Understanding Big Data Workloads on Modern Processors using BigDataBench

Jianfeng Zhan
http://prof.ict.ac.cn/BigDataBench

Professor, ICT, Chinese Academy of Sciences and University of Chinese Academy of Sciences

HPBDC 2015
Ohio, USA
Outline

- BigDataBench Overview
- Workload characterization
- Multi-tenancy version
- Processors evaluation
What is **BigDataBench**?

- An open source big data benchmarking project
 - http://prof.ict.ac.cn/BigDataBench
 - Search Google using “**BigDataBench**”
BigDataBench Detail

- Methodology
 - Five application domains
 - Propose benchmark specifications for each domain

- Implementation
 - 14 Real world data sets & 3 kinds of big data generators
 - 33 Big data workloads with diverse implementation

- Specific-purpose Version
 - BigDataBench subset version
Five Application Domains

DDBJ/EMBL/GenBank database Growth

- **Internet Service**
 - Search engine, Social network, E-commerce

- **Multimedia**

- **Bioinformatics**

![Graph showing growth of nucleotides and entries over years](http://www.ddbj.nig.ac.jp/breakdown_stats/dbgrowth-e.html#dbgrowth-graph)
Benchmark specification

- Guidelines for BigDataBench implementation
 - Data model
 - Workloads

Model typical application scenarios

- Describe data model
- Extract important workloads
BigDataBench Details

Methodology
- Five application domains
- Benchmark specification for each domain

Implementation
- 14 Real world data sets & 3 kinds of big data generators
- 33 Big data workloads with diverse implementation

Specific-purpose Version
- BigDataBench subset version
BigDataBench Summary

BDGS (Big Data Generator Suite) for scalable data

<table>
<thead>
<tr>
<th>Wikipedia Entries</th>
<th>Amazon Movie Reviews</th>
<th>Google Web Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook Social Network</td>
<td>E-commerce Transaction</td>
<td>ProfSearch Resumes</td>
</tr>
<tr>
<td>ImageNet</td>
<td>English broadcasting audio</td>
<td>DVD Input Streams</td>
</tr>
<tr>
<td>Image scene</td>
<td>Genome sequence data</td>
<td>Assembly of the human genome</td>
</tr>
<tr>
<td>SoGou Data</td>
<td>MNIST</td>
<td></td>
</tr>
</tbody>
</table>

14 Real-world Data Sets

33 Workloads

Search Engine Social Network E-commerce
Multimedia Bioinformatics

BigDataBench HPBDC 2015
Big Data Generator Tool

- 3 kinds of big data generators
 - Preserving original characteristics of real data
 - Text/Graph/Table generator

![Diagram of Big Data Generator Suite]

Variety

Veracity

Velocity, Volume

BigDataBench | HPBDC 2015 | ICT
BigDataBench Details

Methodology
- Five application domains
- Benchmark specification for each domain

Implementation
- 14 Real world data sets & 3 kinds of big data generators
- 33 Big data workloads with diverse implementations

Specific-purpose Version
- BigDataBench subset version
BigDataBench Subset

Motivation

- Expensive to run all the benchmarks for system and architecture researches
 - multiplied by different implementations
 - BigDataBench 3.0 provides about 77 workloads
Why BigDataBench?

<table>
<thead>
<tr>
<th></th>
<th>Specification</th>
<th>Application domains</th>
<th>Workload Types</th>
<th>Workloads</th>
<th>Scalable datasets (from real data)</th>
<th>Multiple implementations</th>
<th>Multitenancy</th>
<th>Subsets</th>
<th>Simulat or version</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigDataBench</td>
<td>Y</td>
<td>Five</td>
<td>Four(^{[1]})</td>
<td>33</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>BigBench</td>
<td>Y</td>
<td>One</td>
<td>Three</td>
<td>10</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Cloud-Suite</td>
<td>N</td>
<td>N/A</td>
<td>Two</td>
<td>8</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>HiBench</td>
<td>N</td>
<td>N/A</td>
<td>Two</td>
<td>10</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CALDA</td>
<td>Y</td>
<td>N/A</td>
<td>One</td>
<td>5</td>
<td>N/A</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>YCSB</td>
<td>Y</td>
<td>N/A</td>
<td>One</td>
<td>6</td>
<td>N/A</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>LinkBench</td>
<td>Y</td>
<td>N/A</td>
<td>One</td>
<td>10</td>
<td>N/A</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>AMP Benchmarks</td>
<td>Y</td>
<td>N/A</td>
<td>One</td>
<td>4</td>
<td>N/A</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

\(^{[1]}\) The four workloads types include Offline Analytics, Cloud OLTP, Interactive Analytics and Online Service
BigDataBench Users

- http://prof.ict.ac.cn/BigDataBench/users/
- Industry users
 - Accenture, BROADCOM, SAMSUMG, Huawei, IBM
- China’s first industry-standard big data benchmark suite
 - http://prof.ict.ac.cn/BigDataBench/industry-standard-benchmarks/
- About 20 academia groups published papers using BigDataBench
BigDataBench Publications

- Characterizing data analysis workloads in data centers. 2013 IEEE International Symposium on Workload Characterization (IISWC 2013) (**Best paper award**)
- BigOP: generating comprehensive big data workloads as a benchmarking framework. 19th International Conference on Database Systems for Advanced Applications (DASFAA 2014)
- **BDGS**: A Scalable Big Data Generator Suite in Big Data Benchmarking. The Fourth workshop on big data benchmarking (WBDB 2014)
Outline

- BigDataBench Overview
- Workload characterization
- Multi-tenancy version
- Processors evaluation
System Behaviors

- Diversified system level behaviors:

![Graph showing CPU utilization and I/O wait ratio](image)

- The Average Weighted disk I/O time ratio

BigDataBench | HPBDC 2015
System Behaviors

- Diversified system level behaviors:
 - High CPU utilization & less I/O time
Diversified system level behaviors:
- High CPU utilization & less I/O time
- Low CPU utilization relatively and lots of I/O time
System Behaviors

- Diversified system level behaviors:
 - High CPU utilization & less I/O time
 - Relatively low CPU utilization & lots of I/O time
 - Medium CPU utilization & I/O time
Workloads Classification

- From perspective of system behaviors:
 - System behaviors vary across different workloads
 - Workloads are divided into 3 categories:

<table>
<thead>
<tr>
<th>Type</th>
<th>Workloads</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Intensive</td>
<td>H-Grep, S-Kmeans, S-PageRank, H-WordCount, H-Bayes, M-Bayes, M-Kmeans and M-PageRank</td>
</tr>
<tr>
<td>I/O Intensive</td>
<td>H-Read, H-Difference, I-SelectQuery, S-WordCount, S-Project, S-OrderBy, M-Grep and S-Grep</td>
</tr>
<tr>
<td>Hybrid</td>
<td>H-TPC-DS-query3, I-OrderBy, S-TPC-DS-query10, S-TPC-DS-query8, S-Sort, M-WordCount and M-Sort</td>
</tr>
</tbody>
</table>
Most of CPU-intensive workloads have higher off-chip bandwidth (3GB/s), Maximum is 6.2GB/s; Other workloads have lower off-chip bandwidth (0.6GB/s).

MPI based workloads need low memory bandwidth.
The average IPC of the big data workloads is larger than that of CloudSuite, SPECFP and SPECINT, similar with PARSEC and slightly lower than HPCC.

The average IPC of BigDataBench is 1.3 times of that of CloudSuite.

Some workloads have high IPC (M_Kmeans, S-TPC-DS-Query8)
Instructions Mix of BigDataBench vs. other benchmarks

- Big data workloads are data movement dominated computing with more branch operations
 - 92% percentage in terms of instruction mix (Load + Store + Branch + data movements of INT)
Pipeline Stalls

- The service workloads have more RAT (Register Allocation Table) stalls
- The data analysis workloads have more RS (Reservation Station) and ROB (ReOrder Buffer) full stalls
- Notable front end stalls (i.e., instruction fetch stall)!

Data analysis

Service

BigDataBench | HPBDC 2015
Cache Behaviors of BigDataBench

- **L1 MPKI**
 - Larger than traditional benchmarks, but lower than that of CloudSuite (12 vs. 31)
 - Different among big data workloads
 - CPU-intensive(8), I/O intensive(22), and hybrid workloads(9)
 - One order of magnitude differences among diverse implementations
 - M_WordCount is 2, while H_WordCount is 17
Cache Behaviors

- **L2 Cache:**
 - *The IO-intensive workloads undergo more L2 MPKI*

- **L3 Cache:**
 - *The average L3 MPKI of the big data workloads is lower than all of the other workloads*

- **The underlying software stacks impact data locality**
 - *MPI workloads have better data locality and less cache misses*
TLB Behaviors

- **ITLB**
 - *IO-intensive workloads undergo more ITLB MPKI.*

- **DTLB**
 - *CPU-intensive workloads have more DTLB MPKI.*
Our observations from BigDataBench

- **Unique characteristics**
 - Data movement dominated computing with more branch operations
 - 92% percentage in terms of instruction mix
 - Notable pipeline frontend stalls

- **Different behaviors among Big Data workloads**
 - Disparity of IPCs and memory access behaviors
 - CloudSuite is a subclass of Big Data

- **Software stacks impacts**
 - The L1I cache miss rates have one order of magnitude differences among diverse implementations with different software stacks.
Correlation Analysis

- Compute the correlation coefficients of CPI with other micro-architecture level metrics.
 - Pearson’s correlation coefficient:
 \[
 \rho(X, Y) = corr(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}
 \]
 - Absolute value (from 0 to 1) shows the dependency:
 - The bigger the absolute value, the stronger the correlation.
Top five coefficients
Insights

- Frontend stall does not have high correlation coefficient value for most of big data analytics workloads
 - Frontend stall is not the factor that affects the CPI performance most.
- L2 cache misses and TLB misses have high correlation coefficient values.
 - The long latency memory accesses (access L3 cache or memory) affect the CPI performance most and should be the optimization point with highest priority.
Outline

- BigDataBench Overview
- Workload characterization
- Multi-tenancy version
- Processors evaluation
Cloud Data Centers

- Two class of popular workloads
 - Long-running services
 - Search engines, E-commerce sites
 - Short-term data analytic jobs
 - Hadoop MapReduce, Spark jobs
Problem

- Existing benchmarks focus on specific types of workload
- Scenarios are not realistic
 - Does not match the typical data center scenario that mixes different percentages of tenants and workloads sharing the same computing infrastructure
Purpose of BigDataBench-MT

- Developing **realistic** benchmarks to reflect such practical scenarios of mixed workloads.
 - Both service and data analytic workloads
 - Dynamic scaling up and down

- The tool is publicly available from http://prof.ict.ac.cn/BigDataBench/multi-tenancyversion
What can you do with it?

- We consider two dimensions of the benchmarking scenarios
 - From tenants’ perspectives
 - From workloads’ perspectives
You can specify the tenants

- The number of tenants
 - **Scalability Benchmark**: How many tenants are able to run in parallel?

- The priorities of tenants
 - **Fairness Benchmark**: How fair is the system, i.e., are the available resources equally available to all tenants? If tenants have different priorities?

- Time line
 - How the number and priorities of tenants change over time?
You can specify the workloads

- **Data characteristics**
 - Data type, source
 - Input/output data volumes, distributions

- **Computation semantics**
 - Source code
 - Big data software stacks

- **Job arrival patterns**
 - Arrival rate
 - Arrival sequence
Two major challenges

- Heterogeneity of real workloads
 - Different workload types
 - e.g. CPU or I/O intensive workloads
 - Different software stacks
 - e.g. Hadoop, Spark, MPI

- Workload dynamicity hidden in real-world traces
 - Arrival patterns
 - Request/Job submitting time and sequences
 - Job input sizes
 - e.g. ranging from KB to ZB
Existing big data benchmarks

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Actual workloads</th>
<th>Real workload traces</th>
<th>Mixed workloads</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLab benchmark, Linkbench, Bigbench, YCSB, CloudSuite</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>GridMix, SWIM</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

- How to generate real workloads on the basis of real workload traces, is still an open question.
System Overview

- **Three modules**
 - Benchmark User Portal
 - A visual interface
 - Combiner of Workloads and Traces
 - A matcher of real workloads and traces
 - Multi-tenant Workload Generator
 - A multi-tenant workload generator

- **Diagram**
 - **Benchmark User Portal**: Specify benchmarking requirements
 - **Combiner of Workloads and Traces**: Match real workloads and traces
 - **Multi-tenant Workload Generator**: Generate mixed workloads
 - **Service workloads**
 - Submit requests
 - End user 1
 - End user m
 - **Data analytic workloads**
 - Submit jobs
 - Job owner 1
 - Job owner n
Key technique: Combination of real and synthetic data analytic jobs

- **Goal**: Combining the arrival patterns extracted from real traces with real workloads.

- **Problem**: Workload traces only contain anonymous jobs whose workload types and/or input data are unknown.
Solution: the first step

- Deriving the workload characteristics of both real and anonymous jobs

TABLE. Metrics to represent workload characteristics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution time</td>
<td>Measured in seconds</td>
</tr>
<tr>
<td>CPU usage</td>
<td>Total CPU time per second</td>
</tr>
<tr>
<td>Memory usage</td>
<td>Measured in GB</td>
</tr>
<tr>
<td>CPI</td>
<td>Cycles per instruction</td>
</tr>
<tr>
<td>MAI</td>
<td>The number of memory accesses per instruction</td>
</tr>
</tbody>
</table>
Solution: the second step

- Matching both types of jobs whose workload characteristics are sufficiently similar
An Example

An example of matching Hadoop workloads

- Mining Facebook/Google workload trace (Exact workload characteristics information)
- Profiling Hadoop workloads from BigDataBench (Collect workload characteristics information)

Matching result: replaying basis

<table>
<thead>
<tr>
<th>Job type</th>
<th>Input size (GB)</th>
<th>Starting Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayes</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Sort</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>K-means</td>
<td>0.5</td>
<td>25</td>
</tr>
<tr>
<td>Bayes</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Sort</td>
<td>1</td>
<td>40</td>
</tr>
</tbody>
</table>

BigDataBench | HPBDC 2015
System demonstration

- Three steps to generate a mix of search service and Hadoop MapReduce jobs
- Traces: 24-hour Sogou user query logs and Google cluster trace.

Step 1 - Specification of tested machines and workloads

Step 2 - Selection of benchmarking period and scale

Step 3 - Generation of mixed workloads

BigDataBench | HPBDC 2015 | INSTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
Workloads and traces in BigDataBench-MT

- **Multi-tenancy V1.0 releases:**

<table>
<thead>
<tr>
<th>Workloads</th>
<th>Software stack</th>
<th>Workload trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadoop</td>
<td>Hadoop 1.0.2</td>
<td>Facebook (https://github.com/SWIMProjectUCB/SWIM/wiki)</td>
</tr>
<tr>
<td>Shark</td>
<td>Shark 0.8.0</td>
<td>Google data center (https://code.google.com/p/googleclusterdata/)</td>
</tr>
</tbody>
</table>
Outline

- BigDataBench Overview
- Workload characterization
- Multi-tenancy version
- Processors evaluation
Core Architecture

- Multi brawny core (Xeon E5645, 2.4 GHz)
 - 6 Out-of-Order cores
 - Dynamic Multiple Issue (supper scalar)
 - Dynamic Overclocking
 - Simultaneous multithreading
- Many wimpy core architecture (Tile-Gx36, 1.2 GHz):
 - 36 In-Order cores
 - Static Multiple Issue (VLIW)
Experiment methodology

- User real hardware instead of simulation
- Real power consumption measurement instead of modeling
- Saturate CPU performance by:
 - Isolate the processor behavior
 - Over-provisions the disk I/O subsystem by using RAM disk
 - Optimize benchmarks
 - Tune the software stack parameters
 - JVM flags to performance
Execution time

- For Hadoop based sort, the performance gap is about 1.08×.
- For the other workloads, more than 2× gaps exist between Xeon and Tilera.
- From the perspective of execution time, the Xeon processor is better than Tilera processor all the time.
There are huge cycle count gaps between Xeon and Tilera ranging from 5.3 to 14.

Tilera need more cycles to complete the same amount of work.
Pipeline Efficiency

• The theoretical IPC:
 - Xeon: 4 instructions per cycle
 - Tilera: 1 instruction bundle per cycle

• Pipeline efficiency:

\[
Pipeline \ Efficiency = \frac{Application \ IPC}{The \ Theoretical \ IPC}
\]

• OoO pipelines are more efficient than in-order ones
Power Consumption

- Tilera is power optimized.
- Xeon consumes more power.
Energy Consumption

- Hadoop based sort consumes less energy on Tilera than on Xeon
 - Hadoop sort is an extremely I/O intensive workloads.
- Tilera consumes more energy than Xeon to complete the same amount of work for most big data workloads
 - The longer execution time offsets the lower power design
Total Cost of Ownership (TCO) Model[*]

- Three-year depreciation cycle
- Hardware costs associated with individual components
 - CPU
 - Memory
 - Disk
 - Board
 - Power
 - Cooling

[*] K. Lim et al. Understanding and designing new server architectures for emerging warehouse-computing environments. *ISCA 2008*
Cost model

The cost data originate from diverse sources:
- Different vendors
- Corresponding official websites

Power and cooling:
- An activity factor of 0.75

<table>
<thead>
<tr>
<th>Details</th>
<th>Xeon server</th>
<th>Tilera server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hardware cost ($)</td>
<td>1490</td>
<td>710</td>
</tr>
<tr>
<td>CPU</td>
<td>593</td>
<td>171</td>
</tr>
<tr>
<td>Memory</td>
<td>252</td>
<td>238</td>
</tr>
<tr>
<td>Disk</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Board + mgmnt</td>
<td>275</td>
<td>80</td>
</tr>
<tr>
<td>Power + fans</td>
<td>250</td>
<td>101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Server Power (Watt)</th>
<th>117+CPU</th>
<th>78+CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Measured</td>
<td>Measured</td>
</tr>
<tr>
<td>Memory</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Disk</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Board + mgmnt</td>
<td>42</td>
<td>20</td>
</tr>
<tr>
<td>Power + fans</td>
<td>35</td>
<td>20</td>
</tr>
</tbody>
</table>
Performance per TCO

- Hadoop-based Sort has higher performance per TCO on the Tilera.
- For other workloads, Xeon outperforms Tilera.
Key Takeaways

- Try using an open-source big data benchmark suite from http://prof.ict.ac.cn/BigDataBench
- Big Data: data movement dominated computing with more branch operations
 - 92% percentage in terms of instruction mix
- Multi-tenancy version: replaying mixed workloads according to publicly available workloads traces.
- Wimpy-core processors only suit a part of big data workloads.
QUESTIONS
And
Answers