

Shadows & Textures ?	

Real-time Shadow Techniques	

Shadow
volumes

Light maps

Projected
planar
shadows

Hybrid
approaches

•  Luxo Jr. has two animated lights and
one overhead light	

•  Three shadow maps dynamically
generated per frame	

•  Complex geometry (cords and lamp
arms) all correctly shadowed	

•  User controls the view, shadowing just
works	

Luxo Jr. – The Famous One	

(Sorry, no demo. Images are from web cast video
 of Apple’s MacWorld Japan announcement.)

Shadow Mapping	

186	

Projective Shadows	

•  Projection of a polygon is a polygon called a shadow

polygon	

•  Given a point light source and a polygon, the

vertices of the shadow polygon are the projections
of the original polygon’s vertices from a point
source onto a surface	

187	

Visualizing Shadow Mapping	

the point
light source

Visualizing Shadow Mapping	

Compare with and without shadows	

with shadows without shadows

Shadow Process	

1.  Put two identical triangles and their colors on GPU

(black for shadow triangle)	

2.  Compute two model view matrices as uniforms	

3.  Send model view matrix for original triangle	

4.  Render original triangle	

5.  Send second model view matrix	

6.  Render shadow triangle	

–  Note shadow triangle undergoes two transformations	

–  Note hidden surface removal takes care of depth issues	

190	

Shadow Map Matrices	

1.  Source at (xl, yl, zl)	

2.  Vertex at (x, y, z)	

3.  Consider simple case of shadow projected onto

ground at (xp, 0, zp)	

4.  Translate source to origin with T(-xl, -yl, -zl)	

5.  Perspective projection	

6.  Translate back 	

191	

€

M =

1 0 0 0
0 1 0 0
0 0 1 0
0 1

−
l
y 0 0

$

%
%
%
%
%

&

'

(
(
(
(
(

Shadow Maps	

•  Render a scene from a light source; depth buffer will

contain the distances from the source to each fragment. 	

•  Store depths in texture called depth/shadow map	

•  Render image in shadow map with light - anything lit is not

in shadow.	

•  Form a shadow map for each source	

Example	

Shadows	

194	

Shadow Map	

Final Rendering	

•  Compare distance from fragment to light source

with distance in the shadow map	

•  If depth in shadow map is less than distance from

fragment to source, fragment is in shadow (from
this source)	

•  Otherwise we use rendered color	

Visualizing Shadow Mapping	

Scene with shadows	

Notice how
specular

highlights never
appear in
shadows

Notice how
curved surfaces
cast shadows
on each other

Applications Side	

•  Start with vertex in object coordinates	

•  Want to convert representation to texture coordinates	

•  Form LookAt matrix from light source to origin in object

coordinates (MVL)	

•  From projection matrix for light source (PL)	

•  From a matrix to convert from [-1, 1] clip coordinates to
[0, 1] texture coordinates 	

•  Concatenate to form object to texture coordinate matrix
(OTC)	

Visualizing Shadow Mapping	

The scene from the light’s point-of-view	

FYI: from the
eye’s point-of-view
again

Visualizing Shadow Mapping	

The depth buffer from the light’s point-of-view	

FYI: from the
light’s point-of-view
again

Visualizing Shadow Mapping	

Projecting the depth map onto the eye’s view	

FYI: depth map for
light’s point-of-view
again

Visualizing Shadow Mapping	

Projecting light’s planar distance onto eye’s view	

Visualizing Shadow Mapping	

Comparing light distance to light depth map 	

Green is where
the light planar

distance and
the light depth

map are
approximately

equal

Non-green is
where shadows
should be

Generalized Shadows	

•  Approach was OK for shadows on a single flat surface	

•  Cannot handle shadows on general objects	

Projective Textures 	

Projective Texturing?	

An intuition for projective texturing	

–  The slide projector analogy	

Source: Wolfgang Heidrich [99]

Image Based Lighting	

•  Project texture onto surface; treat texture as

“slide projector”	

•  Projective textures and image based lighting 	

•  OpenGL/GLSL – 4D texture coordinates	

Projective Texturing	

Key - perspective-correct texturing?	

– Normal 2D texture mapping uses (s, t) coordinates	

–  2D perspective-correct texture mapping	

•  (s, t) should be interpolated linearly in eye-space	

•  compute per-vertex s/w, t/w, and 1/w	

•  linearly interpolate these three parameters over polygon	

•  per-fragment compute s’ = (s/w) / (1/w) and t’ = (t/w) / (1/w)	

•  results in per-fragment perspective correct (s’, t’)	

Projective Texturing	

•  Consider homogeneous texture coordinates	

–  (s, t, r, q) --> (s/q, t/q, r/q)	

–  Similar to homogeneous clip coordinates where���

(x, y, z, w) = (x/w, y/w, z/w)	

•  Project (s/q, t/q, r/q) per-fragment	

Projective Texturing	

Tricking hardware into doing projective textures	

– By interpolating q/w, hardware computes per-fragment	

•  (s/w) / (q/w) = s/q	

•  (t/w) / (q/w) = t/q	

– Net result: projective texturing	

4D Textures Coordinates	

•  Texture coordinates (s, t, r, q) affected by perspective

division; actual coordinates (s/q, t/q, r/q) or (s/q, t/q) for
2D textures	

•  GLSL – textureProj uses the 2D/3D texture coordinate
obtained by a perspective division of a 4D texture
coordinate a texture value from a sampler	

color = textureProj(my_sampler, tex_coord)	

211

Shadow Map Generation	

Matrices	

Texture Parameters - OpenGL	

glFramebufferTexture(GL_FRAMEBUFFER,
GL_DEPTH_STENCIL_ATTACHMENT, depth_texture, 0);	

Check	

http://openme.gl/opengl-4-tutorial-code/	

glFramebufferTexture(GL_FRAMEBUFFER,
GL_DEPTH_STENCIL_ATTACHMENT, depth_texture, 0);	

Vertex Coordinate Transform	

From object to window coordinates	

object	

coordinates���
(x, y, z, w)	

eye	

coordinates���
(x, y, z, w)	

modelview ���
matrix	

projection ���
matrix	

divide���
by w	

viewport &���
depth range	

normalized 	

device���
coordinates���
(x, y, z)	

clip	

coordinates���
(x, y, z, w)	

window	

coordinates	

(x, y, z)	

Eye Linear Texture Coordinate	

Generating texture coordinates from eye-space	

object

coordinates

eye

coordinates
modelview
matrix

projection
matrix

divide
by w

viewport &
depth range

normalized

device
coordinates

clip

coordinates

window

coordinates

eye-linear
plane
equations

(s, t, r, q)

(x, y, z)

Transforms	

1/2

1/2

1/2

1

1/2

1/2

1/2
Light
frustum
(projection)
matrix

Light
view
(look at)
matrix

Inverse
eye
view
(look at)
matrix

Eye
view
(look at)
matrix

Modeling
matrix

xo
yo
zo
wo

xe
ye
ze
we

=

=
xe
ye
ze
we

s
t
r
q

Map Use	

Map Generation	

Setting Up Matrices	

Simple Shaders	

Depth Rendering	

In Practice	

•  Two Issues	

– Constructing the depth map	

•  use existing hardware depth buffer	

•  use glPolygonOffset to offset depth value back	

•  read back the depth buffer contents	

– Depth map can be copied to a 2D texture	

•  unfortunately, depth values tend to require more precision

than 8-bit typical for textures	

•  depth precision typically 16-bit or 24-bit	

glPolygonOffset���
	

•  Depth buffer contains “window space” depth values	

–  Post-perspective divide means non-linear distribution	

–  glPolygonOffset is guaranteed to be a window space

offset	

•  Doing a “clip space” glTranslatef is not sufficient	

– Common shadow mapping implementation mistake	

– Actual bias in depth buffer units will vary over the
frustum	

– No way to account for slope of polygon	

In Pictures - Pixel Centers	

Consider a polygon covering pixels in 2D	

X	

Z	

Pixel centers	

Polygon	

X

Z

Consider a 2nd grid for the polygon covering pixels in 2D	

In Pictures - Pixel Centers	

Change of Z with respect to X	

X

Z

∂z/∂x

In Pictures - Pixel Centers	

glPolygonOffset’s Slope	

•  Pixel center is re-sampled to another grid	

–  For example, the shadow map texture’s grid!	

•  The re-sampled depth could be off by���
 +/-0.5 ∂z/∂x and +/-0.5 ∂z/∂y	

•  The maximum absolute error would be���
 | 0.5 ∂z/∂x | + | 0.5 ∂z/∂y | ≈ max(| ∂z/∂x | , | ∂z/∂y |)	

–  This assumes the two grids have pixel footprint area
ratios of 1.0	

–  Otherwise, we might need to scale by the ratio	

•  Exactly what polygon offset’s “slope” depth bias does	

Results	

How much polygon offset bias depends	

Too little bias,
everything begins to
shadow

Too much bias, shadow
starts too far back

Just right

Selecting Depth Map Bias	

•  Not that hard	

– Usually the following works well	

•  glPolygonOffset(scale = 1.1, bias = 4.0)	

– Usually better to error on the side of too
much bias	

•  adjust to suit the shadow issues in your scene	

– Depends somewhat on shadow map precision	

•  more precision requires less of a bias	

– When the shadow map is being magnified, a
larger scale is often required	

Result	

Using Shadow Map	

Matrices 	

Vertex
Shader	

Transforms	

1/2

1/2

1/2

1

1/2

1/2

1/2
Light
frustum
(projection)
matrix

Light
view
(look at)
matrix

Inverse
eye
view
(look at)
matrix

Eye
view
(look at)
matrix

Modeling
matrix

xo
yo
zo
wo

xe
ye
ze
we

=

=
xe
ye
ze
we

s
t
r
q

Map Use	

Map Generation	

Fragment
Shader	

Chapter 8	

Procedural Texturing	

Regular Patterns	

Vertex
Shader	

Anti-aliasing 	

Fragment
Shader	

Hermite
Interpolation	

