
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Your Exploit is Mine: Instantly Synthesizing
Counterattack Smart Contract

Zhuo Zhang, Purdue University; Zhiqiang Lin and Marcelo Morales,
Ohio State University; Xiangyu Zhang and Kaiyuan Zhang, Purdue University
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhuo-exploit

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Zhuo Zhang
Purdue University

zhan3299@purdue.edu

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Marcelo Morales
The Ohio State University

morales.374@osu.edu

Xiangyu Zhang
Purdue University

xyzhang@cs.purdue.edu

Kaiyuan Zhang
Purdue University

zhan4057@purdue.edu

Abstract
Smart contracts are susceptible to exploitation due to their
unique nature. Despite efforts to identify vulnerabilities using
fuzzing, symbolic execution, formal verification, and manual
auditing, exploitable vulnerabilities still exist and have led to
billions of dollars in monetary losses. To address this issue,
it is critical that runtime defenses are in place to minimize
exploitation risk. In this paper, we present STING, a novel run-
time defense mechanism against smart contract exploits. The
key idea is to instantly synthesize counterattack smart con-
tracts from attacking transactions and leverage the power of
Maximal Extractable Value (MEV) to front run attackers. Our
evaluation with 62 real-world recent exploits demonstrates
its effectiveness, successfully countering 54 of the exploits
(i.e., intercepting all the funds stolen by the attacker). In com-
parison, a general front-runner defense could only handle 12
exploits. Our results provide a clear proof-of-concept that
STING is a viable defense mechanism against smart contract
exploits and has the potential to significantly reduce the risk
of exploitation in the smart contract ecosystem.

1 Introduction

Smart contracts are special programs that execute on de-
centralized blockchain platforms such as Ethereum. Their
executions are in the form of transactions (txs for short),
i.e., atomic sequences of remote function calls. They offer
a secure, transparent and efficient way for multiple parties
to negotiate and enforce business rules without the need for
intermediaries. Today, numerous smart contracts have been
created for decentralized applications (DApp) [17]. These
DApps offer a variety of applications, including decentralized
exchanges, prediction markets, and token offerings, among
others. As of January 2023, the cryptocurrency industry has
surpassed a market capitalization of 1 trillion USD [18].

Unfortunately, despite their increasing popularity, smart
contracts are prone to various types of attacks due to their
decentralized complex nature. In particular, the openness of

the blockchain and the trustlessness of the ecosystem make
smart contracts susceptible to exploitation. The immutability
of the code further strengthens this vulnerability, making it
difficult to fix once they are deployed. As a result, numerous
attacks have been discovered, such as reentrancy attacks [41,
44, 59, 77], flash loan attacks [1–3, 53, 81, 88], front running
attacks [58, 85, 95], rug pull attacks [15, 51, 62, 83], denial of
service attacks [8, 48, 69, 70, 72], and so forth. These attacks
can have significant consequences, such as the loss of funds
or assets stored in contracts.

Therefore, it is crucial to have protections in place to de-
fend against smart contract attacks and minimize the risk
of exploitation. Existing efforts have largely focused on the
use of static analysis (e.g., [84, 87]), fuzzing (e.g., [52, 65]),
symbolic execution (e.g., [5, 73]) and formal verification
(e.g., [40, 45]). While these techniques have identified nu-
merous security vulnerabilities in smart contracts, many vul-
nerabilities can still remain hidden due to the complexity of
protocols [93]. Consequently, we have to live with the fact that
smart contracts will have exploitable vulnerabilities, so addi-
tional defenses are required, particularly during the running
time of the smart contract.

In this paper, we propose a new runtime defense named
STING by inStantly synthesizing counterattack smart contract
and then utilizing the power of Maximal Extractable Value
(MEV) [58, 80, 89, 94] to front run attackers. Note that MEV
has used complex algorithms on blockchain data to identify
profitable txs and have built automated bots to modify and ex-
ecute these txs for financial gain. MEV has been estimated to
have extracted more than 1 billion US dollars [39]. However,
current MEV bots are primarily designed for front running
and modifying trading txs. Although these bots can observe at-
tacking txs carried out by smart contract attackers (since they
produce a significant amount of profit), these bots can hardly
be used to counterattack real-world exploits, which are often
too complex for existing MEV bots. Therefore, the key insight
of STING is to construct a new defense technique by reusing
MEV bots’s ability to recognize attacking txs and extend it
with instant contract analysis and on-the-fly synthesis of coun-

USENIX Association 32nd USENIX Security Symposium 1757

terattack smart contracts. The synthesized contracts can be
launched to front run attacks and protect “stolen” funds.

However, multiple challenges need to be addressed when
building STING. First, most attacks consist of multiple txs,
and only the last one generates a gain that can be identified
by MEV bots. Therefore, it requires dedicated analysis tech-
niques to follow all preceding txs. Second, many attacks uti-
lize exploit contracts, making it difficult for generalized MEV
bots to decipher the complex logic encoded in the exploit
contracts’ bytecode. Finally, attackers are cognizant of the
potential threat posed by MEV bots, and have incorporated
front-running protection into their exploits.

STING addresses these challenges to front-run attacking
txs. To do so, assume there is an attacking tx (which can
be identified by existing techniques such as [94]), STING
first pinpoints all malicious entities (e.g., wallet address and
exploit contract address) involved in the attack, traces their
related txs, and thoroughly analyzes the bytecode logic of
the involved exploit contracts (without the need to analyze
the victim contracts at all). Then, it automatically synthesizes
counterattack smart contracts that are able to evade front-
running protections and secure the attacking assets (e.g.,
transferring to our own account instead of attackers).

We have developed and evaluated STING with a total
of 62 Ethereum mainnet attacks that include most of the
real-world attacks between 2021 and 2022. Our results show
that STING was able to successfully counterattack 54 of
these attacks, while a general front-runner defense could only
handle 12. We believe that STING has shown the potential
to provide an additional layer of defense, which could
prevent losses of more than 1.5 billion USD if deployed. In
addition, we undertake a comprehensive ablation study of the
techniques we have developed to identify attack information
and synthesize counterattack contracts, as well as shed light
on how real attackers are currently protecting their exploits.

Contributions. In short, we make the following contributions.

• Active Defense. We propose a runtime counterattack
defense to protect the assets of victim smart contract
from being stolen by attackers.

• Novel Techniques. We develop a series of novel
techniques to precisely identify attacking txs and
related malicious entities, effectively synthesize exploit
contracts in a timely manner, and predictably deploy
counterattack contracts.

• Empirical Evaluations. We have thoroughly evaluated
STING using 62 real-world attacks and demonstrated
that it can successfully defend against 87.1% of them.

2 Background

Ethereum. Ethereum is a blockchain platform designed
to be more flexible and programmable than its predecessor,
Bitcoin [74]. Ethereum has two types of addresses: accounts

and contracts. Accounts are controlled by private keys and
represent individuals. Contracts are self-executing programs
that automatically enforce agreements, without the use of
a third party. The execution of smart contract bytecode is
performed by the Ethereum Virtual Machine (EVM).

Transactions (txs). Tx refers to an action that occurs on the
Ethereum blockchain. It typically involves transferring ether
(ETH), the native cryptocurrency of the Ethereum network,
between accounts. It can also involve interactions with smart
contracts, such as invoking a function of a smart contract.
Upon submitting a tx, the tx does not become finalized imme-
diately; instead, it is placed in a pool of pending txs known as
a mempool, which is publicly accessible worldwide. Block
builders subsequently select txs from the mempool to final-
ize them onto the blockchain. In essence, a time gap exists
between a transaction becoming publicly known and its final-
ization on the blockchain.

Tokens. Tokens are smart contracts that are used to represent
digital assets. The three common types of tokens on the
Ethereum network are ERC20 [20], ERC721 [22], and
ERC1155 [19]. The first type is the most common token in
Ethereum, as shown in line 2 in Figure 1; it represents a fun-
gible asset similar to a currency. The second type, ERC721,
is used for non-fungible assets; similar to a collectable item.
Lastly, ERC1155, is known as the hybrid token; it allows the
creation of both fungible and non-fungible tokens.

Front-running and MEV. Front-running originates from
Wall Street traders who profit by executing actions ahead
of other investors’ orders. In the context of blockchain,
front-running typically refers to monitoring the network for
high-value transactions and creating new ones based on the
information of the observed transaction. This enables the
front-runner to strategically hijack the transaction for their
own benefit. Such benefits are commonly referred to as Miner
Extractable Value (MEV), which has garnered attention in
recent years due to its potential impact on the blockchain
ecosystem [54, 64, 91]. A recent study [80] demonstrates that
a generalized MEV bot can copy a subject transaction and
front-run it to earn substantial profits. Although MEV is often
regarded as a malicious act, it has exhibited positive effects
within the blockchain ecosystem. For instance, a generalized
MEV bot unintentionally front-ran an attacking transaction
targeting the Punk Protocol [79], thereby thwarting the attack.
The MEV bot returned the funds afterward. Note that the
MEV bot was not designed as a defense mechanism but rather
protected the funds by chance. However, our evaluation (§5)
reveals that most attacks cannot be front-run by general MEV
bots due to the implementation of front-running protections,
highlighting the practical value of our proposed technique.

Proactive Threat Alert and Prevention. The concept
of proactive threat detection and mitigation within the
blockchain industry traces its roots back to 2021. Notably, Of-
ficerCia, a well-respected figure in the DeFi world, proposed

1758 32nd USENIX Security Symposium USENIX Association

the innovative idea of utilizing front-running bots as protec-
tive shields against financial loss in specific scenarios [4].
This concept inspired the creation of numerous blockchain
monitoring services [9, 11, 13, 16, 33, 35], which opened up
significant possibilities for identifying potential threats. Build-
ing on this idea, several measures for proactive threat mitiga-
tion have been suggested. Among these, Spotter [28] stands
out as it aims to thwart attacks prior to their actual occurrence.
The team behind Spotter noted that over 53% of DeFi attacks
occur in stages such as fund preparation, exploit execution,
and money laundering. In response to this observation, Spotter
is architected with an emphasis on early-stage threat recogni-
tion, intended to intercept these attacks prior to their malicious
activities reaching the blockchain. Our research goal is or-
thogonal to Spotter, targeting the recognition and disruption
of active threats. The work undertaken by BlockSec [12] war-
rants recognition due to their substantive contribution to the
field. They successfully defused a real-world attack in 2022,
a significant achievement that resulted in the preservation of
an approximate 3.8 million USD [7]. However, it is crucial
to recognize that, despite the growing awareness of proac-
tive threat detection and prevention strategies, their practical
deployment remains complex and somewhat opaque. Our re-
search addresses this knowledge gap, offering a novel solution
and elucidating its intricate technical details.

3 Overview

3.1 The Goal of STING

STING is designed to front-run attacking transactions in order
to rescue funds before they are stolen, while subsequently
returning the funds to the victims. We refer to this rescue
process as a counterattack. To achieve this, upon observing
an attacking transaction, STING first identifies all contracts
deployed by the attacker to facilitate the exploit, which we
term exploit contracts. For each exploit contract, STING aims
to synthesize a counterattack contract that possesses the same
functionality but is under our control and serves our purpose.
Following the synthesis process, STING creates a counter-
attack transaction that deploys all counterattack contracts
and exploits the same vulnerability. By front-running the at-
tacking transaction with the counterattack transaction, STING
effectively rescues all funds at risk.

3.2 Threat Model, Scope, and Assumptions
STING focuses on generating counterattack txs for attacks
that exploit vulnerabilities in on-chain smart contracts. At-
tacks with different root causes, such as private key leaks and
off-chain component compromise, are out of the scope of this
paper. Additionally, attacks launched by privileged users, such
as rug pulls, are not within the scope of this study. We assume
that the attacks are not adaptively obfuscated, meaning the

contract StaxLPStaking {
IERC20 public stakingToken; IERC20 public LPToken;
address public owner;

constructor(address stToken, address lpToken) public {
stakingToken = IERC20(stToken);
LPToken = IERC20(lpToken);
owner = msg.sender;

}

function stake(uint amount) {
LPToken.transferFrom(msg.sender, address(this), amount);
stakingToken.mint(msg.sender, amount);

}

function withdraw(uint amount) {
stakingToken.burn(msg.sender, amount);
LPToken.transfer(msg.sender, amount);

}

function newStakingToken(address stToken) onlyOwner {
stakingToken = stToken;

}

function migrateStake(address oldStaking, uint amount) {
IERC20(oldStaking).burn(msg.sender, amount);
stakingToken.mint(msg.sender, amount);

}
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

StaxLPStaking Contract:

Figure 1: The source code of StaxLPStaking contract

attacker does not introduce new techniques to evade the coun-
terattack defense. However, we anticipate that STING will
spur research and development of new obfuscation techniques
for web3.0 attacks, leading to an arms race similar to that be-
tween exploit and defense techniques in traditional software.

We also assume that there is an identified attacking tx which
generates a considerable amount of profits, and this tx can be
detected by MEV bots while pending in the mempool. Note
that the detection of profitable txs is widely discussed in the
MEV community [58, 80, 94], which is orthogonal to STING
and not addressed in this paper. Also, it is worth to note that
false positive detections, i.e., classifying benign profitable txs
as attack txs, do not affect STING’s effectiveness, as it will
simply fail to synthesize such benign txs and take no action.

3.3 Challenges

The goal of this work is to design a counterattack runtime de-
fense that can proactively front run malicious txs and protect
the victim’s assets. However, it is nontrivial to front run attack-
ing txs. To shed light on the challenges involved, we turn to a
recent real-world example, i.e., the Temple Dao exploit [31].
This Web3.0 attack, which happened in October 2022, re-
sulted in a considerable loss of about 2.3 million USD. We
have slightly modified this example for illustrative purpose.

The Vulnerabilities Explained with Source Code. The
source code for the vulnerable StaxLPStaking contract can
be found in Figure 1, with slight modifications for demon-
stration purposes. It is important to note that our proposed
technique operates entirely without any knowledge or un-
derstanding of the vulnerabilities, or access to any source

USENIX Association 32nd USENIX Security Symposium 1759

[Wallet Y] [ExploitB].exploit(PRE_CALCULATED_S, [WALLET Z] ^ 1234)

[StaxLPStaking].migrateStake([ExploitA], 10000000 ether)

[ExploitA].burn([ExploitB], 10000000 ether)

[StaxLPToken].mint([ExploitB], 10000000 ether)

[StaxLPStaking].withdraw(10000000 ether)

10-11-2022

Tx104

[Wallet X] deploy ExploitB() => [ExploitB]10-11-2022

Tx102

[StaxLPToken].burn([ExploitB], 10000000 ether)

[TempleFraxPool].transfer([ExploitB], 10000000 ether)

[UniswapRouter].removeLiquidity([Temple], [Frax], 10000000 ether, [Wallet Z])

[TempleFraxPool].burn([ExploitB], 10000000 ether , [Wallet Z])

[Temple].transfer([Wallet Z], 27500000 ether)

[Frax].transfer([Wallet Z], 3375000 ether)

Observed Attacking Transaction

[Wallet X] deploy ExploitA() => [ExploitA]10-11-2022

Tx101

[Wallet X] deploy ExploitC() => [ExploitC]10-11-2022

Tx103 READ-ONLY[StaxLPToken].balanceOf([Wallet X])

Figure 2: Timeline of Temple Dao attack

code. The inclusion of the vulnerability explanation is solely
to improve comprehension. Specifically, as shown in Fig-
ure 1, StaxLPStaking incentivizes users to lock their liquid-
ity provider tokens (LP tokens [10]) in exchange for stak-
ing tokens, as a type of staking contract [36]. The contract
constructor, outlined in lines 5-9, specifies the required LP
token (LPToken) and the staking token that can be earned
(stakingToken). Through the stake function (lines 11-14),
users can lock their LP tokens and receive a corresponding
amount of staking tokens. The withdraw function (lines 16-
19) allows for the retrieval of staked LP tokens. Although
staking contracts usually offer interest, this feature has been
omitted in this example as it is not relevant to the attack.

The newStakingToken function (lines 21-23) enables
the migration of staking tokens in case the Temple DAO
community decides to switch to a new staking token. This
is a privileged function that can only be invoked by the
project owner. Once a new staking token has been set, users
can migrate their old tokens to the new one by invoking the
migrateStake function (lines 25-29). Unfortunately, func-
tion migrateStake contains several security weaknesses.
First, it lacks proper verification of whether a new staking
token has been set, enabling this function to be executed at
any time. Second, it does not adequately assess the validity
of the oldStaking token provided, making it possible for
an attacker to exploit this vulnerability by submitting a
fake token to function migrateStake. As such, the attacker
can accumulate a significant amount of stakingToken
by minting fake tokens and invoking the migrateStake
function. Finally, the attacker can utilize function withdraw
to drain all of the locked LP tokens.

The Exploit. We then proceed to outline the steps involved in
the attack and discuss the challenges associated with a coun-
terattack. For clarity, some modifications have been made to
the original process. The progression of the attack is illus-
trated in Figure 2, while Figure 3 showcases the contracts
deployed by the attacker to carry out the attack, namely the

Exploit Contract. It is worth noting again that the source code
presented in Figure 3 serves merely as an illustration and
STING does not require access to it at all.

The attack timeline is outlined in Figure 2. Specifically,
the attacker initiated the attack by deploying two exploit
contracts, ExploitA and ExploitB, through tx101 and tx102,
respectively. tx103 was sent from the same wallet address
(Wallet X) but is unrelated to the attack. The exploitation
occurred in tx104, where the attacker invoked the exploit
function of the ExploitB contract to exploit vulnerabilities
in the StaxLPStaking contract. The attack took place four
months after the deployment of the StaxLPStaking contract.

• Tx101: Fake Token. Recall that, to exploit the vul-
nerability, the attacker must provide a fake token (as
oldStaking) and burn as many fake tokens as possible
(line 26 in Figure 1), thereby earning an equivalent
amount of staking tokens (line 27 of Figure 1). To
accomplish this, the attacker used Wallet X to deploy
the ExploitA contract, the source code of which is
presented at the top of Figure 3. This contract is a
standard ERC20 [21] token with a custom burn function
(lines 2-4) that does essentially nothing. Such a custom
burn function enables anyone to burn any desired
quantity of tokens.

• Tx102: Entry Point Contract. The attacker deployed
ExploitB, a second exploit contract, which is to carry
out the future exploitation. The source code of the
exploit is depicted in the center of Figure 3, and the
exploit function (lines 5-17) executes the attack. To
start, the function uses a hard-coded address (line 6) to
confirm that the origin of the transaction, tx.origin,
is from Wallet Y. This serves as a safeguard against any
potential generalized front-runners who might attempt
to replay the attacking transaction. Additionally, lines
7-10 impose an extra layer of protection by requiring the
transaction sender to furnish an integer s. The provided
s must differ from tx.origin, yet the lower 28 bits
of their keccak256 hashes must be congruent. Given
the strong collision resistance of the keccak256 hash
function, the value of s cannot be directly calculated
and must instead be found through a brute-force
search of possible values, which is estimated to take
between 10 and 30 minutes. This ensures that any
front-runner will not be able to calculate a valid s before
the original attacking transaction has been confirmed.
These two front-running protections are referred to as
Control-Flow-based Front-running Protection (CFFP),
given that they block the execution of the attacking
transaction if their corresponding checks fail.

The exploitation is executed in lines 12-13 by passing
ExploitA as a counterfeit token and siphoning a sig-
nificant amount of LP tokens. Subsequently, at line 14,
the LP tokens are redeemed as Temple and Frax tokens,

1760 32nd USENIX Security Symposium USENIX Association

with the recipient address computed as to ˆ 1234. This
approach makes it difficult for front-runners to substitute
the to address with their own wallet address. It is worth
noting that prevalent front-runners primarily concentrate
on replaying trading txs and lack the ability to decipher
code semantics from smart contract bytecode. This type
of protection, which we refer to as Data-Flow-based
Front-running Protection (DFFP), differs from the
CFFP in that it obfuscates the recipient address of funds
or txs, instead of blocking the execution.

• Tx103: Dummy Contract. The dummy contract, shown
at the bottom of Figure 3, is deployed by a wallet
address of the attacker, but not related to the attack.

• Tx104: Attacking Transaction. The concluding stage of
the attack is executed through the transaction, designated
as tx104, which serves as the attacking transaction. This
is the only attack-related transaction that will be pending
and observed within the mempool. All previous txs have
been finalized. The attacker employs a separate wallet
address, Wallet Y, in this transaction in order to conceal
the deployment history of Wallet X. The transaction
invokes the exploit function within the ExploitB
contract, specifying Wallet Z ˆ 1234 as the recipient
address. This is due to the processing of the recipient
address through a bitwise XOR operation with the
value 1234, as seen at line 15 of the ExploitB contract.
The outcome is the transfer of a substantial amount of
Temple and Frax tokens to Wallet Z, which is the third
wallet utilized by the attacker.

The Challenges. Observe that the success of the exploiting
transaction, tx104, is contingent upon the actions of both tx101
and tx102. To construct a counterattack transaction, it is neces-
sary to recreate the behavior of both of these txs. To this end,
we must address the following challenges:

(C1) Identifying malicious entities from the attacking tx.
As depicted in Figure 2, over 10 entities are involved
in the attacking tx (tx104), including but not limited
to Wallet Y, ExploitA, and StaxLPToken, many of
which have quite similar behaviors (e.g., ExploitA
and StaxLPToken). Identifying malicious entities
(e.g., Wallet Y and ExploitA) from benign entities
(e.g., StaxLPToken) in the attack synthesis process is
therefore a challenge. Note that it is crucial to retrieve
txs only from the malicious entities, as retrieval from
benign entities would significantly increase analysis
overhead and decrease the chances of a successful
front-running counterattack. Furthermore, the success
of the attacking tx104 depends on other txs, i.e., tx101
and tx102. To counterattack tx104, STING needs to
identify all such attack-related txs, and exclude the
unrelated ones, e.g., tx103.

contract ExploitA is ERC20 {
function burn(address user, uint amount) {
// anyone can burn any desired quantity of tokens

}
}

01
02
03
04
05

Exploit Contract A (fake token):

contract ExploitB {
UniswapRouter constant uniswap = UNISWAP_ROUTER;
StaxLPStaking constant victim = STAX_LP_STAKING;

function exploit(uint160 s, address to) {
require(tx.origin == WALLET_Y);
require(
uint160(tx.origin) != uint160(s) &&
(keccak256(tx.origin) ^ keccak256(s)) & 0xfffffff == 0

);

victim.migrateStake(EXPLOIT_A, 10000000 ether);
victim.withdraw(10000000 ether);
uniswap.removeLiquidity(
TEMPLE_TOKEN, FRAX_TOKEN, 10000000 ether, to ^ 1234

);
}

}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

Exploit Contract B (entry point of the hack):

contract ExploitC {
uint256 immutable dummy;
constructor() {
dummy = IERC20(STAX_LP_TOKEN).balanceOf(msg.sender);

}
}

01
02
03
04
05
06

Exploit Contract C (dummy):

Figure 3: Exploit contracts deployed by the attacker

(C2) Bypassing CFFP and DFFP. After the relevant
information about the attack has been retrieved, the
Front-running Protections act as a barrier to construct-
ing counterattack txs. Specifically, CFFP blocks the
execution of the constructed txs, and DFFP diverts the
assets involved in the attack to an undesired account.
How can the counterattack be performed in a timely
manner despite the presence of CFFP, and how to
secure the attacking assets despite the presence of
DFFP, are non-trivial challenges.

3.4 STING Overview
We have addressed these challenges when building STING
(details of how we address them are presented in §4). At a
high level, STING consists of three key components, as shown
in Figure 4.

Attack Information Identification (§4.1). Given a pending
attacking transaction in the mempool, the first step involves
utilizing the attack information identification to identify all
relevant information, including the addresses of malicious
entities and related transactions.

Counterattack Smart Contract Synthesis (§4.2). The iden-
tified attack information is then used by the counterattack
smart contract synthesis to create new smart contracts that
aim to front-run the original attack.

Contract Execution and Validation (§4.3). The synthesized
smart contract will be locally validated to verify its profitabil-

USENIX Association 32nd USENIX Security Symposium 1761

Attacking
Transaction Attack Information

Identification
(§ 4.1)

Counterattack
Smart Contract
Synthesis (§ 4.2)

Contract Execution
and Validation

(§ 4.3)

Counterattack
Smart Contract

Figure 4: Workflow of STING

ity for our account. If the outcome is favorable, the transaction
is then executed on the blockchain.

4 Detailed Design

4.1 Attack Information Identification
The objective of attack information identification is to acquire
comprehensive information about a given attack, including the
determination of malicious entities involved and the identifica-
tion of related txs (C1). In the following, we first provide our
key observation, and then describe our techniques in detail.

Key Observations. We observe that attacking txs are often
initiated shortly after the deployment of exploit contracts,
typically within two days, whereas benign entities, such as
victim contracts, have a longer deployment history. This
phenomenon can be attributed to the highly adversarial
environment of the Ethereum blockchain, which is commonly
known as a “dark forest” [23]. If a smart contract is vulnerable
to exploitation for profit, it is only a matter of time before
it is targeted by one or more attackers. Given the substantial
profit that can be gained from exploiting a smart contract,
attackers are motivated to act quickly and not risk losing
the opportunity to others. For instance, as depicted in
Figure 2, the Temple Dao attacker deployed both ExploitA
and ExploitB and launched the attack on the same day
(10/11/2022). Conversely, benign entities typically have a
longer lifetime due to the time required to accumulate funds
and for attackers to discover vulnerabilities. As shown in
Figure 5, StaxLPStaking was exploited four months after
its deployment. Our evaluation (§5.3) also confirmed that all
exploit contracts were deployed at most two days before the
attack tx, while almost all benign entities had a longer life
of more than ten days. This simple but effective observation
allows us to quickly distinguish malicious entities, such as
ExploitA and ExploitB, from the attacking tx tx104.

In addition to entity lifespan, other distinct attributes can
contribute to the differentiation between benign and malicious
entities and can be instrumental in spotting exploit contracts.
We compile these key heuristics, applied within our system,
in Table 1, omitting further details for conciseness. It is worth
mentioning that, even though our discussion going forward
will primarily be centered around the lifespan heuristic, each
of the listed attributes carries considerable weight in our sys-
tem’s overall analysis and decision-making process.

[Temple DAO Wallet] [UniswapRouter].addLiquidity([Temple], [Frax], …)

Deploy UniswapPair() => [TempleFraxPool]

[Temple].transferFrom([Temple DAO Wallet], [TempleFraxPool], 37500000 ether)

[Frax].transferFrom([Temple DAO Wallet], [TempleFraxPool], 9375000 ether)

[TempleFraxPool].transfer([Temple DAO Wallet], 18750000 ether)

12-18-2021

Tx1

[Temple DAO Wallet] deploy StaxLPToken() => [StaxLPToken] 06-02-2022

Tx2

[Temple DAO Wallet] deploy StaxLPStaking([StaxLPToken], [TempleFraxPool]) => [StaxLPStaking] 06-03-2022

Tx3
[Temple DAO Wallet] [StaxLPToken].transferOwner([StaxLPStaking])06-03-2022

Tx4

[Temple DAO Wallet] StaxLPStaking.stake(18750000 ether)

[TempleFraxPool].transferFrom([Temple DAO Wallet], [StaxLPStaking], 18750000 ether)

[StaxLPToken].mint([Temple DAO Wallet], 18750000 ether)

06-13-2022

Tx5

Figure 5: Timeline of Temple Dao project

Table 1: Attributes used by STING

Name Description

Lifespan Contracts deployed shortly before an attack are likely malicious.
Balance Contracts whose initial assets exceed the attack profit are likely to

be victims.
Fund Source Contracts and Wallets funded from mixing servers (e.g., Tornado

Cash) are likely malicious.
Activities Contracts that frequently interact with users exhibiting diverse

behaviors are likely benign.
Source Code Contracts with unverified source code are likely malicious.

Our second key observation is that attack-related txs are
linked to each other through either data dependencies or fi-
nancial flow, and by leveraging such relations, we can trace
back to all related entities. For example, in Figure 2, Wallet
Z was identified by the transfer of attacking funds to it, and
Wallet X was identified as the creator of the exploit contracts.
tx103 is excluded from our analysis as there was no data de-
pendency from tx104 to it. Note tx103 only read data and did
not alter the state of StaxLPToken. As a result, we were able
to trace back to all related txs (tx101, tx102, and tx104).

Approach. We therefore developed a system to identify at-
tacks that combines a custom Ethereum archive node and
a flexible reasoning mechanism [29], e.g., Datalog [47]. An
archive node is an instance of an Ethereum client specifically
configured to construct a comprehensive record of all histori-
cal states. As per requirement, the information stored in the
archive node is then transformed into predicates, which can
be processed by the reasoning mechanism. We have also es-
tablished inference rules to guide the process of tracing back
attack-related txs through data dependency and fund flow.
By applying these rules to the collected predicates, the rea-
soning mechanism can automatically identify the necessary
information about the attack for our synthesis.

Predicates. The predicates used by STING are presented in
Table 2. The first column lists the names of the predicates
and the second column provides a description for each.
Observed(Tx) denotes that the transaction Tx is flagged as
an attacking transaction by the detection phrase. Sender(Tx,
W) signifies that a wallet address W is the origin of transaction
Tx, represented by tx.origin. For example, in the Temple

1762 32nd USENIX Security Symposium USENIX Association

Table 2: Predicates used by STING

Name Description

Observed(Tx, F) Transaction Tx is a potential attacking tx observed by
the detection phrase.

Sender(Tx, W) Wallet address W is the sender of transaction Tx.
Create(Tx, C) Contract C is created by transaction Tx.
Access(Tx, C, M) Contract C is accessed in transaction Tx, with mode M.

A mode can be either RO (read-only) or RW (read-and-write).
Timestamp(Tx, T) Transaction Tx is minted at time T.
FundFlow(Tx, E) In transaction Tx, funds are sent to an entity E.

An entity can be either a wallet address W or a contract C .
AttackTx(Tx) Transaction Tx is a transaction related to the subject attact.
Malicious(E) Entity E is malicious during the subject attack.

Sender(Tx, W), AttackTx(Tx)

Malicious(W) (1)

Observed(Tx),
FundFlow(Tx, E)

Malicious(E) (2)

Create(Tx, C),
Malicious(C), Sender(Tx, W)

Malicious(W) (3)

AttackTx(TxA), Access(TxA, C, _), Observed(TxB),
Timestamp(TxB, TB), Create(TxC, C),

Timestamp(TxC, TC), TB−TC < 2 days

Malicious(C) (4)

Sender(TxA, W), Malicious(W), Access(TxA, C, WR),
Access(TxB, C, _), AttackTx(TxB), TA < TB,

Timestamp(TxB, TB), Timestamp(TxA, TA)

AttackTx(TxA) (5)

Figure 6: Inference rules used by STING

DAO attack (Figure 2), we have Sender(Tx104, Wallet Y).
The deployment of a contract is represented by Create(Tx,
C), indicating that contract C was deployed by transaction
Tx, e.g., Create(tx102, ExploitB). The predicate Access(Tx,
C, M) indicates that transaction Tx accesses the data of
contract C. This can be either read-only access, such as
Access(tx103, StaxLPToken, RO), or read-and-write access,
such as Access(tx104, StaxLPStaking, RW). The timestamp
of transaction Tx is represented by Timestamp(Tx, T). The
transfer of funds to an entity E in transaction Tx is represented
by FundFlow(Tx, E). An entity can be either a wallet address
or a contract. For instance, in transaction tx104, a large amount
of Frax tokens were transferred to Wallet Z, resulting in
FundFlow(tx104, Wallet Z). These five predicates are automat-
ically collected by our custom Ethereum archive node. We
then introduce two predicates, AttackTx(Tx) and Malicious(E),
to represent the identified results. Specifically, AttackTx(Tx)
denotes that the transaction is related to the subject attack
(e.g., AttackTx(tx101)) and Malicious(E) indicates that entity
E is malicious (e.g., Malicious(ExploitB)). Note that the
observed attacking tx will be labeled as AttackTx.

Rules. Figure 6 illustrates the inference rules employed by
STING. These rules are expressed in the following format:

P1, P2, P3, . . . , Pn

C

where Pi denotes the i-th premise of the rule and C represents
the conclusion. When all the premises are present in the cur-
rent fact base, STING adds the conclusion to the fact base as
well. To provide a better understanding, we will use examples
from the Temple DAO attack (Figure 2) to explain the rules.

• Rule (1) indicates that if a Tx is related to the attack, then
its sender, W, is a malicious entity. This rule allows us
to infer that Wallet Y is malicious as the pending attack
tx was sent from it.

• Rule (2) posits that if there is a transfer of funds to an
entity E within a pending attack Tx, the entity E is ma-
licious. This is because the attacker will transfer the at-
tack’s profit to an entity under their control. For instance,
in tx104, a large amount of Frax tokens are transferred to
Wallet Z, enabling us to infer that Wallet Z is malicious.

• Rule (3) states that the creator of a malicious contract
C is a malicious entity. In the case of the ExploitA
contract, once we identify it as malicious, we can further
infer that its creator, Wallet X, is also malicious.

• Rule (4) is used to distinguish between benign and
malicious entities. Specifically, AttackTx(TxA) and Ac-
cess(TxA, C, _) suggest that an attack-related transaction
TxA interacts with a smart contract C. However, being
accessed by an attack-associated transaction does not
inherently imply that contract C is malicious. Recall
that the contract C’s timespan can assist in determining
its malicious nature. To achieve this, we first employ
the pending attack transaction TxB (Observed(TxB))
and its associated timestamp (Timestamp(TxB, TB))
to determine the current timestamp. Subsequently,
we inquire about the creation time TC of contract C
using Create(TxC, C) and Timestamp(TxC, TC). If the
difference between TB (i.e., the current time) and TC is
less than 2 days, we categorize contract C as malicious.
Note that other attributes as referenced in Table 1 also
play a role in this rule’s execution, with detailed elided.

• Rule (5) leverages the data dependence to identify
attack-related txs. This rule considers two txs, TxA and
TxB, which both access a contract C. If TxA is initiated
by a malicious entity W and modifies the state of C (i.e.,
accessing C in a read-and-write mode), and TxB is a later
transaction that is identified to be related to the attack,
STING then infers that TxA is also related to the attack.

With the identification of all malicious entities, STING will
proceed to create a corresponding entity for each, for instance,
a counterpart wallet address under our control for a malicious
wallet address and a counterpart synthesized contract for an
exploit contract.

USENIX Association 32nd USENIX Security Symposium 1763

4.2 Counterattack Smart Contract Synthesis

Counterattack smart contract synthesis refers to the synthesis
of a new smart contract that can front-run the original attack-
ing txs and secure the attacking funds (e.g., by transferring
them to a secure account). To this end, it is necessary to by-
pass the CFFP and DFFP (C2). We present the details of how
we achieve these in this section.

As mentioned in §3, both CFFP and DFFP prevent gener-
alized front-runners from mimicking the original attack txs,
since overcoming such protections requires a thorough analy-
sis of the exploit contracts through binary (bytecode) analysis.
However, the limited time window for front-runners to mimic
a new transaction makes complex techniques like symbolic
execution and constraint solving infeasible. In the following,
we first present our key observations, and then describe in
detail our technical approach.

Key Observations. We observe that predicates related to
CFFP consistently evaluate to the same value throughout the
execution of all related transactions. For instance, in Figure 3,
the two instances of CFFP in lines 6 and 7-10 always evaluate
to True, given the attacker’s goal of a successful attack. As
a result, we can identify all predicates that consistently yield
the same value throughout the attacking trace as CFFP-related
predicates and rewrite each predicate with the value it yields.
Note that during the synthesis, STING has access to the
dynamic trace of the subject transactions, eliminating the
need to statically infer jump targets. Furthermore, false
positives (i.e., normal predicates being misclassified as
CFFP-related) are tolerable, as our goal is to mimic the
original attack and maintain the same trace. In other words,
even with false positives, both executions remain consistent.
Figure 7 illustrates the counterattack contract generated for
ExploitB. We use SY_EXPLOIT_A to denote the address of
the counterattack contract for ExploitA (at line 9). Note
that at lines 6-7, the original CFFP-related predicates have
been changed to require(True). To clarify, although it is
difficult to avoid this observation (since CFFP ultimately
requires a conditional statement to block execution), we
acknowledge that future obfuscation techniques may be
developed to counteract this observation.

In addition, we also observe that during the exploit contract
execution, the actual recipient addresses of funds or txs are
revealed at the points of external calls, regardless of the pres-
ence of DFFP. That is, even with the presence of DFFP, the
dynamic execution of attack txs still reveals valid recipient
addresses. For instance, in Figure 2, the recipient address of
the funds is Wallet Z, despite the obfuscation present in line
12 of Figure 3. We hence consider forcibly overwriting the
external calls by the desired recipient addresses, regardless of
the original semantics of the exploit contracts. For example,
as shown in line 12 of Figure 7, the original semantics of
to ˆ 1234 is overwritten as WALLET_OURS. To accomplish

this, we need to identify the original calling context of each
external call instance, e.g.,

[UniswapRouter].removeLiquidity(

[Temple], [Frax], 10000000 ether, [Wallet Z]

)

and decide the corresponding new context, e.g.,

[UniswapRouter].removeLiquidity(

[Temple], [Frax], 10000000 ether, [Wallet Ours]

)

Note that it should be done in a timely manner, without lever-
aging heavy-weight techniques.

Approach. We hence develop a calibrated forced-execution
engine within our custom Ethereum archive node. This engine
aims to determine the original outcomes of control-flow trans-
fer opcodes during an attack and calculate the corresponding
new outcomes required for executing counterattacks. To do
so, the engine hooks the interpretation of these opcodes, in-
cluding, but not limited to, the CALL and JUMP opcodes. The
engine then performs two rounds of execution of the attack-
related txs. During the first round, the original transaction
senders are preserved, and the outcomes of each control-flow
transfer are recorded. In the second round, our wallet
addresses are used as tx.origin, and the outcomes of each
control-flow transfer are forcibly changed to match the previ-
ously recorded outcomes. This helps to establish the mapping
between the original calling context and the new ones. Note
that the engine only hooks opcodes in malicious entities, since
the synthesis of STING only works on malicious entities.

We use the following notation to describe an execution
trace:

J ∈ Jump Instance ::= ⟨Address, Offset, Offset⟩
C ∈ Call Instance ::= ⟨Address, Offset, Address, Call Data⟩

T ∈ Trace := [J |C]

The symbol J represents a jump instance during execution,
which is defined as a tuple comprising the contract address,
the offset of the relevant JUMP opcode, and the destination
offset. Similarly, the symbol C represents a call instance,
which is defined as a tuple consisting of the caller contract
address, the offset of the relevant CALL opcode, the receipt
address, and the call data. Finally, the symbol T represents
the full execution trace of a subject attack, which is an array
of call or jump instances. It is important to note that T is
cross-transaction in nature, as the attack can be carried out
across multiple txs, such as tx101, tx102, and tx104 in Figure 2.
The trace T of an attack can be acquired by the first round of
the engine.

The following code snippet presents the pseudocode of the
operation of the forced-execution engine when hooking the
JUMP opcode.

1764 32nd USENIX Security Symposium USENIX Association

contract SyExploitB {
UniswapRouter constant uniswap = UNISWAP_ROUTER;
StaxLPStaking constant victim = STAX_LP_STAKING;

function exploit(uint160 s, address to) {
require(True);
require(True);

victim.migrateStake(SY_EXPLOIT_A, 10000000 ether);
victim.withdraw(10000000 ether);
uniswap.removeLiquidity(

TEMPLE_TOKEN, FRAX_TOKEN, 10000000 ether, WALLET_OURS,
);

}
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

Synthesized Exploit Contract B:

Figure 7: Synthesized exploit contracts

def jump_hook(_J, T):

J = T.pop()

<_, _, offset> = J

jump_to(offset)

The function jump_hook takes the current jump instance _J
and the previously recorded trace T as input. It then forces
the jump instance to follow the trace T by overwriting the
target of the jump.

The following code snippet presents the pseudocode for
how our forced-execution engine hooks the CALL opcode.
The function call_hook takes the actual call instance _C and
the previously-recorded trace T as input. A dictionary S is
used to store the mapping from the original calling context to
the new one.

S = {}

def call_hook(_C, T):

C = T.pop()

if C.callee().is_benign():

sy_calldata = C.calldata().synthesize()

S[_C] = <C.callee(), sy_calldata >

else:

sy_callee = C.callee().synthesize()

S[_C] = <sy_callee , _C.calldata()>

call_to(s[_C])

The function first checks if the callee is a benign entity. If
so, the function proceeds to synthesize the calldata. This is
achieved by syntactically substituting all instances of mali-
cious entity addresses, alongside other related parameters such
as NFT ID, with their synthesized equivalents represented in
byte format. This effectively addresses the problem outlined
in Figure 3, by substituting any parameter that signifies an
attacker’s wallet address with our wallet address. This ap-
proach works because there is no DFFP in benign entities. If
the callee is not a benign entity, the function finds the address
of the callee’s synthesized counterpart and retains the original
call data. The function then calls the synthesized callee with

the same call data. The reason for retaining the original call
data is that, even though the call data may be obfuscated at
this point, it will eventually be de-obfuscated when calling
a benign entity (e.g., when transferring funds). Therefore,
there is no need to handle the call data at the time of calling a
malicious entity, but only at the later time of calling a benign
entity. The calling context transaction is recorded in S.

Dealing with CFFP. With the collected T, we identify all
JUMP opcodes which constantly jump to the same target
and rewrites them as constant jumps (i.e., jumping to that
fixed address).

Dealing with DFFP. With the identification of S, we adopts
the following rewriting strategies:

• If the callsite only occurs once within the trace T (as
the call instance C), we statically overwrite the call to
the corresponding synthesized instance S[C]. This is
illustrated in line 12 of Figure 7.

• If the callsite occurs multiple times within the trace T,
for example, within a loop, we use an on-the-fly dispatch
mechanism to dynamically find the actual synthesized
call instance [43, 92].

It is important to note that STING relies on dynamic
analysis, which simplifies the task of accessing runtime
information, such as determining the calldata even if it is
passed as parameters.

4.3 Contract Execution and Validation

STING ensures the success of the counterattack by locally
deploying the synthesized contract to ensure that it will result
in a profit to our addresses. If the results are favorable, STING
then employs the front-runner to execute the counterattack,
effectively front-running the original tx and capturing the in-
tended profit. Such a local validation mechanism also enables
us to try different synthesis strategies simultaneously.

Multilevel synthesis. We have observed that not all attacking
txs are fully protected by CFFP and DFFP. For instance, there
have been reports of certain attacks being front-run by gener-
alized MEV bots. Additionally, some attacks only implement
basic CFFP, such as the one at line 6 in ExploitB in Fig-
ure 3 (require(tx.origin == WALLET_Y)). Such attacks
can be overkilled by STING, resulting in wasted time and a
reduced success rate in front-running. To address this issue,
we propose a multi-level synthesis structure. Given an attack
tx that is pending in the mempool, we perform three parallel
synthesis methods:

• Single-Tx Synthesis, which is a generalized transaction
replay algorithm proposed by [80]. It takes a transaction
as input and simply replaces the sender address with ours
in the payload. While being widely adopted by general

USENIX Association 32nd USENIX Security Symposium 1765

MEV bots, this method does not rely on other analy-
sis results and, as a result, cannot effectively identify
malicious entities or synthesize exploit contracts.

• Syntactic Synthesis, which uses the results of attack in-
formation identification (§4.1) and syntactically replaces
the addresses of malicious entities with their counterpart
addresses. This method is sufficient for attacks that only
implement basic CFFP.

• Semantic Synthesis, which is the most comprehensive
analysis performed by STING, and it has the ability to
handle attacks protected by CFFP and DFFP. However,
this method may take a longer time to complete (com-
pared to the previous two).

Any counterattack tx generated by one of the three synthesis
methods will be locally executed to verify that the modified tx
results in a profit for our account. If this is the case, the coun-
terattack tx will be initiated immediately and all other running
syntheses will be terminated. Otherwise, STING discards the
tx and waits for results from other syntheses. By employing
this multi-level synthesis technique, we are able to generate
counterattack txs with minimal effort and processing time.

Soundness. While we have not encountered a failure case
caused by heuristics of forced-execution [78, 90] so far, we
also implemented a fine-grained taint analysis as a backup so-
lution. Taint analysis can accurately identify the obfuscation
introduced by DFFP with relatively higher runtime overhead.
We add an additional taint-based synthesis layer to the multi-
level synthesis architecture, in case of the unsoundness issue
leading to failed counterattack.

5 Evaluation

We have developed STING within a custom geth [25] archive
node, supported by an Erigon database [26]. In this section,
we present the evaluation results. We first present our exper-
iment setup such as how we collected the dataset in §5.1,
then present the overall results of our counterattacks in §5.2,
and finally we conduct a series of ablation studies to further
validate our findings in §5.3. A case study regarding front-
running techniques employed by real-world Web 3.0 attacks
is presented in the supplementary material [38].

5.1 Experiment Setup

Dataset. We used a comprehensive dataset of historical at-
tacks on the Ethereum mainnet to evaluate STING. In particu-
lar, our dataset, which consists of all the attacks that took place
in 2021 and 2022, is drawn from well-known sources [14, 24,
30, 32, 37]. Those sources are widely used in literature [50,
67, 86, 96]. In addition, we have also included some of the
most infamous attacks (with significant financial losses) prior
to 2021. In total, our investigation covers a total of 86 attacks,

Table 3: Details of out-of-scope attacks

Attack Date Loss Root Cause

Wintermute 09/20/22 160.0M Key compromised or rugged
SudoRare 08/23/22 800.0K Key compromised or rugged
Curve Finance 08/09/22 575.0K Off-chain component compromise
Harmony Bridge 06/24/22 100.0M Key compromised or rugged
Ronin Network 03/29/22 624.0M Key compromised or rugged
BuildFinance 02/14/22 470.0K Key compromised or rugged
Dego Finance 02/10/22 10.0M Key compromised or rugged
Meter 02/06/22 7.7M No fund lost on the mainnet
Qubit Finance 01/28/22 80.0M No fund lost on the mainnet
Crypto.com 01/18/22 33.7M Key compromised or rugged
LCX 01/08/22 7.9M Key compromised or rugged
Vulcan Forged 12/13/21 140.0M Key compromised or rugged
Bitmart 12/04/21 196.0M Key compromised or rugged
Badger 12/02/21 120.0M Off-chain component compromise
AnubisDAO 10/29/21 60.0M Key compromised or rugged
JayPegs Automart 09/17/21 3.1M Key compromised or rugged
DAO Maker 08/12/21 7.0M Key compromised or rugged
Thorchain 07/22/21 8.0M Off-chain component compromise
Thorchain 07/15/21 5.0M Off-chain component compromise
Bondly 07/15/21 5.9M Key compromised or rugged
Anyswap 07/10/21 7.9M Key compromised or rugged
Chainswap 07/02/21 800.0K No fund lost on the mainnet
Roll 03/14/21 5.7M Key compromised or rugged
Paid Network 03/05/21 3.0M Key compromised or rugged

of which 24 were deemed out of scope for the purposes of this
study. Specifically, 17 of these attacks were due to private key
compromise or rug pulls, 4 were related to off-chain compo-
nents, and 3 did not result in fund loss on the Ethereum main-
net, but rather on other chains. The detailed list of these attacks
is presented in Table 3. We therefore have 62 attacks in scope,
which induced a total fund loss of around 2.5 billion USD.

Environment Setup. We calibrate the block height to cor-
respond with the specific attack under examination, setting
the gas limit to 30 million to reflect the post-London Fork
conditions of Ethereum [34]. We then replaced the attacking
transaction with synthesized ones to check if profits remain
unaltered. In certain attacks, the attackers may need to possess
specific NFT tokens. We assume that the defenders cannot
hold NFTs with the exact same ID as the required tokens, but
they can have alternative NFTs with different IDs.

5.2 Overall Results
Among these 62 attacks, STING successfully synthesized
54 counterattack smart contacts, as shown in the last four
columns in Table 4. It is worth mentioning that, some of at-
tacks are indeed front-run by acutal MEV bots in real world.
We hence include such attacks into the report of Single-Tx syn-
thesis (column S0). Also, out of the 62 attacks that took place,
12 attacks can be front-run by MEV bots. This showcases the
challenges of launching a successful counterattack with gener-
alized bots. The results from Syntactic Synthesis (column S1)
are relatively encouraging, with 45 out of 62 attacks being suc-
cessfully counterattacked. This suggests that attackers are still
relying on simple CFFP techniques to prevent front-running.
Semantic Synthesis (column S2) was able to generate counter-
attacks for 54 out of the 62 attacks. We further analyzed all the

1766 32nd USENIX Security Symposium USENIX Association

Table 4: Evaluation of 63 Web 3.0 Attacks. The first three columns show the names, dates, and lost funds for each attack. Columns
4 to 10 show the results for §4.1. Column 4 shows the number of attack-related transactions and column 5 shows the number
of entities involved. Columns 6 to 8 categorize entities based on their relationships, with DD, MF, and TK representing data
dependency, fund recipients, and tokens, respectively. Columns 9 and 10 categorize entities by their labels, with BN indicating
benign entities and ML indicating malicious entities. Columns 11 to 15 show the results for §4.2. Columns 11 and 12 show the
number of external calls, with column 11 showing the total and column 12 showing the hooked ones. Columns 13 to 14 show
front-running protection, with C and D representing CFFP and DFFP. Columns 15 to 18 show the results for §4.3, where S0, S1,
S2, and T denote Single-Tx, Syntactic, Semantic, and Taint-based syntheses.

Attack
(63) Date Loss

($ 2.5B)

Attack Information
Identification (§4.1)

Counterattack Smart
Contract Synthesis (§4.2)

Contract Execution
and Validation (§4.3)

Txs # Entity
by Relation by Label # Call Protection S0

(12)
S1

(45)
S2

(54)
T

(54)DD MF TK BN ML Total Hooked C D

JAY 12/29/22 18.4K 2 8 7 2 2 6 2 43 17 ✓ ✓ ✓ ✓
Rubic 12/25/22 1.5M 3 36 9 29 2 34 2 206 82 ✓ ✓ ✓ ✓
ElasticSwap 12/13/22 845.0K 3 17 14 5 3 14 3 120 28 ✓ ✓ ✓ ✓
NUM 11/23/22 13.0K 2 13 11 5 3 11 2 59 10 ✓ ✓ ✓ ✓
DFX 11/10/22 4.0M 3 36 28 11 9 34 2 181 32 ✓ ✓ ✓ ✓
BrahTOPG 11/09/22 89.0K 2 15 11 9 4 13 2 85 15 ✓ ✓ ✓ ✓
Kashi 11/08/22 110.0K 2 19 18 6 3 17 2 85 30 ✓ ✓ ✓ ✓
Team Finance 10/27/22 15.8M 7 37 32 14 13 32 5 392 79 ✓ ✓ ✓ ✓
N00d 10/26/22 29.0K 3 11 10 5 5 9 2 368 107 ✓ ✓ ✓ ✓
Bond Protocol 10/21/22 300.0K 2 5 4 2 1 3 2 14 2 ✓ ✓ ✓ ✓
OlympusDAO 10/21/22 292.0K 3 5 4 3 1 3 2 15 4 ✓ ✓ ✓ ✓
Uerii Token 10/17/22 2.4K 2 10 9 4 3 8 2 36 11 ✓ ✓ ✓ ✓
EFLeverVault 10/14/22 972.5K 3 13 10 4 2 9 4 67 39 ✓ ✓ ✓ ✓
MEVBOTa47b 10/14/22 241.0K 2 18 17 7 2 16 2 60 3 ✓ ✓ ✓
Rabby Wallet 10/11/22 200.0K 2 39 7 34 2 36 3 860 186 ✓ ✓ ✓ ✓
Temple DAO 10/11/22 2.3M 4 20 18 8 6 17 3 63 23 ✓ ✓ ✓ ✓
Xave Finance 10/09/22 30.0M 2 10 9 1 1 8 2 43 16 ✓
MEVBOTbadc 09/28/22 1.5M 3 8 7 3 1 6 2 16 13 ✓ ✓ ✓ ✓
Bad Guys 09/02/22 NFT 1 2 2 1 1 1 1 2 0
LuckyTiger 08/24/22 NFT 3 4 4 4 1 2 2 203 50 ✓ ✓ ✓ ✓
XSTABLE 08/10/22 46.2K 3 11 8 8 2 9 2 241 40 ✓ ✓ ✓ ✓
Nomad Bridge 08/02/22 152.0M 1 14 14 2 1 13 1 16 0
Audius 07/23/22 1.1M 5 7 6 0 0 5 2 9 2 ✓
Omni NFT 07/10/22 1.4M 4 48 48 13 5 45 3 1140 111 ✓ ✓ ✓ ✓
FlippazOne 07/06/22 1.3K 1 4 4 1 1 3 1 7 1 ✓ ✓ ✓ ✓
XCarnival 06/26/22 3.9M 16 71 71 59 1 12 59 2713 426 ✓ ✓ ✓ ✓
SNOOD 06/18/22 103.4K 1 12 8 5 2 10 2 40 6 ✓ ✓ ✓
Inverse Finance 06/16/22 1.3M 2 47 46 10 8 45 2 232 29 ✓ ✓ ✓ ✓
ApeCoin 05/17/22 1.1M 1 26 24 11 4 23 3 291 17 ✓ ✓ ✓ ✓
Fei Protocol 04/30/22 80.0M 4 38 38 8 4 35 3 1408 39 ✓ ✓ ✓ ✓
Saddle Finance 04/30/22 11.0M 2 32 31 8 7 30 2 408 43 ✓ ✓ ✓ ✓
BeanstalkFarms 04/16/22 182.0M 2 24 24 2 7 21 3 74 12 ✓
Inverse Finance 04/02/22 15.6M 2 4 3 0 0 2 2 4 0
Revest Finance 03/27/22 11.2M 2 12 11 5 2 10 2 106 11 ✓ ✓ ✓ ✓
Auctus 03/26/22 726.0K 2 11 5 9 1 9 2 95 22 ✓ ✓ ✓
Li.Fi 03/20/22 570.0K 1 57 21 39 10 55 2 85 1 ✓ ✓ ✓ ✓
Umbrella Network 03/20/22 700.0K 3 5 5 2 1 2 3 6 1 ✓ ✓ ✓ ✓
Bacon Protocol 03/05/22 1.0M 2 8 8 4 2 6 2 44 13 ✓ ✓ ✓ ✓
Multichain 01/18/22 1.4M 2 6 5 6 1 4 2 13 5 ✓ ✓ ✓ ✓
Visor Finance 12/21/21 8.2M 3 5 5 1 1 3 2 17 2 ✓ ✓ ✓ ✓
MonoX Finance 11/30/21 31.0M 2 22 18 10 10 19 3 981 219 ✓ ✓ ✓ ✓
Cream Finance 10/27/21 130.0M 2 130 129 36 28 127 3 3358 93 ✓ ✓ ✓
Indexed Finance 10/14/21 16.0M 2 35 34 14 9 33 2 881 238 ✓ ✓ ✓ ✓
Nimbus 09/15/21 5.2K 2 7 7 4 2 5 2 82 24 ✓ ✓ ✓ ✓
NowSwap 09/15/21 1.1M 2 5 5 3 2 3 2 396 154 ✓ ✓ ✓ ✓
DAO Maker 09/03/21 4.0M 2 4 4 2 1 3 1 11 2 ✓ ✓ ✓ ✓
Cream Finance 08/30/21 18.0M 2 20 20 7 3 18 2 148 11 ✓ ✓ ✓ ✓
xToken 08/29/21 4.5M 2 158 156 30 9 156 2 1868 66 ✓ ✓ ✓
Poly Network 08/11/21 611.0M 2 5 5 1 0 4 1 16 0
Punk Protocol 08/10/21 9.0M 3 17 17 8 6 15 2 226 32 ✓ ✓ ✓ ✓
Popsicle Finance 08/03/21 20.0M 2 81 80 27 20 76 5 1195 311 ✓ ✓ ✓ ✓
xToken 05/12/21 24.0M 2 127 125 28 10 125 2 1215 86 ✓ ✓ ✓ ✓
Rari Capital 05/09/21 15.0M 5 28 25 9 5 25 3 212 20 ✓ ✓ ✓ ✓
DODO 03/08/21 700.0K 24 11 11 3 4 7 4 87 40 ✓ ✓ ✓ ✓
Furucombo 02/27/21 14.0M 3 11 9 3 1 9 2 33 3 ✓
Alpha Finance 02/13/21 37.5M 2 24 24 7 5 22 2 113 16 ✓ ✓ ✓ ✓
Yearn 02/05/21 11.0M 2 53 50 20 9 51 2 1214 83 ✓ ✓ ✓ ✓
Pickle Finance 11/21/20 20.0M 2 23 22 7 3 20 3 713 16 ✓ ✓ ✓ ✓
Harvest Finance 10/26/20 83.8M 3 71 71 10 7 69 2 1443 50 ✓ ✓ ✓ ✓
Opyn Protocol 08/04/20 371.0K 4 11 11 5 2 9 2 46 15 ✓ ✓ ✓ ✓
Bancor Protocol 06/18/20 135.2K 1 5 3 2 1 3 2 2 1 ✓ ✓ ✓ ✓
Beauty Chain 04/22/18 900.0M 1 4 2 3 1 2 2 1 1 ✓ ✓ ✓ ✓

USENIX Association 32nd USENIX Security Symposium 1767

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Runtime Overhead

S1
S2
T

Figure 8: Runtime Overhead

8 failed cases, and we found that 5 of these failed syntheses
were due to cross-block txs being required for the attacks to be
successful. This means that the attacker needs to imitate multi-
ple txs minted in different blocks, and since our front-running
counterattacks mint all txs in a single block, these counterat-
tacks were unsuccessful. The remaining 3 attacks that failed
to be counterattacked were related to bridge and cryptography
vulnerabilities, which require the attacker to provide cryp-
tography signatures and proofs for his wallet addresses. To
replace these wallet addresses, the associated proofs and sig-
natures must also be modified accordingly. However, STING
currently lacks the capability to automatically infer the cryp-
tography operations involved, and therefore cannot counter-
attack these attacks. It is worth noting that neither the cross-
block requirements nor the cryptographic requirements are
front-running protections implemented by the attacker, but
rather intrinsic features of the vulnerabilities themselves. The
Taint-based Synthesis (column T) approach yields the same
results of success in countering attacks as Semantic Synthesis.

Overhead. Figure 8 illustrates the runtime overhead incurred
by STING. Specifically, the median runtime overhead for S1,
S2, and T is 0.08, 0.29, and 0.59 seconds, respectively. In
terms of worst-case scenarios, these values rise to 4.26, 8.51,
and 15.57 seconds, respectively. A closer examination of these
worst-case scenarios reveals that the native execution of the
attack transaction within our customized archive nodes con-
sumes around 3.3 seconds, a delay that may be attributed to
our implementation ($6.3). We do not report the analysis time
for S0, as it was performed through a straightforward string
replacement technique. Note that both S1 and S2 exhibit ef-
ficient processing times, while T requires a relatively longer
duration and may exceed the 12-second block interval in its
worst-case scenario. Therefore, the performance of T may not
meet desired standards and should be considered as a backup
solution only.

5.3 Ablation Study

Number of Attack-Related Transactions. Our analysis of
the distribution of attack-related transactions (txs) is outlined
in Column 4 of Table 4. We found that most attacks involve
only a few attack-related transactions, typically 2 to 3. These
patterns are relatively easy for STING to track. There were
exceptions in the DODO and XCarnival attacks where multi-
ple transactions were needed to gather enough funds for the
attack, not for obfuscation. These findings suggest that current

attacks are usually straightforward and do not use complex
obfuscation techniques.

Analysis of Entities Involved in Attacks. Our study delves
into the distribution and roles of entities associated with dif-
ferent attacks. This information is collated in Columns 5 to 10
of Table 4. Specifically, Column 5 illustrates the total count
of entities implicated in each attack, while Columns 6 to 8
classify these entities based on their associations with the
attack in terms of data dependency (DD), recipients of funds
(MF), and tokens (TK). It should be noted that an entity can
simultaneously belong to multiple categories. The majority of
entities demonstrate involvement via data dependency, and on
average, only about four tokens are implicated in each attack.
Further classification of entities based on their labeling is
demonstrated in Columns 9 and 10, where BN stands for be-
nign entities, and ML represents malicious entities. Compared
to benign entities, our results indicate that a limited number
of malicious entities participate in each attack. An exception
is the XCarnival attack, where approximately 60 malicious
entities were involved due to a particular vulnerability that ne-
cessitated multiple exploit contracts, rather than an intentional
obfuscation attempt by the attacker. Our findings imply that
complex transaction-level obfuscation is infrequently adopted
in the current landscape. This observation also supports the
notion that attackers do not typically undertake substantial
efforts to obscure their attack traces.

Assessment of External Calls. The distribution of external
calls is documented in Columns 11 and 12. The results in-
dicate that, despite the high volume of external calls made
by various entities, a relatively small proportion require in-
tervention by the forced-execution engine. This observation
highlights the fact that exploit contracts tend to have limited
connections with the external world, as their primary objective
is to exploit target contracts. This discovery presents an op-
portunity to further optimize STING by providing pre-attack
summaries for benign entities particularly when there is such
a need.

Analysis of Front-Running Protection. Columns C and
D in Table 4 present the front-running protection analysis
results for CFFP and DFFP, respectively. Our findings reveal
that almost all attacks employ CFFP (Column C), indicating
that attackers are aware of front-running and MEV bots and
seek protection against them. Further analysis reveals that the
most common CFFP is basic access control (e.g., comparing
msg.sender or tx.origin to a constant value or an owner
address), which can be easily bypassed by replacing the wallet
address during contract deployment. However, 7 out of 62
analyzed attacks used more complex CFFP that cannot be
bypassed this way; we discuss these cases in detail in the
supplementary material [38]. Meanwhile, only 4 attacks made
use of DFFP (Column D), indicating that the adoption of
these advanced protective mechanisms by attackers is not yet
widespread.

1768 32nd USENIX Security Symposium USENIX Association

6 Limitations and Future Work

In this section, we discuss the limitation as well as the possible
future work of STING.

6.1 Detection Capability
The implementation of STING is currently not end-to-end yet,
as it depends on the assumption that MEV bots can efficiently
identify attacking transactions. As a result, the effectiveness
of STING is limited by the capabilities of detecting and iden-
tifying attacking transactions.

In future work, we aim to identify transactions with signifi-
cant profits as potential attacks by leveraging the methodology
presented in [80]. It is important to note that while legitimate
high-value transactions may occasionally be flagged, this is
not expected to cause real-world issues. Specifically, a coun-
terattack transaction originating from a legitimate transaction
will be invalidated locally (§4.3) by STING before submission.
This is due to the fact that legitimate transactions typically
need to meet specific preconditions (defined by the project’s
business model) to yield substantial profits. For instance, al-
though a lottery reward claim transaction often results in con-
siderable profit, it requires that the user has indeed purchased
the winning lottery ticket. When a counterattack transaction
is synthesized for the lottery transaction, it fails to meet the
preconditions (i.e., holding a winning ticket) and will conse-
quently be invalidated by the local validation. Exceptional
(and rare) cases involve high-profit arbitrages. While the le-
gitimacy of such arbitrages remains debatable [55, 57], we
retain the ability to return the funds.

As detecting malicious transactions continues to be an
active research area [80, 94], we acknowledge that STING is
limited by detection capabilities and look forward to future
advancements in this field.

6.2 Adaptive Evasion
Multiple adaptive evasion techniques may exist against
STING, enabling attacks to circumvent our defense mech-
anism.

Delayed Attacks. Delayed attacks could pose challenges
for STING. As previously noted, the time gap between the
deployment of a vulnerable contract and its exploitation is
often significant. In some scenarios, attackers might deploy
an attack-related contract and then patiently bide their time
before initiating the actual attack. While the other heuristics in
Table 1 can assist STING in circumventing these challenges,
it might also be beneficial for STING to enforce a longer
cut-off threshold. It is crucial to note that the configuration
of heuristics, including the cut-off threshold, should remain
concealed from the attackers. This creates a game-theoretic
scenario [61] between defenders and attackers. Furthermore,
the longer the attacker delays, the higher the probability of

another attacker exploiting the same vulnerability, making the
situation harder for the attackers.

The development of more advanced techniques for identi-
fying exploit contracts, such as leveraging machine learning-
based approaches, is also a promising avenue for future work.

Code Obfuscation and Mixing Servers. Code obfuscation
techniques, such as control flow flattening [66], can obscure
the execution trace of the exploit contract, making it difficult
for STING to determine predicates related to CFFP. As a result,
STING may be unable to bypass CFFP in the presence of code
obfuscation. Furthermore, mixing servers, which mix funds
from multiple users, pose challenges for STING in tracking
malicious wallet accounts. Attackers can leverage these obfus-
cation techniques to undermine STING’s defense. While we
have not yet observed such obfuscation in real-world exploit
contracts, we anticipate our work will stimulate research in
obfuscation, subsequently driving research in de-obfuscation.
A similar pattern can be observed in traditional software, char-
acterized by a continuous arms race between obfuscation and
de-obfuscation. We leave this topic to future work.

Active Defense. As counterattacks synthesized by STING can
be further counterattacked, our active defense may not provide
complete guarantees. Nevertheless, we believe that STING
offers an extra layer of protection for smart contract users. In
our evaluation, STING successfully executed counterattacks
against 54 previous attacks, which led to losses totaling 1.5
billion USD. Even with a 1% success rate in practice, STING
could help secure over 15 million USD. Furthermore, we
anticipate that the development of STING will elevate the
difficulties associated with launching attacks. As such, we
expect the emergence of new attack and defense techniques,
signifying the beginning of a arms race in this domain.

Flashbots. Flashbots is a research and development organiza-
tion focusing on reducing the negative consequences of MEV.
It provides a mechanism for blockchain users to execute
private transactions that remain hidden until being confirmed.
While private transactions serve a noble purpose, their covert
nature could be exploited by adversaries to launch attacks
by sending their attacking transactions via Flashbots. As
STING cannot monitor these private attacking transactions,
it is unable to defend against them. However, we also see
great potential in collaborating with Flashbots to counter any
attacks executed through private transactions (by STING).
Furthermore, such collaboration could enhance STING’s
success rate in practice, as our counterattack transactions
would not be exposed to front-runners.

6.3 Performance

Currently, the execution overhead of STING is not optimal
for MEV bots to initiate front-running transactions, with a
worst-case duration of 8.51 seconds in contrast to Ethereum’s
12-second block interval. This suboptimal runtime overhead

USENIX Association 32nd USENIX Security Symposium 1769

consequently reduces the likelihood of successful counter-
attacks in real-world scenarios. Furthermore, extra time is
required for the initial phase of attack identification.

Fortunately, according to [80], the initial detection duration
is expected to be minimal, with an estimated average of 0.18
seconds. This leads to a worst-case time of 8.69 seconds for
Semantic-Synthesis, which remains within Ethereum’s block
interval. The parallel execution of counterattacks presents
another opportunity for enhancing STING. It is crucial to ac-
knowledge that while a block may consist of approximately
150 transactions, the synthesis operations for each transac-
tion are independent. Consequently, STING can function con-
currently to assess all potential attack transactions, ensuring
sufficient time is allocated for each synthesis instance. Fur-
thermore, it is essential to recognize that not every transaction
will be deemed a potential attack.

We also foresee potential performance improvements
through the optimization of our prototype implementation.
The current implementation of STING serves as a proof of
concept and relies on a customized geth archive node sup-
ported by an Erigon database. This architecture introduces
additional overhead due to data format conversions during
processing. For instance, the overhead becomes noticeable
when comparing the replication time of a sophisticated trans-
action (0x0fe25420) using reth [27], which only takes 0.74
seconds, with our node, which takes 3.3 seconds. Integrating
STING directly into standard geth or reth could substantially
decrease the runtime overhead by obviating the need for data
format conversions.

6.4 Blind Spots

STING does not provide comprehensive protection against all
DeFi attacks.

As outlined in Section 3.2, STING primarily aims to coun-
teract attacks that exploit code vulnerabilities in on-chain
smart contracts. Consequently, it is unable to prevent attacks
derived from compromises in off-chain components. These
attacks include, but are not limited to, private key leaks and
scams. Additionally, STING is incapable of preventing attacks
initiated by privileged users, such as rug pulls.

Moreover, as discussed in Section 5.2, STING encounters
challenges when the exploitation of a subject vulnerability ne-
cessitates cross-block transactions or cryptographic signatures
from the attacker’s wallet. To clarify, these requirements are
imposed by the vulnerable contract, rather than the attacker’s
exploit contract. In other words, these limitations depend on
the vulnerability’s nature rather than the attacks. For instance,
if a targeted project requires cross-block transactions to reach
a vulnerable program point, STING may be unable to execute
a counterattack. This is due to STING submitting all transac-
tions within a single block, and being unable to circumvent the
aforementioned check, as it cannot modify the victim project’s
code. However, if it is the exploit contract that enforces a

cross-block transaction requirement, STING can synthesize
its own exploit contract with the requirement nullified.

7 Related Work

Static Analysis. Smart contract static analysis is a technique
for evaluating the composition of a smart contract without
executing it. This can be achieved through an examination of
the source code, bytecode, or other representation of the con-
tract. Remix [6], Securify [87], SmartCheck [84], Slither [60],
and Vandal [46] are examples of static analysis tools. STING
complements these works since it does not access any source
code, and instead it focuses on both bytecode and txs.

Fuzzing. Fuzzing has been shown to be an effective tech-
nique to find vulnerabilities. In the context of smart contracts,
fuzzing has been used to test the contracts with random and un-
expected inputs to uncover vulnerabilities. Several smart con-
tract fuzzing tools, such as ContractFuzzer [65], Echidna [63],
Smartian [52], and SFuzz [75]. STING differs from fuzzing
since we do not require the need of random input, and instead
we determine input values based on txs.

Symbolic Execution. This technique enables a systematic
and comprehensive examination of various aspects of smart
contract security, including the execution of the contract code
and the handling of inputs. Various tools developed for this
purpose include Maian [76], Mythril [5], MantiCore [73],
Oyente [71], Scompile [49], Teether [68]. Although we wish
to adopt symbolic execution to analyze the attacking smart
contract, we feel it is too heavy and instead resort to more
practical techniques such as forced execution [56, 78].

Bytecode Rewriting. Ayodae et al. [42] rewrote Ethereum
bytecode with the goal of securing smart contracts without
access to the source code. Rodler et al. [82] presented EVM-
PATCH, a framework for automatically patching smart con-
tracts on the Ethereum blockchain. It uses a bytecode rewrit-
ing engine to upgrade contracts that are vulnerable to attacks.
Our work differs from these techniques since we do not aim
to modify the contract being exploited. Instead, we rewrite the
exploit contract in order to counter attack the original attack.

8 Conclusion

We have presented STING, a novel defense mechanism for
mitigating smart contract exploits in real-time. Our evalua-
tion results with 64 recent attacks demonstrate its efficacy
against real-world exploits, with a counterattack success rate
of 87%. This is significantly higher compared to the general
front-runner defense, which only had a success rate of 14%.
We believe that the instant synthesis of counterattack smart
contracts from attacking txs is a promising step towards run-
time defense in smart contract security, and STING represents
a viable addition to the current arsenal.

1770 32nd USENIX Security Symposium USENIX Association

https://etherscan.io/tx/0x0fe2542079644e107cbf13690eb9c2c65963ccb79089ff96bfaf8dced2331c92

Acknowledgements

We express our gratitude to the anonymous reviewers for their
comprehensive feedback and valuable suggestions, which
have significantly improved the quality and robustness of
our paper. Additionally, we extend our appreciation to Wuqi
Zhang for providing technical expertise and solutions con-
cerning the archive node.

References

[1] Attacker drains $182m from beanstalk stablecoin pro-
tocol. https://www.coindesk.com/tech/2022/04/
17/attacker-drains-182m-from-beanstalk-sta
blecoin-protocol/.

[2] Defi protocol cream finance loses $130 million in latest
crypto hack - bloomberg. https://www.bloomberg.
com/news/articles/2021-10-27/defi-protoco
l-cream-finance-loses-130-million-in-lates
t-hack#xj4y7vzkg.

[3] Pancakebunny tanks 96% following $200m flash loan
exploit. https://cointelegraph.com/news/panca
kebunny-tanks-96-following-200m-flash-loa
n-exploit.

[4] From Zapper Post-Mortem to using Front-run in project
defense. https://www.smartcontractresearch.
org/t/from-zapper-post-mortem-to-using-fro
nt-run-in-project-defense-theory-post/545,
2021.

[5] Consensys/mythril. https://github.com/ConsenS
ys/mythril, 2022.

[6] ethereum/remix-project. https://github.com/eth
ereum/remix-project, 2022.

[7] Stablecoin DEX Saddle Finance hacked for $10 million.
https://www.theblock.co/linked/144491/stab
lecoin-dex-saddle-finance-hacked-for-10-m
illion, 2022.

[8] Wasabi Wallet Discloses DOS Vulnerability After Re-
leasing Bug Fix. https://www.btctimes.com/news/
wasabi-wallet-discloses-dos-vulnerability,
July 2022.

[9] Anchain.AI. https://www.anchain.ai/, 2023.

[10] Automated market makers | chainlink. https://chai
n.link/education-hub/what-is-an-automated
-market-maker-amm, 2023.

[11] Blocknative. https://www.blocknative.com/,
2023.

[12] Blocksec. https://blocksec.com/, 2023.

[13] Blocksec Mopsus. https://mopsus.blocksec.com/,
2023.

[14] Blog - Web3 Security Leadboard. https://www.cert
ik.com/resources, February 2023.

[15] Chef Nomi Pulls the SUSHI Rug on SushiSwap LPs. ht
tps://milkroad.com/news/sushiswap-rug-pull,
February 2023.

[16] CUBE3. https://www.cube3.ai/, 2023.

[17] Decentralized applications (dapps) | ethereum.org. ur
l={https://ethereum.org/en/dapps/#what-are
-dapps}, February 2023.

[18] DeFi Market Commentary | January 2023 | ConsenSys.
https://consensys.net/blog/cryptoeconomi
c-research/defi-market-commentary-january
-2023/?utm_source=rss&utm_medium=rss&utm_c
ampaign=defi-market-commentary-january-202
3, February 2023.

[19] ERC 1155 - OpenZeppelin Docs. https://docs.ope
nzeppelin.com/contracts/3.x/api/token/erc1
155, February 2023.

[20] ERC 20 - OpenZeppelin Docs. https://docs.openz
eppelin.com/contracts/2.x/api/token/erc20,
February 2023.

[21] Erc-20 token standard | ethereum.org. https://ethe
reum.org/en/developers/docs/standards/toke
ns/erc-20/, 2023.

[22] ERC 721 - OpenZeppelin Docs. https://docs.openz
eppelin.com/contracts/3.x/api/token/erc721,
February 2023.

[23] Ethereum is a dark forest - paradigm. https://www.
paradigm.xyz/2020/08/ethereum-is-a-dark-f
orest, 2023.

[24] Hacks - DefiLlama. https://defillama.com/hacks,
February 2023.

[25] Home | go-ethereum. https://geth.ethereum.org/,
February 2023.

[26] ledgerwatch/erigon. https://github.com/ledgerw
atch/erigon, 2023.

[27] paradigmxyz/reth. https://github.com/paradigmx
yz/reth, 2023.

[28] Pessimistic Spotter. https://spotter.pessimisti
c.io/, 2023.

USENIX Association 32nd USENIX Security Symposium 1771

https://www.coindesk.com/tech/2022/04/17/attacker-drains-182m-from-beanstalk-stablecoin-protocol/
https://www.coindesk.com/tech/2022/04/17/attacker-drains-182m-from-beanstalk-stablecoin-protocol/
https://www.coindesk.com/tech/2022/04/17/attacker-drains-182m-from-beanstalk-stablecoin-protocol/
https://www.bloomberg.com/news/articles/2021-10-27/defi-protocol-cream-finance-loses-130-million-in-latest-hack#xj4y7vzkg
https://www.bloomberg.com/news/articles/2021-10-27/defi-protocol-cream-finance-loses-130-million-in-latest-hack#xj4y7vzkg
https://www.bloomberg.com/news/articles/2021-10-27/defi-protocol-cream-finance-loses-130-million-in-latest-hack#xj4y7vzkg
https://www.bloomberg.com/news/articles/2021-10-27/defi-protocol-cream-finance-loses-130-million-in-latest-hack#xj4y7vzkg
https://cointelegraph.com/news/pancakebunny-tanks-96-following-200m-flash-loan-exploit
https://cointelegraph.com/news/pancakebunny-tanks-96-following-200m-flash-loan-exploit
https://cointelegraph.com/news/pancakebunny-tanks-96-following-200m-flash-loan-exploit
https://www.smartcontractresearch.org/t/from-zapper-post-mortem-to-using-front-run-in-project-defense-theory-post/545
https://www.smartcontractresearch.org/t/from-zapper-post-mortem-to-using-front-run-in-project-defense-theory-post/545
https://www.smartcontractresearch.org/t/from-zapper-post-mortem-to-using-front-run-in-project-defense-theory-post/545
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/ethereum/remix-project
https://github.com/ethereum/remix-project
https://www.theblock.co/linked/144491/stablecoin-dex-saddle-finance-hacked-for-10-million
https://www.theblock.co/linked/144491/stablecoin-dex-saddle-finance-hacked-for-10-million
https://www.theblock.co/linked/144491/stablecoin-dex-saddle-finance-hacked-for-10-million
https://www.btctimes.com/news/wasabi-wallet-discloses-dos-vulnerability
https://www.btctimes.com/news/wasabi-wallet-discloses-dos-vulnerability
https://www.anchain.ai/
https://chain.link/education-hub/what-is-an-automated-market-maker-amm
https://chain.link/education-hub/what-is-an-automated-market-maker-amm
https://chain.link/education-hub/what-is-an-automated-market-maker-amm
https://www.blocknative.com/
https://blocksec.com/
https://mopsus.blocksec.com/
https://www.certik.com/resources
https://www.certik.com/resources
https://milkroad.com/news/sushiswap-rug-pull
https://milkroad.com/news/sushiswap-rug-pull
https://www.cube3.ai/
 url = {https://ethereum.org/en/dapps/#what-are-dapps}
 url = {https://ethereum.org/en/dapps/#what-are-dapps}
 url = {https://ethereum.org/en/dapps/#what-are-dapps}
https://consensys.net/blog/cryptoeconomic-research/defi-market-commentary-january-2023/?utm_source=rss&utm_medium=rss&utm_campaign=defi-market-commentary-january-2023
https://consensys.net/blog/cryptoeconomic-research/defi-market-commentary-january-2023/?utm_source=rss&utm_medium=rss&utm_campaign=defi-market-commentary-january-2023
https://consensys.net/blog/cryptoeconomic-research/defi-market-commentary-january-2023/?utm_source=rss&utm_medium=rss&utm_campaign=defi-market-commentary-january-2023
https://consensys.net/blog/cryptoeconomic-research/defi-market-commentary-january-2023/?utm_source=rss&utm_medium=rss&utm_campaign=defi-market-commentary-january-2023
https://consensys.net/blog/cryptoeconomic-research/defi-market-commentary-january-2023/?utm_source=rss&utm_medium=rss&utm_campaign=defi-market-commentary-january-2023
https://docs.openzeppelin.com/contracts/3.x/api/token/erc1155
https://docs.openzeppelin.com/contracts/3.x/api/token/erc1155
https://docs.openzeppelin.com/contracts/3.x/api/token/erc1155
https://docs.openzeppelin.com/contracts/2.x/api/token/erc20
https://docs.openzeppelin.com/contracts/2.x/api/token/erc20
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://docs.openzeppelin.com/contracts/3.x/api/token/erc721
https://docs.openzeppelin.com/contracts/3.x/api/token/erc721
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
https://defillama.com/hacks
https://geth.ethereum.org/
https://github.com/ledgerwatch/erigon
https://github.com/ledgerwatch/erigon
https://github.com/paradigmxyz/reth
https://github.com/paradigmxyz/reth
https://spotter.pessimistic.io/
https://spotter.pessimistic.io/

[29] Reasoning system - wikipedia. https://en.wikiped
ia.org/wiki/Reasoning_system, 2023.

[30] Rekt - Home. https://rekt.news/, February 2023.

[31] Rekt - templedao - rekt. https://rekt.news/temple
dao-rekt/, 2023.

[32] SunWeb3Sec/DeFiHackLabs: Reproduce DeFi hacked
incidents using Foundry. https://github.com/Sun
Web3Sec/DeFiHackLabs, February 2023.

[33] Tenderly. https://tenderly.co/monitoring, 2023.

[34] The history of Ethereum. https://ethereum.org/e
n/history/, 2023.

[35] Valid.Network. https://valid.network/platfom/
runtime-protection, 2023.

[36] What is staking? | chainlink. https://chain.link/e
ducation-hub/what-is-staking-crypto, 2023.

[37] Writing - Paradigm. https://www.paradigm.xyz/w
riting, February 2023.

[38] ZhangZhuoSJTU/STING. https://github.com/Zha
ngZhuoSJTU/STING, 2023.

[39] Amber Group. Extractable Value - Amber Group -
Medium. https://medium.com/amber-group/e
xtractable-value-7b0d4356a843, November 2022.

[40] Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters.
Concert: a smart contract certification framework in coq.
In Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, pages
215–228, 2020.

[41] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli.
A survey of attacks on ethereum smart contracts (sok).
In Principles of Security and Trust: 6th International
Conference, POST 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Pro-
ceedings 6, pages 164–186. Springer, 2017.

[42] Gbadebo Ayoade, Erick Bauman, Latifur Khan, and
Kevin Hamlen. Smart contract defense through bytecode
rewriting. In 2019 IEEE International Conference on
Blockchain (Blockchain), pages 384–389. IEEE, 2019.

[43] Erick Bauman, Zhiqiang Lin, Kevin W Hamlen, et al.
Superset disassembly: Statically rewriting x86 binaries
without heuristics. In NDSS, 2018.

[44] Beosin. XSURGE on the BSC Chain was Attacked
by Lightning Loans — A Full Analysis. https://be
osin.medium.com/a-sweet-blow-fb0a5e08657d,
January 2022.

[45] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cé-
dric Fournet, Anitha Gollamudi, Georges Gonthier,
Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, et al. Formal veri-
fication of smart contracts: Short paper. In Proceedings
of the 2016 ACM workshop on programming languages
and analysis for security, pages 91–96, 2016.

[46] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu,
Francois Gauthier, Vincent Gramoli, Ralph Holz, and
Bernhard Scholz. Vandal: A scalable security anal-
ysis framework for smart contracts. arXiv preprint
arXiv:1809.03981, 2018.

[47] Stefano Ceri, Georg Gottlob, Letizia Tanca, et al. What
you always wanted to know about datalog(and never
dared to ask). IEEE transactions on knowledge and
data engineering, 1(1):146–166, 1989.

[48] Raj Chaganti, Rajendra V Boppana, Vinayakumar Ravi,
Kashif Munir, Mubarak Almutairi, Furqan Rustam,
Ernesto Lee, and Imran Ashraf. A comprehensive review
of denial of service attacks in blockchain ecosystem and
open challenges. IEEE Access, 2022.

[49] Jialiang Chang, Bo Gao, Hao Xiao, Jun Sun, Yan Cai,
and Zijiang Yang. scompile: Critical path identifica-
tion and analysis for smart contracts. In International
Conference on Formal Engineering Methods. Springer,
2019.

[50] Zhiyang Chen, Sidi Mohamed Beillahi, and Fan Long.
Flashsyn: Flash loan attack synthesis via counter
example driven approximation. arXiv preprint
arXiv:2206.10708, 2022.

[51] Amy Cheng. ‘Squid Game’-inspired cryptocurrency
that soared by 23 million percent now worthless after
apparent scam, November 2021.

[52] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo
Grieco, Alex Groce, and Sang Kil Cha. Smartian: En-
hancing smart contract fuzzing with static and dynamic
data-flow analyses. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), pages 227–239. IEEE, 2021.

[53] Jamie Crawley. BurgerSwap Hit by Flash Loan Attack
Netting Over $7M. https://www.coindesk.com/m
arkets/2021/05/28/burgerswap-hit-by-flash
-loan-attack-netting-over-7m, September 2021.

[54] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,
Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash Boys 2.0: Frontrunning, Transaction
Reordering, and Consensus Instability in Decentralized
Exchanges. arXiv, April 2019.

1772 32nd USENIX Security Symposium USENIX Association

https://en.wikipedia.org/wiki/Reasoning_system
https://en.wikipedia.org/wiki/Reasoning_system
https://rekt.news/
https://rekt.news/templedao-rekt/
https://rekt.news/templedao-rekt/
https://github.com/SunWeb3Sec/DeFiHackLabs
https://github.com/SunWeb3Sec/DeFiHackLabs
https://tenderly.co/monitoring
https://ethereum.org/en/history/
https://ethereum.org/en/history/
https://valid.network/platfom/runtime-protection
https://valid.network/platfom/runtime-protection
https://chain.link/education-hub/what-is-staking-crypto
https://chain.link/education-hub/what-is-staking-crypto
https://www.paradigm.xyz/writing
https://www.paradigm.xyz/writing
https://github.com/ZhangZhuoSJTU/STING
https://github.com/ZhangZhuoSJTU/STING
https://medium.com/amber-group/extractable-value-7b0d4356a843
https://medium.com/amber-group/extractable-value-7b0d4356a843
https://beosin.medium.com/a-sweet-blow-fb0a5e08657d
https://beosin.medium.com/a-sweet-blow-fb0a5e08657d
https://www.coindesk.com/markets/2021/05/28/burgerswap-hit-by-flash-loan-attack-netting-over-7m
https://www.coindesk.com/markets/2021/05/28/burgerswap-hit-by-flash-loan-attack-netting-over-7m
https://www.coindesk.com/markets/2021/05/28/burgerswap-hit-by-flash-loan-attack-netting-over-7m

[55] Primavera De Filippi, Morshed Mannan, Jack Hender-
son, Tara Merk, Sofia Cossar, and Kelsie Nabben. Re-
port on blockchain technology & legitimacy. Robert
Schuman Centre for Advanced Studies Research Paper
Forthcoming, 2022.

[56] Manuel Egele, Maverick Woo, Peter Chapman, and
David Brumley. Blanket execution: Dynamic similarity
testing for program binaries and components. In 23rd
{USENIX} Security Symposium ({USENIX} Security
14), pages 303–317, 2014.

[57] Felix Eigelshoven, Andre Ullrich, and Douglas A Parry.
Cryptocurrency market manipulation: A systematic lit-
erature review. In International Conference on Informa-
tion Systems, 2021.

[58] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy
Clark. Sok: Transparent dishonesty: front-running at-
tacks on blockchain. In Financial Cryptography and
Data Security: FC 2019 International Workshops, VOT-
ING and WTSC, St. Kitts, St. Kitts and Nevis, February
18–22, 2019, Revised Selected Papers 23, pages 170–
189. Springer, 2020.

[59] Samuel Falkon. The Story of the DAO — Its History
and Consequences. Medium, August 2018.

[60] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither:
a static analysis framework for smart contracts. In 2019
IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WET-
SEB). IEEE, 2019.

[61] Drew Fudenberg and Jean Tirole. Game theory. MIT
press, 1991.

[62] George Georgiev. BNB HACK INU: How Someone
Stole 60 ETH Following the BNB Chain Hack. Cryp-
toPotato, October 2022.

[63] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist,
and Alex Groce. Echidna: effective, usable, and fast
fuzzing for smart contracts. In Proceedings of the 29th
ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 557–560, 2020.

[64] Lioba Heimbach and Roger Wattenhofer. Eliminating
sandwich attacks with the help of game theory. In Pro-
ceedings of the 2022 ACM on Asia Conference on Com-
puter and Communications Security, pages 153–167,
2022.

[65] Bo Jiang, Ye Liu, and Wing Kwong Chan. Contract-
fuzzer: Fuzzing smart contracts for vulnerability detec-
tion. In Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering,
pages 259–269, 2018.

[66] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie
Michielin. Obfuscator-LLVM – software protection for
the masses. In Brecht Wyseur, editor, Proceedings of
the IEEE/ACM 1st International Workshop on Software
Protection, SPRO’15, Firenze, Italy, May 19th, 2015,
pages 3–9. IEEE, 2015.

[67] Ping Fan Ke and Ka Chung Boris Ng. Bank error in
whose favor? a case study of decentralized finance mis-
governance. 2022.

[68] Johannes Krupp and Christian Rossow. {teEther}:
Gnawing at ethereum to automatically exploit smart con-
tracts. In 27th USENIX Security Symposium (USENIX
Security 18), 2018.

[69] Kai Li, Jiaqi Chen, Xianghong Liu, Yuzhe Richard Tang,
XiaoFeng Wang, and Xiapu Luo. As strong as its weak-
est link: How to break blockchain dapps at rpc service.
In NDSS, 2021.

[70] Kai Li, Yibo Wang, and Yuzhe Tang. Deter: Denial of
ethereum txpool services. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1645–1667, 2021.

[71] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. Making smart contracts smarter. In
Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016.

[72] Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-
Mundt, Ittay Eyal, and Ari Juels. Bdos: Blockchain
denial-of-service. In Proceedings of the 2020 ACM
SIGSAC conference on Computer and Communications
Security, pages 601–619, 2020.

[73] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex
Groce, Gustavo Grieco, Josselin Feist, Trent Brunson,
and Artem Dinaburg. Manticore: A user-friendly sym-
bolic execution framework for binaries and smart con-
tracts. In 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). IEEE,
2019.

[74] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Decentralized business review, page 21260,
2008.

[75] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and
Quang Tran Minh. sfuzz: An efficient adaptive fuzzer
for solidity smart contracts. In Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering, pages 778–788, 2020.

[76] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Sax-
ena, and Aquinas Hobor. Finding the greedy, prodigal,
and suicidal contracts at scale. In Proceedings of the

USENIX Association 32nd USENIX Security Symposium 1773

34th annual computer security applications conference,
pages 653–663, 2018.

[77] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and
Loss Analysis. Medium, December 2021.

[78] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu,
Zhiqiang Lin, and Zhendong Su. X-force: Force-
executing binary programs for security applications. In
23rd {USENIX} Security Symposium ({USENIX} Secu-
rity 14), pages 829–844, 2014.

[79] Punk Protocol. Punk Protocol Fair Launch Incident
Report - Punk Protocol - Medium. https://medium.c
om/punkprotocol/punk-finance-fair-launch-i
ncident-report-984d9e340eb, January 2022.

[80] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying
blockchain extractable value: How dark is the forest? In
2022 IEEE Symposium on Security and Privacy (SP),
pages 198–214. IEEE, 2022.

[81] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur
Gervais. Attacking the defi ecosystem with flash loans
for fun and profit. In Financial Cryptography and Data
Security: 25th International Conference, FC 2021, Vir-
tual Event, March 1–5, 2021, Revised Selected Papers,
Part I, pages 3–32. Springer, 2021.

[82] Michael Rodler, Wenting Li, Ghassan O Karame, and
Lucas Davi. Evmpatch: Timely and automated patch-
ing of ethereum smart contracts. In USENIX Security
Symposium, pages 1289–1306, 2021.

[83] Stefan Stankovic. NFT Exchange SudoRare Goes Dark
After $820,000 Rug Pull, August 2022.

[84] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan
Ivanitskiy, Ramil Takhaviev, Evgeny Marchenko, and
Yaroslav Alexandrov. Smartcheck: Static analysis of
ethereum smart contracts. In Proceedings of the 1st In-
ternational Workshop on Emerging Trends in Software
Engineering for Blockchain, 2018.

[85] Christof Ferreira Torres, Ramiro Camino, and Radu
State. Frontrunner jones and the raiders of the dark for-
est: An empirical study of frontrunning on the ethereum
blockchain. arXiv preprint arXiv:2102.03347, 2021.

[86] Cong Cuong Truong. Empirical analysis with decentral-
ized finance. 2022.

[87] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen,
Arthur Gervais, Florian Buenzli, and Martin Vechev. Se-
curify: Practical security analysis of smart contracts. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018.

[88] Dabao Wang, Siwei Wu, Ziling Lin, Lei Wu, Xingliang
Yuan, Yajin Zhou, Haoyu Wang, and Kui Ren. Towards
a first step to understand flash loan and its applications
in defi ecosystem. In Proceedings of the Ninth Interna-
tional Workshop on Security in Blockchain and Cloud
Computing, pages 23–28, 2021.

[89] Yue Xue, Jialu Fu, Shen Su, Zakirul Alam Bhuiyan, Jing
Qiu, Hui Lu, Ning Hu, and Zhihong Tian. Preventing
price manipulation attack by front-running. In Advances
in Artificial Intelligence and Security: 8th International
Conference on Artificial Intelligence and Security, ICAIS
2022, Qinghai, China, July 15–20, 2022, Proceedings,
Part III, pages 309–322. Springer, 2022.

[90] Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer,
Fei Peng, Yu Shi, Carson Harmon, and Xiangyu Zhang.
Pmp: Cost-effective forced execution with probabilis-
tic memory pre-planning. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 1121–1138. IEEE,
2020.

[91] Haoqian Zhang, Louis-Henri Merino, Vero Estrada-
Galinanes, and Bryan Ford. Flash freezing flash boys:
Countering blockchain front-running. In 2022 IEEE
42nd International Conference on Distributed Comput-
ing Systems Workshops (ICDCSW), pages 90–95. IEEE,
2022.

[92] Zhuo Zhang, Wei You, Guanhong Tao, Yousra Aafer,
Xuwei Liu, and Xiangyu Zhang. Stochfuzz: Sound and
cost-effective fuzzing of stripped binaries by incremen-
tal and stochastic rewriting. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 659–676. IEEE,
2021.

[93] Zhuo Zhang, Brian Zhang, Wen Xu, and Zhiqiang Lin.
Demystifying exploitable bugs in smart contracts. In
Proceedings of the ACM/IEEE 45th International Con-
ference on Software Engineering, 2023.

[94] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin
Livshits, and Arthur Gervais. On the just-in-time discov-
ery of profit-generating transactions in defi protocols.
In 2021 IEEE Symposium on Security and Privacy (SP),
pages 919–936. IEEE, 2021.

[95] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V
Le, and Arthur Gervais. High-frequency trading on
decentralized on-chain exchanges. In 2021 IEEE Sym-
posium on Security and Privacy (SP), pages 428–445.
IEEE, 2021.

[96] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos
Chaliasos, Zhipeng Wang, Ye Wang, Kaihua Qin, Roger
Wattenhofer, Dawn Song, and Arthur Gervais. Sok: De-
centralized finance (defi) attacks. Cryptology ePrint
Archive, 2022.

1774 32nd USENIX Security Symposium USENIX Association

https://medium.com/punkprotocol/punk-finance-fair-launch-incident-report-984d9e340eb
https://medium.com/punkprotocol/punk-finance-fair-launch-incident-report-984d9e340eb
https://medium.com/punkprotocol/punk-finance-fair-launch-incident-report-984d9e340eb

	Introduction
	Background
	Overview
	The Goal of Sting
	Threat Model, Scope, and Assumptions
	Challenges
	Sting Overview

	Detailed Design
	Attack Information Identification
	Counterattack Smart Contract Synthesis
	Contract Execution and Validation

	Evaluation
	Experiment Setup
	Overall Results
	Ablation Study

	Limitations and Future Work
	Detection Capability
	Adaptive Evasion
	Performance
	Blind Spots

	Related Work
	Conclusion

