
CSE 5542 - Real Time Rendering	

	

 	

 	

Week 10	

Spheres	

GLUT	

void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);	

	

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);	

Direct Method	

GL_LINE_LOOP	

Problems - @ poles	

Use GL_TRIANGLE FAN 	

Method II	

YAS (Yet Another Solution)	

http://www.andrewnoske.com/wiki/Generating_a_sphere_as_a_3D_mesh	

Platonic Solids	

Procedure	

Create Platonic Solid –	

	

 http://www.csee.umbc.edu/~squire/reference/polyhedra.shtml#icosahedron	

	

Subdivide each face –	

	

http://donhavey.com/blog/tutorials/tutorial-3-the-icosahedron-sphere/	

	

	

Think Sierpinski-like	

Method III	

Impostor Spheres	

http://www.arcsynthesis.org/gltut/Illumination/Tutorial%2013.html	

Impostors	

Clipping and Scan Conversion	

Cohen Sutherland in 3D	

•  Use 6-bit outcodes 	

•  When needed, clip line segment against planes	

Liang-Barsky Clipping	

•  In (a): a4 > a3 > a2 > a1	

–  Intersect right, top, left, bottom: shorten	

•  In (b): a4 > a2 > a3 > a1 	

–  Intersect right, left, top, bottom: reject	

Polygon Clipping	

•  Not as simple as line segment clipping	

– Clipping a line segment yields at most one line segment	

– Clipping a polygon can yield multiple polygons	

•  Convex polygon is cool J	

20	

Fixes	

Tessellation and Convexity	

Replace nonconvex (concave) polygons with triangular
polygons (a tessellation)	

22	

Clipping as a Black Box	

Line segment clipping - takes in two vertices and produces
either no vertices or vertices of a clipped segment	

23	

Pipeline Clipping - Line Segments	

Clipping side of window is independent of other sides	

– Can use four independent clippers in a pipeline	

24	

Pipeline Clipping of Polygons	

•  Three dimensions: add front and back clippers	

•  Small increase in latency	

25	

Bounding Boxes	

Ue an axis-aligned bounding box or extent	

–  Smallest rectangle aligned with axes that encloses the
polygon	

–  Simple to compute: max and min of x and y	

26	

Bounding boxes	

Can usually determine accept/reject based

only on bounding box	

reject	

accept	

requires detailed	

 clipping	

27	

Clipping vs. Visibility	

•  Clipping similar to hidden-surface removal	

•  Remove objects that are not visible to the camera	

•  Use visibility or occlusion testing early in the

process to eliminate as many polygons as possible
before going through the entire pipeline	

28	

Clipping	

Hidden Surface Removal	

Object-space approach: use pairwise testing
between polygons (objects)	

Worst case complexity O(n2) for n polygons	

partially obscuring	

 can draw independently	

30	

Better Still	

Better Still	

Painter’s Algorithm	

Render polygons a back to front order so that
polygons behind others are simply painted over	

	

B behind A as seen by viewer	

 Fill B then A	

33	

Depth Sort	

Requires ordering of polygons first 	

– O(n log n) calculation for ordering	

– Not all polygons front or behind all other polygons	

Order polygons and deal with easy cases first, harder later	

Polygons sorted by 	

distance from COP	

34	

Easy Cases	

A lies behind all other polygons	

– Can render	

Polygons overlap in z but not in either x or y	

– Can render independently	

35	

Hard Cases	

Overlap in all directions	

but can one is fully on 	

one side of the other	

cyclic overlap	

penetration	

36	

Back-Face Removal (Culling)	

θ

face is visible iff 90 ≥ θ ≥ -90	

equivalently cos θ ≥ 0	

or v • n ≥ 0	

	

- plane of face has form ax + by +cz +d =0	

- After normalization n = (0 0 1 0)T 	

 	

+ Need only test the sign of c	

- Will not work correctly if we have nonconvex objects 	

37	

Image Space Approach	

•  Look at each ray (nm for an n x m frame buffer)	

•  Find closest of k polygons	

•  Complexity O(nmk)	

•  Ray tracing 	

•  z-buffer	

38	

z-Buffer Algorithm	

•  Use a buffer called z or depth buffer to store depth of closest

object at each pixel found so far	

•  As we render each polygon, compare the depth of each pixel

to depth in z buffer	

•  If less, place shade of pixel in color buffer and update z buffer	

39	

z-Buffer	

for(each polygon P in the polygon list) 	

 do{	

 for(each pixel(x,y) that intersects P) 	

 do{	

 Calculate z-depth of P at (x,y)	

 If (z-depth < z-buffer[x,y]) 	

 then{	

 z-buffer[x,y]=z-depth;	

 COLOR(x,y)=Intensity of P at(x,y);	

 }	

 #If-programming-for alpha compositing:	

 Else if (COLOR(x,y).opacity < 100%)	

 then{	

 COLOR(x,y)=Superimpose
COLOR(x,y) in front of Intensity of P at(x,y);	

 }	

 #Endif-programming-for	

 }	

 }	

 display COLOR array.	

Efficiency - Scanline	

As we move across a scan line, the depth changes
satisfy aΔx+bΔy+cΔz=0	

Along scan line 	

Δy = 0	

Δz = - Δx	

	

 c

a

In screen space Δx = 1 	

42	

Scan-Line Algorithm	

Combine shading and hsr through scan line algorithm	

scan line i: no need for depth 	

information, can only be in no	

or one polygon 	

scan line j: need depth 	

information only when in	

more than one polygon 	

43	

Implementation	

Need a data structure to store	

–  Flag for each polygon (inside/outside)	

–  Incremental structure for scan lines that stores

which edges are encountered 	

–  Parameters for planes 	

44	

Rasterization	

•  Rasterization (scan conversion)	

– Determine which pixels that are inside primitive
specified by a set of vertices	

–  Produces a set of fragments	

–  Fragments have a location (pixel location) and other

attributes such color and texture coordinates that are
determined by interpolating values at vertices	

•  Pixel colors determined later using color, texture,
and other vertex properties	

Diversion	

Rendering Spheres	

Spheres - Application	

Sphere-Definition	

Sphere-Lighting	

VBOs & VAOs	

Material Properties	

The Usual	

Finally	

But …	

Vertex Shader – Object Space	

Fragment Shader	

Yet Another Way 	

Vertex Lighting Shaders I	

59

// vertex shader	

in vec4 vPosition;	

in vec3 vNormal;	

out vec4 color; //vertex shade	

	

// light and material properties	

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;	

uniform mat4 ModelView;	

uniform mat4 Projection;	

uniform vec4 LightPosition;	

uniform float Shininess;	

Vertex Lighting Shaders II	

60	

void main()	

{	

 // Transform vertex position into eye coordinates	

 vec3 pos = (ModelView * vPosition).xyz;	

	

	

 vec3 L = normalize(LightPosition.xyz - pos);	

 vec3 E = normalize(-pos);	

 vec3 H = normalize(L + E);	

	

 // Transform vertex normal into eye coordinates	

 vec3 N = normalize(ModelView*vec4(vNormal, 0.0)).xyz;	

Vertex Lighting Shaders II	

61	

void main()	

{	

 // Transform vertex position into eye coordinates	

 vec3 pos = (ModelView * vPosition).xyz;	

	

	

 vec3 L = normalize(LightPosition.xyz - pos);	

 vec3 E = normalize(-pos);	

 vec3 H = normalize(L + E);	

	

 // Transform vertex normal into eye coordinates	

 vec3 N = normalize(ModelView*vec4(vNormal, 0.0)).xyz;	

Vertex Lighting Shaders III	

62	

// Compute terms in the illumination equation	

 vec4 ambient = AmbientProduct;	

	

 float Kd = max(dot(L, N), 0.0);	

 vec4 diffuse = Kd*DiffuseProduct;	

 float Ks = pow(max(dot(N, H), 0.0), Shininess);	

 vec4 specular = Ks * SpecularProduct;	

 if(dot(L, N) < 0.0) specular = vec4(0.0, 0.0, 0.0, 1.0); 	

 gl_Position = Projection * ModelView * vPosition;	

	

 color = ambient + diffuse + specular;	

 color.a = 1.0;	

}	

Vertex Lighting Shaders IV	

63	

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012	

// fragment shader	

	

in vec4 color;	

	

void main() 	

{ 	

 gl_FragColor = color;	

} 	

	

	

Scan-Line Rasterization	

ScanConversion -Line Segments	

•  Start with line segment in window coordinates with

integer values for endpoints	

•  Assume implementation has a write_pixel

function	

y = mx + h	

x
ym

Δ

Δ
=

DDA Algorithm	

•  Digital Differential Analyzer	

–  Line y=mx+ h satisfies differential equation	

 dy/dx = m = Dy/Dx = y2-y1/x2-x1	

•  Along scan line Dx = 1	

For(x=x1; x<=x2,ix++) {	

 y+=m;	

 display (x, round(y), line_color)	

}	

Problem	

DDA = for each x plot pixel at closest y	

–  Problems for steep lines	

Bresenham’s Algorithm	

•  DDA requires one floating point addition per step	

•  Eliminate computations through Bresenham’s algorithm	

•  Consider only 1 ≥ m ≥ 0	

– Other cases by symmetry	

•  Assume pixel centers are at half integers	

Main Premise	

If we start at a pixel that has been written, there are only two
candidates for the next pixel to be written into the frame buffer	

Candidate Pixels	

1 ≥ m ≥ 0	

last pixel	

candidates	

Note that line could have	

passed through any	

part of this pixel	

Decision Variable	

-

d = Δx(b-a)	

d is an integer	

d > 0 use upper pixel	

d < 0 use lower pixel	

Incremental Form	

Inspect dk at x = k	

dk+1= dk –2Dy, if dk <0	

dk+1= dk –2(Dy- Dx), otherwise	

For each x, we need do only an integer addition and test	

	

Single instruction on graphics chips	

Polygon Scan Conversion	

•  Scan Conversion = Fill	

•  How to tell inside from outside	

– Convex easy	

– Nonsimple difficult	

– Odd even test	

•  Count edge crossings	

Filling in the Frame Buffer	

Fill at end of pipeline	

– Convex Polygons only	

– Nonconvex polygons assumed to have been

tessellated	

–  Shades (colors) have been computed for

vertices (Gouraud shading)	

– Combine with z-buffer algorithm	

•  March across scan lines interpolating shades	

•  Incremental work small	

Using Interpolation	

span	

C1	

C3	

C2	

C5	

C4	

scan line	

C1 C2 C3 specified by glColor or by vertex shading	

C4 determined by interpolating between C1 and C2	

C5 determined by interpolating between C2 and C3	

interpolate between C4 and C5 along span 	

	

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012	

Scan Line Fill 	

Can also fill by maintaining a data structure of all intersections
of polygons with scan lines	

–  Sort by scan line	

–  Fill each span	

vertex order generated 	

 by vertex list	

 desired order	

Data Structure	

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012	

Aliasing	

•  Ideal rasterized line should be 1 pixel wide	

•  Choosing best y for each x (or visa versa) produces
aliased raster lines	

Antialiasing by Area Averaging	

•  Color multiple pixels for each x depending on coverage by

ideal line	

original	

 antialiased	

magnified	

Polygon Aliasing	

•  Aliasing problems can be serious for polygons	

–  Jaggedness of edges	

–  Small polygons neglected	

– Need compositing so color	

of one polygon does not	

totally determine color of	

pixel	

All three polygons should contribute to color	

Hierarchical Modeling 	

Cars, Robots, Solar System	

The Terminator	

Our Goal J	

Heliocentric Coordinates	

Heliocentric ecliptic coordinates. The origin is the center of the Sun. The fundamental plane is the plane
of the ecliptic. The primary direction (the x axis) is the vernal equinox. A right-handed convention
specifies a y axis 90° to the east in the fundamental plane; the z axis points toward the north ecliptic
pole. The reference frame is relatively stationary, aligned with the vernal equinox.	

Inclinations	

Axial Tilt	

W. Pedia says	

To understand axial tilt, we employ the right-hand
rule. When the fingers of the right hand are curled
around in the direction of the planet's rotation, the
thumb points in the direction of the north pole.	

Axial Tilts of Planets	

The axial tilt of three planets: Earth, Uranus, and
Venus. Here, a vertical line (black) is drawn
perpendicular to the plane of each planet's orbit. The
angle between this line and the planet's north pole
(red) is the tilt. The surrounding arrows (green) show
the direction of the planet's rotation.	

Ecliptic Coordinate System	

where \epsilon is the obliquity of the ecliptic.	

Roots	

Back 2 Earth J	

93	

Instance Transformation	

•  Start with prototype object	

•  Each appearance of object in model is instance	

– Must scale, orient, position	

– Defines instance transformation	

94	

Symbol-Instance Table	

95	

Relationships	

•  Car	

– Chassis + 4 identical wheels	

– Two symbols	

•  Rate of forward motion function of rotational speed
of wheels	

96	

Move The Car	

car(speed)	

{	

 chassis()	

 wheel(right_front);	

 wheel(left_front);	

 wheel(right_rear);	

 wheel(left_rear);	

}	

97	

Graphs – Composition of Car	

•  Set of nodes and edges (links)	

•  Edge connects a pair of nodes	

– Directed or undirected	

•  Cycle: directed path that is a loop	

loop	

98	

Tree – Composition of Car	

Graph in which each node (except the root)
has exactly one parent node	

– May have multiple children	

–  Leaf or terminal node: no children	

root node	

leaf node	

99	

Tree Model of Car	

100

DAG Model
All the wheels are identical
Not much different than dealing with a tree

101	

Robot Arm	

robot arm	

 parts in their own 	

coodinate systems	

102	

Articulated Models	

–  Parts connected at joints	

–  Specify state of model by joint angles	

103	

Relationships - Composition	

-  Base	

-  Lower Arm	

-  Upper Arm	

Base	

-  Single angle determines position
-  Is cylinder	

Lower Arm	

Attached to base	

–  Position depends on rotation of base	

– Also translate relative to base, rotate about connecting

joint	

–  Is cube	

Upper Arm	

Upper arm attached to lower arm	

–  Its position depends on both base and lower arm	

– Translate relative to lower arm and rotate about joint

connecting to lower arm	

	

Upper Arm	

Upper arm attached to lower arm	

–  Its position depends on both base and lower arm	

– Translate relative to lower arm and rotate about joint

connecting to lower arm	

	

Do the same …	

109	

Required Matrices	

Base	

Rotation of base: Rb	

– Apply M = Rb to base	

	

Lower Arm	

Translate lower arm relative to base: Tlu	

Rotate lower arm around joint: Rlu	

– Apply M = Rb Tlu Rlu to lower arm	

	

	

Upper Arm	

Translate upper arm relative to upper arm: Tuu	

Rotate upper arm around joint: Ruu	

– Apply M = Rb Tlu Rlu Tuu Ruu to upper arm	

113	

Simple Robot	

mat4 ctm;	

robot_arm()	

{	

 ctm = RotateY(theta);	

 base();	

 ctm *= Translate(0.0, h1, 0.0);	

 ctm *= RotateZ(phi);	

 lower_arm();	

 ctm *= Translate(0.0, h2, 0.0);	

 ctm *= RotateZ(psi);	

 upper_arm();	

}	

114	

Tree Model of Robot	

Code shows relationships between parts of model	

– Can change shape/texture w/o altering relationships	

115	

Possible Node Structure	

Code for drawing part or	

pointer to drawing function 	

linked list of pointers to children	

matrix relating node to parent	

Do the same …	

Generalizations	

118	

Generalizations	

•  Need to deal with multiple children	

– How do we represent a more general tree?	

– How do we traverse such a data structure?	

•  Animation	

– How to use dynamically?	

– Can we create and delete nodes during

execution?	

119

Breadth-First Tree

Solar System ?	

121	

Humanoid Figure	

122	

Building the Model	

•  Implementation using quadrics: ellipsoids and cylinders	

•  Access parts through functions	

–  torso()	

–  left_upper_arm()	

•  Matrices describe position of node with respect to parent	

– Mlla positions leftlowerleg with respect to leftupperarm	

123	

Matrices Tree 	

124	

Display and Traversal	

•  The position determined by 11 joint angles (two

for the head and one for each other part)	

•  Display of the tree requires a graph traversal	

– Visit each node once	

– Display function at each node pertaining to part 	

– Applying correct transformation matrix for position

and orientation	

125	

Transformation Matrices	

10 relevant matrices	

– M positions and orients entire figure
through the torso which is the root node	

– Mh positions head with respect to torso	

– Mlua, Mrua, Mlul, Mrul position arms and

legs with respect to torso	

– Mlla, Mrla, Mlll, Mrll position lower parts
of limbs with respect to corresponding
upper limbs	

126	

Stack-based Traversal	

•  Set model-view matrix to M and draw torso	

•  Set model-view matrix to MMh and draw head	

•  For left-upper arm need MMlua and so on	

•  No need recomputing Mmlua 	

– Use the matrix stack to store M and other matrices

in tree traversal	

127	

Old Style GL Code	

figure() {	

 PushMatrix()	

 torso();	

 Rotate (…);	

 head();	

 PopMatrix();	

 PushMatrix();	

 Translate(…);	

 Rotate(…);	

 left_upper_arm();	

 PopMatrix();	

 PushMatrix();	

save present model-view matrix	

update model-view matrix for head	

recover original model-view matrix	

save it again	

update model-view matrix 	

for left upper arm	

recover and save original 	

model-view matrix again	

rest of code	

128	

Tree Data Structure	

•  Represent tree and algorithm to traverse tree	

•  We will use a left-child right sibling structure	

– Uses linked lists	

–  Each node in data structure is two pointers	

–  Left: next node	

– Right: linked list of children	

In GLSL	

In GLSL	

Still Use	

132	

Left-Child Right-Sibling Tree	

133	

Tree node Structure	

At each node 	

- Pointer to sibling	

–  Pointer to child	

–  Pointer to a function that draws the object represented
by the node	

– Homogeneous coordinate matrix to multiply on the right
of the current model-view matrix	

•  Represents changes going from parent to node	

•  In OpenGL this matrix is a 1D array storing matrix by columns 	

134	

C	

typedef struct treenode	

{	

 mat4 m;	

 void (*f)();	

 struct treenode *sibling;	

 struct treenode *child;	

} treenode;	

135

torso and head nodes
treenode torso_node, head_node, lua_node, … ;	

torso_node.m = RotateY(theta[0]);	

torso_node.f = torso;	

torso_node.sibling = NULL;	

torso_node.child = &head_node;	

	

 head_node.m = translate(0.0, TORSO_HEIGHT
+0.5*HEAD_HEIGHT, 0.0)*RotateX(theta[1])*RotateY(theta[2]);	

head_node.f = head;	

head_node.sibling = &lua_node;	

head_node.child = NULL;	

	

 	

	

136	

Notes	

•  Position determined by 11 joint angles in theta[11]	

•  Animate by changing angles and redisplaying	

•  Form required matrices using Rotate and Translate 	

137	

Preorder Traversal	

void traverse(treenode* root)	

{	

 if(root==NULL) return;	

 mvstack.push(model_view);	

 model_view = model_view*root->m;	

 root->f();	

 if(root->child!=NULL) traverse(root->child);	

 model_view = mvstack.pop();	

 if(root->sibling!=NULL) traverse(root->sibling);	

}	

138	

Notes	

•  Save model-view matrix before multiplying it by

node matrix 	

– Updated matrix applies to children but not to siblings 	

•  Traversal applies to any left-child right-sibling tree	

–  Particular tree encoded in definition of individual nodes	

•  Order of traversal matters given state changes in
the functions	

139	

Dynamic Trees	

Use pointers, the structure can be dynamic	

typedef treenode *tree_ptr;	

tree_ptr torso_ptr;	

torso_ptr = malloc(sizeof(treenode));	

	

Definition of nodes and traversal are essentially the same as
before but we can add and delete nodes during execution	

140	

The Real Thing	

As Opposed	

