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Abstract. Inertial sensors are widely used in navigation, motion track-
ing, and gesture recognition systems. However, these sensors are vulner-
able to spoofing attacks, where an attacker injects a carefully designed
acoustic signal to trick the sensor readings. Traditional approaches to de-
tecting and mitigating attacks rely on module redundancy, i.e., adding
multiple sensor modules to increase robustness. However, this approach
is not always feasible due to the limited space and increased complexity
of current printed circuit boards.
This paper proposes a new method, ADC-Bank, to detect inertial sensor
spoofing attacks via acoustic out-of-band signals. Unlike other multiple-
sensor-based solutions, it is based on component redundancy within one
sensor, using multiple analog-to-digital converters (ADCs) with different
sampling rates to simultaneously sample the output of the sensors. The
different sample rates result in different aliasing frequencies for out-of-
band signals that can be used to detect attacks. The proposed method is
evaluated on off-the-shelf inertial sensors with commercial ADCs, demon-
strating its ability to detect the attacking signalswith relatively low cost
and computation overhead.

1 Introduction

Micro-electro-mechanical systems (MEMS) inertial sensors are known to be sus-
ceptible to acoustic out-of-band signal injections [4–6,9,30,36–38,40,41]. These
attacks used acoustic signals at frequencies close to the sensor’s resonant fre-
quency to induce high-frequency analog signals in the sensor circuits. Ideally,
the injected signals should be filtered out because they are out-of-band signals.
However, attackers can still inject these signals into the system. The essential
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feature of out-of-band signal injections is that the induced analog signals will be
undersampled, resulting in signal aliasing. When aliasing occurs, attackers can
change the output of sensors by maliciously generated stimuli, then deceive the
sensing and actuation systems into executing malicious actions accordingly [11].
For example, a self-balancing scooter can adjust direction and speed according
to its lean angles, which are described by inertial sensors. However, an attacker
can induce an intentional sound at the resonant frequencies of the gyroscope;
the output of the inertial sensor will be distorted, and the attacker can make
the scooter move in a corresponding opposite direction [38].

In recent years, several defense strategies have been studied to solve the
problem of acoustic-based spoofing attacks. For example, shielding [3, 16, 30,
41] was recommended to mitigate out-of-band injections into inertial sensors.
However, shielding can cause heat dissipation, cost, size, and usability issues.
Another defense consists of low-pass filters that can filter out malicious high-
frequency signals and mitigate attack at inertial sensors [16,37,45]. In practice,
implementing ideal anti-aliasing filters that eliminate all out-of-band signals is
trivial. For example, a high-order filter that eliminates all signals above the
cutoff frequency will cause signals that change rapidly to ring on for a long
time. Moreover, analog filters lead to an unequal time delay as a function of
frequency [33]. If the phase delay introduced by filters is large, it is difficult to
minimize this delay or compensate for it in software [8]. Moreover, the integrated
low-pass filter does not have clear cut-offs [25,32]. An additional defense approach
consists of using high-frequency sampling of the analog signal. For instance,
the inertial sensor signal frequency induced by movement is generally below
20 Hz. If the sensor designers choose ADCs with sampling rates high enough
to handle the resonant frequencies, it will increase the production costs and
decrease the sampling resolution and the processing speed due to the over-wide
bandwidth. Recent work has studied purely software-based detection methods
[35] and module redundancy methods (multisensors for sensor fusion) [3, 19,
28, 41–43]. However, false positives/negatives can occur when external factors
or injected data differ from the assumed patterns. The researchers also noted
that attacks with a directed magnetic field that can precisely control both the
magnetometer and the gyroscope would cause their sensor fusion-based detection
method to fail [35].

In this paper, we present ADC-Bank, a novel out-of-band signal defense
method using component redundancy within a sensor in contrast to the work
mentioned above. Compared to other defense strategies, our method is easy
to manufacture and has fewer attack surfaces than module redundancy strate-
gies, such as multiple sensor-based methods. After implementing multiple circuit
components that simultaneously elaborate the physical stimulus under different
configurations and settings, we provide multiple metrics on the legitimacy of
the measurement at the software layer. This information is then used to detect
the system from processing an altered signal. We evaluate our method on off-
the-shelf inertial MEMS sensors from three different vendors. Our experimental
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results show that ADC-Bank can detect physical injection attacks via out-of-
band acoustic signals on all models of inertial MEMS sensors that we tested.

Despite many existing defense mechanisms against acoustic physical injec-
tion attacks at MEMS sensors, there is no fundamental solution to detect these
malicious transmissions and prevent vulnerabilities in the physics of a MEMS
sensor. Our work fills this gap through the following contributions:

1. We propose a component redundancy scheme to detect acoustic out-of-
band signal injection by elaborating and comparing the physical stimulus in
different settings.

2. We investigate how to extract the real physical stimulus from different
results of the redundant components.

3. We deploy our defense method on off-the-shelf inertial sensors with com-
mercial ADCs to evaluate our method.

4. We discuss how our strategy can be used in the design and manufacturing
of future sensors.

2 Background

2.1 MEMS Inertial Sensors

Almost all MEMS inertial sensors have a mass and a support spring, and they use
this mechanical structure to detect motion stimuli [26]. MEMS accelerometers
sense linear accelerations by displacement of the mass supported by springs and
measure the capacitance change between the mass and fixed electrodes [17, 44].
MEMS gyroscopes are relatively complex. They have a continuously vibrating
mass that, like accelerometers, is supported by springs. They measure the Cori-
olis force generated by the applied angular velocity on the vibrating mass [29].

After transduction, the sensor output needs a series of additional processing
to interface with external components such as microcontrollers. In general, the
change in capacitance causes a change in voltage. For an analog sensor, this
analog signal is typically amplified and outputted directly from the amplifier.
For the digital sensor, the amplified signal is digitized via an analog-to-digital
converter (ADC) and then transferred to the control system by standard digital
interfaces like SPI, I2C, and UART. In this work, we consider analog inertial
sensors to explain our approach.

2.2 ADCs and Aliasing

After the sensor transforms the physical measurement into an analog signal, a
built-in ADC digitizes the sensor’s output. The analog signal that is continuous
in time should be converted at a certain rate by ADC, and this rate is defined
as the sampling rate or sampling frequency of the converter. According to the
Nyquist–Shannon sampling theorem, the sampling rate should be at least twice
the signal’s maximum frequency when the original physical measurement can
be reconstructed from the discrete data by the mitigation filter. If the system
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acquires data at an insufficient rate, called undersampling, the signal will be
incorrectly detected at a specified interval as a lower frequency [18]. Then aliasing
will occur.

2.3 Acoustic Injection

Because of its miniaturized mechanical and integrated electronic structure, these
sensors’ output could be changed to incorrect values by resonant acoustic inter-
ferences [37]. The successful modification relies on two vulnerabilities of the
MEMS inertial sensor: the mass-spring structure that works as the receiving
system for resonant acoustic signals and the non-linearity of electronic compo-
nents like the overdriven amplifier or under-sampling of an ADC. According to
the second vulnerability, the acoustic injection attack can be categorized into
two classes: output control attack and output biasing attack [37]. The output
control attack leverage signal clipping at the insecure amplifier to introduce a
DC component into the acceleration signal, which slips through any subsequent
LPF [15, 27, 39]. However, triggering this kind of attack requires a signal be-
yond the amplifier’s capability, which means high power and deafening volume.
Therefore, it becomes impractical to generate the required loudness and attack
the sensor from a long distance [10].

3 Threat Model

We assume that the attackers’ objective is to spoof and manipulate the MEMS
inertial sensors’ output. To achieve this, attackers need to transmit specific
acoustic signals at the resonant frequencies to deceive the sensor and trigger
the control system’s actuation.

Attack scenarios. We assume that attackers can use an off-the-shelf speaker
or transducer to generate the sound waveforms for the injection. Also, we as-
sume that they are able to induce the sound, at the resonant frequencies of
these sensors, at any position, distance, or angle. This might be done via means
of amplifiers and constant directivity horns. We assume that the attackers have
sufficient resources to optimize the power, directivity, and emitting area. More
powerful attackers may utilize customized acoustic equipment to improve the ef-
fect. The signal source of attacks can be a built-in speaker, a function generator,
an MCU board like Arduino, mini signal generator boards [24,31], or even mali-
cious codes in an email or webpage with JavaScript and autoplay audio enabled.
The attacker can also use long-distance acoustic devices to play the sound waves
as described by Tu et al. [38].

Attack goals. We assume that attackers utilize the resonant acoustic signal
to inject the sensor output and deliver adversarial control to the system. Such
attacks on the IMU sensors will pose security and safety risks to cyber-physical
systems like robots, stabilization systems, self-balancing scooters, drones, etc.

System accessibility. We assume the attackers know the exact type and
model of the MEMS inertial sensors and can easily access the datasheet to know
the sensors’ components and structures.
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Fig. 1. Scheme of an ADC-Bank’s signal processing. The measured output of the sensor
is a linear combination of the original signal, s(t), and the injection signal, sa(t).
Unlike legitimate signals, malicious out-of-band signals sampled by the ADCs generate
multiple frequency peaks. We can employ such an observation to detect and analyze
various attack scenarios.

4 Defense Approach

4.1 System Model

The system model of our proposed protection scheme is presented in Figure 1.
It has two blocks, including a multi-ADCs part and a signal analysis module.

The multi-ADCs part consists of more than two ADCs whose sampling rates
have certain constraints like pairwise relatively prime. After sampling the sensor
output synchronously, these ADCs send their respective measurement results of
the same sensor to the signal analysis module.

The signal analysis module for spectral analysis consists of three parts: fre-
quency analysis, peak detection, and a calculation and reasoning phase. The
frequency analysis performs a Fast Fourier transform (FFT) on each measure-
ment result of the different ADCs and transfers the detection into the frequency
domain. According to the results of peak detection, ideally, there will be one
overlapped peak in the frequency domain, which means that the signal has nor-
mal behavior. Otherwise, multiple separated peaks would suggest the presence
of out-of-band physical signal injection attacks. In the calculation and reason-
ing phase, when no multiple peaks are found, which means that there is no
injection signal, the A/D conversion and the measurement value are considered
trustworthy. Hence, the actuation system knows the result is digitized from the
original sensor’s output. However, when the signal injection attack is detected,
we can calculate the approximate frequencies of the injection signal based on
prior knowledge of the intended frequency range of the attack (more details
in [38]).

From the signal perspective, the sensor output generated by the real move-
ment is s(t) in the absence of attackers. The attack signal is sa(t) generated
by acoustic injection. We model the measured output of the sensor as a linear
combination of the original signal s(t) and the injection signal sa(t). Hence the
measured signal s̃(t) is:

s̃(t) = s(t) + sa(t) (1)
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Since the mechanical structure of the sensor under resonance oscillates at
the same frequency as the attacking signal, we model the resulting signal with
a resonant frequency Fa and an initial phase ϕ as:

sa(t) = A · sin(2πFat+ ϕ) (2)

where coefficients A = A0kaks. A0 is the amplitude of the attacking signal,
ka is the acoustics attenuation when the attacking signal is transmitted to the
target sensor, and ks is the sensitivity of the sensing mass. Substitute Eq.(2)
into Eq.(1), we have the measured value:

s̃(t) = s(t) +A · sin(2πFat+ ϕ) (3)

Then, the combination signal will be sampled by multiple ADCs. Typically,
the sampling rate of the ADC in the inertial sensor system is designed to be
high enough to sample the movement signal, so the true sensor measurement s(t)
will be normally converted. However, the frequency of attacking signals injected
through resonance is usually much higher than the sampling rate. Therefore,
sampling these out-of-band high-frequency signals will cause aliasing. A sinu-
soidal analog signal with frequency F will be aliased to a digital signal with a
frequency of ε when F > 2FS , where FS is the sampling rate. We have

F = n · FS + ε (−1

2
FS < ε ≤ 1

2
FS , n ∈ Z+) (4)

Therefore, assuming that Fa is the resonant frequency of the sensor, the
adversary uses it as the frequency of injection signals. For multiple ADCs, based
on Eq.(4), we have:

Fa = ni · FSi + εi (−1

2
FSi < εi ≤

1

2
FSi, ni ∈ Z+) (5)

where FSi is the sampling rate of the i-th ADC, and εi is the resulted frequency
of the corresponding ADC output. For simplicity, we assume that n in Eq.(4)
and Eq.(5) is the integer multiple of the sampling rate FS . Therefore, ni stays
the same when ε, FS changes slightly.

According to Eq.(5), these multiple ADCs with different sampling rates will
generate different results εi for the same input signal FS . Out-of-band signal
injections can be detected on the basis of this separation. Meanwhile, based on
these sampling rates, the possible ni can be traversed according to the reading,
and the approximate range of Fa in Eq.(5) can be found according to multiple
FSi and εi.

5 Detection

Multi-ADCs. In the out-of-band signal injection attack against the MEMS
inertial sensor, under acoustic injection, malicious sound waves are transmitted
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to the mechanical structure of the inertial sensor, forcing the sensing mass to
resonate.

In the analog-to-digital conversion process, the input signal is sampled. Only
when the sampling rate FS is greater than twice the highest frequency 2FMax in
the analog signal spectrum, the analog signal can be recovered without distor-
tion. Therefore, the ADC sampling rate in the inertial sensor system is designed
to be high enough to sample the movement signal. However, when inertial sen-
sors face ultrasound resonant signal injection, also known as out-of-band signal
injection attacks, the frequency of attacking signals is usually much higher than
the sampling rate.

The sampling rate in the inertial sensor system is usually in the tens or
hundreds, while the resonant frequency is usually higher than 2kHz for the ac-
celerometer and 19kHz for the gyroscope. Since the resonant frequency is much
higher than the sampling rate, signal aliasing will occur and be reconstructed
into a new low-frequency in-band signal.

To detect suspicious out-of-band signal injection attacks, we take advantage
of the phenomenon of undersampling. Specifically, the multi-ADC part consists
of more than two ADCs that sample the input signal, respectively. Then, recon-
structing these undersampled signals from the digital samples will cause signal
aliasing. Our defense solution consists of comparing such aliased signals to de-
termine the reconstructed original signal.

The microcontroller of the control system can then be used to measure the
physical quantity and hence can detect the attack based on the outputs of the
ADCs. We suppose that the attacker remotely injects the malicious waveforms
into the inertial sensor circuit. After sampling and digitizing the stimulus by
multiple ADCs with different sampling rates, the control system can spot the
attack immediately since the results in the frequency domain are totally different.
With the help of well-designed parameters, we can not only detect the existence
of malicious signals, but also recover the real signal from the measurement of the
sensor’s outputs. In particular, if the sampling rates of multiple ADCs we selected
are pairwise relatively prime, according to the Chinese remainder theorem [21],
the microcontroller can easily calculate the range of attack frequencies. After
that, we can easily filter the frequencies induced by attack signals and provide
reliable measurements to the control system.

Frequency Analysis. In our defense approach, a key part is to analyze the
frequency of the reconstructed signal. When multi-ADCs sample and digitize the
input signal respectively, each measurement result of the different ADCs will be
performed frequency analysis via Fast Fourier transform (FFT) and transferred
the detection into the frequency domain. With the help of frequency domain
analysis, we can obtain the frequency information of the input signal immedi-
ately.

If the input signal is generated by normal motion, the maximum frequency
of the input signal must be within half of the sampling rate of the ADCs, and it
will be able to be digitized normally. This means that the measurement results
of different ADCs will produce the same frequency component after FFT. When
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faced with the injection of malicious acoustic signals, the situation will become
different. The input signals far beyond the sampling rate of ADCs will cause
aliasing. Because the sampling rates of ADCs are different from each other and
relatively prime to each other, the measurement results will produce different
frequencies after FFT. We use a simple peak detection algorithm to determine
the credibility of the measured sensor value.
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Fig. 2. Scheme of an ADC-Bank’s attack detection. In contrast with legitimate signals,
malicious out-of-band signals sampled by the ADCs generate multiple frequency peaks.
This technique can be used to detect and analyze various attack scenarios.

Peak Detection. The peak detection algorithm is used to quickly measure
the results after FFT. Figure 2 shows the main peak detection process in the
frequency domain; we detect the peak of the FFT results of ADC measurements,
respectively. If only one overlapping peak is detected, it indicates that the signal
is not attacked and is credible for the subsequent actuation system. If there
are multiple separate peaks, that means that there is a potential attack. These
signals will not be able to be transmitted directly to the actuation system and
will need to be corrected.

6 Experiments

In this section, we try to prove the effectiveness of our method in a real-world
case study. To prove the effectiveness of our signal process scheme, we designed
a series of experiments. We have built an acoustic injection attack environment
to collect raw data and perform signal processing and analysis.

We evaluate our approach from the following two situations. 1) To simulate
a real attack environment, we use a signal generator output to drive the speaker
and then interfere with the inertial sensor. Then we collect the motion signal and
the injection signal from the inertial sensor, respectively, using an NI USB-4431
Data Acquisition (DAQ) [14]. 2) We use ADCs and microcontroller units (MCUs)
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to build a set of data acquisition environments. We use a signal generator output
to drive the speaker, and then interfere with the inertial sensor. Then we collect
and upload the sensor data to a PC for further signal processing.

6.1 Experimental Setup

Figure 3 shows the experimental setup. DG5300 signal generator is used to gen-
erate an acoustic signal [23]. Here, the output amplitude is set to 5v. A power
amplifier is used to enhance signal power, and the Vifa speaker [2] is responsible
for outputting acoustic waves. The inertial sensor chip is mounted on an evalu-
ation board and driven by 3.3v/5v DC provided by the external Arduino [1].

Fig. 3. Schematic of the experimental setup. The inertial sensor chip is mounted on
an evaluation board placed on the experimental platform. The attack range can be
between one and three meters in a real attack scenario [38].

After determining the resonant frequency of each inertial sensor chip, we
select the appropriate frequency to carry out an acoustic injection attack on each
chip and then use the NI USB-4431 DAQ module and the A/D Data Acquisition
System we built to collect the senors’ output, respectively.

In the following experiments, ADXL335 is used as the target accelerometer
[7], and LPY550AL is used as the target gyroscope [34]. We also selected some
other inertial sensor models, as shown in Table 1.



10 J. Zhang et al.

Table 1. Resonant frequency and aliasing frequency results of inertial sensors in the
experiment

Chip Enterprise Chip Model Type Axis Resonant Frequency Attack Frequency

Aliasing Frequency

NI USB-4431 DAQ Results A/D Results

280Hz 700Hz 1000Hz 250Hz 920Hz

Murata ENC-03MB Gyro x 22kHz 25.2kHz 25135Hz 215Hz 65Hz 135Hz 115Hz 295Hz

Murata ENC-03RC Gyro x 30kHz-33kHz 32295Hz 185Hz 95Hz 295Hz 45Hz 95Hz

STMicroelectronics LPY550AL Gyro x 22kHz-23kHz 22785Hz 105Hz 315Hz 215Hz 35Hz 215Hz

STMicroelectronics LPY550AL Gyro y 22kHz-23kHz - - - - - -

ADI ADXL335 Acce x 4kHz-5.5kHz 4490Hz 10Hz 290Hz 490Hz 10Hz 110Hz

ADI ADXL335 Acce y 4kHz-5.5kHz - - - - - -

ADI ADXL335 Acce z 4kHz-5.5kHz - - - - - -

At the same time, in order to simulate the signal output generated by real mo-
tion, we place the inertial sensor chip mounted on an evaluation board on top of
a vibration platform, where we set the vibrating frequency below 50Hz, then we
use the above two acquisition systems to collect the signal output, respectively.

6.2 Evaluation Experiment

Inertial Sensors with DAQ. In this set of experiments, we first put the chip
on the vibration platform and then set the vibration platform frequency to 16
Hz to simulate a true motion. For each time sensor output, we sample the output
using three different sampling rates and analyze it in the frequency domain.

Firstly, we carried out experiments on an accelerometer, ADXL335. Figure 4
shows the detailed results of ADXL335. Figure 4a shows the raw data sampled by
the system in the time domain. We process the data before transforming them
to the frequency domain. First, we remove the DC component of the signal
because it has no significance for us in detecting the frequency of the sensor
output signal. Second, we normalize the data to make their amplitudes close.
Then we transform the data sampled at three different sampling rates into the
frequency domain, and the results are shown in Figure 4b. We found that there
are overlapping peaks at 16Hz in the spectrum. This is also consistent with the
frequency that we generate through the vibrating platform, which means that
this signal is a normal motion signal. Our signal processing scheme will give
the signal high confidence and let the signal enter the control system without
affecting the response of the actuation system.

Then, we conducted a similar experiment on a gyroscope, LPY550AL. The
environment settings are the same as ADXL335. The results are shown in Figure
5. Similarly, we can also see that in Figure 5b), there is an overlapping peak at
16Hz.

Since the NI USB-4431 DAQ module has a good anti-aliasing filter, the reso-
nant signal beyond the sampling rate will not be collected. Therefore, we choose
a sampling rate of 70,000Hz, which is much higher than the resonant frequency
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Fig. 5. The testing results of LPY550AL with NI USB-4431 DAQ. a) shows the sampled
time domain raw data. In b), the raw time domain data is converted to the frequency
domain after data processing.

and can sample normally, and then we simulate the aliasing process under dif-
ferent sampling rates by down-sampling.

For ADXL335, we use the signal generator to generate a 3,525Hz signal,
which is also the resonant frequency of the inertial sensor. The signal is output
through the speaker to interfere with the accelerometer. By down-sampling, we
get the raw data sampled at three sampling rates. After the signal is processed,
we convert it to the frequency domain.

The data acquisition and frequency analysis results are shown in Figure 6.
Figure 6 a), b), and c) are the raw time-domain data of resonant signal down-
sampled to 280Hz, 700Hz, and 1,000Hz (due to the limitation of down-sampling),
respectively. Figure 6d) is data converted to the frequency domain after signal
processing. We can clearly see in the spectrum that there are three separate peaks
because different sampling rates lead to different aliasing frequencies. Therefore,
we can determine that this abnormal signal needs filtering.
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Fig. 6. The testing results of ADXL335 with NI USB-4431 DAQ. Fig. 6a, 6b and 6c
show the sampled time domain raw data. In Fig. 6d, the raw time domain data is
converted to the frequency domain after data processing.

Regarding the gyroscope, we also performed experiments on an LPY550AL.
We generated a 22,700Hz signal, which is also the resonant frequency of the
inertial sensor, through the signal generator and output by a speaker. The results
are shown in Figure 7. In the spectrum diagram, we can see that there are only
two separated peaks, one of which is the overlapping peak, which is due to
the same aliasing frequency of the two sampling rates. However, it can still be
determined that the signal is abnormal.

In this set of experiments, we also tested other types of inertial sensor chips,
and the results are shown in Table 1. In fact, on all types of inertial sensor
chips, we can clearly distinguish whether there is abnormal signal input. This
also preliminarily proves that our detection method is applicable to real-world
actuation systems.

Inertial Sensors with commercial ADCs. The main difference between
this group of experiments and the previous group of experiments lies in the sam-
pling method. We did not use a professional DAQ module to collect the inertial
sensor output like before; instead, we will use a commercial ADC to collect the
inertial sensor output to fully simulate the situation in a real actuation system.

In this set of experiments, we also tested four different inertial sensor models,
as shown in Table 1, including the acquisition and analysis of normal motion
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Fig. 7. The testing results of LPY550AL with NI USB- 4431 DAQ. Fig. 7a, 7b and
7c show the sampled time domain raw data. In Fig. 7d, the raw time domain data is
converted to the frequency domain after data processing.

signals and abnormal resonant signals. The ADC model we use is ADS1015,
which has seven optional sampling rates. For normal motion signals, the sampling
rate is usually several hundred Hz. At the same time, to evaluate whether the two
ADCs can completely detect abnormal signals, we use two ADS1015, which are
connected to the Arduino microcontroller and configured with different sampling
rates. Here, we set the sampling rates of ADC to 250Hz and 920Hz (which are
two optional sampling rates for ADS1015), respectively. We use these two ADCs
with different sampling rates to sample the inertial sensor output simultaneously,
then upload the sampling data to a PC for further data processing and analysis.

Here, we take ADXL335 as an example, as shown in Figure 8. For the normal
motion signal, we also select 16 Hz as the vibration frequency to simulate normal
motion. We observed overlapping peaks at 16Hz in Figure 8c. It can be seen that
the in-band, normal motion signals can be determined to be trustworthy by two
ADCs’ simultaneous sampling.

For an abnormal resonant signal, the resonant frequency is 4,485Hz. The
results of signal sampling are shown in Figure 9. As shown in Figure 9c, two
different peaks are generated at two different sampling rates. In fact, there is a
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Fig. 8. The testing results of ADXL335 with commercial ADCs. Fig. 8a and 8b show
the sampled time domain raw data. In Fig. 8c, the raw time domain data is converted
to the frequency domain after data processing.

certain deviation between the peak frequency and the theoretical aliasing fre-
quency, but we can still determine that there is an abnormal signal to be filtered.

6.3 Attack Frequency Analysis

During the previous data acquisition and processing, we set the attack signal
frequency through the signal generator, and then obtain the ADC sampling rate
and the frequency of an aliased in-band signal. According to the prior knowl-
edge, we have a known range of possible attack frequencies. For the sampling
rate of each ADC, we can traverse the possible small frequency ranges within
the possible attack frequency range according to the in-band signal frequency.
Then we find the intersection of the frequency ranges determined by different
ADCs, and can obtain a calculated attack frequency range. Through the previ-
ous experiments, we have collected data from some models of inertial sensors.
Next, we will calculate and analyze the specific data for example.

According to Eq.(5), the possible attack frequency ranges of several seg-
ments can be calculated according to the peak frequency obtained from ADC of
a certain sampling rate. We have a prior range of attack frequency, 2-5kHz for
accelerometers and 19-27kHz for gyroscopes. For multiple ADCs, we can find dif-
ferent ranges of their peak frequencies, and get the intersections of these ranges.
Under the above experimental configuration, we try to calculate the attack fre-
quency range according to the aliasing frequency and ADC sampling rate. We
show the results as shown in Figure 10.

As shown in Figure 10, we can see that the attack frequency ranges deter-
mined by multiple ADCs form an intersection. We compare the attack frequency
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Fig. 9. The testing results of ADXL335 with commercial ADCs. Fig. 9a and 9b show
the sampled time domain raw data. In Fig. 9c, the raw time domain data is converted
to the frequency domain after data processing.

set by the signal generator with the calculated results, and it can be seen that
the actual attack frequency falls within the frequency range we calculated.

7 Discussion

7.1 Adaptive Attacks and Frequency Drift

In acoustic-based spoofing attacks, slight frequency drift or sample rate jitter
could be amplified and cause significant deviation in the digital output of the
sensors [38]. Due to this drift, the frequency of the aliased output is not constant.

Sampling Rate 920Hz

Sampling Rate 250Hz

2000Hz 5000Hz3500Hz Frequency/Hz

Sampling Rate/Hz

Potential Attack Frequency

Fig. 10. Frequency range determined by calculation. The black part in the figure is
the possible attack frequency range calculated within the range of 2-5kHz. The red
line indicates the overlapping range calculated under the sampling rates of 250Hz and
920Hz. We regard the overlapping range as the potential attack frequency range.
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During adaptive attacks, if the attacker knows the details of the algorithm
and the sampling rate, and hopes to attack with acoustic signals whose frequency
is the common integer multiple of the sampling rates, it will be difficult to im-
plement because the sampling rate is not completely accurate. Even if the attack
frequency is an integer multiple of the sampling rate, it will be recognized due to
frequency drift in a short time. Additionally, the common integer multiple of the
sampling rates may not fall within the resonant frequency range of the inertial
sensor. Increasing the number of ADCs will greatly reduce this possibility.

If the attacker wants to attack through frequency sweep and frequency hop-
ping, the attack cannot be implemented because the accurate sampling rate
cannot be known. In addition, in our defense method, we do not need to obtain
a certain constant frequency output. We focus on whether different ADCs at
the same time have the same output and then determine whether there is an
abnormal signal. As long as an attack occurs, there will be multiple different
peaks in the spectrum.

7.2 Consistency of ADC

In the experiment, we found that under the same sampling rate setting, the raw
data obtained beyond the sampling rate were different for the two ADCs with
the same model. Therefore, we have reason to believe that different ADCs of
the same models have consistent differences. This will also cause errors in the
aliasing frequency, which will affect the estimation of the attack frequency.

At the same time, we believe that, at the beginning of future sensor design,
ADC with integrated component redundancy will have better consistency and
help to reduce errors.

7.3 Future Design and Manufacturing

In our simulation and experiment, as the system is closer to reality, we built
our defense system using existing commercially available modules, and the sys-
tematic error of the data has increased. We believe this is due to the noise
generated by the connection between the modules. In the future sensor design
and manufacturing process based on our method, we believe that the integration
of various parts will help reduce the generation of systematic errors and improve
the accuracy of our defense methods. On the other hand, the manufacturing cost
does not increase linearly with the increase of components, which also makes us
believe that our defense method based on ADC redundancy is feasible.

8 Related Work

Designing a secure sensor and actuator system is not an easy task. Ever since
the Ghost talk proposed by F. Kune et al. in 2013, which demonstrates that
medical devices can be inhibited pacing and induce defibrillation shocks by in-
tentional electromagnetic (EM) signals [16], attempts have been made to find
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defense methods. In this section, we divide existing work into three categories:
surrounding defense, module defense, and component defense. The surrounding
defense mainly depends on the shielding to mitigate injection. Sometimes, the
researchers may add specific materials as a physical barrier to attenuate the
malicious signal. In previous studies, barriers were built in conductor wires [16]
optical EMI shielding [20], or as sound damping [3,30,41]. Sometimes, researchers
can increase the difficulty of injection by selectively reducing the attack surface,
increasing the directivity [28], or limiting the duration of sensor exposures [22].
However, some sensors are placed on high-density interconnect printed circuit
boards (HDI PCBs), and some sensors must be exposed to the external environ-
ment. Thus, surrounding defenses may not always be applicable.

Regarding module defense, additional modules such as receivers, sensors, or
actuators are used to detect or dampen the targeted out-of-band signals. Z.
Wang [41] and C. Bolton [3] proposed the adoption of additional microphones to
detect resonating sounds, which are out-of-band signals, against MEMS inertial
sensors. In the same line, as suggested by Kune et al. [16], adopting the cardiac
probe and comparing the result of actuation can distinguish between induced
and measured signals. Furthermore, researchers utilized sensor fusion to enhance
resiliency against these injection attacks. Many prior work adopted redundant
sensors as a defense method when we can bear the cost and space of these
sensors [3, 28,41–43].

The component defense is a more common strategy in the previous work.
New, modified, or improved components may be introduced into the signal condi-
tioning chain to reduce an attacker’s ability to exploit the injection. For example,
researchers can augment the circuit with an additional low-pass filter to atten-
uate the signal outside the sensor’s baseband and hence cancel out the aliasing
by blocking the high-frequency, which possibly induces such problem [16,37,45].
Meanwhile, an adaptive filter can be used when a simple low-pass filter is not ap-
plicable. Y. Son et al. employed differential signaling to filter the signal injected
in the sensing pathway by referring to a dynamically measured frequency [30].
However, some previous work demonstrated that the parasitic characteristics
caused by the surface mount components might convert the low-pass filter into
a band-stop filter. Attack signals above the cutoff frequency can still be coupled
to the circuit and cause aliasing [13] [12]. Furthermore, some researchers may
choose to use a particular sampling pattern called out-of-phase sampling to miti-
gate malicious out-of-band signals that are converted to in-band frequencies after
ADC [37]. Meanwhile, some researchers may improve the performance of specific
components. Trippel et al. proposed a secure amplifier whose dynamic range is
wide enough to cope with the exploited saturation [37]. Wang et al. [41] and Son
et al. [30] both proposed the redesigned MEMS gyroscopes, although they do not
give specific approaches to move the resonant frequencies to noncritical frequency
bands. Furthermore, researchers may be able to apply randomness in the receiver
pathway to mitigate the influence of the attacker on sensor output. Trippel et
al. [37] suggested that using ADC with a random sampling rate can effectively
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deal with DC aliasing since attackers often utilize the predictable property, such
as sampling rate, to bias and control the accelerometer and gyroscope output.

9 Conclusion

We have presented a new solution, ADC-Bank, to address the issue of inertial
sensor spoofing attacks in embedded systems. Our method successfully detects
these attacks by identifying the aliasing frequency of the attack signal Our exper-
iments and evaluations, conducted on various types of inertial sensors, demon-
strate the effectiveness of ADC-Bank in protecting against spoofing attacks.
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