AtSNP Infrastructure

a case study for searching billions of records while providing significant cost savings over cloud providers

Christopher Harrison, Sündüz Keleṣ, Rebecca Hudson, Sunyoung Shin and Inês Dutra

Paper accepted to: The 4th IEEE International Workshop on High-Performance Big Data, Deep Learning, and Cloud Computing
@The 32nd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2018)
The atSNP story

- Hallway conversation
- Want to put 2TB of data on the web
- Have an another dataset to put online in the future
- Post-Doc will work with you
- Let me know what you need
WHAT COULD POSSIBLY GO WRONG?
The data

- Atsnp: Jaspar dataset 2TB (35.78TB)
- Encode dataset 21.2TB (360.37TB)
- Web accessible genomic data search and export in real-time
- Atsnp total uncompressed: ~3960TB
- 307 billion Single Nucleotide Polymorphisms (SNP) records
- Library of congress = 10TB Compressed

What is atSNP

- Software developed to evaluate SNP-Transcription factors-DNA interactions
- 115,500 CPU hours to compute SNP to Position Weight Matrix (Big Data)
 - Computed using HTCondor UW-CHTC and OSG
 - Wanted to make this compute power available to researchers without this amount of compute at hand
- Calculate p-values
- Determine SNP-PWM motif’s
- Motif images for each of the 307 billion
 - Originally a PNG for each SNP-PWM
 - Would have consumed 3.7 Petabytes
Constraints

- Cost
- Supportability (personal time, monitoring, domain knowledge)
- Speed to implementation
- Data center rackspace
- Query result times
Feasibility Candidates

- Objective: use a DB with a large usage and support base
- Cassandra
 - NoSQL known for quick access and search
- MySQL (or MariaDB)
 - Oldie and goodie
- Elasticsearch
 - Indexes log data
- Others
 - We needed quick turn around and widely supported platforms
Infrastructure for our initial feasibility testing
Cassandra

Pro’s

● Fast searches
● Fast imports (ETL) (14,664 records/sec)
● Auto rebalancing on node failure

Con’s

● No range query support*
● No team domain expertise

* At evaluation time
MySQL (MariaDB)

Pro’s

- Team domain expertise
- Range query support

Con’s

- Slow ETL (ETL 1023 records/sec)
- Partitioning of data across systems manually
- Auto rebalancing on node failure
Elasticsearch

Pro’s

- Range queries
- Reasonable Load times (ETL - 11,944 records/sec)
- Auto rebalancing on node failure

Con’s

- No domain expertise
- Data loading took longer than Cassandra
Web server is a docker container
Results of final infrastructure

- Final results proved elasticsearch was a viable option for
 - loading
 - searching
 - and retrieving of data

- Scale-out infrastructure
 - Can add more nodes as data needs change/grow
 - Response time is critical for genomics data searches
 - Future improvements can be easily integrated

- Cost
 - Amazon, $0.135/GB/Month
 - Our final cost $0.039/GB/Month
 - 3.4x Cost Savings over Amazon
Key Contributions

- Feasibility testing is important for application infrastructure deployments
- Cloud providers are not always the lowest cost provider
- NoSQL databases are great for scalability and work for genomic data stores
- atSNP website:
 - http://atsnp.biostat.wisc.edu
- System engineers are rockstars
Acknowledgements

- NIH Big Data to Knowledge (BD2K) Initiative under Award Number U54 AI117924
- Center for Predictive Computational Phenotyping
- University of Wisconsin - Madison
 - School of Medicine and Public Health
 - Department of Biostatistics and Medical Informatics
- My Family
Questions?
I know you do….
You in the blue shirt start, ask away

Thank You