Final Exam Review, Spring 2015
CSE 5542
Instructor - R. Machiraju

A. Pre-midterm
 a. Hardware Pipeline - All Stages - names and what happens in each stage
 b. Parametric Forms -
 i. line, ray
 ii. planes, triangles, spheres, cylinders - equations and normals
 c. Other shapes - cubes - faces, and normals
 d. Transformations
 i. Modeling - Matrix forms
 1. Rotation, Translation, Scaling, Shear
 ii. Camera/Eye Transformation
 1. LookAt
 2. u-n-v
 iii. Viewing Transformations - Matrix Forms
 1. Perspective, Ortho
 e. Phong Illumination model -
 i. Components - ambient, diffuse, specular
 ii. Material and Light Components of Ambient/Diffuse/Specular
 iii. Distance-based attenuation
 iv. Computation of
 1. L vector, R vector, V Vector, H vector
 v. Approximations of Phong Model - H Vector

B. Creating and Lighting Spheres
 a. Lat-long method
 b. Subdivision method
 c. GLSL code

C. Clipping -
 1. Cohen Sutherland algorithm
 a. The meaning of outcodes
 b. The working of the algorithm for a given polygon - all steps
 c. 2D vs 3D versions
 2. Liang-Barsky Line Clipping - birds eye view
 3. Polygon Clipping and Pipeline-polygon clipping
 4. Clipping vs. visibility

D. Hidden Surface Algorithm
 a. Painters algorithm
 b. Problem with depth sorting - visibility cycles
 c. Back-face Culling
 d. Z-buffer algorithm
 e. Scanline z-buffer algorithm
 f. Incremental line drawing algorithms
g. Combining shading and interpolation
h. Scan-line fill algorithm

E. Hierarchical Models
 a. Graph/Tree representations, DAGs
 b. Articulated models
 c. Model view matrices
 d. Stack models
 e. Breadth-first sibling tree
 f. Modeling and Rendering with tree
 i. Robot. Car, Humanoid Example
 ii. Variations

F. Texture Mapping Basics
 a. GLSL, OpenGL code
 b. 2 step process
 i. intermediate mapping - spherical, cylindrical, cuboidal
 ii. Coordinate spaces involved
 c. Aliasing with Textures
 d. Interpolation with texture mapping
 e. Texture mapping parameters - magnification/minification, wrapping mode, filter mode, mip-maps, env_modes: replace, modulate, etc. with color
 f. Environment Map
 g. Bump Mapping

G. Compositing
 a. Operators - over, max, min, etc.
 b. Visibility Issues with transparency, A-buffer
 c. Simulating Fog with compositing

H. Advanced Texturing
 a. Regular textures - Chess board, Checker board, Brickwall
 b. Particle Systems -
 i. Basics - Forces, mass, velocity, acceleration
 ii. Integration for trajectories - Euler
 iii. Collision - Intersection of lines with triangles
 iv. GLSL mechanics - Transform Feedback, TBOs (Texture Buffer Objects)
 v. GLSL code
 c. Noise
 i. GLSL code
 ii. Bandlimited Perlin noise
 iii. Generation of noise through octave synthesis
 iv. Properties of good noise function
 v. Turbulence
 vi. Marble, Granite, Wood