
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

A Peek into the Metaverse:
Detecting 3D Model Clones in Mobile Games

Chaoshun Zuo, Chao Wang, and Zhiqiang Lin, The Ohio State University
https://www.usenix.org/conference/usenixsecurity23/presentation/zuo

A Peek into the Metaverse: Detecting 3D Model Clones in Mobile Games

Chaoshun Zuo
The Ohio State University

zuo.118@osu.edu

Chao Wang
The Ohio State University

wang.15147@osu.edu

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Abstract
3D models are indispensable assets in metaverse in general
and mobile games in particular. Yet, these 3D models can
be readily extracted, duplicated, or cloned, a reality that
poses a considerable threat. Although instances of games
duplicating 3D models from other games have been docu-
mented, the pervasiveness of this issue remains unexplored.
In this paper, we undertake the first systematic investigation
of 3D model cloning within mobile games. However, multi-
ple challenges have to be addressed for clone detection, in-
cluding scalability, precision, and robustness. Our solution
is 3DSCAN, an open source 3D Scanning tool for Clone As-
sessment and Notification. We have evaluated 3DSCAN with
about 12.2 million static 3D models and 2.5 million animated
3D models extracted from 176K mobile games. With these
3D models, 3DSCAN determined that 63.03% of the static
models are likely cloned ones (derived from 1,046,632 dis-
tinct models), and 37.07% animated 3D models are likely
cloned ones (derived from 180,174 distinctive models). With
a heuristic-based clone detection algorithm, 3DSCAN finally
detected 5,238 mobile games likely containing unauthorized
3D model clones.

1 Introduction

Modern computer games rely heavily on their scenes,
which are distinctive visual states showcasing game-specific
information. To enrich the immersive experiences for play-
ers, contemporary games such as World of Warcraft and
FIFA incorporate 3D elements rather than simplistic 2D de-
signs. In particular, static 3D objects [1], characterized by
their unique color and texture, and their optional animations,
constitute the fundamental elements of 3D models. These
models directly impact the player’s experience as they form
the building blocks for game scenes. However, crafting these
3D models is a laborious and time-consuming task, typically
undertaken by professional artists, an expensive human re-
source [2]. Consequently, 3D models have emerged as a core
asset in game production and, with their growing importance
in the metaverse [3, 4], their relevance is set to increase in
line with the evolution of metaverse development.

However, this rise in prominence is accompanied by am-
plified security concerns. Specifically, 3D models are sus-

ceptible to cloning, unauthorized reuse, or resale, posing a
considerable threat to the intellectual property of game de-
velopers and broader security landscapes. This vulnerabil-
ity is rooted in the necessity to render 3D models on client
devices to provide seamless user experiences, such as mini-
mizing network latency. Given this need, client devices in-
evitably retain copies of 3D models that currently lack ade-
quate protection. As a result, malicious entities can conve-
niently extract these 3D models from game binaries (for ex-
ample, through AssetStudio [5] for games developed with
the Unity engine, or UE Viewer [6] for Unreal Engine).

This predicament is not hypothetical but has resulted in
numerous instances of 3D model theft [7–9] causing signif-
icant disruptions. For instance, the popular game Magnet
Simulator, with over 145 million plays [10], was discontin-
ued [11] due to stolen 3D models from Bubble Gum Simula-
tor. The ramifications of such theft are extensive, impacting
not only the original creators but also game developers who
might inadvertently use stolen 3D models.

Therefore, it is imperative to identify the cloned 3D mod-
els and notify their creators as well as game developers. His-
torically, detecting copied or stolen code in software has
been an important topic in software security, and numerous
algorithms (e.g., [12–14]) have been developed for this pur-
pose, since duplicating code from others could introduce se-
curity problems (e.g., propagating vulnerabilities) or violat-
ing the copyright. Similar to program code, cloning 3D mod-
els could also cause harms, as described in the above Magnet
Simulator case. As such, in this paper, we seek to make a first
step towards systematically detecting 3D model clones in
mobile games. Intuitively, a simple approach might involve
comparing hashes of 3D models, analogous to copyrighted
movie detection in the P2P network [15], where each movie
is first indexed by its cryptographic hash, and any matching
copies are identified as illegitimate network sharing.

Unfortunately, generating an index for a 3D model poses
substantial challenges. In theory, one might attempt to index
the 3D model file using a hash (such as SHA-256) similarly
to copyrighted movie detection. However, this method
lacks robustness, as a 3D model can be easily and even
unintentionally modified. A static 3D object, comprised of
three-dimensional vertices, faces defined by these vertices,
and materials like textures, can be subject to squashing or

USENIX Association 32nd USENIX Security Symposium 3925

stretching. These alterations can notably change the vertices
representing the 3D model while maintaining the same
visual impact. Furthermore, game IDE optimization often
results in the same 3D model extracted from different games
differing in raw data.

To address these challenges, we propose a robust and ef-
ficient 3D model indexing scheme founded on two key in-
sights. Primarily, while squashing or stretching might alter
the vertices, the relationship between vertices and faces re-
mains consistent in cloned 3D models. Thus, our first insight
is to abstract this relationship, which enables us to derive an
index for the static 3D models. Regarding 3D models with
animation, an additional time dimension is present that de-
fines the motion (i.e., the movement trajectory) of the 3D
objects. Our second insight, therefore, involves measuring
the Euclidean distance [16] of the trajectories between two
compared models using interpolation to identify clones.

We have implemented this scheme into our open source
tool, 3DSCAN1, which stands for 3D Scanning tool for
Clone Assessment and Notification. We employed it to
detect 3D model clones among the 176,361 Unity-engine
based mobile games retrieved from Google Play. 3DSCAN
successfully extracted 12,200,055 static 3D models and
2,451,304 animated 3D models from these games. 3DSCAN
further determined that 63.03% of static 3D models are
cloned from 1,046,632 distinct ones, and 37.07% of ani-
mated 3D models are clones from 180,174 distinct models,
values that we elaborate on further in the results section.

Contributions. We offer the following contributions:
• Novel Problem. We make the first step towards the large-

scale study of 3D model clones in mobile games, address-
ing detection challenges and the clone prevalence among
games. While our focus is primarily on one aspect of the
metaverse, we hope that our study will serve as a catalyst
for further research in the realm of 3D model security.

• Efficient Techniques. We have crafted two practical tech-
niques to detect clones by (1) indexing the static 3D mod-
els using a value-insensitive normalization, and (2) align-
ing animated models by measuring the Euclidean distance
via interpolation of motion trajectories.

• Empirical Results. Our evaluation with 176,361 mobile
games suggests that 63.03% of static 3D models and
37.07% of animated 3D models are clones. With a
heuristic-based clone detection approach, 3DSCAN
identified 5,238 games likely containing unauthorized 3D
model clones.

1The source code of 3DSCAN can be found at https://github.com

/OSUSecLab/3DScan.

2 Background

The Compositions of 3D Models. A 3D model consists
of (i) a mesh that describes the basic object (including its
color and texture) in a scene and (ii) the optional animation
that describes how the mesh transforms its shape at different
times so that the mesh can show different motions [1]. Con-
sequently, there can be two types of 3D models in a scene:

(I) Static Mesh, which is static and will not move or
transform. Examples of static meshes include the wall in a
game. Note that the appearance of a mesh is defined by its
shape and material.

• Shape. A shape consists of a set of vertices, edges, and
faces (i.e., surfaces) [1]. A mesh can have thousands
or more vertices. By connecting vertices, edges can be
formed naturally, since an edge is a particular type of
line segment that joins two vertices. A loop connected
by 3 edges (or more) represents the face surrounded.
And those faces together form the shape of the object
represented by the mesh. For example, Figure 1 shows
an example of a mesh file. The vertices are defined from
line 2 which starts with “v”. Each vertex is defined by its
coordinates in x, y, z axis. The order of their definition
also indicates their IDs. The faces are defined from line 7
which starts with “f”. Each face is defined by 3 vertices
(also 3 edges) which is specified by its ID.

• Material. A material describes how the surface (i.e.,
faces) of a shape looks like [1]. The most common way
is through color or texture. For example, a red ball can
be represented by a sphere mesh with a red surface.
However, the surface of an object can be very complicated
(e.g., with more than just one single color). To represent
such objects, texture is used [1]. For example, a picture of
a real-world object can be projected over a mesh surface
by mapping the vertices on the mesh with the picture (i.e.,
UV mapping). In addition, other attributes can also be
used to describe the material, such as its reflectivity and
transparency [1].

(II) Animated Mesh, which can move or show with differ-
ent motions, such as the avatar in a game that can run, jump,
or walk. To show different motions, the mesh needs to be
a skeletal mesh with skeletons. A skeleton is a set of bones
that are interconnected and in a hierarchical structure (e.g.,
parent and child relationship) [1]. A mesh that has skeleton
is also called a skeletal mesh. The vertices of a skeleton
mesh are attached to the bones, and the vertices will move
by following the movement of the bones on which they
are attached, e.g., a child bone will move by following the
movement of its parent bone. In particular, to attach vertices
to a bone, there will be a map between the vertices and the
bone to which it attaches. Just as skin in the real world can
be moved by several bones, particularly near a joint, a vertex
within a 3D model can map to multiple bones. For each

3926 32nd USENIX Security Symposium USENIX Association

g default
v 3.582481 4.277774 2.030798
v 3.539094 4.274003 2.030447
v 3.495418 4.270348 2.030093
v 3.451975 4.266842 2.029739
...
f 121 123 122
f 120 123 121
f 120 124 123
...

Original

g default
v 11.43505 2.05531 2.12420
v 11.47619 2.00753 -1.96072
v 11.43951 2.04964 2.12430
v 11.47172 2.01320 -1.96082
...
f 3 2 1
f 2 4 1
f 1 4 5
...

Extracted

File Content

File Hash

0a87d4cc55390e1f492a8dea1a9945e7 36b64b562eafaca8a95da80a6bc0164d

(A) (B)

Figure 1: An example of a cloned 3D USENIX association
logo model.

corresponding bone, a specific weight is assigned to indicate
the degree of influence that bone exerts over the vertex.

A motion can be presented as a series of poses, similar to a
film using a series of static frames [1]. By showing different
poses sequentially, the mesh can make motions. Such a
series of poses is called animation, and each pose is called a
keyframe [1]. An animation normally consists of a series of
keyframes. A keyframe records the status of each bone at the
point-in-time and the time when it should be displayed. The
status includes rotation, scale, and position on the x, y, and z
axis. By moving the bone sequentially based on the time de-
fined in the keyframes, the animation controls the movement
of the mesh faces. In addition, to provide a smooth move-
ment, a rendering tool will automatically use interpolation
to generate the poses between two sequential keyframes.

3D Model Creation. Creating a high quality 3D model
often requires not only creativity from art, but also knowl-
edge from science and engineering such as the knowledge
of biological structure, skin, and architectural finishes.
Although 3D model creation is a complicated task, at a high
level it can be divided into the following four subtasks:

(1) Creating shapes. The shape is the frame of a 3D model
and consists of vertices and faces. Typically, 3D design
software offers some primitive shapes such as cube and
ball. But for a customized object, 3D artists need to
build it from scratch, or they can apply other devices,
such as a LiDAR scanner, to scan a real object to get a
corresponding mesh. The shape of a 3D object can be
complicated. In our experiment, we have seen meshes
with up to 2,741,574 vertices and 3,473,208 faces.

(2) Designing appearances. One factor that determines the
appearance of a 3D model is its texture. Multiple ways
can be used to create the texture. For instance, a 3D artist

can take a picture of a real object, and then project the
picture to the mesh by connecting the vertices to the UV
axis of the picture. Furthermore, to make the object look
more “real”, other properties like reflectivity and trans-
parency also need to be defined properly. There are some
existing bundles of such properties, e.g., “wood mate-
rial” that will make the mesh surface looks like wood.

(3) Building skeletons. A skeleton is needed for a 3D
model if it involves movements. To build a skeleton,
a 3D artist first needs to define the number of bones
and their hierarchy structure, such as the bone in an
arm should attach to the bone of a body. Then the
artist needs to select the vertices and attach them to
different bones, a tedious process that requires focus
and knowledge such as human body structure.

(4) Designing animations. For a movable 3D object, it
requires the design of animations. Simple motions like
the rotation of a wheel can be easily represented by
equations. For complicated motions, a 3D artist can
either manually design some particular poses to generate
part of the keyframes and then use interpolation to gen-
erate other frames between them, or use a digital video
recorder to capture a moving object in the real world,
from which to further generate keyframes by mapping
the captured object with the bones in the 3D model.

Today, 3D model creation has become a profession.
There are several 3D model markets such as the popular
CGTrader [17]. In the markets, some of them are free,
but most of them need to be paid. The price can range
from a few dollars (e.g., a piece of log costs $2) to a few
thousand (e.g., a human anatomy costs $4,299 [18]). If
game producers do not have dedicated 3D teams, they can
purchase the needed 3D models from the market to develop
their games. When the game app is released, the 3D models
will be encoded and embedded in the game.

3D Model Extraction. A 3D model can be directly ex-
tracted from game binaries. Tools such as AssetStudio [5]
and UtinyRipper [19] are able to access and export the 3D
models embedded within Unity binaries. It is important to
note that the extraction of 3D models using AssetStudio

or similar tools could raise intellectual property and copy-
right concerns, since this could violate the game developer’s
terms and conditions. Therefore, it is crucial for developers
and users to respect the intellectual property rights of game
creators and obtain proper permissions when working with
extracted assets.

3D Model Clone. In this paper, we define a model “clone” is
a model that is an exact-copy of another model with minimal
changes, including stretching or squeezing, noise introduced
by the extracting tool, and noise introduced by the game IDE.
However, we do not consider models to be cloned if they
have structural changes, such as the manual removal of cer-
tain parts of the model. It’s important to note that two iden-

USENIX Association 32nd USENIX Security Symposium 3927

tical models will be considered “clones” even if they have
been independently created. This definition applies mostly
to simple models like a square plane with 4 vertices. For
more complex models with numerous points or surfaces, the
likelihood of intentionally creating identical “clone” models
reduces significantly due to their intricate properties and di-
mensions. In addition, it is also considered “clones” if two
developers use the same purchased 3D model in their games.

3 Overview

3.1 Motivation and Goal
The security community has a deep tradition in developing

methods to identify and mitigate harms, and especially the
harms created by adversaries. For instance code similarity
detection has been developed to identify software theft [12]
as described in §8.1. In this work, since a 3D model can be
easily stolen, cloned, and reused from a game binary and
there are hundreds of thousands of mobile games today, our
goal is to understand the landscape of the 3D model reuse
(or clones) among mobile games. However, to the best of
our knowledge, there are no such tools or algorithms that
are designed to detect 3D model clones at scale. Therefore,
we have to design an algorithm that is:

• Scalable. Given the vast array of mobile games with tens
or hundreds of 3D models each, encompassing numerous
vertices, edges, faces, keyframes, and motions, our algo-
rithm must be designed with scalability in mind. That is, it
should be capable of effectively managing and processing
this massive quantity of 3D models.

• Precise. The identified cloned models should accurately
represent cloned instances, given the reputational im-
plications for the games involved. In other words, our
approach should prioritize eliminating false positives for
the sake of accuracy.

• Robust. During the extraction of a 3D model from a
game binary, various forms of noise may be introduced.
Additionally, the IDE tool could alter the raw data of the
mesh during integration into the game. Thus, our algo-
rithm should be robust against such noise. Specifically, it
should be equipped to handle variations such as stretching
or squeezing, noise generated by the extraction tool, and
noise introduced by the game IDEs, among others.
We hope that the development of our algorithm can ad-

vance future research at the intersection of computer secu-
rity and 3D game (or metaverse) design. In particular, we
believe that it can serve two essential purposes: (1) It illumi-
nates the landscape of the 3D model ecosystem by providing
answers to key fundamental questions. This includes gaug-
ing the quantity and complexity of existing 3D models, es-
timating the effort required for unauthorized model cloning,
and determining the prevalence of 3D model reuse. With

this ability, it can be used to identify the cloned 3D models
in games. And the results can be used to further notify their
creators as well as game developers. (2) It provides a foun-
dational benchmark and becomes an integral part of the tool
chain for future studies on 3D model clone detection. Utiliz-
ing this tool as a base, future research could build upon this
groundwork to propose different detection techniques, such
as those based on similarity or signature recognition.

3.2 Scope and Assumptions
This study primarily focuses on Android mobile games for

our exploration of 3D model clones. The principal reason for
this focus is the relative ease and accessibility of data collec-
tion from Android platforms, as compared to iOS. Notably,
a substantial number of Google Play apps have already been
amassed by resources like AndroZoo [20]. Conversely, gath-
ering data from iOS applications would necessitate a jailbro-
ken device to download and extract app content, a process
which is labor-intensive and difficult to scale. Consequently,
our decision to concentrate on Android games allows for
more efficient and large-scale research.

In addition, while there are multiple game engines, we
focus on the Android mobile games created by the Unity

engine, and this decision is underpinned by two primary
considerations. First, to extract 3D models from games,
we leverage existing GUI-based, engine-specific 3D model
extraction tools (e.g., AssetStudio [5] for Unity games,
or UE Viewer [6] for Unreal Engine [21]) and adapt
them for automated 3D model extraction. Second, Unity
holds the lion’s share of the game engine market, boasting a
48% market share [22], with Unreal Engine trailing behind
at 13%.

Finally, we focus on detecting the 3D model clones that
are minimally altered copies of original models, accounting
for slight transformations such as stretching or squeezing, as
well as noise introduced by extraction tools or game IDEs.
We consciously avoid considering models as clones if they
demonstrate significant structural changes, such as manu-
ally removed model parts. While this approach might lead
to some false negatives, we believe it is a reasonable com-
promise for the proof-of-concept stage, presenting a conser-
vative estimate (lower bound) of the prevalence of cloned
3D models in mobile games. We note that detecting clones
that have undergone significant alterations is a daunting task,
primarily due to the challenges inherent in quantifying such
changes. Truly accurate detection of unauthorized and al-
tered clones may necessitate techniques like 3D watermark-
ing [23], which fall outside the scope of this work.

3.3 Challenges and Insights
Again, an intuitive approach to detecting a clone of a 3D

model might involve comparing the cryptographic hashes

3928 32nd USENIX Security Symposium USENIX Association

of the 3D files. However, this methodology does not hold
up well in practice. Upon conducting preliminary exper-
iments, we observed that even identical static 3D models
could present different raw data for their meshes, a vari-
ation that occurred when the model was extracted from
one game and then integrated into another. This issue be-
comes significantly more complex with animated 3D mod-
els, where changes are often more drastic due to the potential
for keyframes to be dropped. Consequently, a robust strat-
egy is required to address these two primary changes. In the
following, we delve deeper into these challenges and offer
insights into our methods for overcoming them.
Handling the Noise in Static 3D models. The raw data of a
mesh might alter during extraction or upon reuse in another
game. Specifically, we have identified four potential alter-
ations to a mesh. For illustrative purposes, let’s denote Mo as
the original 3D model and Me as the model extracted from
an APK. The four identified changes are as follows:

(1) Vertex Coordinates: The x, y, and z coordinates of the
vertices can vary. This is primarily due to two reasons:
(a) an attacker might squash or stretch the model,
altering the vertex coordinates, and (b) the 3D model
extracting tools, such as AssetStudio, might adjust
the model, given that it has a model extraction precision
parameter with a default value of 25%. Figure 1 presents
a concrete example, which clearly demonstrates the
changes in vertex coordinates, even though the overall
shape remains identical.

(2) Vertex Count: Alongside alterations in vertex coordi-
nates, we observed that some duplicated vertices might
disappear during model extraction or integration.

(3) Vertex Order: Our experimentation has also revealed
changes in the ordering of vertices, which does not
visually affect the shape. However, the cause of this
change remains unconfirmed due to the complex logic
of the IDE tools, whose source code we do not possess.

(4) Face Order: Since there is no particular order required
among faces, it has been observed that the order of some
faces might alter.

As such, the hash values of 3D models cannot be straight-
forwardly employed for indexing, as illustrated in Figure 1.
However, it’s observed that despite potential changes in ver-
tex coordinates, the relationship between vertices and the
number of faces is preserved. Specifically, through extensive
experimentation, we found that sorting the vertices ensures
consistent order between Mo and Me. Furthermore, removing
duplicated vertices even aligns the order perfectly. Nonethe-
less, the order information alone is insufficient to accurately
represent the model. Consequently, we encode the faces us-
ing the ordered vertices’ IDs.

Moreover, to mitigate the effects of face order alteration,
we sort faces based on the IDs of the faces’ vertices. This

results in a sequence of faces, encoded by vertex IDs, which
represents the relationship, rather than any absolute coordi-
nate values. To enhance performance efficiency, we generate
a cryptographic hash (such as SHA-256 or BLAKE2 [24])
of the sequence and use this hash for model indexing. Any
models yielding the same hash are identified as clones. This
indexing-based similarity detection algorithm proves scal-
able and efficient, as it circumvents the need for pairwise
comparison.
Handling the Noise in Dynamic (i.e., Animated) 3D Mod-
els. Just as with static 3D models, the raw data of animated
3D models can undergo modifications during game develop-
ment. These modifications pertain not only to shape data but
also to animation data. Specifically, the alterations in data
can be categorized into two types:

(1) Alteration in the number of keyframes. Our ob-
servations indicate that IDE tools may eliminate some
keyframes between Mo and Me, possibly due to anima-
tion optimization.

(2) Modulation of keyframe values (i.e., rotation and
scale). We note that the timings of the keyframes may
be adjusted, leading to consequential alterations in bone
status data.

The key strategy to mitigate this challenge resides in our
observation that, should Mo and Me be similar animated 3D
models, their shapes would exhibit similarity. Furthermore,
we discern that the skeleton structure between Mo and Me
remains consistent for cloned models. Hence, we first ap-
ply shape information to group animated 3D models. Then,
using the skeleton information, we further segregate these
groups into sub-groups. Ultimately, within each sub-group,
we conduct a direct comparison between pairs of potential
clone models to identify the genuine clones. Of course, if
two clones are allocated to different groups/sub-groups, their
identification would be missed.

3.4 3DSCAN Overview
We have developed 3DSCAN, a tool designed to scan and

detect 3D model clones in mobile games, drawing on the
insights discussed earlier. Specifically, when provided with
a Unity-engine based mobile game, 3DSCAN employs the
following three-step process to ascertain the presence of any
clones:

(1) 3D Model Extraction (§4.1). The first step involves
extracting the 3D models from the game APK. This
is accomplished by modifying the open-source tool
AssetStudio [5].

(2) 3D Model Indexing (§4.2). To identify similar 3D mod-
els robustly and efficiently, 3DSCAN applies a value-
insensitive normalization algorithm to the extracted 3D
models, then indexes them using BLAKE2 hashes.

USENIX Association 32nd USENIX Security Symposium 3929

(3) Cloned 3D Model Detection (§4.3). By comparing
the indexes of 3D models, 3DSCAN identifies potential
static 3D model clones. If the models are animated
meshes, 3DSCAN then leverages skeleton and motion
track information to further narrow down and mean-
while perform a pair-wise comparison to detect the
cloned ones.

4 Detailed Design

4.1 Extracting 3D Models

While 3D models can be remotely rendered by cloud plat-
forms such as Google Stadia [25] and locally displayed on
mobile devices such as smartphones [26, 27], these opera-
tions demand high network bandwidth and significant cloud
computation power. Consequently, most mobile games we
have examined opt to directly package the 3D models into
the APK file during game compilation. As 3D model files
tend to be large, they are invariably encoded within the APK
for more compact file size. This necessitates unpacking the
APK and decoding the files to retrieve the 3D models. Please
note that these 3D models are proprietary to the game devel-
opers; we utilize them solely for academic research without
distribution, in compliance with the fair use doctrine of U.S.
copyright law.

For Unity games, the 3D files are encoded using pro-
prietary methods, thus requiring decoding. While it would
be feasible to reverse engineer these file formats, a num-
ber of open-source tools such as AssetStudio[5] and
UtinyRipper[19] are readily available for extracting mod-
els from Unity games, thanks to the engine’s popularity. Of
these, AssetStudio stands as the most favored, boasting
over 7,000 stars on GitHub.

Specifically, AssetStudio is a GUI tool that decodes re-
source files and subsequently exports the 3D models in a
standard format. For instance, a static 3D model will be ex-
ported to the OBJ file (as shown in Figure 1), while animated
models will be exported to the FBX format. Given our need
for raw data for subsequent steps and the large number of
Unity games in our possession, it was necessary to modify
this GUI program into a console tool that directly produces
the raw data when supplied with an APK. We have thus suc-
cessfully modified AssetStudio to parse models directly
from a command line input and generate the following raw
data of a 3D model:
• The Shape. The coordinates of the x, y, and z axes of each

vertex, as well as their respective IDs. Each face is defined
by the corresponding vertices IDs.

• The Skeleton. The number of bones and their hierarchi-
cal structure, represented as (bonep, bonec) to denote that
bonec is attached to bonep.

g tetrahedron
v 0.00 0.00 0.00 # v1
v 1.00 0.00 0.00 # v2
v 0.00 1.00 0.00 # v3
v 0.00 0.00 1.00 # v4

f 1 3 2 # v1 v3 v2
f 1 4 3 # v1 v4 v3
f 1 2 4 # v1 v2 v4
f 2 3 4 # v2 v3 v4

01
02
03
04
05
06
07
08
09
10
11

v1 v2

v3

v4

v1 v2 v3 v4
u4 u1 u2 u3

f u4 u2 u1
f u4 u3 u2
f u4 u1 u3
f u1 u2 u3

① Deduplication & Sort

f u1 u2 u4
f u2 u3 u4
f u1 u3 u4
f u1 u2 u3

②
Map

Raw File (.obj)

index

②
Map

③
Sort within rows

f u1 u2 u3
f u1 u2 u4
f u1 u3 u4
f u2 u3 u4

④
Sort rows

⑤
Hash

Figure 2: Illustration of each step of the indexing algorithm
with our running example.

• The Animation. The list of keyframes, each containing
time, bone, rotation, translation, and scale details.

4.2 Indexing 3D Models

With the aid of AssetStudio, we can extract large-scale
3D models from Android APKs. However, directly hashing
these models is ineffective (as demonstrated in Figure 1), and
we need to seek alternative approaches. To this end, we pro-
pose an indexing-based algorithm, which calculates a singu-
lar value based on the raw data of the 3D model. This sin-
gular value is then used to index the model, enabling models
with identical indexes to be identified as clones. This type
of index algorithm is efficient, boasting a time complexity
of O(1) with n models. Nevertheless, crafting such an al-
gorithm presents a challenge because the calculation must
be (1) sufficiently general to allow cloned models with dis-
parate raw data to yield identical indexes, and (2) adequately
specific to differentiate unique models. Furthermore, given
the potential changes to the raw data during model import
and export by IDE tools, normalization is required.

Hence, we introduce a normalization-based indexing al-
gorithm for detecting model clones. Recall that the shape
(vertices, edges, faces) of a 3D model conveys a wealth of
information, making it an ideal candidate for normalization.
However, as discussed in §3.3, four types of shape data can
be altered between Mo and Me: vertices values, vertices num-
ber, vertices order, and face order, due to the impact of the
Unity IDE and model extraction tools. Fortunately, we have
identified three types of data that remain preserved and can
be harnessed to generate the index:

3930 32nd USENIX Security Symposium USENIX Association

Algorithm 1 Static 3D Model Indexing
1: Input: vso: the vertices in original order; f so: the faces in original order
2: Output: hash: the hash that can represent this model
3: procedure MODELINDEXING(vso, f so)
4: vsou SET(vso)
5: vsn SORT(vsou)
6: vs2ids DICT(/0)
7: for i in (0, LENGTH(vsn)) do
8: vi vsn[i]
9: vs2ids[vi] i

10: end for
11: f sn /0
12: for foi in f so do
13: fni /0
14: for vido j in foi do
15: vi vso[vido j]
16: vidni vs2ids[vi]
17: fni fni [vidni
18: end for
19: f sn f sn [fni
20: end for
21: for fni in f sn do
22: fni SORT(fni)
23: end for
24: f sns SORT(f sn)
25: hash BLAKE2(f sns)
26: return hash
27: end procedure

• Vertices Relationship. Although the x, y, and z coordi-
nates of the vertices may vary, the relationship between
two vertices in the 3 dimensions is consistently maintained
in Mo and Me. For instance, if the coordinates of X(va) are
less than X(vb) on the X-axis of Mo, this relationship will
persist in Me.

• Face Numbers. To ensure the same visual effects, the
number of faces remains consistent in Mo and Me.

• Face-Vertices Relationship. While the vertices or face
IDs may be modified, their relationship is preserved.
Specifically, if a face fa exists in Mo, a corresponding face
fb will exist in Me to deliver the same visual effect.
Based on those consistent data, we have designed an

algorithm as presented in Algorithm 1. To clearly illustrate
the algorithm, we use a tetrahedron model in Figure 2 as
a running example to show detailed steps in generating its
hash index. At a high level, the algorithm takes the shape
information as input and outputs a hash for the model.
Specifically, it first removes duplicated vertices in line 4 by
comparing the coordinates x, y, z. In the example, since there
are no duplicate vertices, all vertices will be kept. Second,
the remaining vertices will be sorted according to their coor-
dinates in line 5. Each vertex will be assigned with a new ID
(on lines 6-10) based on its position in the sorted list. The
corresponding step in the example is illustrated in step ¨.
The four vertices will be sorted in descending order. As a re-
sult, the new order would be [v2,v3,v4,v1], based on which
the new IDs will be assigned. For instance, the coordinates
of v1 is ‘smaller’ than other vertices, so it is the fourth item
in the sorted list. As such, its new ID is u4. Third, each face
will be represented by the new vertex IDs (at lines 12-20),
which is illustrated in step ≠ in the example. For instance,

the first face (i.e., {v1,v3,v2}) will be represented as
{u4,u2,u1}. Fourth, the IDs will be sorted within the face at
line 21-23, which is illustrated in step Æ in the example. For
instance, the first face (i.e., {u4,u2,u1}) will be sorted (i.e.,
descending) to {u1,u2,u4}. Next, the faces will be sorted
according to their vertex IDs at line 24, which is illustrated
in step Ø in the example. For instance, the IDs of fourth face
(i.e., {u1,u2,u3}) is ‘larger’ than any other face, so it will
be sorted to the first place. Eventually, the BLAKE2 hash
value will be generated for the model by the sorted faces at
line 25, which is illustrated at step ∞ in the example. We can
clearly see that our hash is not generated by any concrete
coordinate values in the 3D models but rather by the order
of faces along with the order of its sorted vertices.

4.3 Identifying Cloned 3D Models

The purpose of 3D model indexing is to identify the
cloned 3D models. In particular, our indexing is based on the
shape, which is the basic element of both static 3D models
and also animated 3D models. When the indexes of the 3D
models, the cloned static 3D models can be directly identi-
fied. More importantly, this index can also significantly help
identify animated 3D models, since we can first use the same
shape to narrow down the “suspicious” cloned 3D models.
That is, 3DSCAN directly detects static 3D models, whereas
to detect animated 3D models, it uses static 3D model detec-
tion first to narrow down the scope (for efficient reasons) and
then performs a pair-wise comparison.

(I) Detecting Cloned Static 3D Models. If a model does
not contain any animation, it is a static 3D model. The index
value computed at §4.2 can now be used directly to detect
static model clones. That is, if two models have the same
index value, then 3DSCAN decides that one of them is a
clone of the other. Also, since one model can be cloned
by several games, 3DSCAN automatically groups the 3D
models based on their indexes. Note that 3DSCAN cannot
determine the origin among the cloned one, which requires
additional techniques such as 3D watermarking [23] and
again this is beyond our current scope.

(II) Detecting Cloned Animated 3D Models. An animated
3D model is composed of the static 3D model, the skele-
ton, and the animation. Ideally, similar to our static 3D
model clone detection, we wish to have an indexing-based
approach. Unfortunately, detecting animated 3D model
clone is far more complicated than that of the static 3D
model, as we cannot simply use the shape for the detection,
because an animated 3D model contains animations and
meanwhile the animation is applied to the skeleton (but
different animated 3D models can have the same skeleton).
Particularly, although the skeleton does not get changed,
the animation information can be changed in several ways
(more details will be provided below). As such, we cannot

USENIX Association 32nd USENIX Security Symposium 3931

Algorithm 2 Skeleton Hashing
1: Input: bone: the root bone of the skeleton
2: Output: hash: the hash that can represent this skeleton
3: procedure SKELETONHASHING(bone)
4: bones /0
5: for child in CHILDRENBONES(bone) do
6: childs SKELETONHASHING(child)
7: bones CONCAT(bones, childs)
8: end for
9: hash BLAKE2(bones)

10: return hash
11: end procedure

Figure 3: Animation Interpolate

use an index-based approach and instead we propose a
divide-and-conquer algorithm, by which we first divide the
animated 3D models into groups, and then conquer the clone
detection within each group with a pair-wise comparison.

Dividing animated 3D models by its static 3D model and
skeleton. In addition to the static 3D model, the skeleton can
also be used to divide animated 3D models since a cloned
copy must have the same skeleton. As discussed in §2, a
skeleton is a set of bones constructed in a hierarchy structure,
which follows the same structure of the target object such as
human bones, for instance, the left foot bone is attached to
the left leg bone. The head of the hierarchy structure is the
root bone. Since a skeleton is essentially represented in a
tree structure, we have to design an algorithm to index the
skeleton as well.

Inspired by the Merkle tree [28], we propose a recursive
algorithm as illustrated in Algorithm 2 for our purpose.
Specifically, a hash value will be used to represent each bone,
and the hash value for the root bone will be used to index the
skeleton. The hash value of a bone is based on the hash val-
ues of its children’s bones (that is, line 6). In particular, the
hash values of the children’s bones will be concatenated as
shown in line 7, and the BLAKE2 hash function will be ap-
plied on the concatenated results to generate the hash for the
parent bone (that is, line 9). As shown in line 4, if the bone
does not have children, its value will be the BLAKE2 hash of
the empty string. As such, we are able to index skeletons and
further narrow down the animated 3D models into groups.

Conquering the clone detection via pair-wise compari-
son. Among each identified group of the “suspicious” an-

imated 3D models, a pairwise comparison is still needed to
finally decide the clones. However, this is a challenging task
since every type of raw data in an animation could have been
changed. In particular, an animation is a list of keyframes
that show at different timing points, and each keyframe con-
tains its timing point and a list of bone statuses which contain
the rotation and scale information for the bone that needs to
perform in this particular keyframe. The rotation and scale
information contain the angle of rotation, translation, and
scale value in x, y, and z axis. With bone status information
for different keyframes, the rendering platform will apply in-
terpolation [1] to predict bone status between keyframes, so
it can present a smooth motion.

When focusing on a specific bone during the animation, it
can be shown in a scatter plot over time (the horizontal-axis)
and rotation (the vertical-axis), and the status information is
scattered data points in this plot. Figure 3 (A) presents the
rotation information of the leftUpLeg bone in a walk ani-
mation for a human-like model Mo. The horizontal axis is the
time and the vertical axis is the rotation angles of the bone
in the 3D (represented by x, y, and z coordinates). For exam-
ple, at time point 0 (i.e., initial state), the bone should rotate
40.83 on x-axis in the 3D,�23.27 on y-axis, and�166.77 on
z-axis. The Figure 3 (B) is the data of the same bone in Me.
We can see that the data have changed dramatically. Specif-
ically, (1) the timing point has been changed. For example,
the second time point in Mo is 0.17, however, the second tim-
ing point in Me is 0.22; (2) the values of the rotation angle
have been changed. Similarly to shape data, the absolute val-
ues of the rotation angle have been changed; (3) the number
of keyframes has been changed. There are 25 keyframes in
Mo, but only 19 keyframes in Me.

Therefore, to compare these two animations, it is im-
practical to simply compare their keyframes one by one,
since the timing point of each keyframe has been changed,
and they could not be aligned. As such, we have to find
another way. Luckily, since the animation is a motion
applied on a set of bones, by following the principle of
divide-and-conquer again, we can first compare the move-
ment similarity of the same bone in two animations, then
calculate the average similarity based on the similarity of all
the bones’ movements. With such an average similarity, we
cluster similar animations into groups.

Next, to compare the movements of the same bone in two
animations, since the movements contain the rotation, trans-
lation, and scale data in x, y, and z-axis (9 types in total), we
need to divide them further. In particular, we compare them
one by one (i.e., x to x, y to y) and then merge them by calcu-
lating the average value. More specifically, we first compare
the rotation data on the x-axis of the bone in two animations,
then compare the other 8 types of data. And eventually, we
calculate the average similarity based on them. When focus-
ing on a specific comparison, such as the rotation angles in
the x-axis as presented in Figure 3 (C) in which we have in-

3932 32nd USENIX Security Symposium USENIX Association

cluded the leftUpLeg bone’s x rotation angles of both Mo
(i.e., in red) and Me (i.e., in blue), we can see that such data
are two sets of scattered data points. Although we have di-
vided the comparison to such a low level, it is still challeng-
ing to compare the scattered data points.

Fortunately, inspired by the interpolation algorithm [1] on
the rendering platform, we have designed an interpolation-
based comparison algorithm. In particular, for each of the
scattered data point sets, we compute a curve that crosses
the points. Then we get two curves for the two data point
sets, for example, Figure 3 (D) shows the two interpolation
curves of the data in Figure 3 (C). As such, the similar
comparison of the two sets of scattered data points has been
transformed into similar comparison of two curves, which is
a well-studied problem [29] in computer graphics.

There are several algorithms for calculating curve sim-
ilarity, such as Euclidean distance (ED), Dynamic Time
Warping (DTW) [30], and Longest Common Subsequences
(LCSS) [31]. We use Euclidean distance for this purpose.
The formula is:

ED =
1
n

n

Â
k=1

|curveo(xk)� curvee(xk)|

The high-level idea is that, with n samples on the x coordi-
nates, for each of the samples, we calculate the distance of
the corresponding values on the two curves. The average dis-
tance is the distance of the curves. In particular, assume that
xk is the k-th sample, curveo(xk) returns the corresponding
angle value of xk on the curve of Mo. With this, it will pro-
duce the Euclidean distance of the two curves. Specifically,
we equally sample 100 x coordinates for the calculation. For
each sample, the Euclidean distance will then be calculated,
for example, when time is at 0.5 (i.e., x = 0.5), the rotation
angle of Mo is 11.11 and Me is 9.76. As such, the Euclidean
distance is 1.35 (at x = 0.5). The final Euclidean distance
will be calculated by averaging the Euclidean distance of
the 100 samples. Currently, two models are detected similar
if their average ED is less than 0.95, and this threshold is
obtained through experimenting with 100 cloned animations.

5 Evaluation

We have implemented a prototype of 3DSCAN by modify-
ing AssetStudio for 3D model extraction from game APKs
and developing our algorithm in C# and Python. In the inter-
est of encouraging further research, we have made the source
code of 3DSCAN available on Github. In this section, we
report our evaluation results. We begin by outlining our ex-
perimental setup in §5.1, followed by a detailed presentation
of the results for each component in §5.2.

5.1 Experiment Setup

Dataset Collection. To explore the prevalence of 3D model
clones in Android games developed with Unity, our first
task was to assemble a collection of relevant games. To this
end, we engineered a crawler based on the Scrapy frame-
work [32] to retrieve all the app package names from Google
Play. As apps featuring 3D models are typically games,
our focus was on the free games category, yielding 315,321
free games in total. We then used gplaycli [33] to down-
load the APK files from the Google Play server by interact-
ing with its Web APIs. To identify games developed with
Unity, we checked the magic number of the files located in
the assets folder in each APK. Ultimately, we identified
176,361 Unity-based games, requiring 5TB of hard drive
space for storage.

Environment Setup. Our experiment was conducted on a
Dell server equipped with dual Intel Xeon 8268s CPUs (48
cores @ 2.9GHz per CPU), 192GB memory, and a 96TB
hard drive. The server runs on Red Hat Enterprise Linux
(RHEL version 7.9). Given that AssetStudio is developed
with C#, which necessitates a .NET environment, we used
the Wine framework to run it on RHEL.

5.2 Experiment Results
We have tested 3DSCAN with 176,361 Unity-based

games. To accelerate our analysis, we run 80 instances in
parallel for extracting and indexing the 3D models. The ex-
periment took our server 125 hours, and 3DSCAN identified
89,519 of the games containing 3D models. Further, it found
22,517,361 static 3D models and 7,696,801 animated 3D
models, which indicates that each game has 251.54 static 3D
models and 85.98 animated 3D models on average. Mean-
while, within a game, the same model can be used several
times, which can be identified by the resource file used by
the model. By removing the repeated models within each
game, we eventually found 12,200,055 static 3D models and
2,451,304 animated 3D models.

With our indexing algorithm, 3DSCAN identified
5,557,146 distinctive static 3D models. The models can
have up to 2,741,574 vertices (which is a model of courtyard
in game Restoration VR) and 3,473,208 faces (which is
a model of corona virus in game Lockdown Area). By
identifying similar 3D models among static 3D models with
their indexes, 3DSCAN found that 4,510,514 only exist in
one game and 1,046,632 (i.e., 18.83%) have been found in
different games. Also, it found more than 94.75% games
have used cloned models. The most popular 3D model is the
model of a floor which only has 4 vertices and 2 faces. It has
been found in 29,176 games. Also, there are 41,322 distinc-
tive skeletons in all animated 3D models. By combining the
model index and the skeleton, it identified 188,015 groups
of animated 3D models. By comparing the animations

USENIX Association 32nd USENIX Security Symposium 3933

Game Category # Games # Static Avg. # Animated Avg.
Action 13,622 3,628,174 266.35 2,050,971 150.56
Adventure 6,737 1,931,868 286.75 835,033 123.95
Arcade 14,829 2,480,407 167.27 634,569 42.79
Board 1,278 85,320 66.76 33,072 25.88
Card 670 40,021 59.73 38,394 57.30
Casino 793 42,234 53.26 56,662 71.45
Casual 12,176 2,331,971 191.52 705,614 57.95
Educational 2,447 541,045 221.11 171,626 70.14
Music 726 55,419 76.33 27,862 38.38
Puzzle 6,749 1,312,079 194.41 466,566 69.13
Racing 6,745 2,554,523 378.73 243,820 36.15
Role Playing 3,258 1,069,659 328.32 539,948 165.73
Simulation 13,135 5,270,549 401.26 1,272,250 96.86
Sports 3,249 553,301 170.30 264,845 81.52
Strategy 2,304 546,875 237.36 307,952 133.66
Trivia 412 51,594 125.23 25,274 61.34
Word 389 22,322 57.38 22,343 57.44

Table 1: The 3D models distribution across game categories.
Note that Google mandates that a game can only belong to
one category.

within each group, 1,722,795 distinctive animated models
have been identified. Among them, the most popular
animated 3D model is the model of a driver with animation
turnSteeringWheel that has been found in 1,544 games.
Detailed Results. To provide a clear presentation of the
experimental performance of 3DSCAN with these games,
we detail the performance of each of its three components
in the following.
(I) Extracting 3D models. Again, 3DSCAN extracted
12,200,055 static 3D models and 2,451,304 animated 3D
models in total. However, we also found that, not all of the
Unity based games contain 3D models, because there are
many 2D games. In total, we found 89,519 of them contain
3D models. The 3D model numbers are varied among
different game categories. As such, we present the model in-
formation based on the category of the game in Table 1. We
can see that the Simulation game category is the top cate-
gory that contains more 3D models. Meanwhile, on average,
the games in the Simulation category also contain more
3D models. One possible reason is that this type of game is
commonly simulating real-word activities (such as vehicle
simulation) which require more models than other game
categories. For animated 3D models, the Action category
contains more than that of other categories. However, on av-
erage, the Role Playing category contains more animated
3D models than others. It indicates that the games in Action
category would use the same animated 3D models several
times and the game in Role Playing category needs more
different kinds of animated 3D models. Furthermore, we
also present the model information by grouping the games
according to the installed times in the first 6 columns in
Table 2. We can see that popular games tend to use more
models (i.e., columns 4 and 6 are increasing) for rich content.
(II) Indexing 3D models. To understand the complexity
of the 12,200,055 static 3D models for the indexing algo-
rithm, we present the distribution of the shape information

Figure 4: Model average faces distribution across games.

in Figure 5a. In particular, the horizontal-axis is the num-
ber of vertices (for red curve) and faces (for blue curve);
the vertical-axis is the percentage of 3D models that have
fewer vertices or faces than the corresponding value in the
horizontal-axis. We can see that more than 20% of mod-
els have more than 1,000 vertices and there are even some
models (about 2.52%) have more than 10,000 vertices. Sim-
ilarly, 80% of models have more than 820 faces, and there are
even 2.30% of models have more than 10,000 faces. Mean-
while, we also present the average vertices and faces data
for games with different install numbers in columns 7 and
8 of Table 2. Interestingly, while the popular games tend to
have more models, the model complexity is actually decreas-
ing (i.e., columns 7, 8 are decreasing). To clearly show this
finding, we present a heat map of the distribution of average
faces of games based on their categories and install numbers
in Figure 4. We can see that the models in some categories
(e.g., Action) are more complex than others. Meanwhile, in
all categories, the trend of model complexity is decreasing,
while the install number is increasing.

We also present the distribution of the extracted skeletons,
which can be found in Figure 5b. The x-axis is the number of
bones the skeleton has, and the y-axis is the number of such
skeletons. We can see that most skeletons have less than
100 bones. But the skeleton can also be complex; the most
complex skeleton in the experiment has 979 bones, which is
a pant that has motions in game Misguided.

(III) Identifying Cloned 3D Models. After our indexing,
3DSCAN is ready to detect the clones. In total, 5,557,146
distinct static 3D models have been identified and 1,046,632

3934 32nd USENIX Security Symposium USENIX Association

(I) (II) (III)
Static 3D Models Animated 3D Models Model Average Distinct Model Model Clones

Installs # Games Total Average Total Average Vertices Faces Static Animated Static Animated Average
500 33,182 4,969,430 149.76 1,357,767 40.92 1,766.91 1,470.54 1,404,839 338,742 409,252 72,485 14.52
1K 13,177 2,948,531 223.76 919,989 69.82 1,612.37 1,325.13 918,647 198,108 398,695 62,881 35.03
5K 5,475 1,392,774 254.39 429,659 78.48 1,646.80 1,341.39 515,873 114,060 241,060 35,022 50.43

10K 11,659 3,389,492 290.72 1,249,804 107.20 1,630.57 1,320.78 1,033,665 247,982 452,565 68,981 44.73
50K 4,528 1,468,631 324.34 540,708 119.41 1,729.43 1,378.50 486,907 137,904 264,041 33,113 65.63

100K 9,460 2,998,522 316.97 1,161,467 122.78 1,613.92 1,318.86 949,642 226,499 428,137 67,664 52.41
500K 3,457 1,265,555 366.08 446,742 129.23 1,592.51 1,309.02 476,733 133,743 242,269 37,844 81.03

1M 5,521 2,323,020 420.76 796,189 144.21 1,277.82 1,040.69 961,134 371,945 350,072 43,033 71.20
5M 1,313 663,554 505.37 234,583 178.66 1,291.44 1,038.19 285,578 88,566 122,666 16,824 106.24

10M 1,448 890,168 614.76 473,049 326.69 1,000.09 825.86 483,649 131,387 174,879 25,898 138.66
50M 202 152,370 754.31 60,573 299.87 853.12 756.63 77,433 12,977 29,382 1,798 154.36

100M 89 51,016 573.21 23,896 268.49 923.47 838.93 37,040 5,664 10,367 364 120.57
500M 7 2,934 419.14 1,989 284.14 760.56 702.61 2,271 123 243 0 34.71

1B 1 1,364 1,364.00 386 386.00 730.06 695.31 1,048 376 316 10 327.00

Table 2: The 3D models distribution across games that grouped by their install times.

(a) Models distribution (b) Skeleton distribution (c) Overlapping rate among the suspicious games

Figure 5: Some characteristics of the tested static 3D models

of them have been found in different games. The columns 9-
13 in Table 2 present the experiment data for this component.
We can see that, popular games tend to contain more cloned
models (i.e., the last column is increasing). To understand
the static model clones, we further group the models based
on the number of games that contain them and present the
data in Figure 6a. We can see that 4.5 million of them only
exist in one game and 0.5 million of them exist in two games.
And more than 530,000 of them exist in more than 2 games.
There are even 458 models that have occurred in more than
500 games. As such, more than 80% distinct models are ex-
clusive models (i.e., only exist in one game). Furthermore, to
understand the model clone among games, we define a term
sharing rate (i.e., sr) for each game which can measure
its clones of the models. In particular, the rate of sharing is
the average occurrence of all its models, which can be calcu-
lated using the following equation:

srG =
1
n

n

Â
k=1

occurrence(Mk)

The occurrence(Mk) represents the occurrence of model
Mk. By grouping the games based on their share rates, we
create Figure 6c. We can see that only around 6,700 games’

sharing rate is 1.0. Recall that 80% models are exclusive. As
such, there are some common models used by many games.

Finally, by grouping the animated 3D models by their
static model index and skeleton, 3DSCAN identified 188,015
groups of animated 3D models. With further comparison,
1,722,795 distinct animated 3D models have been identified.
They are using 179,541 static 3D models. On average,
each model can have around 10 motions. Similarly to the
static model clone, we present the data of the animated
3D model clone in Figure 6b. We can see that 1.5 million
(i.e., more than 88%) animated 3D models exist only in one
game. Most of them (i.e., 94%) exist in one or two games.
Therefore, we can conclude that static 3D model clone is
more common than animated model clone. However, similar
to static 3D model clone, there are some popular animated
models, for instance, 46 animated 3D models occurred in
more than 500 games.

Accuracy Analysis. While 3DSCAN delivers promising re-
sults, it’s not without its potential inaccuracies. Theoret-
ically, the system may yield both false positives (FP) and
false negatives (FN), as some information may be lost dur-
ing model indexing. To measure the FP rate (i.e., dissimilar
models identified as similar), we randomly selected 1,000
pairs of non-duplicate static 3D model indexes and 1,000

USENIX Association 32nd USENIX Security Symposium 3935

(a) Static 3D models distribution (b) Animated 3D models distribution (c) Game models sharing rate distribution

Figure 6: Some characteristics of the tested animated 3D models.

pairs of non-duplicate animated 3D model groups. In each
pair, the two models have distinct indexes. Upon manual re-
view of the models’ appearances, we did not encounter any
cases where different models shared the same index.

While FPs can be quantified, measuring FNs (i.e., models
that appear identical but bear different indexes) is more chal-
lenging. To tackle this, we leveraged the name field of the
model, defined by the developers. We selected 1,500 models
for FN analysis, gathering a list of 50 common object words,
such as ’book’ and ’dog’. For each word, we collected 30
models with names containing the corresponding word. Fol-
lowing a manual review of models for each word, we found
no instances of similar models possessing different indexes,
suggesting no FNs in the models we validated.

Note, however, that manual review of these models can
take months. To expedite this process, we developed a helper
program that renders static models into jpg files and ani-
mated 3D models into gif files. This streamlined presenta-
tion allows for review using keyboard controls alone, reduc-
ing the verification process to about a week for two authors.

6 Detecting Unauthorized Clones

Despite having identified 1,046,632 static 3D model
clones and 180,174 animated 3D model clones, determin-
ing the legality of these clones (i.e., discerning authorized
from unauthorized clones) remains challenging. This is due
to the potential scenario where developers have legitimately
purchased these models from markets. The key difference
between legal and illegal clones hinges on whether the cre-
ator has authorized the clone. Given that it is unrealistic to
detect illegal clones based solely on the model data, we con-
ducted a manual review of thousands of model clones. From
this, we made three key conjectures: (1) Popular game de-
velopers often create their own models rather than purchas-
ing them; (2) Models in popular games are more likely to be
appropriated without authorization due to the games’ visibil-
ity; (3) Complex models are more likely to be illicitly copied

than simpler ones. Based on these insights, we propose a
heuristic-based approach for detecting unauthorized clones.

Specifically, if complex models are only found in a popu-
lar game and a less-popular game from a different developer,
it is plausible that the less-popular game has appropriated
the models from the popular one. Our detection process is
as follows: (1) We identify complex static and animated 3D
models shared across games; (2) We exclude pairs of games
developed by the same team; (3) We retain only those pairs
that comprise a popular game (defined as a game with over 1
million installs) and a less-popular game (defined as a game
with installs constituting 1% of the popular game’s installs).
Ultimately, we identified 6,850 pairs of games with static
3D model clones and 817 pairs of games with animated 3D
model clones that may potentially be unauthorized clones.

However, recognizing potential unauthorized clones
might also result in false positives. For example, the devel-
opers of both the popular and less-popular games could be
the only purchasers of a particular model from a 3D market,
leading to misidentification of the less-popular game as hav-
ing unauthorized clones. To confirm unauthorized clones,
one approach could be to contact the developers of the games
with stolen models, but this is not feasible for thousands of
games. Instead, we reported these potential instances of re-
source abuse to Google, who we believe are best equipped
and incentivized to regulate the app market.

Collecting evidence for Google, however, is a complex
task. We need to ensure that the model is not publicly avail-
able, necessitating a search for each model on popular 3D
markets. Given the daunting prospect of searching for each
model, we opted to randomly select 1,000 models from the
dataset, excluding other models from the same game in sub-
sequent selections. Through this process, we discovered 26
free models available on 3D markets. After removing these,
we prepared the game and 3D model metadata for Google.
In total, we submitted 974 suspicious games to Google.

Confirming resource abuse (i.e., 3D asset clone) is also
time-consuming for Google. As of this writing, Google is

3936 32nd USENIX Security Symposium USENIX Association

Victim Game # Install Category Developer Game w/ Cloned Models # Install Category Developer Removed?

G
am

e
C

lo
ne Flip Diving 50M Sports MotionVolt Games Ltd Cliff Diving 5K Simulation BBLoveG 3

Zombie 3D Gun Shooter 10M Arcade Fun Shooting Games . Unkilled Hunter 1K Action Bsbh Studio 3
Agent Action 10M Action Saygames Ltd Agent Legend 100 Adventure Keep200019 3
Bike Racer 10M Racing Games Saga Stunt Bike Racer 3D 100 Simulation Liudingjun 3
Shoot Goal 10M Sports Bambo Studio Dream Football Strike 10K Sports Crazy Sports Co. 3

Id
ea

C
lo

ne Temple Run 500M Arcade Imangi Studios Eternal Parkour 500 Action Mangoqueen 3
Join Clash 3D 100M Arcade Supersonic Studios LTD Join Clash 3D: Crowd Rush 5K Arcade Gamezo 3
Talking Tom Hero Dash 100M Action Outfit7 Limited Jungle Cat Runner 100 Role Playing Vigour3D 3
Hungry Shark Evolution 100M Arcade Ubisoft Entertainment Scuba Hunter 100 Adventure Arcadian Lab 7
Robot Helicopter 5M Action Naxeex Robots Us Army Robot Helicopter 5K Strategy Dreams Games Inc, 3

M
od

el
C

lo
ne Subway Surfers 1,000M Arcade Sybo Games Bob The Robber Runner 100 Adventure Appspros 7

Cover Strike 100M Action Free Actions Military Commando Mission 1M Adventure New Games 2021 . 3
Color Bump 3D 100M Arcade Good Job Games Color Bumper Ball 1K Arcade Coz Rdev 7
Flight Simulator 100M Simulation I6 Games Airplane Free Fly Simulator 10K Simulation Bf Games Studio 3
Bridge Race 100M Casual Supersonic Studios Ltd Tower Stack 1K Casual Jacob Van Haag 3

Table 3: The unauthorized model clones among the inspected games.

still verifying the games, and we are prepared to provide ad-
ditional information if necessary. Google has already begun
removing some of them from the market. By checking the
package names, we found that 360 (36.96%) reported games
have disappeared from Google Play. We would like to em-
phasize that our intention is not to act as “cyber police,” but
rather to provide objective data on model similarities. Re-
porting suspicious unauthorized clones to Google is merely
a step towards further confirmation. We also plan to explore
other routes, like contacting developers directly and allowing
them to make the final decision.
Result analysis. To delve deeper into cloning behavior
within each pair of games, we introduce the concept of an
overlapping rate between two games (Ga and Gb) as:

overlapping(Ga,Gb) =
MGa

T
MGb

MGa
S

MGb

where MGa represents the models in game Ga. The distri-
bution of the overlapping rate of game pairs is displayed in
Figure 5c. The graph reveals that the majority of pairs have
an overlapping rate of less than 20%, suggesting that only a
portion of the models in a game have been illicitly appropri-
ated. However, we also observe spikes around 100% overlap
rates. To gain a better understanding of this anomaly and the
general cloning behaviors, we manually reviewed the over-
lapping models in hundreds of pairs. We pinpointed three
main reasons for these clones:

• Game Clone. An attacker may repackage an existing
game for various motivations, such as distributing mal-
ware or monetizing by substituting the advertisement rev-
enue account in the game. The original game and the
repackaged version would exhibit a high overlapping rate
(typically around 100%). The spikes around 100% over-
lapping rates in Figure 5c can be attributed to such game
clones. Table 3 lists the top five game clones identified
in our study. Interestingly, some repackaged games have
been uploaded under a different game category, making it
challenging for the original developers to identify them.

• Idea Clone. If an original developer creates a popular
game with an innovative concept, an attacker might try

to replicate this idea by creating a similar game, possibly
appropriating some models from the original game in the
process. Table 3 presents five such cases. For instance,
Join Clash 3D is a popular game known for its unique
logic and design. However, we discovered the game Join
Clash 3D: Crowd Rush (with 5K installs), which offers re-
markably similar content, albeit with lower quality. This
game shares 8.84% of static models and 11.59% of ani-
mated models with the original game.

• Model Clone. At times, an attacker may be interested in
a specific model. Unlike idea cloning, where the attacker
creates a similar game, attackers typically steal the model
and use it in a game belonging to a different category. We
highlight five such instances in the last five rows of Ta-
ble 3. For example, we observed that the game Subway
Surfers (a highly popular game) and Bob the robber Run-
ner (a less-popular game with 1K installs) share a unique
dog model that we could not locate anywhere in the mar-
ket. It is highly plausible that this model from Subway
Surfers has been appropriated.

Case Studies. Next, we present two case studies to em-
phasize the potential security implications arising from 3D
model cloning. As depicted in Figure 7, we illustrate two in-
stances of cloning, with each instance comprising an original
game (on the left) and its suspected unauthorized clone (on
the right).

• Join Clash 3D is a high-caliber arcade game where
players navigate a team in combat against rival fac-
tions. Its unique gameplay has contributed to its im-
mense popularity on Google Play, boasting over 100
million installs. The screenshot on the right depicts
another game that bears striking resemblance to Join
Clash 3D, with several identical models, including the
main characters. The gameplay also mimics that of Join
Clash 3D, albeit at a notably lower quality.

• Subway Surfers is an immensely popular endless run-
ning mobile game developed by SYBO Games. With
its addictive gameplay and visually appealing graph-

USENIX Association 32nd USENIX Security Symposium 3937

Victim Suspicion Victim Suspicion

M
od

el
Sc

re
en

sh
ot

Join Clash 3D Join Clash 3D: Crowd Rush Subway Surfers Bob The Robber Runner

Figure 7: Cases for likely unauthorized 3D model clones.

ics, Subway Surfers has captivated millions of players
worldwide. The game on the right features not only the
inclusion of a dog character but also utilizes multiple
identical 3D models found in the renowned game Sub-
way Surfers. Furthermore, the gameplay of this game
closely imitates that of Subway Surfers with noticeably
lower quality.

The implications of unauthorized cloning can be severe.
First, it infringes on the intellectual property rights of the
original creators. Game developers dedicate substantial
resources towards crafting these 3D models, and their
unauthorized usage in other games constitutes a flagrant
violation of their rights. Second, unauthorized cloning raises
ethical concerns within the gaming community. The practice
of cloning 3D models instead of developing original ones
hampers innovation and creativity in the industry. In light
of this, we assert the pressing need for robust protections
against 3D model cloning. This includes the advancement of
secure rendering techniques and tools capable of detecting
cloned 3D models.

7 Limitations and Future Work

Expanding Detection Scope Beyond Mobile Games. Cur-
rently, 3DSCAN is designed primarily to focus on mobile
games, specifically those created with the Unity engine. An
immediate next step involves broadening 3DSCAN’s scope
to include other platforms, such as iOS, console, and PC

games. It’s worth noting that 3D models extend beyond
games, permeating fields such as film, television, medical
imaging, industrial design, and even 3D printing [34]. Iden-
tifying 3D model clones within these sectors presents an ex-
citing avenue for future research.

An emerging field of interest is the metaverse (e.g., [3, 4]),
where users interact with virtual 3D worlds via a range of de-
vices such as smartphones, tablets, and headsets. Given the
integral role of 3D models in this domain, the development
of methods to protect these models from theft, and to detect
their unauthorized clones, will undoubtedly be a crucial re-
search area.

Exploring Alternative Algorithms (e.g., Machine Learn-
ing). 3DSCAN utilizes an indexing-based approach to iden-
tify static 3D model clones using hash values. This as-
sumes a lack of significant modification to the 3D mod-
els. Alternative strategies, such as transforming 3D mod-
els into vectors rather than a singular hash value, or imple-
menting pattern recognition algorithms with artificial neu-
ral networks (e.g., [35, 36]), could be used to detect 3D
model clones. The features 3DSCAN derives are fundamen-
tal (e.g., vertex order, face sequences), but there could be
more representative 3D geometry features, as employed in
3D shape retrieval [37]. Techniques that use machine learn-
ing to automatically derive representative features could also
be adopted (e.g., [38, 39]). We defer exploration of these
techniques to future work.

3938 32nd USENIX Security Symposium USENIX Association

Enhancing 3D Model Security. 3D model clone detection
is but one facet of 3D model security. Additional problems,
such as protection and detection, remain to be addressed.
Protective measures could explore techniques for preventing
3D model extraction, such as 3D model encryption, obfusca-
tion, and binding them with specific game code. Detection
measures could propose solutions for thorough 3D model
extraction from games and explore techniques (e.g., water-
marking models) to detect unauthorized clones.

Anticipating Adversarial Clone Detection Evasion. Our
study of 3D model clone detection signals the beginning of
subsequent research into adversarial clone detection and eva-
sion. Future researchers will likely develop methods to cir-
cumvent detection systems, testing the robustness of current
tools. Malicious attackers may alter models to evade detec-
tion, prompting continued refinement of our detection meth-
ods in response to more advanced evasion techniques.

Integrating Our Tool in App Review. Major app platforms
like Apple and Google could utilize our tool and approach as
part of their app review processes, to proactively detect and
reject games that utilize unauthorized or cloned 3D models.
Future research could focus on integrating clone detection
methods into these platforms, thereby bolstering their ability
to prevent the submission of games with cloned 3D models.
As we plan to open-source our tool and database, game de-
velopers can also incorporate our clone detection capabilities
into their model theft detection pipelines.

8 Related Work

8.1 Software Security

Mobile Game Security. Computer games have evolved
into one of the most substantial segments of the entertain-
ment industry. A central theme in game security revolves
around the dynamic between cheating and anti-cheating
measures [40]. Game cheaters exploit vulnerabilities in
game design (e.g.,[41]), distribution, and execution. In re-
sponse, game defenders employ various patterns (e.g., in-
consistency [42, 43]) derived from cheating behavior and
recently, secure hardware (e.g., using SGX for game secu-
rity [44, 45]) to counteract cheats. Specifically in the domain
of mobile game security, Tian et al. [46] analyzed a range of
cheats, such as memory modification and network traffic ma-
nipulation, and proposed a reference framework for mobile
game defense. Most recently, PaymentScope [47] was pro-
posed to automatically detect vulnerable in-app purchasing
implementations in mobile games by performing static anal-
ysis. In contrast to these studies, our focus is on the security
of game assets, particularly 3D model clones. There are also
numerous studies addressing mobile app security, particu-
larly in the area of app clone detection [48, 49]. However, it

is not practical to apply them for 3D model clone detection
due to the large number of games that get involved.

Code Similarity Detection. Numerous works have demon-
strated the importance of code similarity detection. For in-
stance, it has been used for: (1) Vulnerability detection [50]
since buggy code may have been copied to other places.
Identifying them based on code similarity detection can help
to patch bugs; (2) Software theft detection [12] as code sim-
ilarity detection can help to identify the code that has been
stolen from open source project or commercial software; (3)
Malware analysis [14] as analysts can use code similarity
detection to identify the known code pieces which can min-
imize redundant efforts during the reverse engineering of
malware. Similarly, cloning 3D models, especially without
authorization, can cause harms, and in this paper we make
a first step towards systematically understanding the preva-
lence of clones and its potential harms. Additionally, the
detected clones could be used to mitigate or detect other at-
tacks, such as masquerading attack [51] where one attacking
AR app may generate the same model as other apps to mis-
lead the users.

8.2 3D Model Security and Analysis

3D Model Watermarking. To trace the provenance and
identify illegal copies, Ohbuchi et al. proposed 3D model
watermarking [23], a technique that stealthily embeds hidden
information within original 3D models. Over time, several
enhancements have been proposed [52], including authen-
tication watermark [53], forensics tracing watermark [54],
and biometric watermarks [55]. Utilizing stereographic pro-
jection [56] for 3D object classification and retrieval offers
a compelling method for clone detection, especially when
tracing origins. 3DSCAN complements these works by iden-
tifying clones without the need for watermarking.

3D Model Retrieval. There is a substantial body of work fo-
cusing on 3D model retrieval [37, 57]. This involves the ex-
ploration of more intricate 3D geometric features to search
for 3D objects within large corpora. Recent advancements
in this field include the use of convolutional neural net-
works [38] and deep neural networks to learn and derive fea-
tures [39]. While we could have utilized these methods to
construct the index, we deemed them too resource-intensive
and have reserved them for future exploration.

3D Model Diversification. The issue of 3D model cloning
has been well-studied in the context of crowd simula-
tion [58]. In such scenarios, the generation of a large quan-
tity of individually diversified 3D objects is required. The
presence of any clones among these 3D models [59] or
motions [60] could diminish the user’s experience. There-
fore, visual variety [61] and context-aware motion diversi-
fication [62] have been proposed as solutions. Furthermore,
ML-based approaches [63, 64] have shown promising results

USENIX Association 32nd USENIX Security Symposium 3939

in addressing these issues. However, their efficacy has not
been validated on large-scale datasets. In contrast to these
studies, 3DSCAN investigates different methods and focuses
on different challenges.

9 Conclusion

We have presented 3DSCAN, a robust tool designed to
identify 3D model clones within the mobile gaming sector.
Our comprehensive experiments conducted on a sample size
of 176,361 mobile games suggested that 63.03% of static
3D models and 37.07% of animated 3D models are subject
to cloning. The strategic combination of value-insensitive
normalization and heuristic-based methodologies validates
our approach’s efficacy in detecting not only ubiquitous
3D models, but unauthorized duplicates as well. While the
prevalence of common 3D models accounts for a substantial
number of clones, our evaluation results unequivocally
highlight the presence of unauthorized copies. This is ap-
parent through instances of game cloning, idea duplication,
and model replication, as discerned by our heuristic-based
algorithm.

Acknowledgment

We would like to express our deepest gratitude for the in-
valuable help provided by our shepherd as well as all the
other reviewers for their constructive comments. Meanwhile,
we thank Wenzhuo Wang, Peitong Zhu, and Hongda Lin for
the help on analyzing the experiment results. This study
received partial funding through NSF awards 2112471 and
2207202.

References

[1] D. J. Eck, Introduction to Computer Graphics. Hobart
and William Smith College, 2021.

[2] “This is how long it takes to learn 3d modeling,”
https://www.3dbiology.com/how-long-it-takes-to-lea

rn-3d-modeling/.

[3] “Facebook goes meta: What is the metaverse and
why is big tech obsessed?” https://www.cnet.com/t
ech/computing/facebook-goes-meta-what-is-the-met
averse-and-why-is-big-tech-obsessed/, (Accessed on
1/14/2023).

[4] “Metaverse market share | metaverse industry trend
by 2028,” https://www.emergenresearch.com/industry
-report/metaverse-market, (Accessed on 1/14/2023).

[5] “Assetstudio,” https://github.com/Perfare/AssetStudio.

[6] “Ue viewer,” https://www.gildor.org/en/projects/umo
del.

[7] “This game has stolen models, stolen maps
and stolen music. how can i report it,”
https://www.reddit.com/r/Steam/comments/4ih3b
c/this_game_has_stolen_models_stolen_maps_and/,
(Accessed on 1/14/2023).

[8] “List of ripped models (stolen models) on the asset
store - unity forum,” https://forum.unity.com/threads/
list-of-ripped-models-stolen-models-on-the-asset-sto
re.1163021/, (Accessed on 1/15/2023).

[9] “I have found a model thief | cgtrader,”
https://www.cgtrader.com/forum/selling-buying-3d-m
odels/model-thief, (Accessed on 1/15/2023).

[10] “X2! magnet simulator - roblox,” https://www.roblox
.com/games/3486025575/X2-Magnet-Simulator.

[11] “Magnet simulator,” https://roblox.fandom.com/wiki
/Community:LuaClifford/Magnet_Simulator.

[12] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Behavior based
software theft detection,” in Proceedings of the 16th
ACM conference on Computer and communications se-
curity, 2009, pp. 280–290.

[13] X. Wang, Y. Jhi, S. Zhu, and P. Liu, “Detecting soft-
ware theft via system call based birthmarks,” in 2009
Annual Computer Security Applications Conference.
IEEE, 2009, pp. 149–158.

[14] M. R. Farhadi, B. C. Fung, P. Charland, and M. Deb-
babi, “Binclone: Detecting code clones in malware,” in
2014 Eighth International Conference on Software Se-
curity and Reliability (SERE). IEEE, 2014, pp. 78–87.

[15] X. Lou and K. Hwang, “Collusive piracy prevention in
p2p content delivery networks,” IEEE Transactions on
Computers, vol. 58, no. 7, pp. 970–983, 2009.

[16] P.-E. Danielsson, “Euclidean distance mapping,” Com-
puter Graphics and image processing, vol. 14, no. 3,
pp. 227–248, 1980.

[17] “Cgtrader - 3d models for vr / ar and cg projects,” https:
//www.cgtrader.com/, (Accessed on 1/15/2023).

[18] “Sketchfab - the best 3d viewer on the web,” https:
//sketchfab.com/3d-models/human-anatomy-male-e
xplosive-view-7fff13988a094eaca9cb5057fb2fd1f2,
(Accessed on 1/15/2023).

[19] “Utinyripper,” https://github.com/mafaca/UtinyRippe
r.

3940 32nd USENIX Security Symposium USENIX Association

[20] “Androzoo home,” https://androzoo.uni.lu/, (Accessed
on 1/14/2023).

[21] “Unreal engine: The most powerful real-time 3d cre-
ation tool,” https://www.unrealengine.com/en-US/.

[22] “Unreal engine vs unity 3d games development: What
to choose?” https://www.valuecoders.com/blog/techn
ology-and-apps/unreal-engine-vs-unity-3d-games-d
evelopment/, (Accessed on 1/14/2023).

[23] R. Ohbuchi, H. Masuda, and M. Aono, “Watermarking
three-dimensional polygonal models through geomet-
ric and topological modifications,” IEEE Journal on
selected areas in communications, vol. 16, no. 4, pp.
551–560, 1998.

[24] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and
C. Winnerlein, “Blake2: simpler, smaller, fast as md5,”
in International Conference on Applied Cryptography
and Network Security. Springer, 2013, pp. 119–135.

[25] “Stadia - one place for all the ways we play - google,”
https://stadia.google.com/.

[26] D. Koller and M. Levoy, “Protecting 3d graphics con-
tent,” Communications of the ACM, vol. 48, no. 6, pp.
74–80, 2005.

[27] D. Koller, M. Turitzin, M. Levoy, M. Tarini, G. Croccia,
P. Cignoni, and R. Scopigno, “Protected interactive 3d
graphics via remote rendering,” ACM Transactions on
Graphics (TOG), vol. 23, no. 3, pp. 695–703, 2004.

[28] R. C. Merkle, “Protocols for public key cryptosys-
tems,” in 1980 IEEE Symposium on Security and Pri-
vacy. IEEE, 1980, pp. 122–122.

[29] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast sim-
ilarity search for moving object trajectories,” in Pro-
ceedings of the 2005 ACM SIGMOD international con-
ference on Management of data, 2005, pp. 491–502.

[30] D. J. Berndt and J. Clifford, “Using dynamic time
warping to find patterns in time series.” in KDD work-
shop, vol. 10, no. 16. Seattle, WA, USA:, 1994, pp.
359–370.

[31] M. Vlachos, G. Kollios, and D. Gunopulos, “Discover-
ing similar multidimensional trajectories,” in Proceed-
ings 18th international conference on data engineer-
ing. IEEE, 2002, pp. 673–684.

[32] “Scrapy | a fast and powerful scraping and web crawl-
ing framework,” https://scrapy.org/.

[33] “Google play downloader via command line,” https:
//github.com/matlink/gplaycli.

[34] J.-U. Hou, D. Kim, W.-H. Ahn, and H.-K. Lee, “Copy-
right protections of digital content in the age of 3d
printer: Emerging issues and survey,” IEEE Access,
vol. 6, pp. 44 082–44 093, 2018.

[35] J. K. Basu, D. Bhattacharyya, and T.-h. Kim, “Use of
artificial neural network in pattern recognition,” Inter-
national journal of software engineering and its appli-
cations, vol. 4, no. 2, 2010.

[36] K. Fukushima, “A neural network for visual pattern
recognition,” Computer, vol. 21, no. 3, pp. 65–75,
1988.

[37] J. W. Tangelder and R. C. Veltkamp, “A survey of
content based 3d shape retrieval methods,” Multime-
dia tools and applications, vol. 39, no. 3, pp. 441–471,
2008.

[38] H. Su, S. Maji, E. Kalogerakis, and E. Learned-
Miller, “Multi-view convolutional neural networks for
3d shape recognition,” in Proceedings of the IEEE in-
ternational conference on computer vision, 2015, pp.
945–953.

[39] Z. Zhu, X. Wang, S. Bai, C. Yao, and X. Bai, “Deep
learning representation using autoencoder for 3d shape
retrieval,” Neurocomputing, vol. 204, pp. 41–50, 2016.

[40] G. McGraw, Exploiting online games: cheating mas-
sively distributed systems. Addison-Wesley, 2008.

[41] E. Bursztein, M. Hamburg, J. Lagarenne, and
D. Boneh, “Openconflict: Preventing real time map
hacks in online games,” in 2011 IEEE Symposium on
Security and Privacy. IEEE, 2011, pp. 506–520.

[42] D. Bethea, R. A. Cochran, and M. K. Reiter, “Server-
side verification of client behavior in online games,”
ACM Transactions on Information and System Security
(TISSEC), vol. 14, no. 4, pp. 1–27, 2008.

[43] D. Liu, X. Gao, M. Zhang, H. Wang, and A. Stavrou,
“Detecting passive cheats in online games via
performance-skillfulness inconsistency,” in 2017 47th
Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN). IEEE, 2017,
pp. 615–626.

[44] E. Bauman and Z. Lin, “A case for protecting computer
games with sgx,” in Proceedings of the 1st Workshop on
System Software for Trusted Execution (SysTEX’16),
Trento, Italy, December 2016.

[45] S. Park, A. Ahmad, and B. Lee, “Blackmirror: Prevent-
ing wallhacks in 3d online fps games,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020, pp. 987–1000.

USENIX Association 32nd USENIX Security Symposium 3941

[46] Y. Tian, E. Chen, X. Ma, S. Chen, X. Wang, and
P. Tague, “Swords and shields: a study of mobile game
hacks and existing defenses,” in Proceedings of the
32nd Annual Conference on Computer Security Appli-
cations, 2016, pp. 386–397.

[47] C. Zuo and Z. Lin, “Playing without paying: Detect-
ing vulnerable payment verification in native binaries
of unity mobile games,” in 31st USENIX Security Sym-
posium (USENIX Security 22), 2022, pp. 3093–3110.

[48] L. Li, T. F. Bissyandé, and J. Klein, “Rebooting re-
search on detecting repackaged android apps: Liter-
ature review and benchmark,” IEEE Transactions on
Software Engineering, vol. 47, no. 4, pp. 676–693,
2019.

[49] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “To-
wards a scalable resource-driven approach for detecting
repackaged android applications,” in Proceedings of
the 30th Annual Computer Security Applications Con-
ference, 2014, pp. 56–65.

[50] J. Jang, A. Agrawal, and D. Brumley, “Redebug: Find-
ing unpatched code clones in entire os distributions,” in
2012 IEEE Symposium on Security and Privacy, 2012,
pp. 48–62.

[51] K. Lebeck, T. Kohno, and F. Roesner, “Enabling
multiple applications to simultaneously augment re-
ality: Challenges and directions,” in Proceedings of
the 20th International Workshop on Mobile Comput-
ing Systems and Applications, ser. HotMobile ’19.
New York, NY, USA: Association for Computing
Machinery, 2019, p. 81–86. [Online]. Available:
https://doi.org/10.1145/3301293.3302362

[52] M. Narendra, M. Valarmathi, and L. J. Anbarasi, “Wa-
termarking techniques for three-dimensional (3d) mesh
models: a survey,” Multimedia Systems, pp. 1–19,
2021.

[53] J. Fridrich, M. Goljan, and A. C. Baldoza, “New frag-
ile authentication watermark for images,” in Proceed-
ings 2000 International Conference on Image Process-
ing (Cat. No. 00CH37101), vol. 1. IEEE, 2000, pp.
446–449.

[54] K. R. Liu, Multimedia fingerprinting forensics for
traitor tracing. Hindawi Publishing Corporation,
2005, vol. 4.

[55] R. C. Motwani, F. C. Harris Jr, and K. E. Bekris,
“A proposed digital rights management system for
3d graphics using biometric watermarks,” in 2010
7th IEEE Consumer Communications and Networking
Conference. IEEE, 2010, pp. 1–6.

[56] M. Yavartanoo, E. Y. Kim, and K. M. Lee, “Spnet:
Deep 3d object classification and retrieval using stere-
ographic projection,” in Asian conference on computer
vision. Springer, 2018, pp. 691–706.

[57] D. V. Vranic, D. Saupe, and J. Richter, “Tools for 3d-
object retrieval: Karhunen-loeve transform and spher-
ical harmonics,” in 2001 IEEE Fourth Workshop on
Multimedia Signal Processing (Cat. No. 01TH8564).
IEEE, 2001, pp. 293–298.

[58] D. Thalmann, H. Grillon, J. Maim, and B. Yersin,
“Challenges in crowd simulation,” in 2009 Interna-
tional Conference on CyberWorlds. IEEE, 2009, pp.
1–12.

[59] R. McDonnell, M. Larkin, S. Dobbyn, S. Collins, and
C. O’Sullivan, “Clone attack! perception of crowd va-
riety,” in ACM SIGGRAPH 2008 papers, 2008, pp. 1–8.

[60] Y. Li, M. Christie, O. Siret, R. Kulpa, and J. Pet-
tré, “Cloning crowd motions,” in Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. Citeseer, 2012, pp. 201–210.

[61] S. Oxspring, B. Kirman, and O. Szymanezyk, “Attack
on the clones: managing player perceptions of visual
variety and believability in video game crowds,” in In-
ternational Conference on Advances in Computer En-
tertainment Technology. Springer, 2013, pp. 356–367.

[62] Q. Gu and Z. Deng, “Context-aware motion diversifica-
tion for crowd simulation,” IEEE Computer Graphics
and Applications, vol. 31, no. 5, pp. 54–65, 2010.

[63] K.-H. Liu, P.-Y. Chiang, and C.-C. J. Kuo, “A machine
learning approach to 3d model retrieval,” in Proceed-
ings of Asia-Pacific Signal and Information Processing
Association Annual Submit and Conference, 2011, pp.
13–17.

[64] H. Chen and B. Bhanu, “Efficient recognition of highly
similar 3d objects in range images,” IEEE Transactions
on Pattern analysis and machine intelligence, vol. 31,
no. 1, pp. 172–179, 2008.

3942 32nd USENIX Security Symposium USENIX Association

