Scalable Architecture for Anomaly Detection and Visualization in Power Generating Assets

Paras Jain, Chirag Tailor, Sam Ford, Liexiao (Richard) Ding, Michael Phillips, Fang (Cherry) Liu, Nagi Gabraeel, Polo Chau
Background

- Each unit instrumented with 1000s of sensors to signal incipient faults
- Difficult for humans to monitor
- Algorithms attempt to predict asset failure by detecting anomalies

Power generating assets such as jet engines and gas turbines
Key Challenges

❖ **Storage and Ingestion.** Huge volume of data from many machines in real-time.

❖ **Anomaly Detection.** Prevalence of false alarms leads to unnecessary downtime and maintenance.

❖ **Visualization.** Lack of an integrated visualization platform to understand and analyze flagged anomalies.
System Overview

1. Sensor Streams
 - Scalable Storage & Online Anomaly Detection on Hadoop
 - Jet Engines
 - Gas & Steam Turbines

2. Spark: Anomaly Detection (FDR)
 - OpenTSDB: Data Ingestion
 - Hadoop/HDFS: Storage

3. Anomaly Visualization
 - with interactive drill-down, and context-on-demand
1 - Scalable Data Ingestion & Storage Architecture

100 Units x 1000 Sensors @ 1HZ

Goal Ingestion Rate: **100,000 sensor readings per second**
1 – Simulated Training Dataset

- 100 units with 1000 sensors producing readings at 1Hz.
 - Similar number of units owned by a regional energy provider.
 - On the order with 3000 sensors in Siemens SGT5-8000H gas turbine.

- Anomalous behavior modeled in dataset:
 - Pure random noise.
 - Pure random noise plus gradual degradation.
 - Pure random noise plus sharp shift.

*P. Ratliff, P. Garbett, and W. Fischer, “The new siemens gas turbine sgt5-8000h for more customer benefit,”
1 - Scalable Data Ingestion & Storage Results

Throughput (readings/sec)

of Nodes

Linear Scale Up
Exceeds 100k samples/sec goal
1 - Scalable Data Ingestion & Storage Results

Sensor Readings Ingested (millions)

Constant & Stable Ingestion

Ingestion Duration (seconds)
1 - Interesting Findings

1. **Salting.** HBase keys generated by OpenTSDB must be salted since continuous value timestamps all map to the same HBase node.

2. **Backpressure.** HBase does not provide backpressure to OpenTSDB.
2 - Flagging Anomalies with Low False Alarm Rates

We use the **False Discovery Rate** (FDR) algorithm.

1. First introduced by **Benjamini and Hochberg in 1995** and used in multiple inference clinical trials*.

2. **Suppresses false alarms**: Performs a test on an increasing ratio of the original significance level for each sensor’s z-score.

3. **Scalable**: our implementation using Spark processes over **939,000 sensor samples per second**

*Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,”
3 - Anomaly Visualization

Machine 17

Number of anomalies in last 30 days: 14

Sensor Daily Sparkline

Value Change
0.238 1.892%
-0.193 3.172%
-- -11.038%
Ongoing Work

- Scaling up ingestion and analysis throughput with additional nodes.

- Migrate anomaly detection algorithm to Spark Streaming for online evaluation.

- Evaluate our system with domain users and industry partners like General Electric (GE).
Scalable Architecture for Anomaly Detection and Visualization in Power Generating Assets

Paras Jain, Chirag Tailor, Sam Ford, Liexiao (Richard) Ding, Michael Phillips, Fang (Cherry) Liu, Nagi Gabraeel, Polo Chau