CSE 5542 - Real Time Rendering
Week 11,12, 13

(2 W LR OEPARTMENT OF
. (S)Dlj}\l.[% COMPUTER SCIENCE
: 5% SRR AND ENGINEERING

Texture Mapping

Courtesy: Ed Angel

@ OEPARTMENT OF

! PREE
8 [®1518] conmPUTER SCIENCE
SRS \ND ENGINEERING

Limits of Geometric Modeling

PRE DEPARTMENT OF

T H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Millions of Polygons/Second

PRE DEPARTMENT OF

5 T*'H
[@/51®] coMPUTER SCIENCE
' AND ENGINEERING

Cannot Do

T H @ OEPARTMENT OF
®/51®} coOMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Use Textures

|

|
T
i: :?'._

P A
p 4
7

@ OEPARTMENT OF

T*'H
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Orange

T LR OEPARTMENT OF
©)51®] coMPUTER SCIENCE
SRS A\ D ENGINEERING

UNIVERSITY

Orange Spheres

o) PILUBRY 0EPARTMENT OF
4 [®518] compuTER SCIENCE
& BVAAIS D ENGINEERING

Texture Mapping

i OEPARTMENT OF

T H
4 (95108 conmpuTER SCIENCE
o BY&US AND ENGINEERING

Looking Better

LR DEPARTMENT OF

©)51®) coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Still Not Enough

PRl DEPARTMENT OF

5 T*'H
[@/51®] coMPUTER SCIENCE
' AND ENGINEERING

UNIVERSITY

Local Variation

T H @ OEPARTMENT OF
®/51®} coOMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Texture Mapping

texture image

- -

=
(o]
=4
LS
o
P
s &=
o e}
ED2
WPE
£=0Q
=
o QO <

SIAIE

UNIVERSITY

T

OHIO

>
- <
, s -)
by %) \
! ‘ e \\
;- - LY ¥
LS e~ "
» ’ .
i 5
T
. ’
‘

T H @ DEPARTMENT OF
©)51(®] coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

Not Mercator

4

T
o Wl T

LR OEPARTMENT OF

®/51®] coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Yet Another Fruit

T H @ OEPARTMENT OF
®/51®] coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Three Types of Mapping

PRGN OEPARTMENT OF

T H
(@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Generating Textures

PR OEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Pictures

T H @ OEPARTMENT OF
@518 coMPUTER SCIENCE
SIS AND ENGINEERING

UNIVERSITY

Algorithms

PR DEPARTMENT OF

) e | |
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Checkerboard Texture

GLubyte image[64][64][3];

I/ Create a 64 x 64 checkerboard pattern

for (inti=0;i<64;i++) {
for (intj=0;j<64;j++) {
GLubyte ¢ = (((i & 0x8) =

image[i][j][O]
imagel[i][j][!]
image[{][j][2

_C’

=0) " ((& 0x8) ==

0)) * 255;

DEPARTMENT OF

OHIO COMPUTER SCIENCE
SRS \ND ENGINEERING

Brick Wall

LR DEPARTMENT OF

©51®) coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

) H @ OEPARTMENT OF
®/51®] coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Marble

LRGN DEPARTMENT OF

©1318] CoMPUTER SCIENCE
SIRWBS! \\D ENGINEERING

UNIVERSITY

Texture Mapping

geometric model texture mapped

PR DEPARTMENT OF

) U H“
[@)51®) COMPUTER SCIENCE
NRUIS! AN ENGINEERING

Environment Mapping

{ Sy PR DEPARTMENT OF

H"
58] cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Bump Mapping

PRGN OEPARTMENT OF

) R .
(@/51®] coMPUTER SCIENCE
AND ENGINEERING

Three Types

Texture mapping

smooth shading environment bump mapping
mapping

| PESELEPRY 0EPARTMENT OF
4 [®)51®] conmPUTER SCIENCE
' AND ENGINEERING

UNIVERSITY

Texture Mapping - Pipeline

Mapping techniques are implemented at the end of the
rendering pipeline

— Very efficient because few polygons make it past the

clipper
Vertices ——— Geome_try » Rasterization > Fragmgnt > S
processing processing buffer
. Pixel /
Pixels ———— .
processing

ve] PSR DEPARTMENT OF
)y (S)Dlj‘l\l_[% COMPUTER SCIENCE
NPRVBS! AND ENGINEERING

Mapping Mechanics

3 or 4 coordinate systems involved

s

2D image

3D surface

@ OEPARTMENT OF

|OHIO

COMPUTER SCIENCE
SURUS \ND ENGINEERING

Texture Mapping

v
i
parametric coordinates
U
X
r
_>

exture coordinates

world coo

ates

_>

X

‘S

=

Pys
window coordinates

Coordinate Systems

e Parametric coordinates

— Model curves and surfaces

 Texture coordinates
— ldentify points in image to be mapped

* Object or World Coordinates
— Conceptually, where the mapping takes place

e Screen Coordinates

— Where the final image is really produced

3TN PSR 0EPARTMENT OF
: % (S)I}l?‘t_'ll% COMPUTER SCIENCE
g B8NS AND ENGINEERING |

Mapping Functions

Mapping from texture coords to point on surface

* Appear to need three functions

X = x(s,t)
y =y(st) t
z = z(s,t)

e Other direction needed

@ OEPARTMENT OF

B |OLiO

COMPUTER SCIENCE
=~ AND ENGINEERING

Backward Mapping

Mechanics
— Given a pixel want point on object it corresponds
— Given point on object want point in the texture it
corresponds
Need a map of the form
s = s(x,y,z)
t = t(Xx,y,z)

Such functions are difficult to find in general

(& i PELOBIRCE OEPARTMENT OF
(S)I}l?‘l\l'l% COMPUTER SCIENCE
4 BUAY AND ENGINEERING |

Two-part mapping

* First map texture to a simple intermediate surface

* Map to cylinder

D

(

Ll

| PESELSRY OEPARTMENT OF
i [®/58®] conmpuTER SCIENCE
SRS \ND ENGINEERING

Cylindrical Mapping

parametric cylinder

X =r cos 2T u
y = r sin 2mu
z =v/h

maps rectangle in u,v space to cylinder
of radius r and height h in world coordinates

s=u
t=v

maps from texture space

{ Sy PRE DEPARTMENT OF

- g
d [®/5®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Spherical Map

We can use a parametric sphere

X = r cos 21U
y = r sin 27u cos 2mv
Z = r sin 2mu sin 27ty

in a similar manner to the cylinder
but have to decide where to put
the distortion

Spheres are used in environmental maps

| U }-‘-v' i OEPARTMENT OF |
(@/51®] coMPUTER SCIENCE
SRS \ND ENGINEERING |

Box Mapping

* Easy to use with simple orthographic projection

* Also used in environment maps

Back

— | Left |Bottom| Right | Top

- Front

TN PSR 0EPARTMENT OF
(@518 cOMPUTER SCIENCE
= B BYRISY /\\D ENGINEERING

UNIVERSITY

Second Mapping

Map from intermediate object to actual object
— Normals from intermediate to actual
— Normals from actual to intermediate

— Vectors from center of intermediate

actual intermediate

e

{ Sy PRE DEPARTMENT OF

H
d [®51®) coMmPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Aliasing

Point sampling of texture leads to aliasing errors

miss blue stripes point samples in u,v
(or x,y,z) space

/)
e e

_—5 ()
point samples in texture space

-
- <

Sy PRI OEPARTMENT OF
- fl [®I81®] CoMPUTER SCIENCE
= B BYRBS! \\D ENGINEERING

Anti-Aliasing in Textures

point linear
sampling filtering
mipmapped mipmapped
point linear
sampling filtering

41

LRGN DEPARTMENT OF

©1318] CoMPUTER SCIENCE
SIRWBS! \\D ENGINEERING

UNIVERSITY

Area Averaging

A better but slower option is to use area averaging

T] -

pixel

preimage

Z

Note that preimage of pixel is curved

PRA DEPARTMENT OF

- PR
%) COMPUTER SCIENCE
- N BVAIS AnD ENGINEERING

OpenGL Texture

PRl DEPARTMENT OF

|
(@/51®] coMPUTER SCIENCE
' AND ENGINEERING

UNIVERSITY

Basic Stragegy

Three steps
|. Specify texture

* read or generate image
* assign to texture

* enable texturing

2. Assign texture coordinates to vertices

* Proper mapping function is left to application

3. Specify texture parameters
* wrapping, filtering

3 BEELBPRE 0cPARTMENT OF
4 [®51(®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Texture Mapping

A
>
>

Z X

geometry display

image

Y PEELBERY 0:PARTMENT OF
4 [®151®] (onmpuTER SCIENCE
SRS \ND ENGINEERING

Texture Example

Screen-space view

Texture-space view

o S i S’ S Sk S . i S

PREUIIRY 0 PARTMENT OF
®)511®) cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Texture Mapping in OpenGL

vertices —*|geometry pipeline \

/ fragment
image ' pixel pipeline processo

Ir

@l OEPARTMENT OF

v RS
d [®51®) coMPUTER SCIENCE
SRS \ND ENGINEERING

Specifying a Texture Image

* Define a texture image from an array of
texels (texture elements) in CPU memory
Glubyte my_texels[512][512];

* Define as any other pixel map
— Scanned image
— Generate by application code

* Enable texture mapping
— glEnable(GL_TEXTURE_2D)

— OpenGL supports |-4 dimensional texture maps

&S PURELARY DEPARTMENT OF
(S)I}li‘{_'ll% COMPUTER SCIENCE
4 B8NS AND ENGINEERING |

Defining a Texture Image

glTexlmage2D(target, level, components, w, h, border, format, type, texels);

target: type of texture, e.g. GL_TEXTURE_2D
level: used for mipmapping

components: elements per texel

w, h: width and height of texels in pixels
border: used for smoothing

format and type: describe texels

texels: pointer to texel array

glTexlmage2D(GL_TEXTURE_2D, 0, 3, 512,512, 0, GL_RGB,
GL_UNSIGNED_BYTE, my_texels);

i

PR DEPARTMENT OF
(@/51®] cOMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Mapping a Texture

* Based on parametric texture coordinates

« glTexCoord*() specified at each vertex

Texture Space Object Space
l, | (s,t) =(0.2,0.8)

_______________ (0.4,02)

-

-
e
==
-
~_~
~—~a
-
-

B C
0,0 1,0 ° (0.8, 0.4)

50

Y BEELERA 0cPARTMENT OF
(S)I%% COMPUTER SCIENCE
SRS \ND ENGINEERING

GLSL - Typical Code

offset = 0;

GLuint vPosition = glGetAttribLocation(program, "vPosition");

glEnableVertexAttribArray(vPosition);

glVertexAttribPointer(vPosition, 4, GL_FLOAT, GL_ FALSE,
0,BUFFER _OFFSET (offset));

offset += sizeof(points);
GLuint vTexCoord = glGetAttribLocation(program, "vTexCoord");
glEnableVertexAttribArray(vTexCoord);
glVertexAttribPointer(viexCoord, 2,GL _FLOAT,
GL_FALSE, 0, BUFFER OFFSET (offset));

i

: *:_ PR OEPARTMENT OF
@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Adding Texture Coordinates

void quad(int a,int b,int c,int d)

{
quad_colors[Index] = colors[a];
points[Index] = vertices[a];
tex_coords[Index] = vec2(0.0, 0.0);
index++;
quad_colors[Index] = colors[a];
points[Index] = vertices[b];
tex_coords[Index] = vec2(0.0, 1.0);
Index++;

/| other vertices

}

@l OEPARTMENT OF
COMPUTER SCIENCE
MRS AN ENGINEERING

o

Role of Interpolation

PR OEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Interpolation

OpenGL uses interpolation to find proper texels from specified
texture coordinates

Can be distorted
texture stretched

over trapezoid
good selection poor selection showing effects of

of tex coordinates of tex coordinates bilinear interpolation

PR DEPARTMENT OF

wh
@)51®] coMPUTER SCIENCE
SUBYIE] AND ENGINEERING |

Interpolation

Figure 1.0 - Affine and perspective texture mapped polygons.

“1
-\.r 1-—— ; '/‘,.
vV Za / / Py ‘ /.l)
/S A .
\'q - f' l}) \ - . .
72 a. Affine texture mapping - notice no perspective cues.

Y3 =
-

b. Perspective texture mapping - notice 3D perspective both near and far.

@ OEPARTMENT OF

T*'H
(S)I}}}CII% COMPUTER SCIENCE
SRS AND ENGINEERING

Control of Texture Mapping

PRE DEPARTMENT OF

. T*'H
d [®551®] coMmPUTER SCIENCE
; AND ENGINEERING

UNIVERSITY

Texture Parameters

OpenGL has a variety of parameters that determine
how texture is applied

— Wrapping parameters determine what happens if s and t
are outside the (0,1) range

— Filter modes allow us to use area averaging instead of
point samples

— Mipmapping allows us to use textures at multiple
resolutions

— Environment parameters determine how texture
mapping interacts with shading

PR DEPARTMENT OF

= T * }11
(S)I}l?‘t_'l[% COMPUTER SCIENCE
M BU8YS AnD ENGINEERING

Wrapping Mode

Clamping: if s,t > | use |, if s,t <O use 0

Wrapping: use s,t modulo |

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_CLAMP)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, GL_REPEAT)

N &
T ot e dEEmm
‘ i EEEE
GL_REPEAT GL_CLAMP
texture wrapping wrapping

S PR o:eoanmvent oF |
(S)IK[% COMPUTER SCIENCE
SUAUE] AND ENGINEERING |

Magnification/Minification

More than one texel can cover a pixel (minification) or
more than one pixel can cover a texel (magnification)

Can use point sampling (nearest texel) or linear filtering
(2 x 2 filter) to obtain texture values

//’
L~ 1
| 171 [B
Texture Polygon Texture Polygon
Magnification Minification

» by };:' i OEPARTMENT OF |
d [®15¥®] coMPUTER SCIENCE
& BVAIS \\D ENGINEERING |

Filter Modes

Modes determined by

— glTexParameteri(target, type, mode)

glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MAG_FILTER,
GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MIN_FILTER,
GL_LINEAR);

Note that linear filtering requires a border of an
extra texel for filtering at edges (border = |)

o PEREIPAY OtPARTMENT OF
4 [®151(®] conmPUTER SCIENCE
SRV A\ D ENGINEERING

UNIVERSITY

Mipmapped Textures

* Mipmapping allows for prefiltered texture maps of
decreasing resolutions

* Lessens interpolation errors for smaller textured
objects

* Declare mipmap level during texture definition
glTeximage2D(GL_TEXTURE_*D, level, ...)

- PR OEPARTMENT OF
[@/51®] coMPUTER SCIENCE
M BVAYIS! AnD ENGINEERING |

MipMaps

_f_l
n

G4x64 32x32 16x16

@l OEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

OHl

UNIVERSITY

Mip-Mapping

~ .

S

o

DEPARTMENT OF
COMPUTER SCIENCE

4 AND ENGINEERING

E

OHIO

UNIVERSITY

T

Mip-Mapping

PRl DEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Example

point linear
sampling filtering
mipmapped mipmapped
p0|r.1t linear
sampling filtering

65

WIR DEPARTMENT OF

©1318] CoMPUTER SCIENCE
SURUE! A\\D ENGINEERING

UNIVERSITY

Texture Functions

* Controls how texture is applied

* glTexEnv{fi}[Vv](GL_TEXTURE_ENV, prop,
param)

« GL_TEXTURE_ENV_MODE modes

— GL_MODULATE: modulates with computed shade
— GL_BLEND: blends with an environmental color

— GL_REPLACE: use only texture color

— GL(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
GL_MODULATE);

* Set blend color with
GL TEXTURE ENV COLOR

PR OEPARTMENT OF

: OHIO COMPUTER SCIENCE
B BRI /\\ D ENGINEERING

Using Texture Objects

specify textures in texture objects

set texture filter

set texture function

set texture wrap mode

set optional perspective correction hint
bind texture object

enable texturing

© NOo U h WD =

supply texture coordinates for vertex

— coordinates can also be generated

C] PN *,:. PR DEPARTMENT OF
@/51®] coMPUTER SCIENCE

AND ENGINEERING

Other Texture Features

* Environment Maps

— Start with image of environment through a wide angle
lens

* Can be either a real scanned image or an image created in
OpenGL

— Use this texture to generate a spherical map

— Alternative is to use a cube map

* Multitexturing

— Apply a sequence of textures through cascaded texture
units

(35NN PRSI 0EPARTMENT OF
: % (S)I}li‘t_'ll% COMPUTER SCIENCE
g B8NS AND ENGINEERING |

GLSL

PRl DEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Samplers

https://www.opengl.org/wiki/Sampler (GLSL)

@l OEPARTMENT OF

T - H_
(5351;1_1[% COMPUTER SCIENCE
NPRVBS! AND ENGINEERING

Applying Textures

* Textures are applied during fragment shading by a
sampler

* Samplers return a texture color from a texture object

in vec4 color; //color from rasterizer
in vec2 texCoord; //texure coordinate from rasterizer

uniform sampler2D texture; //texture object from application

void main() {
gl_FragColor = color * texture2D(texture, texCoord);

}

3 PEELBERE 0EPARTMENT OF
@518 coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Vertex Shader

* Usually vertex shader will output texture coordinates to
be rasterized

e Must do all other standard tasks too
— Compute vertex position

— Compute vertex color if needed
in vec4 vPosition; //vertex position in object coordinates
in vec4 vColor; //vertex color from application
in vec2 viexCoord;//texture coordinate from application

out vec4 color;//output color to be interpolated
out vec? texCoord; //output tex coordinate to be
interpolated

o) PSSR OEPARTMENT OF
[@)51®) coMPUTER SCIENCE
AND ENGINEERING

Adding Texture Coordinates

void quad(int a,int b,int c,int d)

{
quad_colors[Index] = colors[a];
points[Index] = vertices[a];
tex_coords[Index] = vec2(0.0, 0.0);
index++;
quad_colors[Index] = colors[a];
points[Index] = vertices[b];
tex_coords[Index] = vec2(0.0, 1.0);
Index++;

/| other vertices

}

@l OEPARTMENT OF
COMPUTER SCIENCE
MRS AN ENGINEERING

o

Texture Object

GLuint textures[1];
glGenTextures(|, textures);

glBindTexture(GL_TEXTURE_2D, textures[0]);
glTexlmage2D(GL_TEXTURE_2D, 0, GL_RGB, TextureSize,
TextureSize, 0, GL_RGB, GL_UNSIGNED_ BYTE, image);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D, GL_ TEXTURE_WRAP_T,
GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D,

GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D,

GL TEXTURE_MIN_FILTER, GL_NEAREST);
glActiveTexture(GL_TEXTUREO);

N PSR 0EPARTMENT OF |
(531;17{11% COMPUTER SCIENCE
SUAME] AND ENGINEERING |

Linking with Shaders

GLuint vTexCoord = glGetAttribLocation(program, "vIexCoord");

glEnableVertexAttribArray(viexCoord);

glVertexAttribPointer(vliexCoord, 2, GL_FLOAT, GL_FALSE, 0,
BUFFER OFFSET (offset));

/I Set the value of the fragment shader texture sampler variable
/I ("texture") to the the appropriate texture unit. In this case,
Il zero, for GL_TEXTUREO which was previously set by calling
Il glActiveTexture().

glUniform li(glGetUniformLocation(program, "texture"), 0);

@ DEPARTMENT OF

oo

COMPUTER SCIENCE
MRS AN ENGINEERING

Vertex Shader Applications

* Moving vertices
— Morphing
— Wave motion
— Fractals
* Lighting
— More realistic models

— Cartoon shaders

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

| [e5Te)

Wave Motion Vertex Shader

uniform float time;

uniform float xs, zs, // frequencies
uniform float h;// height scale
uniform mat4 ModelView, Projection;
in vec4 vPosition;

void main() {
vec4 t =vPosition;
t.y = vPosition.y
+ h*sin(time + xs*vPosition.x)
+ h*sin(time + zs*vPosition.z);
gl_Position = Projection*ModelView™t;

}

3 PDUELBERE OEPARTMENT OF
4 [9551®] comPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Particle System

uniform vec3 init_vel;

uniform float g, m, t;

uniform mat4 Projection, ModelView;

in vPosition;

void main(){

vec3 object_pos;

object_pos.x = vPosition.x + vel.x*t;

object _pos.y = vPosition.y + vel.y*t
+ g/(2.0*m)*t*¢;

object _pos.z = vPosition.z + vel.z*t;

gl _Position = Projection™

ModelView*vec4(object_pos,|);

o) PSSR 0cPARTMENT OF
4 [®5F®] oMmPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Example

http://www.lighthouse3d.com/tutorials/glsl-core-
tutorial/glsl-core-tutorial-texturing-with-images/

PRE DEPARTMENT OF

& S T ool
(S)Dlj}\l_[% COMPUTER SCIENCE
& BUaYS! A\D ENGINEERING

Example

http://www.lighthouse3d.com/tutorials/glsl-tutorial/
simple-texture/

PRE DEPARTMENT OF

= T ' H
[@/51®] coMPUTER SCIENCE
B BVRYIS \\D ENGINEERING

4
< UNIVERSITY

Fragment Shader

Texture mapping

smooth shading environment bump mapping
mapping

PRI 0coARTMENT OF
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Cube Maps

We can form a cube map texture by defining six 2D
texture maps that correspond to the sides of a box

Supported by OpenGL
Also supported in GLSL through cubemap sampler

vec4 texColor = textureCube(mycube, texcoord);

Texture coordinates must be 3D

ove) PREERR oceantMENT oF |
-l [®I5¥®] coMPUTER SCIENCE
- N BVaYS AnD ENGINEERING

Environment Map

Use reflection vector to locate texture in cube map

PRE DEPARTMENT OF

S B
d [®)5108] onMPUTER SCIENCE
NRUIS! AN ENGINEERING

Environment Maps with Shaders

* Computed in world coordinates

— keep track of modeling matrix & pass as a uniform
variable

* Use reflection map or refraction map

 Simulate water

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

OHiIO

Reflection Map Vertex Shader

uniform mat4 Projection, ModelView, NormalMatrix;
in vec4 vPosition;

in vec4 normal;

out vec3 R;

void main(void)

{
gl Position = Projection*ModelView*vPosition;
vec3 N = normalize(NormalMatrix*normal);
vec4 eyePos = ModelView*gvPosition;
R = reflect(-eyePos.xyz, N);

o PESLBERY 0cPARTMENT OF
4 [®51®] oMPUTER SCIENCE
AND ENGINEERING

Reflection Map Fragment Shader

in vec3 R;
uniform samplerCube texMap;

void main(void)

{
gl_FragColor = textureCube(texMap, R);

}

DEPARTMENT OF

PR
(S)I}l?‘l{lT% COMPUTER SCIENCE
SUAMEE] AND ENGINEERING

Bump Mapping

* Perturb normal for each fragment

* Store perturbation as textures

@l OEPARTMENT OF

T K
4 [®51(®) coMPUTER SCIENCE
MRS AN ENGINEERING

Back 2 Orange

T H @ OEPARTMENT OF
®/51®} coOMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

The Orange

* Texture map a photo of an orange onto a surface
— Captures dimples
— Will not be correct if we move viewer or light

— We have shades of dimples rather than their correct
orientation

* |deally perturb normal across surface of object
and compute a new color at each interior point

(& S PRRELUNIIRE OEPARTMENT OF
(S)I}li‘%[% COMPUTER SCIENCE
4 B8NS AND ENGINEERING |

Bump Mapping (Blinn)

Consider a smooth surface

S |

() vl PRSERZaY DEPARTMENT OF
¥ @518} COMPUTER SCIENCE
b N BVRWIS) ENGINEERING

Rougher Version

@ OEPARTMENT OF

TR
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Equations

p(u,v) = [x(u,v), y(u,v), z(u,v)]*

p,=[0x/ du, 0y/ ou, 0z/ cu]!
p.=[0x/ Ov, oy/ ov, 0z/ ov]!

n=(p,xp,)/ P, X Pyl

)] PESKPIRY OEPARTMENT OF
Y. [&51®] compuTer sciEnce
ety W AND ENGINEERING

Tangent Plane

T ’;‘ @ OEPARTMENT OF
@918} COMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Displacement Function

p =p+duv)n

d(u,v) is the bump or displacement function

[d(uv)| <<

)] PESKITRY OEPARTMENT OF ‘
, (S)I}l?‘l{lI% COMPUTER SCIENCE
& M BUsYS AND ENGINEERING

Perturbed Normal

n; — p,uX p,v
p’u = pu+ (a d/ d u)n + d(u,v)nu
p’v = pv+ (a d/@v)n + d(u,v)nv

If d is small, we can neglect last term

)] PRSKITRY OEPARTMENT OF ‘
, gl%% COMPUTER SCIENCE
& M BUsYS AND ENGINEERING |

Approximating the Normal

y y
n _puxpv

=pn+(0d/dunxp,+(9d/ dv)nxp,

The vectors n x p, and n x p_ lie
in the tangent plane
Hence the normal is displaced in the tangent plane

Must precompute the arrays dd/ duand dd/ dv
Finally,we perturb the normal during shading

)0 PENKITRY CEPARTMENT OF
(S)I}l?‘t_'l[% COMPUTER SCIENCE
b BUaWS AnD ENGINEERING

Compositing & Blending

BBl OEPARTMENT OF

e
(@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

A

— Blending for translucent surfaces

— Compositing images

— Antialiasing

S BEELUIRE OEPARTMENT OF
4 [®/558) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

T H @ OEPARTMENT OF
©)51®) coMPUTER SCIENCE
SURUE! A\\D ENGINEERING

UNIVERSITY

Tl & DEPARTMENT OF
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

A

« Opaque surfaces permit no light to pass through

* Transparent surfaces permit all light to pass

* Translucent surfaces pass some light
translucency = 1 — opacity (a)

b
N\

opaque surface a =1

(2 T LR O£ PARTMENT OF
@518 cOMPUTER SCIENCE
= B BYRISY /\\D ENGINEERING

UNIVERSITY

Physical Models

Translucency in a physically correct manner is difficult

— the complexity of the internal interactions of light
and matter

— Using a pipeline renderer

Bl DEPARTMENT OF

o T ¥
%) COMPUTER SCIENCE
4 BUBYE AND ENGINEERING |

Compositing Operation

PRE DEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Rendering Model

* Use A component of RGBA (or RGBa) color for opacity
* During rendering expand to use RGBA values

) blend
—1 source blending factor destinati
source estination
component component

destination blending

factor Color Buffer

A 4

A 4

A 4

A

3 PRSI OEPARTMENT OF
4 [®5518] comPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Examples

PR UNIRCY OEPARTMENT OF

©)51®) coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

One Method

RGE(0, 0, 1,.5)

* -

RGB(1, 0,0, 5)

RGB(1,0,0, .5
RGB(.33,0, 66,.75)

T H @ DEPARTMENT OF
©)51(®] coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

Blending Equation

We can define source and destination blending factors
for each RGBA component

S =[s, sy S S,
d=[d,d,d,d,]
Suppose that the source and destination colors are
b=[b,b, b, b,]
¢ =[c, ¢, C, C,]
Blend as

¢ =[b.s+c.d,b,s+c.d,bys,*tc,dy,b,s,+c,d,]

Sy PR OEPARTMENT OF
d [®51®) coMmPUTER SCIENCE
AND ENGINEERING

857/
H UNIVERSITY

OpenGL

Must enable blending and pick source and destination
factors

glEnable(GL_BLEND)
giBlendFunc(source_factor,
destination_factor)

Only certain factors supported
GL_ZERO, GL_ONE
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA
See Redbook for complete list

PR DEPARTMENT OF

CEBH TN L e
(S)Dlj{.l[% COMPUTER SCIENCE
M B8 AND ENGINEERING

Operator

Aaver B ANE AoutB Aaron B Axor B
-

n
- N -
Opaque] | a
AGnd 8 : :
o~ S et o - o
Parsally R - " ~ G
Iransparant) l 1 l 1 7
Aand 8 v | / q v
PR vl
] 3
Cancepoual b
Sub-poocd -
overlay .

-~

LRGN DEPARTMENT OF

OHIO COMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Example

* Start with the opaque background color (R,,G,,B,, I)
— Initial destination color
* Blend in a translucent polygon with color (R,,G,,B|,a,)

 Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA
as the source and destination blending factors

* Note this formula is correct if polygon is either opaque or
transparent

N | U l" R DEPARTMENT OF
(@/518] coMPUTER SCIENCE
M BVAYIS! AnD ENGINEERING |

Works Here Too...

RGB(1, 0,0, 5)

— ™
4 N 4

RGE(0, 0, 1,.5)

SIRGB(.33,0, 66,.75)

PR UNIRCY OEPARTMENT OF

©/51®] coMPUTER SCIENCE
SIRWBS! \\D ENGINEERING

UNIVERSITY

Clamping and Accuracy

* All RGBA are clamped to the range (0,1)
* RGBA values 8 bits !

— Loose accuracy after much components together

— Example: add together n images
* Divide all color components by n to avoid clamping
* Blend with source factor = |, destination factor = |

* But division by n loses bits

(TN PELIBPRE DEPARTMENT OF
: % (S)I}li‘{_j[% COMPUTER SCIENCE
g B8NS AND ENGINEERING |

Order Dependency

RS DEPARTMENT OF

OHIO
SIATE mgzﬁgzsgmg £l E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

UNIVERSITY Addison-Wesley 2012

Order Dependency

* Is this image correct?
— Probably not
— Polygons are rendered
in the order they pass
down the pipeline
— Blending functions

are order dependent

i OEPARTMENT OF

> |OHIO
SIATE

gﬁg:ﬁggg&fgg 3 E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©

Addison-Wesley 2012

UNIVERSITY

HSR with A

Polygons which are opaque & translucent

Opaque polygons block all polygons behind & affect depth
buffer

Translucent polygons should not affect depth buffer

— Render with giDepthMask(GL_FALSE) which makes depth buffer
read-only

Sort polygons first to remove order dependency

(& T PERELISRE OEPARTMENT OF
%E) COMPUTER SCIENCE
4 BUBYE AND ENGINEERING |

PERELLEIRE OEPARTMENT OF
81®) cOMPUTER SCIENCE
SRS /\\D ENGINEERING

Simulate Fog

* Composite with fixed color and have blending factors
depend on depth

— Simulates a fog effect
* Blend source color C, and fog color C; by
C, =fC + (1) C
* fis the fog factor
— Exponential
— Gaussian

— Linear (depth cueing)

N | U "v I DEPARTMENT OF
(@/5K®) coMPUTER SCIENCE
M BVAYIS! AnD ENGINEERING |

F - Fog Functions

Attenuation

Distance

| PESELISPRY OEPARTMENT OF
4 [®5F®) coMPUTER SCIENCE
NPRVBS \\D ENGINEERING

Antialia

Sing

Color a pixel by adding fraction of color to frame buffer

— Fraction depends on percentage of pixel covered by

fragment

— Fraction depends on whether there is overlap

T

no overlap

il
/
/

124

/

T

y

Vv

overlap

PRE DEPARTMENT OF

(€ ks | Do
(S)Dlj}{lI% COMPUTER SCIENCE
4 BUBYE AND ENGINEERING |

Area Averaging

Use average area a,*a,-a,a, as blending factor

Gl OEPARTMENT OF

-
[@/5K®] coMPUTER SCIENCE
AND ENGINEERING

OpenGL Antialiasing

Enable separately for points, lines, or
polygons

glEnable(GL_POINT_SMOOTH);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_POLYGON_SMOOTH);

glEnable(GL_BLEND);
giBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

: H," I DEPARTMENT OF
@58 coOMPUTER SCIENCE
AND ENGINEERING

Accumulation

* Compositing/blending limited by resolution of frame
buffer

— Typically 8 bits per color component

* Accumulation buffer was a high resolution buffer (16 or
more bits per component) that avoided this problem

e Could write into it or read from it with a scale factor

* Slower than direct compositing into the frame buffer

(57T | SO H," I DEPARTMENT OF
@/5®] coMPUTER SCIENCE
8 BYaUS AND ENGINEERING

Particle Systems

Pl DEPARTMENT OF

{ P
[@/5K®] coMPUTER SCIENCE
' AND ENGINEERING

Many Uses

e Used to model

— Natural phenomena
* Clouds

* Terrain

* Plants
— Crowd Scenes

— Real physical processes

5 Vo) PR DEPARTMENT OF
d [®51®) coMmPUTER SCIENCE
AND ENGINEERING

g
Ho UNIVERSITY

Newtonian Particle

* Particle system is a set of particles
* Each particle is an ideal point mass

* Six degrees of freedom
— Position
— Velocity
e Each particle obeys Newtons’ law

f = ma

N DA 3 "E DEPARTMENT OF
(@/5F®) coMPUTER SCIENCE
M BVAYIS! AnD ENGINEERING |

Particle Equations

P, = (X Yi Z)
v, =dp, /dt = p, = (dx, /dt, dy, /dt, z /dt)

mv =f

Hard part is defining force vector

(5,70 PRSEITRY CEPARTMENT OF ‘
Y. (858 compuTeR sciENcE
b N BUaUS AND ENGINEERING

Force Vector

* Independent Particles
— Gravity
— Wind forces

— O(n) calulation

* Coupled Particles O(n)
— Meshes
— Spring-Mass Systems
 Coupled Particles O(n?)

— Attractive and repulsive forces

50 PSR 0EPARTMENT OF
: % (S)I}li‘l\l'l% COMPUTER SCIENCE
g U8t Ano EnGinEERING |

Solution of Particle Systems

float time, delta state[6n], force[3n];

state = initial _state();

for(time = t0; time<final_time, time+=delta) {
force = force_function(state, time);

state = ode(force, state, time, delta);
render(state, time)

}

DEPARTMENT OF

T*H'E
(S)I}li‘{_'l[% COMPUTER SCIENCE
SUAME] AND ENGINEERING |

Simple Forces

* Consider force on particle i

f.=f(p, v)
* Gravity f=¢g

g= (O’ -8 0)
* Wind forces
* Drag

Pi(to), Vi(to)

ye] PRRIPRY OEPARTMENT OF
. [®518] compyTER SCIENCE
= B BYRBS! \\D ENGINEERING

Meshes

* Connect each particle to its closest neighbors

— O(n) force calculation

* Use spring-mass system

@ OEPARTMENT OF

COMPUTER SCIENCE
5%/
Jl BURVIS \\D ENGINEERING

Spring Forces

* Assume each particle has unit mass and is
connected to its neighbor(s) by a spring

« Hooke’ s law: force proportional to
distance (d = ||p — q||) between the points

ep

Hooke’ s Law

Let s be the distance when there is no force
f=-k(|d|-s)d/|d|
k. is the spring constant

d/|d| is a unit vector pointed from p to q

Each interior point in mesh has four forces applied to
it

ye) PRELIERY 0ceaRTMENT OF |
-l N951®] convPUTER SCIENCE
- N BVaYS AnD ENGINEERING

Spring Damping

* A pure spring-mass will oscillate forever

* Must add a damping term

f=-(k(d|-s)+ k, d-d/|d|)d/|d|

* Must project velocity p-q \

(p-q)+(p-q)

=) JURELUNRRE DEPARTMENT OF
, (i (S)Dlj}\l.[% COMPUTER SCIENCE
b W BYRS () ENGINEERING

Attraction and Repulsion

Inverse square law
f=-kd/|d|’

General case requires O(n?) calculation

In most problems, the drop off is such that not
many particles contribute to the forces on any given
particle

Sorting problem: is it O(n log n)?

U v T*H'E DEPARTMENT OF
ol [®I51®] conmpyTER SCIENCE
= B BYRBS! \\D ENGINEERING

Solution of ODEs

* Particle system has 6n ordinary differential
equations

* Write set as du/dt = g(u,t)

* Solve by approximations using Taylor' s Thm

A
o u(t) + hult)

uft)

uft)

t t+h

PR DEPARTMENT OF

B | T H
(S)Dlj}\l.[% COMPUTER SCIENCE
M BVAYIS! AnD ENGINEERING

Euler s Method

u(t + h) = u(t) + h du/dt = u(t) + hg(u, t)

Per step error is O(h?)

Require one force evaluation per time step

Problem is numerical instability

depends on step size

s Teo PRSI OPARTMENT OF |
, %E) COMPUTER SCIENCE
b sV AvoenGineeRING |

Improved Euler

u(t + h) = u(t) + h/2(g(u, t) + g(u, tt+h))

Per step error is O(h?3)

Also allows for larger step sizes

But requires two function evaluations per step

Also known as Runge-Kutta method of order 2

a0 PALIPRY OcPARTMENT OF |
Y.l RIS compuTER SCIENCE
. B BRUIS \\p ENGINEERING

1 4
wE====Es” N UNI

Contraints

* Easy in computer graphics to ignore physical
reality
* Surfaces are virtual

* Must detect collisions separately if we want exact
solution

 Can approximate with ‘
PP -~ | e

repulsive forces

PR OEPARTMENT OF

= T H
(S)I}li‘l\l'l% COMPUTER SCIENCE
4 BYaYE] Ano EncINEERING |

Collisions

Once we detect a collision, we can calculate
new path

Use coefficient of resititution
Reflect vertical component

May have to use partial time step

PRA ODEPARTMENT OF

-
(S)IKIME) COMPUTER SCIENCE
4 BUBYE AND ENGINEERING |

Example

P, = (XY Z)
v. = dp, /dt = p, = (dx, /dt, dy, /dt , z,/dt)
m vi‘= f

Pi+|

@ OEPARTMENT OF

T - H_
8 [®5518] conmPUTER SCIENCE
SRS \ND ENGINEERING

Collision ?

@ OEPARTMENT OF

T*'H
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Problem:
Triangle & Ray Distinct Objects

=) JURELUNRRE DEPARTMENT OF
Y.l P51 compuTER SCIENCE
SsEEEey/ UMW AND ENGINEERING

Ray/Triangle Intersection

Fast, Minimum Storage Ray/Triangle

Intersection
Tomas Moller Ben Trumbore
Prosolvia Clarus AB Program of Computer Graphics
Chalmers University of Technology Cornell Umversity
E-mail: tompa@clarus.se E-mail: wbt@graphics.cornell.edu

> PR DEPARTMENT OF
d [®51®) coMPUTER SCIENCE
/ AND ENGINEERING

UNIVERSITY

Advanced Features of GLSL
TF - Transform Feedback
TBO — Texture Buffer Obejct

)00 PENRITRY CEPARTMENT OF
Y. P5I®] compuTER SCIENCE
= B BURUS AND ENGINEERING

Nemm===E2” M UNI

Chapter 5 J@Jsl=si€iE

Programming Guide
Eighth Edition

The Official Guide to Learning

OpenGL”®, Version 4.3

Dave Shreiner ® Graham Sellers ® John Kessenich ¢ Bill Licea-Kane

LR DEPARTMENT OF

OIE({J[% COMPUTER SCIENCE The Khronos OpenGL ARB Working Group
> AND ENGINEERING

UNIVERSITY

Fixed Functionality Pipeline

Primitive
Processing

Vertex
Buffer

Objects

Transform
and
Lighting

Primitive

Assembly Rasterizer -

Texture
Environment

Stehen ff Dither

Stencil

@ DEPARTMENT OF

dOMPUTERSCIENCE
U8 @D ENGINERRING

Programmable Shader Pipeline

Primitive Primitive
Processing Assembly

Rasterizer -

Vertex

Buffer

Objects
Fragment
Shader

Color
Depth Buffer Dither

Stencil Blend

IR ocPARTMENT OF
O §1®k o pUTERSCIENCE
SR} @ID ENGHNEERING

Back2Particles

PRl DEPARTMENT OF

5 T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Schema

H

Schematic of the particle system simulator

Flgure 5.19

=

(o]
=4

S S
o

P
s &=
o
ED2
.Mup..rr_
$=22
WUN
o QO <
“OFE
= 7]
ELCE
~On3

Geometry Pass

Example 5.8 Vertex Shader Used in Geometry Pass of Particle
System Simulator

#iversion 420 core

uniform matd model matrix;
uniform matd projection _matrix;

layout (location = 0) in vecd position;
layout (location 1) in vec3 normal;

out vecd world space_position;
out vec3 vs_fs normal;

void main(void)

{
vecd pos = (model_matrix = (position » vecd (1.0, 1.0, 1.0, 1.0)));
world_space_position = pos;
vs_fs normal = normalize((model_matrix = vecd(normal, 0.0)).xyz);
gl_Position = projection_matrix = pos;

PURLURRCY DEPARTMENT OF

91 coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Storing Geometry

Example 5.9 Contiguring the Geometry Pass ot the Particle System
Simulator

static const char * varyings2[] =

{

};:

glTransformFeedbackVaryings (render_prog, 1, varyings2,
GL_INTERLEAVED_ATTRIBS) ;

"world_space position"

glLinkProgram(render_prog) ;

TBO writing

@ OEPARTMENT OF

T*'H
4 [851®] conmPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Transform Feedback

void glTransformFeedbackVaryings(GLuint program,
GLsizei count,
const GLchar ** varyings,
GLenum bufferMode);

Sets the varyings to be recorded by transform feedback for the program
specified by program. count specifies the number of strings contained in
the array varyings, which contains the names of the varyings to be
captured. buferMode is the mode in which the varyings will be
captured—either separate mode (specified by GL_SEPARATE_ATTRIBS) or
interleaved mode (specified by GL_INTERLEAVED_ATTRIBS).

@ OEPARTMENT OF

| OHIO
| | STATE

COMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Transform feedback?

RedBook says: ““Transform Feedback is the process of altering the
rendering pipeline so that primitives processed by a Vertex Shader and
optionally a Geometry Shader will be written to buffer objects. This
allows one to preserve the post-transform rendering state of an object
and resubmit this data multiple times.”

oy PSR 0EPARTMENT OF
d L®)51®] coMmPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Transform Feedback diagram

Vertex Attributes

T

Vertex Shader

T

Geometry Shader

Y

Transform Feedback Mode
Vertex Attributes

Disabled Transform Feedback Buffer

Rasterizer

T

Fragment Shader

T

Render Output

Y

Pixels

Back Buffer, Texture, Pixel Buffer

PR DEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

Absence of Transform Feedback

To update Vertex Buffer Object’s attributes:
|. OpenGL copies VBO from GPU memory to CPU memory

2. Update in CPU and send back

3. Consumes time and bandwidth

oy BIRELIRRY 0cPARTMENT OF |
N i (531;11.1[% COMPUTER SCIENCE
b Ue RS AND ENGINEERING |

S

Role of TF

|. All computations are now conducted in GPU

2. A special buffer after shaders and send transformations

CPU not needed and little application involvement

S BPEELINERY 0cPARTMENT OF
i (S)Dlj}\l.[% COMPUTER SCIENCE
& BVaUS AND ENGINEERING

Transform Feedback Examples

- Uses TF to render a particle smoke system with fire spreading

Attain good performance can be by using TF. It controls all of the
particles in this on the GPU.

oy PSR 0EPARTMENT OF
d L®)51®] coMmPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Programmer’ s Model

Attributes
(m * vec4)

Vertex Uniforms
(p * vecd)

Primitive
Assembly
& Rasterize

Varyings
(n * vec4)

Fraggment Uniform
(q

vec4) Fragment

Shader

Per-Sample
Operations

i OEPARTMENT OF

OHIO
SIATE

COMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Vertex Shader Environment

Attribute O Varying 0

Attribute |

Varying |
Attribute 2 Varying 2

Attribute 3

Vertex Shader REIIEE

Attribute 4 Varying 4

Attribute 5 Varying 5

Attribute m

Varying n

Clip position
Point size

o

Temporary
variables

T NT 'h @, DEPARTMENT OF
OISO ¢ 67 PUTEPSCIENCE
SUMIS, D ENGINEERING

Fragment Shader Environment

Texcures

Varying 0

Varying |

i ragment
Varying 3 Cragmen

‘ Fragment Depth

Varying 4
Varying 5 Fragment Shader

Varying n

Window coord

Front facing flag

Temporary
variables

Point coord

PRI ocARTMENT OF
O §1®k o pUTERSCIENCE
SR @D ENGHNEERING

Collision Detection

Find intersection of ray with plane

Find actual intersection

1

Pi+|

@l OEPARTMENT OF

Y FRE
4 [®518) conmPUTER SCIENCE
MRS AN ENGINEERING

Ray/Triangle Intersection

Fast, Minimum Storage Ray/Triangle

Intersection
Tomas Moller Ben Trumbore
Prosolvia Clarus AB Program of Computer Graphics
Chalmers University of Technology Cornell Umversity
E-mail: tompa@clarus.se E-mail: wbt@graphics.cornell.edu

> PR DEPARTMENT OF
d [®51®) coMPUTER SCIENCE
/ AND ENGINEERING

UNIVERSITY

Some Math

A ray R(f) with origin O and normalized direction D is defined as

R(t) =0 +tD

A point, T'(u,v), on a triangle is given by

T(uv)=(1—u—v)Vy+uVy +vVs,

b

@ OEPARTMENT OF

T*'H
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Some Math

interpolation, color interpolation ete. Computing the intersection between the
ray, R(t), and the triangle, 7'(u, v), is equivalent to R(t) = 1'(u,v), which yields:

O+tDh =(1—-u—v)Vy+ulV] + vV, (3)

Rearranging the terms gives:
—D, Vi=Vy, Va=Vo |l u|=0-1 (4)

This means the barycentric coordinates (u,v) and the distance, f, from the ray
origin to the intersection point can be found by solving the linear system of
equations above.,

@ OEPARTMENT OF

T*'H
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Fast Ray-Triangle Intersection

(0]
rro_v
‘ D O—VO ‘ ‘ M [0 ‘0]
V2 Y v
translation M /
Vi 7 ™ 1,
Vo

Figure 1: Translation and change of base of the ray origin.

PR DEPARTMENT OF

. T*'H
d [®551®] coMmPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Final Computations

el fon]
| T OxE) B T D | "B o | v

where P = (D x E,) and () =1 x E,. In our implementation we reuse these

PR DEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Geometry Pass

PRl DEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Vertex Shader

Example 5.8 Vertex Shader Used in Geometry Pass of Particle
System Simulator

#iversion 420 core

uniform matd model matrix;
uniform matd projection_matrix;

layout (location 0) in vecd position;
layout (location = 1) in vec3 normal;

out vecd world_space_position;
out vec3 vs_fs normal;

void main(void)

{
vecd pos = (model_matrix » (position » vecd (1.0, 1.0, 1.0, 1.0)));
world_space_position = pos;
vs_fs _normal = normalize((model_matrix =» vecd(normal, 0.0)) .xyz);
gl_Position = projection_matrix * pos;

PURLURRCY DEPARTMENT OF

91 coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Configuring Geometry Pass

Example 5.9 Contiguring the Geometry Pass ot the Particle System
Simulator

static const char * varyings2[] =

{

};

glTransformFeedbackVaryings (render_prog, 1, varyings2,
GL_INTERLEAVED ATTRIBS);

"world_space_position"

glLinkProgram(render_prog) ;

TBO writing

PR DEPARTMENT OF

5 T*'H
d [®51®] comPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Particle Pass

PRl DEPARTMENT OF

5 T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Example 5.10 Vertex Shader Used in Simulation Pass of Particle
System Simulator

#iversion 420 core

uniform matd model_matrix;
uniform matd projection_matrix;
uniform int triangle_count;

layout (location
layout (location

0) in vecd position;
1) in vec3 velocity;

out vecd position_out;
out vec3 velocity_ out;

uniform samplerBuffer geometry_tboi<
uniform float time_step = 0.02;

bool intersect(vec3 origin, wvec3 direction, vec3 v0, wvec3 vl, vec3 v2,
out vec3 point)
{
vec3 u, v, n;
vec3 w0, w;
float r, a, b;

u = (vl — v0);
v = (v2 — v0);
n = cross(u, v);

w0 = origin — vO0;

g i ;:t?(tn(,n'diw:e)écion);
r=a/b; Find intersection of ray and plane with triangle
I http://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection

point = origin + r = direction;

Find actual intersection

float uu, uv, vv, wu, wv, D;

uu = dot(u, u);
uv = dot(u, v);
vv = dot(v, V);

w = point — v0;

wu = dot(w, u);
wv = dot(w, V);
D= uv * uv — uu * vv; t 1 (J'ijl)'bl_) 1 Q'b"'_)_
w | =—— " (DxEy)- 1T | =—— 1 P-T ., (6)
float s, t; (D x E») - E; - : P E,
v (1'x Ey) - D QD
s = (uv » wv — vv » wu) / D;
if (s < 0.0 || s > 1.0) where P = (D x E,) and Q =71 x Ey. In our implementation we reuse these

return false;

t = (uv » wu — uu » wv) / D;
if (t < 0.0 || (s + t) > 1.0)
return false;

return true;

}

vec3 reflect_vector(vec3 v, vec3 n)

{ pd

K

return v — 2.0 = dot(v, n) *» n;

}

void main(void)

{
vec3 acceleration = vec3(0.0, —0.3, 0.0);

vec3 new_velocity velocity + acceleration * time_step; P
vecd new_position = position + vecd (new_velocity =* time_step, 0.0);°S
vec3 v0, vl, v2;

vec3 point;

int i;

for (i = 0; 1 < triangle count; i++)
{

v0 = texelFetch(geometry_tbo, i * 3).xyz;
vl = texelFetch(geometry tbo, i * 3 + 1).xyz; https://www.opengl.org/sdk/docs/man/html/texelFetch.xhtml
v2 = texelFetch(geometry tbo, i1 » 3 + 2).xyz;
if (intersect(position.xyz, position.xyz — new_position.xyz,
v0, vl, v2, point))

{
vec3d n = normalize(cross(vl — v0, v2 — v0));
new_position = vecd (point P
+ reflect_vector (new_position.xyz — o~
point, n), 1.0);
new_velocity = 0.8 » reflect_vector(new_velocity, n);
}
}
if (new_position.y < —40.0)
{
new_position = vecd (—new_position.x = 0.3, position.y + 80.0,
0.0, 1.0);
new_velocity *= wvec3(0.2, 0.1, —0.3);
}

velocity_out = new_velocity = 0.9999;
position_out = new_position;
gl_Position = projection_matrix * (model_matrix » position); <

Configuring Particle Pass

Example 5.11 Configuring the Simulation Pass of the Particle
System Simulator

static const char * varyings[] =

{
};

"position_out", "velocity_out"

glTransformFeedbackVaryings (update_prog, 2, varyings,
GL_INTERLEAVED_ATTRIBS) ;

glLinkProgram(update_prog) ;

@ OEPARTMENT OF

T*'H
d [®518] comMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Example 5.12 Main Rendering Loop of the Particle System Simulator

glUseProgram(render_prog) ; ‘45

gluniformMatrix4fv(render_model matrix loc, 1, GL_FALSE, model_matrix);

gluniformMatrix4fv(render projection matrix loc, 1, GL_FALSE,
projection_matrix);

glBindvertexArray (render_vao) ;

glBindBufferBase (GL_TRANSFORM_FEEDBACK_BUFFER, 0, geometry_ vbo);
glBeginTransformFeedback (GL_TRIANGLES) ; 4{
object.Render();

glEndTransformFeedback() ; ,4{

gluseProgram(update_prog); <€
gluniformMatrix4fv(model matrix_loc, 1, GL_FALSE, model matrix);

gluniformMatrix4fv(projection matrix loc, 1, GL_FALSE,
projection_matrix);
gluniformli(triangle_count_loc, object.GetVertexCount() / 3);

if ((frame_count & 1) != 0)
{
glBindvertexarray(vao[l]);
glBindBufferBase (GL TRANSFORM FEEDBACK BUFFER, 0, vbo[01]):

else
{
glBindvertexArray(vao[0]);
glBindBufferBase (GL_TRANSFORM_FEEDBACK_BUFFER, 0, vbo[l]);

glBeginTransformFeedback (GL_POINTS); <€
glDrawArrays (GL_POINTS, 0, min(point_count, (frame_count >> 3)));
glEndTransformFeedback() ;

glBindvertexArray(0);

frame_count++;

Shadows

Figure 7.11 Final rendering of shadow map

@ OEPARTMENT OF

Tl
®)5F®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Shadows & Textures !

DEPARTMENT OF
COMPUTER SCIENCE
4 AND ENGINEERING

Shadows & Textures ?

PR DEPARTMENT OF

5 T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Real-time Shadow Techniques

Projected
planar
shadows
| = Hybrid
EZ? approaches

TNALS ven of
COMPUTER SCIENCE

SWE AND ENGINEERING

Shadow
volumes

Luxo Jr. — The Famous One

* Luxo Jr. has two animated lights and
one overhead light

* Three shadow maps dynamically
generated per frame

* Complex geometry (cords and lamp
arms) all correctly shadowed

* User controls the view, shadowing just
works

vime:demo. Images are from web cast video

iﬂﬁ:&ms 1d Japan announcement.)

1TtDOUILIL

Shadow Mapping

(x1, y1. Z))

L

‘ | b ”; i OEPARTMENT OF
@/5F®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Projective Shadows

* Projection of a polygon is a polygon called a shadow

polygon

* Given a point light source and a polygon, the
vertices of the shadow polygon are the projections
of the original polygon’ s vertices from a point
source onto a surface

ove) PR oceantMENT oF |
ol [®I5K®] conMPyTER SCIENCE
- N BVaYS AnD ENGINEERING

Visualizing Shadow Mapping

the point
light source

@ DEPARTMENT OF

oic

COMPUTER SCIENCE
MRS AN ENGINEERING

Visualizing Shadow Mapping

Compare with and without shadows

with shadows without shadows

DEPARTMENT OF

T*H'E
d [®5518) coMPUTER SCIENCE
SRS \ND ENGINEERING

Shadow Process

|. Put two identical triangles and their colors on GPU
(black for shadow triangle)

Compute two model view matrices as uniforms
Send model view matrix for original triangle
Render original triangle

Send second model view matrix

o Uk W

Render shadow triangle
— Note shadow triangle undergoes two transformations

— Note hidden surface removal takes care of depth issues

o PESLERY 0:PARTMENT OF
@)5F®) coMPUTER SCIENCE
AND ENGINEERING

Shadow Map Matrices

|. Source at (%, y,, z)
Vertex at (X%, Y, z)

3. Consider simple case of shadow projected onto
ground at (x, 0, z,)

Translate source to origin with T(-x, -y, -z)

5. Perspective projection

1 0 0 O]

0 1 0O O

M=10 0 1 O

6. Translate back 0 4 0 o
_yl

DEPARTMENT OF

COMPUTER SCIENCE
MRS AN ENGINEERING

oo

Shadow Maps

* Render a scene from a light source; depth buffer will
contain the distances from the source to each fragment.

* Store depths in texture called depth/shadow map

* Render image in shadow map with light - anything lit is not
in shadow.

* Form a shadow map for each source

o PRI 0ceARTMENT OF
[@/51®] coMPUTER SCIENCE
M BVAYIS! AnD ENGINEERING |

Example

PR UNIRCY OEPARTMENT OF

©)51®) coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Shadow Map

Filgure 7.10 Depth rendering

@ OEPARTMENT OF

T*'H
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Final Rendering

* Compare distance from fragment to light source
with distance in the shadow map

* If depth in shadow map is less than distance from
fragment to source, fragment is in shadow (from

this source)
e Otherwise we use rendered color

o PRI 0ceARTMENT OF
[@/51®] coMPUTER SCIENCE
M BVAYIS! AnD ENGINEERING |

Shadows

Figure 7.11 Final rendering of shadow map

@ OEPARTMENT OF

o
®)5F®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Visualizing Shadow Mapping

Scene with shadows

Notice how Notice how
specular curved surfaces
highlights never cast shadows
appear in on each other
shadows

PRI DEPARTMENT OF
[@/51®] coMPUTER SCIENCE
U8 AND ENGINEERING |

By
27 UNI

Applications Side

* Start with vertex in object coordinates
* Want to convert representation to texture coordinates

* Form LookAt matrix from light source to origin in object
coordinates (MVL)

* From projection matrix for light source (PL)

* From a matrix to convert from [-1, |] clip coordinates to
[0, 1] texture coordinates

* Concatenate to form object to texture coordinate matrix

(OTC)

PR DEPARTMENT OF

S ll T H
(S)I}l?‘{_'l[% COMPUTER SCIENCE
M B8 AND ENGINEERING

Visualizing Shadow Mapping

The scene from the light’ s point-of-view

FYI: from the
eye s point-of-view
again

DEPARTMENT OF

S T*H'E
8 [®5518] conmPUTER SCIENCE
MRS AN ENGINEERING

Visualizing Shadow Mapping

The depth buffer from the light’ s point-of-view

FYI: from the
light’s point-of-view

again

DEPARTMENT OF

5 T *H'E
} [®1518) conmPUTER SCIENCE
SRS \ND ENGINEERING

Visualizing Shadow Mapping

Projecting the depth map onto the eye’ s view

FYI: depth map for
light’s point-of-view

again

. T*H'E DEPARTMENT OF
d [®/51(®) conPUTER SCIENCE
NPRVBS \ND ENGINEERING

Visualizing Shadow Mapping

Projecting light’ s planar distance onto eye’ s view

T*H'E DEPARTMENT OF
[@/51®] coMPUTER SCIENCE
NPRVBS \ND ENGINEERING

Visualizing Shadow Mapping

Comparing light distance to light depth map

Non-green is

Green is where where shadows

the light planar should be

distance and
the light depth
map are
approximately
equal

LR OEPARTMENT OF
©)51(®] coMPUTER SCIENCE
SRS /\\D ENGINEERING

Generalized Shadows

* Approach was OK for shadows on a single flat surface

e Cannot handle shadows on general objects

S BPEELINERY 0cPARTMENT OF
i (S)Dlj}\l.[% COMPUTER SCIENCE
& BVaUS AND ENGINEERING

Projective Textures

DEPARTMENT OF
COMPUTER SCIENCE
4 AND ENGINEERING

Projective Texturing!?

An intuition for projective texturing

— The slide projector analogy

Source: Wolfeang Heidrich [99]

‘ T H i OEPARTMENT OF
@51(®] coMPUTER SCIENCE
SIRUS A\nD ENGINEERING

Image Based Lighting

* Project texture onto surface; treat texture as
“slide projector”

* Projective textures and image based lighting

* OpenGL/GLSL — 4D texture coordinates

ye) PRELIERY 0ceaRTMENT OF |
-l N951®] convPUTER SCIENCE
- N BVaYS AnD ENGINEERING

Projective Texturing

Key - perspective-correct texturing?
— Normal 2D texture mapping uses (s, t) coordinates

— 2D perspective-correct texture mapping

* (s, t) should be interpolated linearly in eye-space

* compute per-vertex s/w, t/w, and |/w

linearly interpolate these three parameters over polygon

per-fragment compute s’ = (s/w) / (I/w) and t' = (t/w) / (1/w)

results in per-fragment perspective correct (s , t’)

(& S PRI DEPARTMENT OF
(S)I}li‘{_'l[% COMPUTER SCIENCE
4 B8NS AND ENGINEERING |

Projective Texturing

* Consider homogeneous texture coordinates

— (s, t, r, q) --> (s/q, t/q, r/q)
— Similar to homogeneous clip coordinates where
(X, Y, Z, W) = (X/w, ylw, z/w)

* Project (s/q, t/q, r/q) per-fragment

ye) PRELIERY 0ceaRTMENT OF |
-l N951®] convPUTER SCIENCE
- N BVaYS AnD ENGINEERING

Projective Texturing

Tricking hardware into doing projective textures

— By interpolating g/w, hardware computes per-fragment
* (s/w)/ (g/w) =s/q
* (t/w) / (g/w) = t/q

— Net result: projective texturing

50 PSR 0EPARTMENT OF
: % (S)I}li‘l\l'l% COMPUTER SCIENCE
g U8t Ano EnGinEERING |

4D Textures Coordinates

* Texture coordinates (s, t, r, q) affected by perspective
division; actual coordinates (s/q, t/q, r/q) or (s/q, t/q) for
2D textures

* GLSL — textureProj uses the 2D/3D texture coordinate
obtained by a perspective division of a 4D texture
coordinate a texture value from a sampler

color = textureProj(my_sampler, tex coord)

@ DEPARTMENT OF

S 0
4 [e5e
;/ UNive

COMPUTER SCIENCE
MRS AN ENGINEERING

Shadow Map Generation

PRE DEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Matrices

PRl DEPARTMENT OF

5 T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Texture Parameters - OpenGL

= Example 7.15 Creating a Framebuffer Object with a Depth Attachment

// Create a depth texture

glGenTextures (l, &depth_texture); (

glBindTexture (GL_TEXTURE_2D, depth_texture); 4{

// Allocate storage for the texture data

glTexImage2D(GL_TEXTURE 2D, 0, GL_DEPTH_COMPONENT32,
DEPTH_TEXTURE_SIZE, DEPTH_TEXTURE_SIZE, <
0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);

// Set the default filtering modes

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_ FILTER, GL_LINEAR);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

// Set up depth comparison mode

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,

GL_COMPARE_REF_TO_TEXTURE) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);

// Set up wrapping modes

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) ;

glBindTexture (GL_TEXTURE_2D, 0);

// Create FBO to render depth into
glGenFramebuffers(l, &depth_f£fbo);

glBindFramebuffer (GL_FRAMEBUFFER, depth_fbo) ;
glFramebufferTexture(GL_FRAMEBUFFER,

// Actach the depth texture to it GL_DEPTH_ STENCIL _ATTACHMENT, depth_texture, 0);

—=J1FramebufferTexture (GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,

depth_texture, 0); <
'/ / Disable color rendering as there are no color attachments
glbrawBuffer (GL_NONE) ;

Check

http://openme.gl/opengl-4-tutorial-code/

glFramebuffer Texture(GL_FRAMEBUFFER,
GL_DEPTH_STENCIL_ATTACHMENT, depth_texture, 0);

@ OEPARTMENT OF

| otio

COMPUTER SCIENCE
SRS AND ENGINEERING

Vertex Coordinate Transform

From object to window coordinates

object . | modelview €ye . | projection clip
coordinates matrix coordinates matrix coordinates
(X, ¥, 2, W) (X, Z,W) (x,¥,z,w)
divide normalized viewport & window % y.2)
R > (X,Y,Z
by w device depth range coordinates
coordinates
(x, ¥, 2)

i

>LOHIO

UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Eye Linear Texture Coordinate

Generating texture coordinates from eye-space

eye-linear
— | plane > (s, 1,7 q)
equations
object . | modelview |€Y¢ o | projection clip
coordinates | Matrix coordinates matrix coordinates
\ 4
divide normalized iewport & window ‘
by w > epth range - T (ng
Y device P g coordinates
coordinates

T -

OHI

UNIVERSITY

PR DEPARTMENT OF

®] cOMPUTER SCIENCE
AND ENGINEERING

Transforms

\

xO
Eye
view Modeling| | Yo
(look at) matrix zZ,
matrix
1/2 1/2
Light
172 12| |frustum
(projection)
172 1/2 matrix
Ji

Light
view
(look at)
matrix

Inverse
eye
view
(look at)
matrix

LU OEPARTMENT
OHIO

UNIVERSITY

OF

COMPUTER SCIENCE
SRS A ND ENGINEERING

Map Generation

Setting Up Matrices

Example 7.16 Setting up the Matrices for Shadow Map Generation
// Time varying light position
vec3 light_position = vec3(

sinf(t » 6.0f » 3.141592f) «» 300.0f,

200.0%,
cosf(t » 4.0f » 3.141592f) « 100.0f + 250.0f);

// Matrices for rendering the scene
= rotate(t = 720.0f, Y);

mat4 scene_model matrix =
// Matrices used when rendering from the light’s position
mat4 light_view_matrix = lookat(light_position, wvec3(0.0f), Y);

matd4 light_projection_matrix(frustum(-1.0£, 1.0£, -1.0£, 1.0f,
1.0f, FRUSTUM_DEPTH)) ;

// Now we render from the light’'s position into the depth buffer.

// Select the appropriate program
gluUuseProgram(render_light_prog); 4{

gluniformMatrix4fv(render_light_uniforms.MVPMatrix,
1, GL_FALSE,

light_projection_matrix =
light _view matrix « <E
scene_model_matrix);

PURLURRCY DEPARTMENT OF

©51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Simple Shaders

Example 7.17 Simple Shader for Shadow Map Generation

————————————————————— Vertex Shader --————-—————— - ——
// Vertex shader for shadow map generation

#version 330 core
uniform matd MVPMatrix;
layout (location = 0) in vecd position;

void main(void)

{

gl Position = MVPMatrix * position; £
——————————————————— Fragment Shader --————-——-———————————

// Fragment shader for shadow map generation

#version 330 core

layout (location = 0) out vecd color;

void main(veoid)

{
}

color = vecd(1.0); <€

PERELLEIRE OEPARTMENT OF
@)51®] coMPUTER SCIENCE
SRS /\\D ENGINEERING

Depth Rendering

Example 7.18 Rendering the Scene From the Light’s Point of View

// Bind the "depth only" FBO and set the viewport to the size
// of the depth texture

glBindFramebuffer (GL_FRAMEBUFFER, depth_fbo);

glViewport (0, 0, DEPTH_TEXTURE_SIZE, DEPTH_TEXTURE_SIZE);

// Clear
glClearDepth(1.0f) ;
glClear (GL_DEPTH_BUFFER_BIT) ; <

// Enable polygon offset to resolve depth-fighting isuses
glEnable (GL_POLYGON_OFFSET_FILL) ; <
glPolygonOffset (2.0£, 4.0f);

// Draw from the light’'s point of view

DrawScene (true) ;
glDisable (GL_POLYGON_ OFFSET_ FILL); (

PERELLEIRE OEPARTMENT OF
81®) cOMPUTER SCIENCE
SRS /\\D ENGINEERING

In Practice

* Two Issues
— Constructing the depth map

* use existing hardware depth buffer
* use glPolygonOffset to offset depth value back
* read back the depth buffer contents

— Depth map can be copied to a 2D texture

* unfortunately, depth values tend to require more precision
than 8-bit typical for textures

* depth precision typically 16-bit or 24-bit

(T PURELURCE OEPARTMENT OF |
: (S)IAT% COMPUTER SCIENCE
: Jl BU&Y] A EnGINEERING |

g|PolygonOffset

* Depth buffer contains “window space” depth values
— Post-perspective divide means non-linear distribution

— glPolygonOffset is guaranteed to be a window space
offset

 Doing a “clip space” glTranslatef is not sufficient
— Common shadow mapping implementation mistake

— Actual bias in depth buffer units will vary over the
frustum

— No way to account for slope of polygon

(. PRI OEPARTMENT OF
:) (S)I}l?‘{_'l[% COMPUTER SCIENCE
A BUaUS \\D ENGINEERING

In Pictures - Pixel Centers

Consider a polygon covering pixels in 2D polygon

Pixel centers

@ OEPARTMENT OF

| OHIO

COMPUTER SCIENCE
=~ AND ENGINEERING

In Pictures - Pixel Centers

Change of Z with respect to X

@ OEPARTMENT OF

| OHIO

COMPUTER SCIENCE
SRS /\\D ENGINEERING

In Pictures - Pixel Centers

Consider a 2" grid for the polygon covering pixels in 2D

.ﬂ
a’
: <:
: = P\
: A,
.“v.
Z ’.": >
‘a
T H I OEPARTMENT OF
d [®518] comPUTER SCIENCE

= AND ENGINEERING

g|PolygsonOffset s Slope

* Pixel center is re-sampled to another grid
— For example, the shadow map texture’ s grid!

* The re-sampled depth could be off by
+/-0.5 dz/0x and +/-0.5 0z/dy

e The maximum absolute error would be
| 0.5 9z/ox | +] 0.5 0z/dy | = max(| 9z/ax |, | 9z/dy |)

— This assumes the two grids have pixel footprint area
ratios of 1.0

— Otherwise, we might need to scale by the ratio

* Exactly what polygon offset’ s “slope” depth bias does

@ DEPARTMENT OF

oic

COMPUTER SCIENCE
MRS AN ENGINEERING

Results

How much polygon offset bias depends

Too little bias,
everything begins to

Too much bias, shadow

starts too far back
shadow

@l OEPARTMENT OF

¥ | OHIO COMPUTER SCl
- A RIS A\Npfsivcig)

Selecting Depth Map Bias

* Not that hard

— Usually the following works well
* glPolygonOffset(scale = |.I, bias = 4.0)

— Usually better to error on the side of too
much bias

* adjust to suit the shadow issues in your scene

— Depends somewhat on shadow map precision

* more precision requires less of a bias

— When the shadow map is being magnified, a
larger scale is often required

(& S PRI DEPARTMENT OF
(S)I}li‘{_'l[% COMPUTER SCIENCE
4 B8NS AND ENGINEERING |

Result

Figure 7.10

Depth rendering

E

OHIO
STATE

UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

Using Shadow Map

PR DEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Matrices

Example 7.19 Matrix Calculations for Shadow Map Rendering

mat4 scene model matrix = rotate(t ~ 720.0f£, Y);
mat4 scene_view _matrix = translate(0.0f£, 0.0f, -300.0f);
mat4 scene_projection_matrix = frustum(-1.0f, 1.0f, -aspect, aspect,
1.0f, FRUSTUM _DEPTH) ;
mat4 scale_bias _matrix = mat4(vec4(0.5f£, 0.0£, 0.0f£, 0.0f),
vec4(0.0£, 0.5f£, 0.0£, 0.0f),
vec4(0.0£, 0.0£, 0.5f, 0.0f),
vec4(0.5€, 0.5f, 0.5f, 1.0f));
mat4 shadow_matrix = scale_bias matrix =
light_projection_matrix =«
light_view _matrix;

PURLURRCY DEPARTMENT OF

©51®) coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

Vertex
Shader

Example 7.20 Vertex Shader for Rendering from Shadow Maps

#version 330 core

uniform matd4d model_matrix;
uniform matd view_matrix;
uniform matd projection_matrix;

uniform matd4d shadow _matrix;

layout (location
layout (location

0) in vecd position;
1) in vec3 normal;

out VS_FS_INTERFACE

{

vecd shadow_coord;
vec3 world_coord;
vec3 eye_coord;
vec3 normal;

} vertex;

void main (void)

{

vecd world _pos = model_matrix * position;
vecd eye _pos = view_matrix * world_pos;
vecd clip pos = projection_matrix * eye_pos;

vertex.world_coord = world_pos.xXyz;
vertex.eye_coord = eye_poOS.XYZ;
vertex.shadow_coord = shadow_matrix * world_pos;

vertex.normal = mat3 (view_matrix * model_matrix) * normal;

gl_Position = clip_pos;

T H @ DEPARTMENT OF
@518 coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Transforms

\

xO
Eye
view Modeling| | Yo
(look at) matrix zZ,
matrix
1/2 1/2
Light
172 12| |frustum
(projection)
172 1/2 matrix
Ji

Light
view
(look at)
matrix

Inverse
eye
view
(look at)
matrix

LU OEPARTMENT
OHIO

UNIVERSITY

OF

COMPUTER SCIENCE
SRS A ND ENGINEERING

Map Generation

Fragment

Shader —

T H E

UNIVERSITY

DEPARTMENT OF

OHIO
SIATE COMPUTER SCIE|

AND ENGINEERIP

Example 7.21 Fragment Shader for Rendering from Shadow Maps

#version 330 core

uniform sampler2DShadow depth_texture;
uniform vec3 light_position;

uniform vec3 material_ambient;
uniform vec3 material_diffuse;
uniform vec3 material_ specular;
uniform float material_specular_power;

layout (location = 0) out wvecd color;

in VS_FS_INTERFACE

{

vecd shadow_coord;
vec3 world_coord;
vec3 eye_coord;
vec3 normal;

} fragment;

void main(void)

{

}

vec3N = fragment.normal;
vec3L=normalize(light_position - fragment.world_coord) ;
vec3R = reflect(-L, N);

vec3 E = normalize(fragment.eye_coord) ;

float NdotL dot (N, L);

float EdotR dot (-E, R);

float diffuse = max(NdotL, 0.0);
float specular =max (pow(EdotR, material_specular_ power), 0.0);

float f = textureProj (depth_texture, fragment.shadow_coord) ;
color = vecd (material_ambient +

f * (material_diffuse * diffuse +
material_specular * specular), 1.0);

Chapter 8 J@Joicsl€F

Programming Guide
Eighth Edition

The Official Guide to Learning
OpenGL”®, Version 4.3

Dave Shreiner ® Graham Sellers ® John Kessenich ¢ Bill Licea-Kane

LR DEPARTMENT OF

O[E({.l[% COMPUTER SCIENCE The Khronos OpenGL ARB Working Group
S AND ENGINEERING

UNIVERSITY

Procedural Texturing

PR OEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Regular Patterns

DEPARTMENT OF

M (@518 conpuTeR sciEnce
N BURIS \\p ENGINEERING

[.-_-;; Ol] O

Example 8.1 Vertex Shader for Drawing Stripes

#iversion 330 core

uniform vec3 LightPosition;
uniform vec3 LightColor;
uniform vec3 EyePosition;
uniform vec3 Specular;
uniform vec3 Ambient;

uniform float K4d;
uniform matd MVMatrix;

uniform matd MVPMatrix;
e r eX uniform mat3 NormalMatrix;

in vecd MCVertex;

in vec3 MCNormal;
S h ad e r in vec2 TexCoord0;
out vec3 DiffuseColor;

out vec3 SpecularcColor;
out float TexCoord;

void main()

{
vec3 ecPosition vec3 (MVMatrix » MCVertex);
vec3 tnorm = normalize(NormalMatrix » MCNormal);
vec3 lightvec normalize(LightPosition - ecPosition);
vec3 viewvVec normalize(EyePosition - ecPosition);
vec3 hvec = normalize(viewVec + lightvec);

float spec = clamp(dot(hvec, tnorm), 0.0, 1.0);
spec = pow(spec, 16.0);

DiffuseColor = LightColor = vec3(Kd = dot(lightvVec, tnorm));
DiffuseColor clamp (Ambient + DiffuseColor, 0.0, 1.0);

SpecularColor = clamp((LightColor * Specular » spec), 0.0, 1.0);
e TexCoord = TexCoordl.t;
: gl_Position = MVPMatrix » MCVertex;

©1318] CoMPUTER SCIENCE
SURUE! A\\D ENGINEERING }

UNIVERSITY

Anti-aliasing

B A -

ol <Sinin ol 8ledle -

P

3Dabx

Flgure 8.2 Stripes close-up
(Extreme close-up view of one of the stripes that shows the effect of the
“fuzz" calculation from the stripe shader (courtesy of LightWork Design).)

DEPARTMENT OF
4 COMPUTER SCIENCE
= AND ENGINEERING

Example 8.2 Fragment Shader for Drawing Stripes
'S'h'ad'e'p #version 330 core

uniform vec3 StripeColor;
uniform vec3 BackColor;

uniform float Width;
uniform float Fuzz;
uniform float Scale;

in vec3 DiffuseColor;
in vec3 SpecularColor;
in float TexCoord;

out vecd FragColor;

void main()

{
float scaledT = fract(TexCoord * Scale);
®» float fracl = clamp (scaledT / Fuzz, 0.0, 1.0);
®» float frac2 = clamp((scaledT - Width) / Fuzz, 0.0, 1.0);
fracl = fracl * (1.0 - frac2);
fracl = fracl * fracl * (3.0 - (2.0 * fracl));
H it
Inte:gllj;L)leatIUH > vec3 finalColor = mix(BackColor, StripeColor, fracl);
finalColor = finalColor * DiffuseColor + SpecularColor;
FragColor = vecd(finalColor, 1.0);
}
T H @ OEPARTMEN
%j&% COMPUTER SCIENCE

AND ENGINEERING

UNIVERSITY

Hermite

| S|

2t — 32 + 1

PRl DEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

The Brick Wall

PRl DEPARTMENT OF

5 T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Figure 8.3 Brick patterns
(A flat polygon, a sphere, and a torus rendered with the brick shaders.)

PR UNIRCY OEPARTMENT OF

©51®) coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Example 8.3 Vertex Shader for Drawing Bricks
#version 330 core

in vecd MCvertex;
in vec3 MCnormal;

uniform matd MVMatrix;
uniform matd MVPMatrix;
uniform mat3 NormalMatrix;
uniform vec3 LightPosition;

r

const float SpecularContribution = 0.3
1.0 - SpecularContribution;

const float DiffuseContribution

out float LightIntensity;
out vec2 MCposition;

void main()

{

vec3 (MVMatrix * MCvertex);

normalize (NormalMatrix * MCnormal) ;
normalize(LightPosition - ecPosition);
reflect (-lightVec, tnorm);
normalize(-ecPosition) ;

max (dot (lightVec, tnorm), 0.0);

vec3 ecPosition
vec3 tnorm

vec3 lightVec
vec3 reflectVec
vec3 viewVec
float diffuse

T LR OEPARTMENT OF
®/51®} coOMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Bricks — Vertex Shader

float spec = 0.0;

if (diffuse > 0.0)

{
spec = max(dot (reflectVec, viewVec), 0.0);
spec = pow(spec, 16.0);

}

LightIntensity = DiffuseContribution * diffuse +

SpecularContribution * spec;
MCposition MCvertex.xy;

gl _Position MVPMatrix * MCvertex;

@ OEPARTMENT OF

T*'H
d [®518] comMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Example 8.4 Fragment Shader for Drawing Bricks

#fiversion 330 core

uniform vec3 BrickColor, MortarColor;
uniform vec2 BrickSize;
uniform vec2 BrickPct;

in vec2 MCposition;
in float LightIntensity;

out vecd FragColor;
void main()
{
vec3 color;
vec2 position, useBrick;

position = MCposition / BrickSize;

if (fract(position.y » 0.5) > 0.5)
position.x += 0.5;

position
useBrick

fract(position);
step(position, Brickpct);

color = mix(MortarColor, BrickColor, useBrick.x * useBrick.y):
color *=LightIntensity;

FragColor = vecd(color, 1.0);

T H @ OEPARTMENT OF
®/51®] coMPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Lattice

Figure 8.7 The lattice shader applied to the cow model
(3Dlabs, Inc.)

PRI DEPARTMENT OF
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Discarding Cow Parts

Example 8.8 Fragment Shader for Procedurally Discarding Part of an
Obiject

in vec3 DiffuseColor:
in vec3 SpecularColor;
in vec2 TexCoord

out vec3 FragColor;

uniform vec2 Scale;
uniform vec2 Threshold;
uniform vec3 SurfaceColor:

void main()

{

fract (TexCoord.s » Scale.s):
fract(TexCoord.t » Scale.t):

float ss
float tt

if ((ss > Threshold.s) && (tt > Threshold.t))
discard;

vec3 finalColor = SurfaceColor » DiffuseColor + SpecularcColor;
FragColor = vecd(finalColor, 1.0);

g OEPARTMENT OF

T*'H
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

- ey
SNAVAVA

@ OEPARTMENT OF

4 [9510®] covpuTer science
SVRUIS AND ENGINEERING

Noise Textures

T H @ OEPARTMENT OF
@/51®] comPUTER SCIENCE
SRS AND ENGINEERING

UNIVERSITY

Noise is Seasoning

e It does not show any obvious regular or repeated patterns.

e It is a continuous function, and its derivative is also continuous. That
is, there are no sudden steps or sharp bends, only smooth variation,
and zooming in to smaller and smaller scales still shows only smooth
variation.

e Itis a function that is repeatable across time (i.e., it generates the same
value each time it is presented with the same input).

e It has a well-defined range of output values (usually the range is [-1, 1]
or [0, 1)).

e Itis a function whose small-scale form is roughly independent of
large-scale position (there is an underlying frequency to variation, or
statistical character, that is the same everywhere).

e Itis a function that is isotropic (its statistical character is the same in
all directions).

e It can be defined for 1, 2, 3, 4, or even more dimensions.

e It is fast to compute for any given input.

T H I OEPARTMENT OF
©51®) coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

Noisy Texture on Surfaces

@ OEPARTMENT OF

T H
d [®518] comMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

RedBook

PR OEPARTMENT OF |
[@/51®] coMPUTER SCIENCE
SRS \ND ENGINEERING |

Discrete Noise

Figure 8.21

1 'y 1 1 |l Il A

1] L 1 L)] 1
-

@ - .

A discrete 1D noise function

PR DEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Continuous Noise

Figure 8.22 A continuous 1D noise function

Interpolation

PR DEPARTMENT OF

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Bandlimited Noise

AX(f)

15 g NP0

FrequearcyHn

PED of 411 e serongs of PRM wesumace
20
o} Wy
20
~40
i+
-30} : .
W8 '
4 "‘/'
: A s \
oA OV &
120t - " " 4 " " "
120 150 <0 P) 0 =0 403 &3t

frequancy -
amplitude -

frequency -
amplitude -

frequgncy -
amplitude -

fraquency -
amplitude -

frequency -
amplitude -

16
0.25

64
0.0625

32
0.125

Figure 8.23 Varying the frequency and the amplitude of the noise

function

@ OEPARTMENT OF

T*'H
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Making Synthetic Noise

sum of 2 octaves

Perlin Noise Generator

sum of 3 octaves

sum of 4 octaves

octaves—1

froise(x) = Zai - noise(2’
i=0

-
—’

R

sum of 5 octaves

Figure 8.24 Summing noise functions
(Shows the result of summing noise functions of different amplitude and

frequency.)

o PISLIERE 0cPARTMENT OF
Y [®518] conmPUTER SCIENCE
& BVAAIS D ENGINEERING

2D

Figure 8.25 Basic 2D noise, at frequencies 4, 8, 16, and 32
(contrast enhanced)

Figure 8.26 Summed noise, at 1, 2, 3, and 4 octaves
(contrast enhanced)

) ' @ OEPARTMENT OF
©)51®) coMPUTER SCIENCE
SURUE! A\\D ENGINEERING

UNIVERSITY

Example 8.14 C function to Generate a 3D Noise Texture

int noisellTexSize = 128;
’ n Gluint noiselDTexName = 0;

Glubyte *noise3DTexPtr;

void makelDNoiseTexture (void)
{

int £, i, j, k, inc;

int startFrequency = 4;

int numOctaves = 4;

double ni[3];

double inci, incj, inck;

int frequency = startFrequency;
GLubyte +ptr;

double amp = 0.5;

if ((noise3DTexPtr = (GLubyte *) malloc(noizse3lDTexSize *
noiseldDTexSize «
noiseldDTexSize « 4))

== NULL)
{
fprintf (stderr,
"ERROR: Could not allocate 3D noise texture\n");
exit(1l);
}

nunODctaves;

for (£E =0, inc = 0; £ <
= 2, ++inc, amp *= 0.5)

++f, frequency «

setNoiseFrequency (frequency) ;
OCIm'eS_l ptr = noise3DTexPtr;

foise(x)= > a'-noise(2'-x) VU
=0

inci = 1.0 / (noise3DTexSize / frequency);

for (i = 0; i < noise3DTexSize; ++i, ni[0] += inci)
{
incj = 1.0 / (noizse3DTexSize / frequency);
for (j = 0; j < noizse3DTexSize; ++j, ni[l] += incj)
{
inck = 1.0 / (noizsel3lTexSize / frequency);
for (k = 0; k < noisellTexSize;
++k, ni[2] += inck, ptr += 4)
{
+(ptr+inc) = (GLubyte) (((noise3(ni)+1.0) « amp)
« 128.0);
UWIGRCY DEPARTMENT OF }

©1318] CoMPUTER SCIENCE :
SIRWBS! \\D ENGINEERING

UNIVERSITY }

Repeatability

Example 8.15 A Function for Activating the 3D Noise Texture

void init3iDNoiseTexture()

{
glGenTextures (1, & noiselDTexName) ;

glActiveTexture (GL_TEXTURESG) ;

glBindTexture (GL_TEXTURE_3D, noiselDTexName);

glTexParameterf (GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf (GL_TEXTURE_3D, GL_TE _WRAP_T, GL_REPEAT);
glTexParameterf (GL_TEXTURE_3D, GL_TE _WRAP_R, GL_REPEAT);
glTexParameterf (GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf (GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

] s

o)

glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA, noiselDTexSize,
noiseldDTexSize, noiselDTexSize, 0, GL_RGEA,
GL_UNSIGNED_BYTE, noiselDTexPtr);

PURLURRCY DEPARTMENT OF

91 coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Noise in GLSL

Example 8.16 Cloud Vertex Shader
§version 3130 core

uni form matd MVMatrix;
uniform matd MVPMatrix;

uniform mat? NornmlMatrix;

uniform w

ec3 LightPos;
uniform float Scale;

in vwvecd MCvertex:
3 MCnormal:

in wve«

out float LightIntenszity;

out vecl MCposzition;

void main()

{
vec3 ECposition = vec3 (MMatrix « MCVertex);
MCposition = vecd (MCVertex) « Scale;
vec3d tnorm = normalize(vec3 (NormalMatrix * MCNormal)):
LightIntensity = dot(normalize(LightPosz - ECposition), tnorm);
LightIntensity += 1.5;
gl_Position = MVPMatrix « MCVertex:

}

g OEPARTMENT OF

OHIO COMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Fragment Shader

Example 8.17 Fragment Shader for Cloudy Sky Effect

§version 3130 core

sampler3D Noise;

uniform I

uniform wvec3 SkyColor; // (0.0, 0.0, 0.8B)
uniform vec? CloudColor: // (0.8, 0.8, 0.8)
in float LightIntensity;

in wvec3 MCposition;

vecd noisevec = texture(Noise, MCposition);

float intensity = (noisevec|

0] is 1
noisevec[2] + noisevec([3] + 0.03125) « 1.5;

vec3d color = mix(SkyColor, CloudColor, intensity) +
LightIntenszity;
FragColor = wecd(color, 1.0);

{ Sy PR DEPARTMENT OF

H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Figure 8.27 Teapots rendered with noise shaders

(Clockwise from upper left: a cloud shader that sums four octaves of
noise and uses a blue-to-white color gradient to code the result; a sun
surface shader that uses the absolute value function to introduce discon-
tinuities (turbulence); a granite shader that uses a single high-frequency
noise value to modulate between white and black; a marble shader that uses
noise to modulate a sine function to produce alternating “veins” of color.
(3Dlabs, Inc.))

PRE DEPARTMENT OF

T H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

Turbulence

Figure 8.28 Absolute value noise or “turbulence”

g OEPARTMENT OF

OHIO

COMPUTER SCIENCE
SRS AND ENGINEERING

NIVERSITY

Sun Surface

Example 8.18 Sun Surface Fragment Shader
§version 3130 core

in float LightIntenszity;
in vec3 MCposition;

uni form sampler3D Noise;

We can achieve an effect that looks like a pit of hot molten lava or the
surface of the sun by using the same vertex shader as the cloud shader and
a slightly different fragment shader. The main difference is that we scale
each noise value and shift it over so that it is centered at 0; then we take its
absolute value. After summing the values, we scale the result again to
occupy nearly the full range of [0, 1]. We clamp this value and use it to mix
between yellow and red to get the result shown in Figure 8.27 (see

uni form vec? Colorl: // (0.8, 0.7, 0.0)
uniform vee3 Color2; // 10.6, 0.1, 0.0) Example 8.18). This technique can be extended to change the results over
uniform float NoiseScale; // 1.2 time, using another dimension of noise for time, resulting in animation of
out vecd FragColor; the effect.
void main()
{
vecd noisevec = texture(Noise, MCposition « NoiseScale);
float intensity = abs (noisevec([0] - 0.25) +
abs (noisevec([l] - 0.125) +
abs (noisevec[2] - 0.0625) +
abs (noisevec[3] - 0.03125);

intensity = clamp(intensity « 6.0, 0.0, 1.0);

vec3d color = mix(Colorl, Color2, intensity) < LightIntensity;

FragColor = wvecd (color, 1.0);

g OEPARTMENT OF

T*'H
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Granite

With noise, it's also easy just to try to make stuff up. In this example, we
want to simulate a grayish rocky material with small black specks. To
generate a relatively high-frequency noise texture, we use only the fourth
component (the highest frequency one). We scale it by an arbitrary amount
to provide an appropriate intensity level and then use this value for each
of the red, green, and blue components. The shader in Example 8.20
generates an appearance similar to granite, as shown in Figure 8.27.

Example 8.20 Granite Fragment Shader
#version 330 core

uniform sampler3D Noise;
uniform float NoiseScale;

in float LightIntensity;
in vec3 MCposition;

out vec4 FragColor;

void main()

{

texture(Noise, NoiseScale * MCposition);
min(l.0, noisevec[3] =~ 18.0);

vec3 (intensity » LightIntensity);

vecd (color, 1.0);

vecd noisevec
float intensity
vec3 color
FragColor

g OEPARTMENT OF

T*'H
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Marble

Example 8.19 Fragment Shader for Marble
Yet another variation on the noise function is to use it as part of a perio-

#version 330 core dic function such as sine. By adding noise to the input value for the sine
. . function, we get a “noisy” oscillating function. We use this to create

uniform sampler3D Noise; look simil he al ‘ - 1 - f) f bl

o S waal Marbdalinlne a look similar to the alternating color veins of some types of marble.

uniform vec3 VeinColor: Example 8.19 shows the fragment shader to do it. Again, we use the same

vertex shader. Results of this shader are also shown in Figure 8.27.
in float LightIntensity;
in vec3 MCposition;

out vec4 FragColor;

void main()

{

vecd noisevec = texture(Noise, MCposition);

float intensity = abs(noisevec|[0] - 0.25) +
abs (noisevec[l] - 0.125) +
abs (noisevec[2] - 0.0625) +
abs(noisevec[3] - 0.03125);

float sineval = sin(MCposition.y = 6.0 + intensity » 12.0)

* 0.5 + 0.5;
vec3 color = mix({VeinColor, MarbleColor, sineval)

+ LightIntensity;
vec4d (color, 1.0);

FragColor

I

@ OEPARTMENT OF

T*'H
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

T H @ OEPARTMENT OF
©)51®) comMPUTER SCIENCE
SURUE! A\\D ENGINEERING

UNIVERSITY

Wood

LightPos 0.0, 0.0, 4.0 e Wood is composed of light and dark areas alternating in concentric

Scale 2.0 cylinders surrounding a central axis.

LightWood 0.6, 0.3, 0.1 e Noise is added to warp the cylinders to create a more natural-looking

DarkWood 0.4, 0.2, 0.07 pattern.

RingFreqg 4.0 e The center of the “tree” is taken to be the y axis.

LightGrains 1.0 e Throughout the wood, a high-frequency grain pattern gives the

DarkGrains 0.0 appearance of wood that has been sawed, exposing the open grain
’ nature of the wood.

GrainThreshold 0.5

NoiseScale 0.5, 0.1, 0.1

Noisiness 3.0

GrainScale 27.0

PURLURRCY DEPARTMENT OF

©51®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

W d Example 8.21 Fragment Shader for Wood
O O §version 3130 core

uniform sampler3D Noise:

uniform vec3 LightWood;
DarkWood:
RingFreqg;
LightGrains;
DarkGrains;

t GrainThreshold;

o3 NoiseScale;

-
uniform float Noisiness:
un £l

iform float GrainScale:

in float LightIntensity;

MCposition;

out vecd FragColor;

vecd noisevec = vec3(texture(Noise, MCposition « NoiseScale) «
Noiziness);

ec3 location = MCposition + noisevec;

float dist = sgrt(location.x « location.x + location.z « location.z);

dist <= RingFreqg;

M
-
[»]
4]
or
L]
|}

fract(dist + noisevec[0] + noisevec[l] + noisevec[2])
- 2. 0;
Figure 8.29 A bust of Beethoven rendered with the wood shader if (r > 1.0)

(3Dlabs, Inc.) r=2.0 - r;
vecd color = mix(LightWood, DarkWood, r);

(=

H
"

fract ((MCposition.x + MCposition.z) ¢ GrainScale + 0.5);
noisevec[2] = r;
if (r < GrainThreshold)
color += LightWood < LightGrains « noisevec([2];
eloe
color -= LightWood ¢ DarkGrains ¢ noisevec([2];
color «= LightIntensity;

FragColor = wvecd(color, 1.0);
PR DEPARTMENT OF }

T*'H
[@/51®] coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Example 8.21 Fragment Shader for Wood

W I #§version 3130 core
O O uniform sampler3D Noise;

uniform vec3 LightWood;
uniform vec? DarkWood;
uniform float RingFreqg;

uniform float LightGrains;
uniform float DarkGrains;
uniform float GrainThreshold;
uniform vec3 NoiseScale;
uniform float Noisiness;
uniform float GrainScale;

in float LightIntenszity;
in wvec3 MCposition;

out vecd FragColor;

void main()

{

vecld noisevec vec3 (kexture (Noizse, MCposition « NoizeScale) «
Noisiness);
vec3 location = MCposition + noisewvec;
float dist = sgrt(location.x « location.x + location.z < location.z);
dist <= RingFreq;
float r = fract(dist + noisevec[0] + noisevec[l] + noisevec([2])
« 2.0;
if (r > 1.0)
1’=2.0-t;
vec3 color = mix(LightWood, DarkWood, r);
r = fract ((MCposition.x + MCposition.z) ¢ GrainScale + 0.5);
noisevec[2] <= r;
if (r < GrainThreshold)
color += LightWood < LightGrains « noisevec([2];
eloe
color -= LightWocod * DarkGrains ¢ noisevec[2];
color <= LightIntensity;
FragColor = wvecd(color, 1.0);

T H @ DEPARTMENT OF
©)51(®] coMPUTER SCIENCE
SRS \\D ENGINEERING

UNIVERSITY

(A) (8)

(€ (D)

@ OEPARTMENT OF

T*'H
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

Fragment Shader - TB

Example 8.7

Fragment Shader for Drawing a Toy Ball

#fiversion 330 core

uniform
uniform
uniform
uniform

uniform
uniform
uniform

uniform
uniform

vecd

float
float
float

vecd
vecd
vecd

vecd
vecd

HalfSpace[5];
Stripewidth;
InOroutInict;
Fwidth;

Starcolor;
StripeColor;
BaseColor:;

LightDir;
HVector:;

// half-spaces used to define star pattern

/7
/7

/7
/7

-3.0
= 0.005

light direction, should be normalized
reflection vector for infinite light

Procedural Texturing

429

UNIVERSITY

g OEPARTMENT OF

T*'H
@/51(®) coMPUTER SCIENCE
AND ENGINEERING

ToyBall

Example 8.7

#iversion 330 core

uniform
uniform
uniform
uniform

uniform
uniform
uniform

uniform
uniform

Fragment Shader for Drawing a Toy Ball

vecd HalfSpace[5]; // half-spaces used to define star pattern

float Stripewidth;
float InOroutInit; //
float Fwidth: //

vecd Starcolor;
vecd StripeColor;
vecd BaseColor:;

vecd LightDir; /7
vecd HVector; /7

-3.0
= 0.005

light direction, should be normalized
reflection vector for infinite light

Procedural Texturing

429

T H E

OHIO
SIAIE

UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE
AND ENGINEERING

uniform vecd SpecularcColor;
uniform float SpecularExponent;

uniform float Ka;
uniform float K4d;
uniform float Ks;

in vecd4d ECPosition; // surface position in eye coordinates
in vec3 oOcCPosition; // surface position in object coordinates
flat in vecd ECBallCenter; // ball center in eye coordinates

out vecd FragColor;

void main()

{
vec3 normal; // Analytically computed normal
vecd psShade; // Point in shader space
vecd surfcolor; // computed color of the surface
float intensity; // computed light intensity
vecd distance; // Computed distance values
float inorout; // Counter for classifying star pattern
psShade.xyz = normalize(OCPosition.xyz);
pShade.w =1.0;
inorout = InOrOutInit; // initialize inorout to -3.0
distance[0] = dot(psShade, Halfspace[0]);
distance[l] = dot(pShade, Halfspace[l]);
distance[2] = dot(pshade, HalfsSpace[2]);
distance[3] = dot(pshade, HalfSpace[3]);
//float Fwidth = fwidth(pshade);
distance = smoothstep (-Fwidth, Fwidth, distance);
inorout += dot (distance, vecd(1.0));
distance.x = dot(pShade, Halfspace[4]);
distance.y = Stripewidth - abs(pShade.z);
distance.xy = smoothstep(-Fwidth, Fwidth, distance.xy);
inorout += distance.x;
inorout = clamp(inorout, 0.0, 1.0);
surfcolor = mix(BaseColor, Starcolor, inorout);
surfcolor = mix(surfcolor, StripeColor, distance.y);
// calculate analytic normal of a sphere
normal = normalize(ECPosition.xyz-ECBallCenter.xyz);
// pPer-fragment diffuse lighting
T H - intensity = Ka; // ambient
OHIO %EBA:/;MENTOF SC C intensity += Kd * clamp(dot (LightDir.xyz, normal), 0.0, 1.0);
Sm AND ENGINEERING Chapter 8: Procedural Texturing
UNIVERSITY

Fragment Shader

surfColor »= intensity;

// Per-fragment specular lighting

intensity = clamp(dot(HVector.xyz, normal), 0.0, 1.0);
intensity = Ks » pow(intensity, SpecularExponent) ;
surfColor.rgb += SpecularColor.rgb * intensity;
FragColor = surfcColor;

@ OEPARTMENT OF

T*'H
®)51(®) coMPUTER SCIENCE
AND ENGINEERING

UNIVERSITY

