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Spheres	





GLUT	



void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);	


	


void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);	





Direct Method	





GL_LINE_LOOP	





Problems - @ poles	





Use GL_TRIANGLE FAN 	





Method II	





YAS (Yet Another Solution)	



http://www.andrewnoske.com/wiki/Generating_a_sphere_as_a_3D_mesh	





Platonic Solids	





Procedure	


Create Platonic Solid –	



	

 http://www.csee.umbc.edu/~squire/reference/polyhedra.shtml#icosahedron	


	


Subdivide each face –	



	

http://donhavey.com/blog/tutorials/tutorial-3-the-icosahedron-sphere/	


	

	





Think Sierpinski-like	





Method III	







Impostor Spheres	



http://www.arcsynthesis.org/gltut/Illumination/Tutorial%2013.html	





Impostors	





Clipping and Scan Conversion	





Cohen Sutherland in 3D	


•  Use 6-bit outcodes 	


•  When needed, clip line segment against planes	





Liang-Barsky Clipping	


•  In (a): a4 > a3 > a2 > a1	



–  Intersect right, top, left, bottom: shorten	



•  In (b): a4 > a2 > a3 > a1 	



–  Intersect right, left, top, bottom: reject	





Polygon Clipping	


•  Not as simple as line segment clipping	



– Clipping a line segment yields at most one line segment	


– Clipping a polygon can yield multiple polygons	



•  Convex polygon is cool J	
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Fixes	





Tessellation and Convexity	


Replace nonconvex (concave) polygons with triangular 
polygons (a tessellation)	
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Clipping as a Black Box	


Line segment clipping - takes in two vertices and produces 
either no vertices or vertices of a clipped segment	
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Pipeline Clipping - Line Segments	


Clipping side of window is independent of other sides	



– Can use four independent clippers in a pipeline	
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Pipeline Clipping of Polygons	



•  Three dimensions: add front and back clippers	


•  Small increase in latency	
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Bounding Boxes	


Ue an axis-aligned bounding box or extent	



–  Smallest rectangle aligned with axes that encloses the 
polygon	



–  Simple to compute: max and min of x and y	
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Bounding boxes	


Can usually determine accept/reject based 

only on bounding box	



reject	



accept	



requires detailed	


    clipping	
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Clipping vs. Visibility	


•  Clipping similar to hidden-surface removal	


•  Remove objects that are not visible to the camera	


•  Use visibility or occlusion testing early in the 

process to eliminate as many polygons as possible 
before going through the entire pipeline	
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Clipping	





Hidden Surface Removal	


Object-space approach: use pairwise testing 
between polygons (objects)	



Worst case complexity O(n2) for n polygons	



partially obscuring	

 can draw independently	
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Better Still	





Better Still	





Painter’s Algorithm	


Render polygons a back to front order so that 
polygons behind others are simply painted over	



	


B behind A as seen by viewer	

 Fill B then A	
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Depth Sort	


Requires ordering of polygons first 	



– O(n log n) calculation for ordering	


– Not all polygons front or behind all other polygons	



Order polygons and deal with easy cases first, harder later	



Polygons sorted by 	


distance from COP	
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Easy Cases	


A lies behind all other polygons	



– Can render	



Polygons overlap in z but not in either x or y	


– Can render independently	
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Hard Cases	



Overlap in all directions	


but can one is fully on 	


one side of the other	



cyclic overlap	



penetration	
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Back-Face Removal (Culling)	



θ

face is visible iff  90 ≥ θ ≥ -90	


equivalently  cos θ ≥ 0	


or v • n ≥ 0	



	


- plane of face has form ax + by +cz +d =0	


- After normalization n = ( 0 0 1 0)T 	



 	


+ Need only test the sign of c	



- Will not work correctly if we have nonconvex objects 	



37	





Image Space Approach	


•  Look at each ray (nm for an n x m frame buffer)	


•  Find closest of k polygons	


•  Complexity O(nmk)	


•  Ray tracing 	


•  z-buffer	
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z-Buffer Algorithm	


•  Use a buffer called z or depth buffer to store depth of closest 

object at each pixel found so far	


•  As we render each polygon, compare the depth of each pixel 

to depth in z buffer	



•  If less, place shade of pixel in color buffer and update z buffer	



39	





z-Buffer	


for(each polygon P in the polygon list) 	


      do{	


          for(each pixel(x,y) that intersects P) 	


          do{	


               Calculate z-depth of P at (x,y)	


               If (z-depth < z-buffer[x,y]) 	


               then{	


                      z-buffer[x,y]=z-depth;	


                      COLOR(x,y)=Intensity of P at(x,y);	


                   }	


               #If-programming-for alpha compositing:	


               Else if (COLOR(x,y).opacity < 100%)	


               then{	


                      COLOR(x,y)=Superimpose 
COLOR(x,y) in front of Intensity of P at(x,y);	


                   }	


               #Endif-programming-for	


            }	


        }	


  display COLOR array.	







Efficiency - Scanline	


As we move across a scan line, the depth changes 
satisfy aΔx+bΔy+cΔz=0	



Along scan line 	



Δy = 0	


Δz = -     Δx	


	

 c

a

In screen space Δx = 1 	
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Scan-Line Algorithm	


Combine shading and hsr through scan line algorithm	



scan line i: no need for depth 	


information, can only be in no	


or one polygon 	



scan line j: need depth 	


information only when in	


more than one polygon 	
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Implementation	


Need a data structure to store	



–  Flag for each polygon (inside/outside)	


–  Incremental structure for scan lines that stores 

which edges are encountered 	


–  Parameters for planes 	
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Rasterization	


•  Rasterization (scan conversion)	



– Determine which pixels that are inside primitive 
specified by a set of vertices	



–  Produces a set of fragments	


–  Fragments have a location (pixel location) and other 

attributes such color and texture coordinates that are 
determined by interpolating values at vertices	



•  Pixel colors determined later using color, texture, 
and other vertex properties	





Diversion	





Rendering Spheres	





Spheres - Application	





Sphere-Definition	





Sphere-Lighting	





VBOs & VAOs	





Material Properties	





The Usual	





Finally	





But …	





Vertex Shader – Object Space	





Fragment Shader	





Yet Another Way 	





Vertex Lighting Shaders I	
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// vertex shader	


in vec4 vPosition;	


in vec3 vNormal;	


out vec4 color;  //vertex shade	


	


// light and material properties	


uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;	


uniform mat4 ModelView;	


uniform mat4 Projection;	


uniform vec4 LightPosition;	


uniform float Shininess;	





Vertex Lighting Shaders II	



60	



void main()	


{	


    // Transform vertex  position into eye coordinates	


    vec3 pos = (ModelView * vPosition).xyz;	



	

	


    vec3 L = normalize( LightPosition.xyz - pos );	


    vec3 E = normalize( -pos );	


    vec3 H = normalize( L + E );	


	


    // Transform vertex normal into eye coordinates	


    vec3 N = normalize( ModelView*vec4(vNormal, 0.0) ).xyz;	





Vertex Lighting Shaders II	



61	



void main()	


{	


    // Transform vertex  position into eye coordinates	


    vec3 pos = (ModelView * vPosition).xyz;	



	

	


    vec3 L = normalize( LightPosition.xyz - pos );	


    vec3 E = normalize( -pos );	


    vec3 H = normalize( L + E );	


	


    // Transform vertex normal into eye coordinates	


    vec3 N = normalize( ModelView*vec4(vNormal, 0.0) ).xyz;	





Vertex Lighting Shaders III	
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// Compute terms in the illumination equation	


    vec4 ambient = AmbientProduct;	


	


    float Kd = max( dot(L, N), 0.0 );	


    vec4  diffuse = Kd*DiffuseProduct;	


    float Ks = pow( max(dot(N, H), 0.0), Shininess );	


    vec4  specular = Ks * SpecularProduct;	


    if( dot(L, N) < 0.0 )  specular = vec4(0.0, 0.0, 0.0, 1.0); 	


    gl_Position = Projection * ModelView * vPosition;	


	


    color = ambient + diffuse + specular;	


    color.a = 1.0;	


}	





Vertex Lighting Shaders IV	
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E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 
Addison-Wesley 2012	



// fragment shader	


	


in vec4 color;	


	


void main() 	


{ 	


    gl_FragColor = color;	


} 	


	


	





Scan-Line Rasterization	





ScanConversion -Line Segments	


•  Start with line segment in window coordinates with 

integer values for endpoints	


•  Assume implementation has a write_pixel 

function	



y = mx + h	



x
ym

Δ

Δ
=



DDA Algorithm	


•  Digital Differential Analyzer	



–  Line y=mx+ h satisfies differential equation	


        dy/dx = m = Dy/Dx = y2-y1/x2-x1	



•  Along scan line Dx = 1	



For(x=x1; x<=x2,ix++) {	


   y+=m;	


 display (x, round(y), line_color)	


}	





Problem	


DDA = for each x plot pixel at closest y	



–  Problems for steep lines	





Bresenham’s Algorithm	


•  DDA requires one floating point addition per step	



•  Eliminate computations through Bresenham’s algorithm	



•  Consider only 1 ≥ m ≥ 0	



– Other cases by symmetry	



•  Assume pixel centers are at half integers	





Main Premise	


If we start at a pixel that has been written, there are only two 
candidates for the next pixel to be written into the frame buffer	





Candidate Pixels	


1 ≥ m ≥ 0	



last pixel	



candidates	



Note that line could have	


passed through any	


part of this pixel	





Decision Variable	



-

d = Δx(b-a)	



d is an integer	


d > 0 use upper pixel	


d < 0 use lower pixel	





Incremental Form	


Inspect dk at x = k	



dk+1= dk –2Dy,   if dk <0	


dk+1= dk –2(Dy- Dx),   otherwise	



For each x, we need do only an integer  addition and test	


	


Single instruction on graphics chips	





Polygon Scan Conversion	


•  Scan Conversion = Fill	


•  How to tell inside from outside	



– Convex easy	


– Nonsimple difficult	



– Odd even test	


•  Count edge crossings	





Filling in the Frame Buffer	


Fill at end of pipeline	



– Convex Polygons only	


– Nonconvex polygons assumed to have been 

tessellated	


–  Shades (colors) have been computed for 

vertices (Gouraud shading)	



– Combine with z-buffer algorithm	


•  March across scan lines interpolating shades	



•  Incremental work small	





Using Interpolation	



span	



C1	



C3	



C2	



C5	



C4	


scan line	



C1 C2 C3 specified by glColor or by vertex shading	


C4 determined by interpolating between C1 and C2	


C5 determined by interpolating between C2 and C3	


interpolate between C4 and C5 along span 	


	





E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 
Addison-Wesley 2012	



Scan Line Fill 	


Can also fill by maintaining a data structure of all intersections 
of polygons with scan lines	



–  Sort by scan line	


–  Fill each span	



vertex order generated 	


      by vertex list	

 desired order	





Data Structure	





E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 
Addison-Wesley 2012	



Aliasing	


•  Ideal rasterized line should be 1 pixel wide	



•  Choosing best y for each x (or visa versa) produces 
aliased raster lines	





Antialiasing by Area Averaging	


•  Color multiple pixels for each x depending on coverage by 

ideal line	



original	

 antialiased	



magnified	





Polygon Aliasing	


•  Aliasing problems can be serious for polygons	



–  Jaggedness of edges	


–  Small polygons neglected	



– Need compositing so color	


of one polygon does not	


totally determine color of	



pixel	



All three polygons should contribute to color	





Hierarchical Modeling 	





Cars, Robots, Solar System	





The Terminator	





Our Goal J	





Heliocentric Coordinates	



Heliocentric ecliptic coordinates. The origin is the center of the Sun. The fundamental plane is the plane 
of the ecliptic. The primary direction (the x axis) is the vernal equinox. A right-handed convention 
specifies a y axis 90° to the east in the fundamental plane; the z axis points toward the north ecliptic 
pole. The reference frame is relatively stationary, aligned with the vernal equinox.	





Inclinations	





Axial Tilt	





W. Pedia says	



To understand axial tilt, we employ the right-hand 
rule. When the fingers of the right hand are curled 
around in the direction of the planet's rotation, the 
thumb points in the direction of the north pole.	





Axial Tilts of Planets	



The axial tilt of three planets: Earth, Uranus, and 
Venus. Here, a vertical line (black) is drawn 
perpendicular to the plane of each planet's orbit. The 
angle between this line and the planet's north pole 
(red) is the tilt. The surrounding arrows (green) show 
the direction of the planet's rotation.	





Ecliptic Coordinate System	



where \epsilon is the obliquity of the ecliptic.	





Roots	





Back 2 Earth J	
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Instance Transformation	


•  Start with prototype object	


•  Each appearance of object in model is instance	



– Must scale, orient, position	



– Defines instance transformation	
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Symbol-Instance Table	
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Relationships	


•   Car	



– Chassis + 4  identical wheels	


– Two symbols	



•  Rate of forward motion function of rotational speed 
of wheels	
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Move The Car	


car(speed)	


{	


    chassis()	


    wheel(right_front);	


    wheel(left_front);	


    wheel(right_rear);	


    wheel(left_rear);	


}	
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Graphs – Composition of Car	


•  Set of nodes and edges (links)	



•  Edge connects a pair of nodes	


– Directed or undirected	



•  Cycle: directed path that is a loop	



loop	
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Tree – Composition of Car	


Graph in which each node (except the root) 
has exactly one parent node	



– May have multiple children	



–  Leaf or terminal node: no children	



root node	



leaf node	
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Tree Model of Car	
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DAG Model 
All the wheels are identical 
Not much different than dealing with a tree 
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Robot Arm	



robot arm	

 parts in their own 	


coodinate systems	
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Articulated Models	


–  Parts connected at joints	


–  Specify state of model by joint angles	
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Relationships - Composition	


-  Base	


-  Lower Arm	


-  Upper Arm	





Base	


-  Single angle determines position 
-  Is cylinder	





Lower Arm	


Attached to base	



–  Position depends on rotation of base	


– Also translate relative to base, rotate about connecting 

joint	


–  Is cube	





Upper Arm	


Upper arm attached to lower arm	



–  Its position depends on both base and lower arm	


– Translate relative to lower arm and rotate about joint 

connecting to lower arm	



	





Upper Arm	


Upper arm attached to lower arm	



–  Its position depends on both base and lower arm	


– Translate relative to lower arm and rotate about joint 

connecting to lower arm	



	





Do the same …	
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Required Matrices	





Base	


Rotation of base: Rb	



– Apply M = Rb to base	


	





Lower Arm	


Translate lower arm relative to base: Tlu	



Rotate lower arm around joint: Rlu	



– Apply M = Rb Tlu Rlu to lower arm	



	


	





Upper Arm	


Translate upper arm relative to upper arm: Tuu	



Rotate upper arm around joint: Ruu	



– Apply M = Rb Tlu Rlu Tuu Ruu to upper arm	





113	



Simple Robot	


mat4 ctm;	


robot_arm()	


{	


    ctm = RotateY(theta);	


    base();	


    ctm *= Translate(0.0, h1, 0.0);	


    ctm *= RotateZ(phi);	


    lower_arm();	


    ctm *= Translate(0.0, h2, 0.0);	


    ctm *= RotateZ(psi);	


    upper_arm();	


}	
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Tree Model of Robot	


Code shows relationships between parts of model	



– Can change shape/texture w/o altering relationships	
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Possible Node Structure	



Code for drawing part or	


pointer to drawing function 	



linked list of pointers to children	



matrix relating node to parent	





Do the same …	





Generalizations	
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Generalizations	


•  Need to deal with multiple children	



– How do we represent a more general tree?	


– How do we traverse such a data structure?	



•  Animation	


– How to use dynamically?	


– Can we create and delete nodes during 

execution?	
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Breadth-First Tree 



Solar System ?	
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Humanoid Figure	
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Building the Model	


•  Implementation using quadrics: ellipsoids and cylinders	


•  Access parts through functions	



–  torso()	



–  left_upper_arm()	


•  Matrices describe position of node with respect to  parent	



– Mlla positions leftlowerleg with respect to leftupperarm	
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Matrices Tree 	
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Display and Traversal	


•  The position determined by 11 joint angles (two 

for the head and one for each other part)	


•  Display of the tree requires a graph traversal	



– Visit each node once	



– Display function at each node pertaining to part 	


– Applying correct transformation matrix for position 

and orientation	
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Transformation Matrices	


10 relevant matrices	



– M positions and orients entire figure 
through the torso which is the root node	



– Mh positions head with respect to torso	


– Mlua, Mrua, Mlul, Mrul position arms and 

legs with respect to torso	



– Mlla, Mrla, Mlll, Mrll position lower parts 
of limbs with respect to corresponding 
upper limbs	
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Stack-based Traversal	


•  Set model-view matrix to M and draw torso	


•  Set model-view matrix to MMh and draw head	


•  For left-upper arm need MMlua and so on	



•  No need recomputing Mmlua 	


– Use the matrix stack to store M and other matrices 

in tree traversal	
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Old Style GL Code	


figure() {	


   PushMatrix()	


   torso();	


   Rotate (…);	


   head();	


   PopMatrix();	


   PushMatrix();	


   Translate(…);	


   Rotate(…);	


   left_upper_arm();	


   PopMatrix();	


   PushMatrix();	



save present model-view matrix	



update model-view matrix for head	



recover original model-view matrix	



save it again	



update model-view matrix 	


for left upper arm	



recover and save original 	


model-view matrix again	



rest of code	
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Tree Data Structure	


•  Represent tree and algorithm to traverse tree	


•  We will use a left-child right sibling structure	



– Uses linked lists	


–  Each node in data structure is two pointers	



–  Left: next node	


– Right: linked list of children	





In GLSL	





In GLSL	





Still Use	
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Left-Child Right-Sibling Tree	
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Tree node Structure	


At each node 	


- Pointer to sibling	


–  Pointer to child	



–  Pointer to a function that draws the object represented 
by the node	



– Homogeneous coordinate matrix to multiply on the right 
of the current model-view matrix	



•  Represents changes going from parent to node	



•  In OpenGL this matrix is a 1D array storing matrix by columns 	





134	



C	


typedef struct treenode	


{	


   mat4 m;	


   void (*f)();	


   struct treenode *sibling;	


   struct treenode *child;	


} treenode;	
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torso and head nodes 
treenode torso_node, head_node, lua_node, … ;	


torso_node.m = RotateY(theta[0]);	


torso_node.f = torso;	


torso_node.sibling = NULL;	


torso_node.child =  &head_node;	


	



 head_node.m = translate(0.0, TORSO_HEIGHT
+0.5*HEAD_HEIGHT, 0.0)*RotateX(theta[1])*RotateY(theta[2]);	



head_node.f = head;	


head_node.sibling = &lua_node;	


head_node.child = NULL;	
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Notes	


•  Position determined by 11 joint angles in theta[11]	



•  Animate by changing angles and redisplaying	



•  Form required matrices using Rotate and Translate 	
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Preorder Traversal	


void traverse(treenode* root)	


{	


   if(root==NULL) return;	


   mvstack.push(model_view);	


   model_view = model_view*root->m;	


   root->f();	


   if(root->child!=NULL) traverse(root->child);	


   model_view = mvstack.pop();	


   if(root->sibling!=NULL) traverse(root->sibling);	


}	
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Notes	


•  Save model-view matrix before multiplying it by 

node matrix 	


– Updated matrix applies to children but not to siblings 	



•  Traversal applies to any left-child right-sibling tree	


–  Particular tree encoded in definition of individual nodes	



•  Order of traversal matters given state changes in 
the functions	
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Dynamic Trees	


Use pointers, the structure can be dynamic	



typedef treenode *tree_ptr;	


tree_ptr torso_ptr;	


torso_ptr = malloc(sizeof(treenode));	


	



Definition of nodes and traversal are essentially the same as 
before but we can add and delete nodes during execution	
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The Real Thing	





As Opposed	




