
CSE 5542 - Real Time Rendering	

	
 	
 	
Week 10	




Spheres	




GLUT	


void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);	

	

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);	




Direct Method	




GL_LINE_LOOP	




Problems - @ poles	




Use GL_TRIANGLE FAN 	




Method II	




YAS (Yet Another Solution)	


http://www.andrewnoske.com/wiki/Generating_a_sphere_as_a_3D_mesh	




Platonic Solids	




Procedure	

Create Platonic Solid –	


	
 http://www.csee.umbc.edu/~squire/reference/polyhedra.shtml#icosahedron	

	

Subdivide each face –	


	
http://donhavey.com/blog/tutorials/tutorial-3-the-icosahedron-sphere/	

	
	




Think Sierpinski-like	




Method III	






Impostor Spheres	


http://www.arcsynthesis.org/gltut/Illumination/Tutorial%2013.html	




Impostors	




Clipping and Scan Conversion	




Cohen Sutherland in 3D	

•  Use 6-bit outcodes 	

•  When needed, clip line segment against planes	




Liang-Barsky Clipping	

•  In (a): a4 > a3 > a2 > a1	


–  Intersect right, top, left, bottom: shorten	


•  In (b): a4 > a2 > a3 > a1 	


–  Intersect right, left, top, bottom: reject	




Polygon Clipping	

•  Not as simple as line segment clipping	


– Clipping a line segment yields at most one line segment	

– Clipping a polygon can yield multiple polygons	


•  Convex polygon is cool J	


20	




Fixes	




Tessellation and Convexity	

Replace nonconvex (concave) polygons with triangular 
polygons (a tessellation)	


22	




Clipping as a Black Box	

Line segment clipping - takes in two vertices and produces 
either no vertices or vertices of a clipped segment	


23	




Pipeline Clipping - Line Segments	

Clipping side of window is independent of other sides	


– Can use four independent clippers in a pipeline	


24	




Pipeline Clipping of Polygons	


•  Three dimensions: add front and back clippers	

•  Small increase in latency	


25	




Bounding Boxes	

Ue an axis-aligned bounding box or extent	


–  Smallest rectangle aligned with axes that encloses the 
polygon	


–  Simple to compute: max and min of x and y	


26	




Bounding boxes	

Can usually determine accept/reject based 

only on bounding box	


reject	


accept	


requires detailed	

    clipping	


27	




Clipping vs. Visibility	

•  Clipping similar to hidden-surface removal	

•  Remove objects that are not visible to the camera	

•  Use visibility or occlusion testing early in the 

process to eliminate as many polygons as possible 
before going through the entire pipeline	


28	




Clipping	




Hidden Surface Removal	

Object-space approach: use pairwise testing 
between polygons (objects)	


Worst case complexity O(n2) for n polygons	


partially obscuring	
 can draw independently	


30	




Better Still	




Better Still	




Painter’s Algorithm	

Render polygons a back to front order so that 
polygons behind others are simply painted over	


	

B behind A as seen by viewer	
 Fill B then A	


33	




Depth Sort	

Requires ordering of polygons first 	


– O(n log n) calculation for ordering	

– Not all polygons front or behind all other polygons	


Order polygons and deal with easy cases first, harder later	


Polygons sorted by 	

distance from COP	


34	




Easy Cases	

A lies behind all other polygons	


– Can render	


Polygons overlap in z but not in either x or y	

– Can render independently	


35	




Hard Cases	


Overlap in all directions	

but can one is fully on 	

one side of the other	


cyclic overlap	


penetration	

36	




Back-Face Removal (Culling)	


θ

face is visible iff  90 ≥ θ ≥ -90	

equivalently  cos θ ≥ 0	

or v • n ≥ 0	


	

- plane of face has form ax + by +cz +d =0	

- After normalization n = ( 0 0 1 0)T 	


 	

+ Need only test the sign of c	


- Will not work correctly if we have nonconvex objects 	


37	




Image Space Approach	

•  Look at each ray (nm for an n x m frame buffer)	

•  Find closest of k polygons	

•  Complexity O(nmk)	

•  Ray tracing 	

•  z-buffer	


38	




z-Buffer Algorithm	

•  Use a buffer called z or depth buffer to store depth of closest 

object at each pixel found so far	

•  As we render each polygon, compare the depth of each pixel 

to depth in z buffer	


•  If less, place shade of pixel in color buffer and update z buffer	


39	




z-Buffer	

for(each polygon P in the polygon list) 	

      do{	

          for(each pixel(x,y) that intersects P) 	

          do{	

               Calculate z-depth of P at (x,y)	

               If (z-depth < z-buffer[x,y]) 	

               then{	

                      z-buffer[x,y]=z-depth;	

                      COLOR(x,y)=Intensity of P at(x,y);	

                   }	

               #If-programming-for alpha compositing:	

               Else if (COLOR(x,y).opacity < 100%)	

               then{	

                      COLOR(x,y)=Superimpose 
COLOR(x,y) in front of Intensity of P at(x,y);	

                   }	

               #Endif-programming-for	

            }	

        }	

  display COLOR array.	






Efficiency - Scanline	

As we move across a scan line, the depth changes 
satisfy aΔx+bΔy+cΔz=0	


Along scan line 	


Δy = 0	

Δz = -     Δx	

	
 c

a

In screen space Δx = 1 	


42	




Scan-Line Algorithm	

Combine shading and hsr through scan line algorithm	


scan line i: no need for depth 	

information, can only be in no	

or one polygon 	


scan line j: need depth 	

information only when in	

more than one polygon 	


43	




Implementation	

Need a data structure to store	


–  Flag for each polygon (inside/outside)	

–  Incremental structure for scan lines that stores 

which edges are encountered 	

–  Parameters for planes 	


44	




Rasterization	

•  Rasterization (scan conversion)	


– Determine which pixels that are inside primitive 
specified by a set of vertices	


–  Produces a set of fragments	

–  Fragments have a location (pixel location) and other 

attributes such color and texture coordinates that are 
determined by interpolating values at vertices	


•  Pixel colors determined later using color, texture, 
and other vertex properties	




Diversion	




Rendering Spheres	




Spheres - Application	




Sphere-Definition	




Sphere-Lighting	




VBOs & VAOs	




Material Properties	




The Usual	




Finally	




But …	




Vertex Shader – Object Space	




Fragment Shader	




Yet Another Way 	




Vertex Lighting Shaders I	


59 

// vertex shader	

in vec4 vPosition;	

in vec3 vNormal;	

out vec4 color;  //vertex shade	

	

// light and material properties	

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;	

uniform mat4 ModelView;	

uniform mat4 Projection;	

uniform vec4 LightPosition;	

uniform float Shininess;	




Vertex Lighting Shaders II	


60	


void main()	

{	

    // Transform vertex  position into eye coordinates	

    vec3 pos = (ModelView * vPosition).xyz;	


	
	

    vec3 L = normalize( LightPosition.xyz - pos );	

    vec3 E = normalize( -pos );	

    vec3 H = normalize( L + E );	

	

    // Transform vertex normal into eye coordinates	

    vec3 N = normalize( ModelView*vec4(vNormal, 0.0) ).xyz;	




Vertex Lighting Shaders II	


61	


void main()	

{	

    // Transform vertex  position into eye coordinates	

    vec3 pos = (ModelView * vPosition).xyz;	


	
	

    vec3 L = normalize( LightPosition.xyz - pos );	

    vec3 E = normalize( -pos );	

    vec3 H = normalize( L + E );	

	

    // Transform vertex normal into eye coordinates	

    vec3 N = normalize( ModelView*vec4(vNormal, 0.0) ).xyz;	




Vertex Lighting Shaders III	


62	


// Compute terms in the illumination equation	

    vec4 ambient = AmbientProduct;	

	

    float Kd = max( dot(L, N), 0.0 );	

    vec4  diffuse = Kd*DiffuseProduct;	

    float Ks = pow( max(dot(N, H), 0.0), Shininess );	

    vec4  specular = Ks * SpecularProduct;	

    if( dot(L, N) < 0.0 )  specular = vec4(0.0, 0.0, 0.0, 1.0); 	

    gl_Position = Projection * ModelView * vPosition;	

	

    color = ambient + diffuse + specular;	

    color.a = 1.0;	

}	




Vertex Lighting Shaders IV	


63	


E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 
Addison-Wesley 2012	


// fragment shader	

	

in vec4 color;	

	

void main() 	

{ 	

    gl_FragColor = color;	

} 	

	

	




Scan-Line Rasterization	




ScanConversion -Line Segments	

•  Start with line segment in window coordinates with 

integer values for endpoints	

•  Assume implementation has a write_pixel 

function	


y = mx + h	


x
ym

Δ

Δ
=



DDA Algorithm	

•  Digital Differential Analyzer	


–  Line y=mx+ h satisfies differential equation	

        dy/dx = m = Dy/Dx = y2-y1/x2-x1	


•  Along scan line Dx = 1	


For(x=x1; x<=x2,ix++) {	

   y+=m;	

 display (x, round(y), line_color)	

}	




Problem	

DDA = for each x plot pixel at closest y	


–  Problems for steep lines	




Bresenham’s Algorithm	

•  DDA requires one floating point addition per step	


•  Eliminate computations through Bresenham’s algorithm	


•  Consider only 1 ≥ m ≥ 0	


– Other cases by symmetry	


•  Assume pixel centers are at half integers	




Main Premise	

If we start at a pixel that has been written, there are only two 
candidates for the next pixel to be written into the frame buffer	




Candidate Pixels	

1 ≥ m ≥ 0	


last pixel	


candidates	


Note that line could have	

passed through any	

part of this pixel	




Decision Variable	


-

d = Δx(b-a)	


d is an integer	

d > 0 use upper pixel	

d < 0 use lower pixel	




Incremental Form	

Inspect dk at x = k	


dk+1= dk –2Dy,   if dk <0	

dk+1= dk –2(Dy- Dx),   otherwise	


For each x, we need do only an integer  addition and test	

	

Single instruction on graphics chips	




Polygon Scan Conversion	

•  Scan Conversion = Fill	

•  How to tell inside from outside	


– Convex easy	

– Nonsimple difficult	


– Odd even test	

•  Count edge crossings	




Filling in the Frame Buffer	

Fill at end of pipeline	


– Convex Polygons only	

– Nonconvex polygons assumed to have been 

tessellated	

–  Shades (colors) have been computed for 

vertices (Gouraud shading)	


– Combine with z-buffer algorithm	

•  March across scan lines interpolating shades	


•  Incremental work small	




Using Interpolation	


span	


C1	


C3	


C2	


C5	


C4	

scan line	


C1 C2 C3 specified by glColor or by vertex shading	

C4 determined by interpolating between C1 and C2	

C5 determined by interpolating between C2 and C3	

interpolate between C4 and C5 along span 	

	




E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 
Addison-Wesley 2012	


Scan Line Fill 	

Can also fill by maintaining a data structure of all intersections 
of polygons with scan lines	


–  Sort by scan line	

–  Fill each span	


vertex order generated 	

      by vertex list	
 desired order	




Data Structure	




E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 
Addison-Wesley 2012	


Aliasing	

•  Ideal rasterized line should be 1 pixel wide	


•  Choosing best y for each x (or visa versa) produces 
aliased raster lines	




Antialiasing by Area Averaging	

•  Color multiple pixels for each x depending on coverage by 

ideal line	


original	
 antialiased	


magnified	




Polygon Aliasing	

•  Aliasing problems can be serious for polygons	


–  Jaggedness of edges	

–  Small polygons neglected	


– Need compositing so color	

of one polygon does not	

totally determine color of	


pixel	


All three polygons should contribute to color	




Hierarchical Modeling 	




Cars, Robots, Solar System	




The Terminator	




Our Goal J	




Heliocentric Coordinates	


Heliocentric ecliptic coordinates. The origin is the center of the Sun. The fundamental plane is the plane 
of the ecliptic. The primary direction (the x axis) is the vernal equinox. A right-handed convention 
specifies a y axis 90° to the east in the fundamental plane; the z axis points toward the north ecliptic 
pole. The reference frame is relatively stationary, aligned with the vernal equinox.	




Inclinations	




Axial Tilt	




W. Pedia says	


To understand axial tilt, we employ the right-hand 
rule. When the fingers of the right hand are curled 
around in the direction of the planet's rotation, the 
thumb points in the direction of the north pole.	




Axial Tilts of Planets	


The axial tilt of three planets: Earth, Uranus, and 
Venus. Here, a vertical line (black) is drawn 
perpendicular to the plane of each planet's orbit. The 
angle between this line and the planet's north pole 
(red) is the tilt. The surrounding arrows (green) show 
the direction of the planet's rotation.	




Ecliptic Coordinate System	


where \epsilon is the obliquity of the ecliptic.	




Roots	




Back 2 Earth J	




93	


Instance Transformation	

•  Start with prototype object	

•  Each appearance of object in model is instance	


– Must scale, orient, position	


– Defines instance transformation	




94	


Symbol-Instance Table	




95	


Relationships	

•   Car	


– Chassis + 4  identical wheels	

– Two symbols	


•  Rate of forward motion function of rotational speed 
of wheels	




96	


Move The Car	

car(speed)	

{	

    chassis()	

    wheel(right_front);	

    wheel(left_front);	

    wheel(right_rear);	

    wheel(left_rear);	

}	




97	


Graphs – Composition of Car	

•  Set of nodes and edges (links)	


•  Edge connects a pair of nodes	

– Directed or undirected	


•  Cycle: directed path that is a loop	


loop	




98	


Tree – Composition of Car	

Graph in which each node (except the root) 
has exactly one parent node	


– May have multiple children	


–  Leaf or terminal node: no children	


root node	


leaf node	




99	


Tree Model of Car	




100 

DAG Model 
All the wheels are identical 
Not much different than dealing with a tree 



101	


Robot Arm	


robot arm	
 parts in their own 	

coodinate systems	




102	


Articulated Models	

–  Parts connected at joints	

–  Specify state of model by joint angles	




103	


Relationships - Composition	

-  Base	

-  Lower Arm	

-  Upper Arm	




Base	

-  Single angle determines position 
-  Is cylinder	




Lower Arm	

Attached to base	


–  Position depends on rotation of base	

– Also translate relative to base, rotate about connecting 

joint	

–  Is cube	




Upper Arm	

Upper arm attached to lower arm	


–  Its position depends on both base and lower arm	

– Translate relative to lower arm and rotate about joint 

connecting to lower arm	


	




Upper Arm	

Upper arm attached to lower arm	


–  Its position depends on both base and lower arm	

– Translate relative to lower arm and rotate about joint 

connecting to lower arm	


	




Do the same …	




109	


Required Matrices	




Base	

Rotation of base: Rb	


– Apply M = Rb to base	

	




Lower Arm	

Translate lower arm relative to base: Tlu	


Rotate lower arm around joint: Rlu	


– Apply M = Rb Tlu Rlu to lower arm	


	

	




Upper Arm	

Translate upper arm relative to upper arm: Tuu	


Rotate upper arm around joint: Ruu	


– Apply M = Rb Tlu Rlu Tuu Ruu to upper arm	




113	


Simple Robot	

mat4 ctm;	

robot_arm()	

{	

    ctm = RotateY(theta);	

    base();	

    ctm *= Translate(0.0, h1, 0.0);	

    ctm *= RotateZ(phi);	

    lower_arm();	

    ctm *= Translate(0.0, h2, 0.0);	

    ctm *= RotateZ(psi);	

    upper_arm();	

}	




114	


Tree Model of Robot	

Code shows relationships between parts of model	


– Can change shape/texture w/o altering relationships	




115	


Possible Node Structure	


Code for drawing part or	

pointer to drawing function 	


linked list of pointers to children	


matrix relating node to parent	




Do the same …	




Generalizations	




118	


Generalizations	

•  Need to deal with multiple children	


– How do we represent a more general tree?	

– How do we traverse such a data structure?	


•  Animation	

– How to use dynamically?	

– Can we create and delete nodes during 

execution?	




119 

Breadth-First Tree 



Solar System ?	




121	


Humanoid Figure	




122	


Building the Model	

•  Implementation using quadrics: ellipsoids and cylinders	

•  Access parts through functions	


–  torso()	


–  left_upper_arm()	

•  Matrices describe position of node with respect to  parent	


– Mlla positions leftlowerleg with respect to leftupperarm	




123	


Matrices Tree 	




124	


Display and Traversal	

•  The position determined by 11 joint angles (two 

for the head and one for each other part)	

•  Display of the tree requires a graph traversal	


– Visit each node once	


– Display function at each node pertaining to part 	

– Applying correct transformation matrix for position 

and orientation	




125	


Transformation Matrices	

10 relevant matrices	


– M positions and orients entire figure 
through the torso which is the root node	


– Mh positions head with respect to torso	

– Mlua, Mrua, Mlul, Mrul position arms and 

legs with respect to torso	


– Mlla, Mrla, Mlll, Mrll position lower parts 
of limbs with respect to corresponding 
upper limbs	




126	


Stack-based Traversal	

•  Set model-view matrix to M and draw torso	

•  Set model-view matrix to MMh and draw head	

•  For left-upper arm need MMlua and so on	


•  No need recomputing Mmlua 	

– Use the matrix stack to store M and other matrices 

in tree traversal	




127	


Old Style GL Code	

figure() {	

   PushMatrix()	

   torso();	

   Rotate (…);	

   head();	

   PopMatrix();	

   PushMatrix();	

   Translate(…);	

   Rotate(…);	

   left_upper_arm();	

   PopMatrix();	

   PushMatrix();	


save present model-view matrix	


update model-view matrix for head	


recover original model-view matrix	


save it again	


update model-view matrix 	

for left upper arm	


recover and save original 	

model-view matrix again	


rest of code	




128	


Tree Data Structure	

•  Represent tree and algorithm to traverse tree	

•  We will use a left-child right sibling structure	


– Uses linked lists	

–  Each node in data structure is two pointers	


–  Left: next node	

– Right: linked list of children	




In GLSL	




In GLSL	




Still Use	




132	


Left-Child Right-Sibling Tree	




133	


Tree node Structure	

At each node 	

- Pointer to sibling	

–  Pointer to child	


–  Pointer to a function that draws the object represented 
by the node	


– Homogeneous coordinate matrix to multiply on the right 
of the current model-view matrix	


•  Represents changes going from parent to node	


•  In OpenGL this matrix is a 1D array storing matrix by columns 	




134	


C	

typedef struct treenode	

{	

   mat4 m;	

   void (*f)();	

   struct treenode *sibling;	

   struct treenode *child;	

} treenode;	




135 

torso and head nodes 
treenode torso_node, head_node, lua_node, … ;	

torso_node.m = RotateY(theta[0]);	

torso_node.f = torso;	

torso_node.sibling = NULL;	

torso_node.child =  &head_node;	

	


 head_node.m = translate(0.0, TORSO_HEIGHT
+0.5*HEAD_HEIGHT, 0.0)*RotateX(theta[1])*RotateY(theta[2]);	


head_node.f = head;	

head_node.sibling = &lua_node;	

head_node.child = NULL;	

	

              	


	




136	


Notes	

•  Position determined by 11 joint angles in theta[11]	


•  Animate by changing angles and redisplaying	


•  Form required matrices using Rotate and Translate 	




137	


Preorder Traversal	

void traverse(treenode* root)	

{	

   if(root==NULL) return;	

   mvstack.push(model_view);	

   model_view = model_view*root->m;	

   root->f();	

   if(root->child!=NULL) traverse(root->child);	

   model_view = mvstack.pop();	

   if(root->sibling!=NULL) traverse(root->sibling);	

}	




138	


Notes	

•  Save model-view matrix before multiplying it by 

node matrix 	

– Updated matrix applies to children but not to siblings 	


•  Traversal applies to any left-child right-sibling tree	

–  Particular tree encoded in definition of individual nodes	


•  Order of traversal matters given state changes in 
the functions	




139	


Dynamic Trees	

Use pointers, the structure can be dynamic	


typedef treenode *tree_ptr;	

tree_ptr torso_ptr;	

torso_ptr = malloc(sizeof(treenode));	

	


Definition of nodes and traversal are essentially the same as 
before but we can add and delete nodes during execution	




140	


The Real Thing	




As Opposed	



