CSE 5542 - Real Time Rendering Week IO

Spheres

department of
COMPUTER SCIENCE
AND ENGINEERING

GLUT

void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);
void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);

Direct Method

FIGURE 2.15 Sphare approximation with quadrilatarals.

```
```

const float DogroosToladiams = M_PI / 180.0; // M_PI = 3.14159..

```
```

const float DogroosToladiams = M_PI / 180.0; // M_PI = 3.14159..
point3 quad_data[352]; // B rous of is quads
point3 quad_data[352]; // B rous of is quads
1mt x = 0;
1mt x = 0;
for(float ph1 = -90.0; pal <- 80.0; pal +- 20.0)
for(float ph1 = -90.0; pal <- 80.0; pal +- 20.0)
i
i
float phir - phi*DogroasToRadiams;
float phir - phi*DogroasToRadiams;
float ph1r20 = (ph1 + 20.0)*DogreoaToRadians;
float ph1r20 = (ph1 + 20.0)*DogreoaToRadians;
for(t1oat tagta = -180.0; thota <- 180.0; thota +* 20.0)
for(t1oat tagta = -180.0; thota <- 180.0; thota +* 20.0)
f
f
float thatar = thota*DggrocnToladians;
float thatar = thota*DggrocnToladians;
quad_data[k] = point3(sin(thetar)*con(phir),
quad_data[k] = point3(sin(thetar)*con(phir),
cos(thetar)*\operatorname{cos(phir), sin(phir));}
cos(thetar)*\operatorname{cos(phir), sin(phir));}
k++;
k++;
quad_data[k] = point3(sin(thotar)*con(ph1r20).
quad_data[k] = point3(sin(thotar)*con(ph1r20).
con(thetar)*\operatorname{con}(\textrm{phir20}), sin(phir20));
con(thetar)*\operatorname{con}(\textrm{phir20}), sin(phir20));
k++;
k++;
}
}
}

```
```

}

```
```


GL_LINE_LOOP

© D1DrawArraya(CL_LINE_LDOP, ...)

Problems - @ poles

Use GL TRIANGLE FAN


```
const float DegreasToHadiams = M_PI / 180.0; // M_PI = 3.14159..
=t & = 0;
point3 strip_data[40];
atrip_data[k] = pointa(0.0, 0.0, 1.0):
k++;
float sinB0 = sin(80.0*DogroasToHadiams);
float cos80 = cos(80.0*DogroesToHadiams);
for(float thata = -180.0; theta <= 180.0; thata += 20.0)
f
    float thotar = thata*DogronsToHadians;
    strip_data[k] = point3(sin(thatar)*coeB0,
                                    cos(thatar)*CoaB0, 日1nB0);
}
atrip_data [k] = point3(0.0, 0.0, -1.0):
k++;
for(float thata = -180.0; theta <= 180.0; thata += 20.0)
{
    float thotar = thata;
    strip_data[k] = point3(sin(thatar)*coaB0,
    cos(thetar)*cos90, 日1nB0);
    \++;
}
glDrau|rraya(GL_TRIANGLE_FAN, ....)
```


Method II

department of
COMPUTER SCIENCE
AND ENGINEERING

YAS (Yet Another Solution)

http://www.andrewnoske.com/wiki/Generating_a_sphere_as_a_3D_mesh

Platonic Solids

Procedure

Create Platonic Solid -
http://www.csee.umbc.edu/~squire/reference/polyhedra.shtm|\#icosahedron

Subdivide each face -
http://donhavey.com/blog/tutorials/tutorial-3-the-icosahedron-sphere/

Think Sierpinski-like

WHiO
SATE
DEPARTMENT OF
COMPUTER SCIENCE
SNAIE
AND ENGINEERING

Method III

DEPARTMENT OF
COMPUTER SCIENCE
AND ENGINEERING

department of
COMPUTER SCIENCE
AND ENGINEERING

Impostor Spheres

http://www.arcsynthesis.org/gltut/Illumination/Tutorial\ |3.html

Impostors

Clipping and Scan Conversion

Cohen Sutherland in 3D

- Use 6-bit outcodes
- When needed, clip line segment against planes

Liang-Barsky Clipping

- $\ln (a): a_{4}>a_{3}>a_{2}>a_{1}$
- Intersect right, top, left, bottom: shorten
- $\ln (b): a_{4}>a_{2}>a_{3}>a_{1}$
- Intersect right, left, top, bottom: reject

Polygon Clipping

- Not as simple as line segment clipping
- Clipping a line segment yields at most one line segment
- Clipping a polygon can yield multiple polygons

- Convex polygon is cool $)$

Fixes

Tessellation and Convexity

Replace nonconvex (concave) polygons with triangular polygons (a tessellation)

Clipping as a Black Box

Line segment clipping - takes in two vertices and produces either no vertices or vertices of a clipped segment

Pipeline Clipping - Line Segments

Clipping side of window is independent of other sides

- Can use four independent clippers in a pipeline

Pipeline Clipping of Polygons

- Three dimensions: add front and back clippers
- Small increase in latency

depabtment of
COMPUTER SCIENCE
AND ENGINEERING

Bounding Boxes

Ue an axis-aligned bounding box or extent

- Smallest rectangle aligned with axes that encloses the polygon
- Simple to compute: max and min of x and y

Bounding boxes

Can usually determine accept/reject based only on bounding box

Clipping vs. Visibility

- Clipping similar to hidden-surface removal
- Remove objects that are not visible to the camera
- Use visibility or occlusion testing early in the process to eliminate as many polygons as possible before going through the entire pipeline

Clipping

department of
COMPUTER SCIENCE
AND ENGINEERING

Hidden Surface Removal

Object-space approach: use pairwise testing between polygons (objects)

partially obscuring

can draw independently

Worst case complexity $O\left(n^{2}\right)$ for n polygons

Better Still

T: H, EEPARTMENT OF
COMPUTER SCIENCE

Better Still

Painter's Algorithm

Render polygons a back to front order so that polygons behind others are simply painted over

B behind A as seen by viewer

Fill B then A

Depth Sort

Requires ordering of polygons first
$-O(n \log n)$ calculation for ordering

- Not all polygons front or behind all other polygons

Order polygons and deal with easy cases first, harder later

Easy Cases

A lies behind all other polygons

- Can render

Polygons overlap in z but not in either x or y

- Can render independently

Hard Cases

cyclic overlap

penetration

Back-Face Removal (Culling)

face is visible iff $90 \geq \theta \geq-90$
equivalently $\cos \theta \geq 0$
or $\mathbf{V} \cdot \mathbf{n} \geq 0$

- plane of face has form $a x+b y+c z+d=0$
- After normalization $\mathbf{n}=\left(\begin{array}{lll}0 & 0 & \|\end{array}\right)^{\top}$
+ Need only test the sign of c
-Will not work correctly if we have nonconvex objects

Image Space Approach

- Look at each ray (nm for an $\mathrm{n} \times \mathrm{m}$ frame buffer)
- Find closest of k polygons
- Complexity O(nmk)
- Ray tracing
- z-buffer

z-Buffer Algorithm

- Use a buffer called z or depth buffer to store depth of closest object at each pixel found so far
- As we render each polygon, compare the depth of each pixel to depth in z buffer
- If less, place shade of pixel in color buffer and update z buffer

z-Buffer


```
for(each polygon \(P\) in the polygon list)
    do\{
        for(each pixel \((x, y)\) that intersects \(P\) )
        do\{
            Calculate \(z\)-depth of \(P\) at ( \(x, y\) )
            If (z-depth < z-buffer[x,y])
            then\{
            z-buffer[ \(x, y]=z-d e p t h ;\)
            \(\operatorname{COLOR}(x, y)=\) Intensity of \(P\) at \((x, y)\);
                \}
            \#lf-programming-for alpha compositing:
            Else if (COLOR(x,y).opacity < I00\%)
            then\{
                    \(\operatorname{COLOR}(x, y)=\) Superimpose
\(\operatorname{COLOR}(x, y)\) in front of Intensity of \(P\) at( \(x, y)\);
                \}
            \#Endif-programming-for
        \}
        \}
                            display COLOR array.
```


A simple three-dimensional scene

Efficiency - Scanline

As we move across a scan line, the depth changes satisfy $a \Delta x+b \Delta y+c \Delta z=0$

Along scan line

$$
\Delta y=0
$$

$$
\Delta \mathrm{z}=-\frac{a}{c} \Delta \mathrm{x}
$$

In screen space $\Delta x=1$

Scan-Line Algorithm

Combine shading and hsr through scan line algorithm

scan line i: no need for depth information, can only be in no or one polygon
scan line j : need depth information only when in more than one polygon

Implementation

Need a data structure to store

- Flag for each polygon (inside/outside)
- Incremental structure for scan lines that stores which edges are encountered
- Parameters for planes

Rasterization

- Rasterization (scan conversion)
- Determine which pixels that are inside primitive specified by a set of vertices
- Produces a set of fragments
- Fragments have a location (pixel location) and other attributes such color and texture coordinates that are determined by interpolating values at vertices
- Pixel colors determined later using color, texture, and other vertex properties

Diversion

Rendering Spheres

department of
COMPUTER SCIENCE
AND ENGINEERING

Spheres - Application

CLutat Modalfiew, Projaction;

```
/f-_--------_--------_-_-----------------------------------------------
```

1at Indar $=0$:
potd

тac3 normal $=$ nornalize $(\operatorname{croan}(b-a, c-b))$;
\#ormals[IEdor] = normal; pointa[IEdar] = a; Indax++;
mormals[Inder] - normal; points[Inder] -b; Indar++;
moralals[İder] - normal; pointr[Indar] - $\mathrm{c} ;$ Imdar++;

point 4

unit (connt poincter P)
float lan $=$ p. $x * p . x+p . y * p . y+p . z * p . z ;$
point 4 :
if (1 cn > DividclyZeroTolarance) \{

$$
\mathrm{t}=\mathrm{p} / \operatorname{sqra}(1 \mathrm{cn}):
$$

$$
\begin{aligned}
& \mathrm{t}=\mathrm{P} / \mathrm{Eq1} \\
& \mathrm{t} . \mathrm{y}=1.0 ;
\end{aligned}
$$

\}
raturn
\}

Sphere-Definition

void
ifvida_trianglo(const point 48 a, const pointelk b_{2}
conat pointes c, int count)

vold
orrahodron(1 日t count)

point $\mathrm{v}[4]=1$

vact $0.0,0.0,1.0,1.0)$,
vac4($0.0,0.242809,-0.33333$, 1.0)
mact $-0.815327,-0.471405,-0.333333,1.0)$.
vac4 ($0.816497,-0.471405,-0.333333,1.0$)
$3:$
divida_triangla($\mathrm{v}[0], \mathrm{T}[1], \mathrm{v}[2]$, count)
dividn_triangle($\mathrm{v}[3], \mathrm{T}[2], \mathrm{v}[1]$, count)
divida_triangla(v[0], ₹[3], v[1], count);
divide_triangla(v[0], $\mathrm{T}[2], \mathrm{v}[3]$, count);

FIGURE 5.34 Sphare approximations using subdivision.

department of
COMPUTER SCIENCE
AND ENGINEERING

Sphere-Lighting


```
// DponGL. initialization
vo1d
init( woid )
&
    // Subdivide a tetrahedron into a aphera
    totrahodrom( NuTimenTo@ubdivide);
    // Graate a Tortax array objoct
    G.uint vao;
    glGenVertexlrrays( 1, Irro );
    glBindVartoulrray( vao ):
```

```
    /f Greate and initialize a buffer object
```

 /f Greate and initialize a buffer object
 CLuint buffor
 CLuint buffor
 g1GanHuffers(1, kbuffor):
 g1GanHuffers(1, kbuffor):
 g1Bindluufer(CL_ARRAY_BUFFER, buffer);
 g1Bindluufer(CL_ARRAY_BUFFER, buffer);
 g1BuffarData(GL_ARRAY_B0FFER, gizoof(pointa) + sizeof(normals)
 g1BuffarData(GL_ARRAY_B0FFER, gizoof(pointa) + sizeof(normals)
 MULL, GL_BTATIC_DRAV)
 MULL, GL_BTATIC_DRAV)
 g1BuffarSubData(GL_ARRAY_BUFFER, 0, sizoof(points), points)z
 g1BuffarSubData(GL_ARRAY_BUFFER, 0, sizoof(points), points)z
 g1Buff arSubData(CL_ARRUY_BUFFER, sizoof(points).
 g1Buff arSubData(CL_ARRUY_BUFFER, sizoof(points).
 gizoof(normals), mormala);
 gizoof(normals), mormala);
 // Load uhadors and une the rasulving shader progran
 Cluint progran = InitMhador("vahader56.glal", "fshadar56.gls1");
 glUsaProgran(progran):
    ```
```

// sat up Tortax arrays

```
// sat up Tortax arrays
    GLuint vPosition = glCotittribLocation( progran, "vPosition");
    GLuint vPosition = glCotittribLocation( progran, "vPosition");
    glEnableVartoxhttribArray( vPosition)
    glEnableVartoxhttribArray( vPosition)
    glVartaxAttribPointar( TFosition, 4, GL_FLDAT, E_FALSE, O,
    glVartaxAttribPointar( TFosition, 4, GL_FLDAT, E_FALSE, O,
    BUFFER_वFFgET (0) ):
```

 BUFFER_वFFgET (0)):
    ```


\section*{VBOs \& VAOs}
```

// sat up wortax arrays
CLuint vPosition = g1CotittribLocation(progran, "vPonition");
g1EnableVortexAttribArray(vPonivion);
glVartaxAttribPointar(TPosition, 4, GL_FLDAT, EL_FALSE, O.
BUFFER_वFFgET (0)):

```
CLuint vilormal - glCotittribLocation( progran, "vilormal"):
glEnableVertaxhteriblrray (viornal
glVortaxattribPointer ( viloraal, 3, GL_FLIMAT, GL_FILBE, 0.
    HOFFER_AFFBET (sizoof (poiats)) );

ofpabtment of
COMPUTER SCIENCE
AND ENGINEERING

\section*{Material Properties}

GLuint vilormal - gicotAttriblocation( progran, "vlorzal"): glEnableVertaxkteribleray (vlorral)

    HOFFER_aFFBET(sizaof (points))) ;

```

// Inlvializo shador 11ghting paramotars
point4 l1ght_position(0.0, 0.0, 2.0, 0.0);
color4 11ght_abbiant (0.2, 0.2, 0.2, 1.0) ;
color4 light_diffuse(1.0, 1.0, 1.0, 1.0);
color4 11g\&t_apecular(}4.0,1.0,1.0,1.0)
color4 material_ambicat (1.0, 0.0, 1.0, 1.0);
colord raterial_dilfuse(1.0, 0.8,0.0, 1.0))
color4 material_upecular(1.0,0.0, 1.0, 1.0)
float material_uh1utmess = 5.0;
color 4 anbiont_product = light_ambiont * matorial_ambicnt
color4 d1ffuss_product = lighs_diffuss * materlal_diffume
color4 upocular_product = 11ght_apocular * naterial_upecular;
glUniforn4f7(glGetUalfornLocation(progran, "InblentProduct")
1, ambient_product)
glUn1forn4f7(giCerUnifornlocation(progran, "DiffusaProduct").
1, diffusa_product);
glUniforn4f7(glGerUnifornLocation(progran, "SpocularProduct"),
1, apecular_product);
g1UniformAf*(glCotUnifornlocation(progran, "LightPonision"),
1, light_position);
glthifornif(glGattuiforatocasion(progran, "gaininess")
// Ratriove transformation uniform tariable locations
ModalViou = glGatUnifornLocation(progran, "NodolViou"
Projaction - glGotUniforaLocation(progran, "Projoction"):
glEnable(CL__DEPTH_TEST);
githarCotort 1.0, 1.0, 1.0, 1.0): // whito background

```
department of
COMPUTER SCIENCE
AND ENGINEERING

\section*{The Usual}

\section*{roid}

IIsplay (vold)
glClaar ( CL_COLAR_BUFFER_BIT | CL_DEPTH_BUFFZR_BIT ) ;
```

point4 as(0.0,0.0,0.0,1.0);
poinc4 aye(0.0, 0.0, 2.0, 1.0);
Tect up(0.0, 1.0,0.0,0.0);
mat4 model_riev = LookNt(myw, as, up);
glUniforiMarrixefv (Modolviow, 16, EL_TRIE, modol_viou);

```
glDrawirrays ( Gl_TRIANCREs, 0, HumVorticas );
glur3uapluffors( void):
\}
```

raid
tagboand(ungigrod char kag, 1nt x, int J)
waltch(kag) {
case 033: // Encape Koy
case 'q': cass 'q'
exit(EXII_suCCSSs);
brgak;
}
t
ra1d
reshapa(ins uldtr), int holght)
giviaupore(0, 0, wlden, solghe);
Clfloat loft = -2.0, right = 2.0;
Clfloat top = 2.0, botton = -2.0;
GL.floar zlloar = -20.0, zF7ar - 20.0;
CL_float appoct - CLf10at(%1ath)/mo1gat;
1f (arpect > 1.0) (
laft *= aspact;
right *- 2spact;
)
0150 {
top /= ampact;
borton /= aspact;

```
\(/\) -
    mat4 projaction \(=\) Drtho( laft, right, botton, top, ZWear, zFar ),
    gluniformatrixafv ( Projection, 1, GL,_TRUE, projection);

\section*{Finally}
```

1m
gain(int argc, char **argy)
{
glutInit(bargc, arg%);
glutInitDiaplayMode(CLJI_MCBA | CNJ_DEPTH):
glutInitWindouSizo(512, 512);
glutCraatoVlndou("gphora");
glauInit(roid);
init(void):
glutDiaplayFunc(diaplay);
glutRenhapeFunc(renhape),
glutKayboardFune(kejboard);
glutMainLoop(void);
raturn 0;
}

```

\section*{But ...}


\section*{Vertex Shader - Object Space}
```

A.7.2 Vertex Shader
aversion 150
in wact vPosition;
1n wac3 vWormal;
// output valwoe that w111 be interpolated per-fragmant
out vac3 fN;
out vac3 1E;
out vec3 fL;
uniforn ane4 ModalView;
umiforn vac4 LightPonition;
umlform aat4 Frojoction;
void main()
INI - vNormal;
fE = vFouition.xyz;
fl = LightPosition.xyz;
1f(L.1ghtPosition.4 :- 0.0) {
fL = LightPosivion.xyz - vPosition.xyz;
gl_Ponition - Projaction*ModelVier*vPosition;

```

\section*{Fragment Shader}
```

A.7.3 Fragment Shader
aversion }15
// por-fragnent intarpolated faluas fron the vartex ghadar
in rec3 fN;
in Tec3 IL;
In Tec3 IE;
out rect fColor:
unifora wac4 AmbiontProduct, DiffuscProduct, SpecularProduct;
unifora mat4 ModolViaw;
unlfora vac4 LightPosition;
unifora floar Buininas!;
void main()
// Norzalizo the impus 11ghting vactors
Tec3 M = normaliza(fN);
Tec3 E = normaliza(1E):
тor3 L = normal170(fL);
Toc3 H = normaliza(L + E);
Tec! amblamt = IablentProduct;
float Kd = max (dot (L, K), 0.0);
Tec4 diffuse = 3.d*DiffumeProduct;
float Kr = por(max(dot(%, H), 0.0), Ealnincun);
vect specular = Ks*ßpecularProducs;
// discard the spacular Alghlight if tha light's bahind the vertax
11(dot(L, K) < 0.0) (
specular = vec4(0.0, 0.0, 0.0, 1.0)
+
fColor = ambtent + diffume + specular;
fColor.a = 1.0;

```

\section*{Yet Another Way}

\section*{Vertex Lighting Shaders I}
// vertex shader
in vec4 vPosition;
in vec3 vNormal;
out vec4 color; //vertex shade
// light and material properties
uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct; uniform mat4 ModelView;
uniform mat4 Projection;
uniform vec4 LightPosition;
uniform float Shininess;

\section*{Vertex Lighting Shaders II}
void main()
\(\{\)
// Transform vertex position into eye coordinates
vec3 pos = (ModelView * vPosition).xyz;
vec3 L = normalize( LightPosition.xyz - pos );
vec3 \(\mathrm{E}=\) normalize( -pos );
vec3 \(\mathrm{H}=\) normalize( \(\mathrm{L}+\mathrm{E}\) );
// Transform vertex normal into eye coordinates vec3 \(\mathrm{N}=\) normalize( ModelView*vec4(vNormal, 0.0) ).xyz;

\section*{Vertex Lighting Shaders II}
void main()
\(\{\)
// Transform vertex position into eye coordinates
vec3 pos = (ModelView * vPosition).xyz;
vec3 \(L=\) normalize( LightPosition.xyz - pos );
vec3 \(\mathrm{E}=\) normalize( -pos );
vec3 \(\mathrm{H}=\) normalize( \(\mathrm{L}+\mathrm{E}\) );
// Transform vertex normal into eye coordinates
vec3 \(\mathrm{N}=\) normalize( ModelView*vec4(vNormal, 0.0) ).xyz;

\section*{Vertex Lighting Shaders III}
```

// Compute terms in the illumination equation
vec4 ambient = AmbientProduct;
float Kd = max(dot(L,N), 0.0);
vec4 diffuse = Kd*DiffuseProduct;
float Ks = pow(max(dot(N,H), 0.0), Shininess);
vec4 specular = Ks * SpecularProduct;
if(dot(L,N) < 0.0) specular = vec4(0.0, 0.0, 0.0, I.0);
gl_Position = Projection * ModelView * vPosition;
color = ambient + diffuse + specular;
color.a = I.0;
}

```

\section*{Vertex Lighting Shaders IV}
// fragment shader
in vec4 color;
void main()
\{
gl_FragColor = color;
\}

\section*{Scan-Line Rasterization}

\section*{ScanConversion -Line Segments}
- Start with line segment in window coordinates with integer values for endpoints
- Assume implementation has a write_pixel function
\[
m=\frac{\Delta y}{\Delta x}
\]


\section*{DDA Algorithm}
- Digital Differential Analyzer
- Line \(y=m x+h\) satisfies differential equation
\[
d y / d x=m=D y / D x=y_{2}-y_{1} / x_{2}-x_{1}
\]
- Along scan line \(\mathrm{Dx}=1\)
\[
\begin{aligned}
& \text { For }(x=x \mathrm{I} ; \mathrm{x}<=\mathrm{x} 2, \mathrm{ix}++) \text { \{ } \\
& y^{+=m} \text {; } \\
& \text { display ( } x \text {, round }(\mathrm{y}) \text {, line_color }) \\
& \}
\end{aligned}
\]

\section*{Problem}

\section*{DDA \(=\) for each \(\times\) plot pixel at closest \(y\) \\ - Problems for steep lines}


\section*{Bresenham's Algorithm}
- DDA requires one floating point addition per step
- Eliminate computations through Bresenham's algorithm
- Consider only \(\mathrm{I} \geq \mathrm{m} \geq 0\)
- Other cases by symmetry
- Assume pixel centers are at half integers

\section*{Main Premise}

If we start at a pixel that has been written, there are only two candidates for the next pixel to be written into the frame buffer


\section*{Candidate Pixels}
\[
I \geq m \geq 0
\]


\section*{Decision Variable}
\[
d=\Delta x(b-a)
\]
\(d\) is an integer
d \(>0\) use upper pixel \(\mathrm{d}<0\) use lower pixel


\section*{Incremental Form}

Inspect \(\mathrm{d}_{\mathrm{k}}\) at \(\mathrm{x}=\mathrm{k}\)
\[
\begin{aligned}
& d_{k+1}=d_{k}-2 D y, \quad \text { if } d_{k}<0 \\
& d_{k+1}=d_{k}-2(D y-D x), \quad \text { otherwise }
\end{aligned}
\]

For each x , we need do only an integer addition and test
Single instruction on graphics chips

\section*{Polygon Scan Conversion}
- Scan Conversion = Fill
- How to tell inside from outside
- Convex easy
- Nonsimple difficult
- Odd even test
- Count edge crossings

\section*{Filling in the Frame Buffer}

Fill at end of pipeline
- Convex Polygons only
- Nonconvex polygons assumed to have been tessellated
- Shades (colors) have been computed for vertices (Gouraud shading)
- Combine with z-buffer algorithm
- March across scan lines interpolating shades
- Incremental work small

\section*{Using Interpolation}
\(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}\) specified by gIColor or by vertex shading \(\mathrm{C}_{4}\) determined by interpolating between \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) \(\mathrm{C}_{5}\) determined by interpolating between \(\mathrm{C}_{2}\) and \(\mathrm{C}_{3}\) interpolate between \(\mathrm{C}_{4}\) and \(\mathrm{C}_{5}\) along span


\section*{Scan Line Fill}

Can also fill by maintaining a data structure of all intersections of polygons with scan lines
- Sort by scan line
- Fill each span

vertex order generated by vertex list

\section*{Data Structure}


\section*{Aliasing}
- Ideal rasterized line should be I pixel wide

- Choosing best \(y\) for each \(\times\) (or visa versa) produces aliased raster lines

\section*{Antialiasing by Area Averaging}
- Color multiple pixels for each \(x\) depending on coverage by ideal line

ofpafiment of
COMPUTER SCIENCE
AND ENGINEERING

\section*{Polygon Aliasing}
- Aliasing problems can be serious for polygons
- Jaggedness of edges
- Small polygons neglected
- Need compositing so color
of one polygon does not
totally determine color of pixel


All three polygons should contribute to color

\section*{Hierarchical Modeling}

\section*{Cars, Robots, Solar System}


\section*{The Terminator}


\section*{Our Goal ©}


OEPARTMENT OF
COMPUTER SCIENCE
AND ENGINEERING

\section*{Heliocentric Coordinates}


Heliocentric ecliptic coordinates. The origin is the center of the Sun. The fundamental plane is the plane of the ecliptic. The primary direction (the \(x\) axis) is the vernal equinox. A right-handed convention specifies a \(y\) axis \(90^{\circ}\) to the east in the fundamental plane; the \(z\) axis points toward the north ecliptic pole. The reference frame is relatively stationary, aligned with the vernal equinox.

\section*{Inclinations}


OEPARTMENT OF
COMPUTER SCIENCE
AND ENGINEERING

\section*{Axial Tilt}


\section*{W. Pedia says}


To understand axial tilt, we employ the right-hand rule. When the fingers of the right hand are curled around in the direction of the planet's rotation, the thumb points in the direction of the north pole.

OEPARTMENT OF
COMPUTER SCIENCE

\section*{Axial Tilts of Planets}


The axial tilt of three planets: Earth, Uranus, and Venus. Here, a vertical line (black) is drawn perpendicular to the plane of each planet's orbit. The angle between this line and the planet's north pole (red) is the tilt. The surrounding arrows (green) show the direction of the planet's rotation.

\section*{Ecliptic Coordinate System}
\[
\begin{aligned}
& {\left[\begin{array}{l}
x_{\text {equatorial }} \\
y_{\text {equatorial }} \\
z_{\text {equatorial }}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \epsilon & -\sin \epsilon \\
0 & \sin \epsilon & \cos \epsilon
\end{array}\right] \cdot\left[\begin{array}{l}
x_{\text {ecliptic }} \\
y_{\text {ecliptic }} \\
z_{\text {ecliptic }}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{\text {ecliptic }} \\
y_{\text {ecliptic }} \\
z_{\text {ecliptic }}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \epsilon & \sin \epsilon \\
0 & -\sin \epsilon & \cos \epsilon
\end{array}\right] \cdot\left[\begin{array}{l}
x_{\text {equatorial }} \\
y_{\text {equator ial }} \\
z_{\text {equatorial }}
\end{array}\right]}
\end{aligned}
\]
where lepsilon is the obliquity of the ecliptic.

\section*{Roots}


\section*{Back 2 Earth ©}


\section*{Instance Transformation}
- Start with prototype object
- Each appearance of object in model is instance
- Must scale, orient, position
- Defines instance transformation


\section*{Symbol-Instance Table}
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Scale & Rotate & Translate \\
\hline 1 & \(s_{x^{\prime}} s_{y}, s_{z}\) & \(\theta_{x^{\prime}} \theta_{y^{\prime}} \theta_{z}\) & \(d_{x^{\prime}} d_{y^{\prime}} d_{z}\) \\
2 & & & \\
3 & & & \\
1 & & & \\
1 & & & \\
\(\cdot\) & & & \\
\(\cdot\) & & & \\
\hline
\end{tabular}


\section*{(1) \(\mathrm{Co}-1\)}
department OF
COMPUTER SCIENCE
AND ENGINEERING

\section*{Relationships}
- Car
- Chassis + 4 identical wheels
- Two symbols
- Rate of forward motion function of rotational speed of wheels


\section*{Move The Car}
```

car(speed)
{
chassis()
wheel(right_front);
wheel(left_front);
wheel(right_rear);
wheel(left_rear);
}

```

\section*{Graphs - Composition of Car}
- Set of nodes and edges (links)
- Edge connects a pair of nodes
- Directed or undirected
- Cycle: directed path that is a loop

ofpartment of
COMPUTER SCIENCE
AND ENGINEERING

\section*{Tree - Composition of Car}

Graph in which each node (except the root) has exactly one parent node
- May have multiple children
- Leaf or terminal node: no children


\section*{Tree Model of Car}

ofeafiment of
COMPUTER SCIENCE
AND ENGINEERING

\section*{DAG Model}

All the wheels are identical
Not much different than dealing with a tree


\section*{Robot Arm}


\section*{Articulated Models}
- Parts connected at joints
- Specify state of model by ioint angles


\section*{Relationships - Composition}
- Base
- Lower Arm
- Upper Arm

\section*{Base}
- Single angle determines position
- Is cylinder


OHiO
SAIE
SHIET
AND ENGINEERING

\section*{Lower Arm}

Attached to base
- Position depends on rotation of base
- Also translate relative to base, rotate about connecting joint
- Is cube


\section*{Upper Arm}

\section*{Upper arm attached to lower arm}
- Its position depends on both base and lower arm
- Translate relative to lower arm and rotate about joint connecting to lower arm


\section*{Upper Arm}

\section*{Upper arm attached to lower arm}
- Its position depends on both base and lower arm
- Translate relative to lower arm and rotate about joint connecting to lower arm


\section*{Do the same ...}


\section*{Required Matrices}


\section*{Base}

Rotation of base: \(\mathbf{R}_{\mathrm{b}}\)
- Apply \(\mathbf{M}=\mathbf{R}_{\mathrm{b}}\) to base


\section*{Lower Arm}

Translate lower arm relative to base: \(\mathbf{T}_{\text {lu }}\)
Rotate lower arm around joint: \(\mathbf{R}_{\text {lu }}\)
- Apply \(\mathbf{M}=\mathbf{R}_{\mathrm{b}} \mathbf{T}_{\mathrm{lu}} \mathbf{R}_{\text {lu }}\) to lower arm


\section*{Upper Arm}

\section*{Translate upper arm relative to upper arm: \(\mathbf{T}_{\mathrm{uu}}\)}

Rotate upper arm around joint: \(\mathbf{R}_{\mathrm{uu}}\)
- Apply \(\mathbf{M}=\mathbf{R}_{\mathrm{b}} \mathbf{T}_{\mathrm{lu}} \mathbf{R}_{\mathrm{lu}} \mathbf{T}_{\mathrm{uu}} \mathbf{R}_{\mathrm{uu}}\) to upper arm


\section*{Simple Robot}
```

mat4 ctm;
robot_arm()
{
ctm = RotateY(theta);
base();
ctm *= Translate(0.0, hl, 0.0);
ctm *= RotateZ(phi);
lower_arm();
ctm *= Translate(0.0, h2, 0.0);
ctm *= RotateZ(psi);
upper_arm();
}

```

\section*{Tree Model of Robot}

Code shows relationships between parts of model
- Can change shape/texture w/o altering relationships


\section*{Possible Node Structure}

matrix relating node to parent


\section*{Do the same ...}


\section*{Generalizations}

oepartment of
COMPUTER SCIENCE
AND ENGINEERING

\section*{Generalizations}
- Need to deal with multiple children
- How do we represent a more general tree?
- How do we traverse such a data structure?
- Animation
- How to use dynamically?
- Can we create and delete nodes during execution?

\section*{Breadth-First Tree}


\section*{Solar System ?}


\section*{Humanoid Figure}

department of
COMPUTER SCIENCE
AND ENGINEERING

\section*{Building the Model}
- Implementation using quadrics: ellipsoids and cylinders
- Access parts through functions
- torso()
- left_upper_arm()
- Matrices describe position of node with respect to parent
- \(\mathbf{M}_{\text {Ila }}\) positions leftlowerleg with respect to leftupperarm

\section*{Matrices Tree}

ofpatiment of
COMPUTER SCIENCE
AND ENGINEERING

\section*{Display and Traversal}
- The position determined by II joint angles (two for the head and one for each other part)
- Display of the tree requires a graph traversal
- Visit each node once
- Display function at each node pertaining to part
- Applying correct transformation matrix for position and orientation

\section*{Transformation Matrices}

\section*{10 relevant matrices}
- M positions and orients entire figure through the torso which is the root node
- \(\mathbf{M}_{h}\) positions head with respect to torso
\(-\mathbf{M}_{\text {lua }}, \mathbf{M}_{\text {rua }}, \mathbf{M}_{\text {lul }}, \mathbf{M}_{\text {rul }}\) position arms and legs with respect to torso
- \(\mathbf{M}_{\| \mid a}, \mathbf{M}_{\text {rla }}, \mathbf{M}_{\| \mid l}, \mathbf{M}_{\text {rll }}\) position lower parts of limbs with respect to corresponding upper limbs


\section*{Stack-based Traversal}
- Set model-view matrix to \(\mathbf{M}\) and draw torso
- Set model-view matrix to \(\mathbf{M} \mathbf{M}_{\mathrm{h}}\) and draw head
- For left-upper arm need \(\mathbf{M M}_{\text {lua }}\) and so on
- No need recomputing \(\mathbf{M m}_{\text {lua }}\)
- Use the matrix stack to store \(\mathbf{M}\) and other matrices in tree traversal

\section*{Old Style GL Code}
```

figure() {
PushMatrix()
torso();
Rotate (...);
head();
PopMatrix();
PushMatrix();
Translate(...);
Rotate(...);
left_upper_arm();
PopMatrix();
PushMatrix();
PopMatrix(); PushMatrix();

```

Translate(...);
Rotate(...);
left_upper_arm();
PopMatrix();
PushMatrix();
save present model-view matrix
update model-view matrix for head recover original model-view matrix
« save it again
update model-view matrix for left upper arm
recover and save original model-view matrix again

\section*{Tree Data Structure}
- Represent tree and algorithm to traverse tree
- We will use a left-child right sibling structure
- Uses linked lists
- Each node in data structure is two pointers
- Left: next node
- Right: linked list of children

\section*{In GLSL}

\section*{Alies
verboten!}

\section*{In GLSL}


\section*{Still Use}


DEPARTMENT OF
COMPUTER SCIENCE

\section*{Left-Child Right-Sibling Tree}


\section*{Tree node Structure}

\section*{At each node}
- Pointer to sibling
- Pointer to child
- Pointer to a function that draws the object represented by the node
- Homogeneous coordinate matrix to multiply on the right of the current model-view matrix
- Represents changes going from parent to node
- In OpenGL this matrix is a ID array storing matrix by columns

\section*{typedef struct treenode}
\{
mat4 m;
void ( \({ }^{*}\) f)();
struct treenode \({ }^{*}\) sibling;
struct treenode *child;
\} treenode;

\section*{torso and head nodes}
```

treenode torso_node, head_node, lua_node, ... ;
torso_node.m = RotateY(theta[0]);
torso_node.f = torso;
torso_node.sibling = NULL;
torso_node.child = \&head_node;
head_node.m = translate(0.0, TORSO_HEIGHT
+0.5*HEAD_HEIGHT, 0.0)*RotateX(theta[I])*RotateY(theta[2]);
head_node.f = head;
head_node.sibling = \&lua_node;
head_node.child = NULL;

```

\section*{Notes}
- Position determined by II joint angles in theta[II]
- Animate by changing angles and redisplaying
- Form required matrices using Rotate and Translate

\section*{Dreprararar}
void traverse(treenode* root)
\(\{\)
if(root==NULL) return;
mvstack.push(model_view);
model_view = model_view*root->m;
root->f();

if(root->child!=NULL) traverse(root->child);
model_view = mvstack.pop();
if(root->sibling!=NULL) traverse(root->sibling);
\}

\section*{Notes}
- Save model-view matrix before multiplying it by node matrix
- Updated matrix applies to children but not to siblings
- Traversal applies to any left-child right-sibling tree
- Particular tree encoded in definition of individual nodes
- Order of traversal matters given state changes in the functions

\section*{Dynamic Trees}

Use pointers, the structure can be dynamic
typedef treenode *tree_ptr;
tree_ptr torso_ptr;
torso_ptr = malloc(sizeof(treenode));

Definition of nodes and traversal are essentially the same as before but we can add and delete nodes during execution

\section*{The Real Thing}


\section*{As Opposed}
```

