
HYBRID-BRIDGE: Efficiently Bridging the Semantic Gap in Virtual Machine
Introspection via Decoupled Execution and Training Memoization

Alireza Saberi
The University of Texas at Dallas

saberi.alireza@utdallas.edu

Yangchun Fu
The University of Texas at Dallas

yangchun.fu@utdallas.edu

Zhiqiang Lin
The University of Texas at Dallas

zhiqiang.lin@utdallas.edu

Abstract—Recent advances show that it is possible to reuse the
legacy binary code to bridge the semantic gap in virtual machine
introspection (VMI). However, existing such VMI solutions often
have high performance overhead (up to hundreds of times slow-
down), which significantly hinders their practicality especially for
cloud providers who wish to perform real-time monitoring of the
virtual machine states. As such, this paper presents HYBRID-
BRIDGE, a new system that uses an efficient decoupled execution

and training memoization approach to automatically bridge the
semantic gap. The key idea is to combine the strengths of both
offline training based approach and online kernel data redirection
based approach, with a novel training data memoization and
fall back mechanism at hypervisor layer that decouples the
expensive Taint Analysis Engine (TAE) from the execution of
hardware-based virtualization and moves the TAE to software-
based virtualization. The experimental results show that HYBRID-
BRIDGE substantially improves the performance overhead of
existing binary code reuse based VMI solutions with at least
one order of magnitude for many of the tested benchmark tools
including ps, netstat, and lsmod.

I. INTRODUCTION

Virtual machine monitor (i.e., hypervisor) [23] has pro-
vided many new opportunities for guest OS administration
(e.g., consolidation, encapsulation, and migration), better se-
curity and reliability [10]. One popular application is the
virtual machine introspection (VMI) [22] that pulls the guest
OS states and inspects them at hypervisor layer. Because
of such higher trustworthiness and stealthiness compared to
running inspection software inside a guest OS, VMI has
been an appealing alternative for many traditional in-VM
based security applications, as demonstrated in recent malware
analysis [31], [13], [43], [44], kernel rootkit defense [46], [28],
and memory forensics [20], [16].

However, it is non-trivial to develop introspection software
at hypervisor layer. When developing software inside an OS,
programmers often have rich semantic abstractions such as
system calls or APIs (e.g., getpid) to inspect kernel states.
However, there are no such abstractions for guest OS at

hypervisor layer, but rather the zeros and ones of raw memory
data. Consequently, developers must reconstruct the guest
OS abstractions from the raw data at hypervisor layer. Such
reconstruction is often called to bridge the semantic gap [10],
which is often challenging and has been the road block for all
of out-of-VM solutions for years.

An intuitive and widely adopted approach to bridging the
semantic gap is to walk through kernel data structures to locate
and interpret the kernel data of interest (e.g., [45], [43], [31],
[5], [9]). However, this approach must rely on the kernel data
structure knowledge, such as the layout of kernel object, and
resolve the points-to relations among data structures [9], [12],
which tends to be very expensive for OS kernels. Moreover,
if there is any kernel update or a need to support different
kernels, this process has to be repeated.

Fortunately, since there already exist many native inspec-
tion programs (e.g., ps, netstat, lsmod) inside an OS,
if we can directly reuse the legacy binary code of these
programs at hypervisor layer, we would not need the above
data structure based approach. Based on this insight, recently
VIRTUOSO [15] and VMST [19] were proposed towards
automatically bridging the semantic gap in VMI by reusing
the legacy binary code.

Specifically, VIRTUOSO [15] leverages a training-based,
whole system dynamic slicing technique to identify the rel-
evant x86 instructions that query the internal state of a guest
OS (e.g., the relevant instructions involved by ps command).
In the second step, VIRTUOSO extracts the identified sequence
of these x86 instructions and lifts them up to a micro operation
instruction set [18]. Finally it translates these micro operation
code to Python code to eventually produce the introspection
tool that can be used for VMI. However, VIRTUOSO suffers
nearly 140X slowdown on average compared to native execu-
tion according to our experimental result in §VII.

In contrast, VMST [19] uses an online kernel data redi-
rection approach that redirects kernel data access under the
execution context of system calls of interest (e.g., getpid
system call when retrieving a pid is needed) without any
training to automatically bridge the semantic gap [20]. In
particular, VMST leverages a taint tracking component [41] to
identify the kernel data which should be redirected during an
introspection process. However, this taint tracking component,
implemented on top of a VM emulator QEMU [18], often
contributes at least 10X slowdown without considering the
emulator overhead. If we also consider the emulator overhead,

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

http://dx.doi.org/10.14722/ndss.2014.23226

<sys_getpid>:

<task_tgid_vnr>:

1: c10583e0: push %ebp

2: c10583e1: mov %esp,%ebp

3: c10583e3: push %ebx

4: c10583e4: sub $0x14,%esp

// Accessing Global Variable: struct task_strut current_task
5: c10583e7: mov %fs:0xc17f34cc,%ebx

c10583ea: R_386_32 current_task

// Accessing struct task_struct: current_task->group_leader
6: c10583fe: mov 0x220(%ebx),%eax

// Accessing struct pid: current_task->group_leader->pids[0]->pid
7: c1058404: mov 0x23c(%eax),%eax

8: c105840a: call c1065660 <pid_vnr>

9: c105840f: add $0x14,%esp
struct upid numbers[1]

unsigned int level 0x4

struct pid

0x1c

int nrstruct upid 0x0

0x23c
struct

pid_link pids[3]

(Line: 7)

0x220

[%fs:0xc17f34cc]

Data Structure Name Data Structure Offset
current_task

(Line: 5)

(a) (b)

struct task_struct *group_leader

struct pid *pid

struct

task_struct

(Line: 6)

Fig. 1: Code Snippet of System Call sys_getpid and the Corresponding Data Structures in Linux Kernel 2.6.32.8.

VMST would have up to hundreds of times performance
slowdown.

As a result, the huge performance overhead of these
existing solutions significantly hinders their practicality, es-
pecially for critical users such as cloud providers who wish
to perform real-time monitoring of VM states at large scale.
Therefore, in this paper we present HYBRID-BRIDGE, a hybrid
approach that combines the strengths of both VIRTUOSO
(from the perspective of offline training) and VMST (from
the perspective of online taint analysis [41] and kernel data
redirection [19]). At a high level, HYBRID-BRIDGE uses an
online memoization [39] approach that caches the trained
meta-data in an online fashion for a hardware-virtualization
based VM (e.g., KVM [33]) to execute the native inspection
command such as ps,lsmod,netstat, and a decoupled
execution approach that decouples the expensive taint analysis
from the execution engine, with an online fall back mechanism
at hypervisor layer to remedy the coverage issue when the
meta-data is incomplete. With such a design, our experimental
results show that HYBRID-BRIDGE achieves one order of
magnitude faster performance than that of similar systems such
as VIRTUOSO and VMST.

More specifically, HYBRID-BRIDGE decouples the expen-
sive online dynamic taint analysis from hardware-based vir-
tualization through online memoization of the meta-data, and
we call this execution component FAST-BRIDGE. However, we
still need a component to perform the slow taint analysis and
precisely tell those redirectable instructions (which are part
of the meta-data), and this is done by the second component
we call SLOW-BRIDGE. Therefore, HYBRID-BRIDGE is a
combination of SLOW-BRIDGE, which extracts the meta-data
using the online kernel data redirection approach from a soft-
ware virtualization-based VM (e.g., QEMU [18]), and FAST-
BRIDGE, a fast hardware virtualization-based execution engine
via memoization of the trained meta-data from SLOW-BRIDGE.
End users will only need to execute the native inspection

utilities in FAST-BRIDGE to perform VMI, and SLOW-BRIDGE
will be automatically invoked by the underlying hypervisor.

HYBRID-BRIDGE does not have the path coverage issues
as VIRTUOSO because it contains a fall back mechanism that
works similarly to the OS page fault handler. That is, whenever
there is a missing meta-data, HYBRID-BRIDGE will suspend
the execution of FAST-BRIDGE and fall back to SLOW-
BRIDGE to identify the missing meta-data for the executing
instructions. After SLOW-BRIDGE identifies the missing meta-
data, it will update and memoize the trained meta-data, and
dynamically patch the kernel instructions in FAST-BRIDGE and
resume its execution. Therefore, HYBRID-BRIDGE executes
the instructions natively in FAST-BRIDGE most of the time.
Only when the trained meta-data is incomplete, it falls back to
the SLOW-BRIDGE. These VM-level fall-back, memoization,
and synchronization can be realized thanks to the powerful
control from hypervisor.

In short, this paper makes the following contributions:

• We present a novel decoupled execution scheme that
decouples an expensive online taint analysis engine
from hardware-based virtualization to achieve efficient
VMI.

• We also propose a novel training memoization that
caches the trained meta-data from software virtual-
ization (e.g., QEMU) to avoid the recomputation of
redirectable instruction identification.

• All these techniques are transparent to the user level
inspection programs as well as end users. Orchestrated
by hypervisor, these techniques together substantially
improve the performance of the existing VMI solu-
tions by one order of magnitude.

• We demonstrate it is practical to have a hybrid
approach to bridging the ideas of two different VMI

2

Memory Snapshot Memory Snapshot

SLOW-BRIDGE FAST-BRIDGE

lsmodlsmod psps

Trusted OS

Inspection Apps

ru
st

ed
 V

M
Memory Snapshot

Untrusted OS

lsmodlsmod psps

Trusted OS

Inspection Apps

ru
st

ed
 V

M

Memory Snapshot

Untrusted OS

…… ……

Data
Redirection

Taint
Tracking

R/W

C
O
W R/O

Data
Redirection

Dynamic
Instruction
Patching

Trusted OS

QEMU

T
r Untrusted OS

KVM

Trusted OS

T
r Untrusted OS

R/W

C
O
W R/O

1133QEMU KVM
Snapshot

2233

33

44 Meta-Data 55 Meta-Data

FALLBACK

SnapshotKernel Inspection Command

SLOW-BRIDGE Starts

SLOW-BRIDGE Finishes FAST-BRIDGE Resumes

Data
Control

22

Command Log2233

33
44 55Training

Memoization

HYBRID-BRIDGE

Fig. 2: An overview of HYBRID-BRIDGE.

solutions (VIRTUOSO and VMST), to improve the
performance of VMST without suffering the path
coverage issues of VIRTUOSO.

The rest of the paper is organized as follows: in §II,
we give an overview of HYBRID-BRIDGE. Then, we provide
the detailed design of each component of HYBRID-BRIDGE,
namely FAST-BRIDGE, SLOW-BRIDGE, and FALLBACK from
§III to §V. In §VI, we share the implementation details. In §VII,
we present our evaluation result. We discuss the limitation and
future work in §VIII, and review related work in §IX. Finally,
§X concludes.

II. BACKGROUND AND OVERVIEW

Observation. Similar to VMST [19], the main goal of
HYBRID-BRIDGE is to enable native inspection utilities (e.g.,
ps, lsmod) to transparently investigate a remote system out-
of-VM. This goal is achieved by forwarding special kernel data
from a remote system (i.e., untrusted VM) to a local system
(i.e., trusted VM).

We use a simple inspection program, GetPid, to illustrate
the basic idea behind HYBRID-BRIDGE. GetPid invokes the
sys_getpid system call to retrieve a running process’s
ID. Fig. 1 (a) shows a code snippet of sys_getpid of
Linux kernel 2.6.32.8. In particular, sys_getpid kicks
off by accessing current_task, a global pointer which
points to the current running task at line 5, then derefer-
ences the group_leader field to access the group leader
task structure at line 6. Next, it dereferences the pointer to
group_leader of task_struct at line 7 to access the
pid field. Note that the real PID value is stored in int

nr field of struct upid. For the sake of brevity we only
show the partial code and the data structures accessed during
sys_getpid illustrated in Fig.1.

It is important to notice that all of these data structures are
accessed by dereferencing a global variable, current_task,
and traversing the subsequent data structures. This obser-
vation, as first discovered by VMST [19], lays one of the
foundations of HYBRID-BRIDGE; namely, by fetching specific
kernel global variables (e.g. current_task) and all of
their derived data structures from the OS kernel of a remote
VM, a commodity inspection tool can automatically achieve
introspection capabilities. We refer to this technique as data
redirection.

System Overview. At a high level, HYBRID-BRIDGE enables
inspection tools in a trusted VM to investigate an untrusted
system memory using native system calls and APIs as if they
are investigating the trusted VM. HYBRID-BRIDGE achieves
this goal by using data redirection (or forwarding) at kernel
level. As shown in Fig. 2, there are three key components
inside HYBRID-BRIDGE: SLOW-BRIDGE, FAST-BRIDGE and
FALLBACK. SLOW-BRIDGE and FAST-BRIDGE are both capa-
ble of redirecting kernel data and enable commodity inspection
tools to investigate the untrusted system memory. The main dif-
ference, as indicated by their names, is the lower performance
overhead in FAST-BRIDGE compared to SLOW-BRIDGE.

Given an introspection tool T , as illustrated in Fig. 2,
HYBRID-BRIDGE executes it in FAST-BRIDGE. With the
Meta-Data provided by SLOW-BRIDGE and memoized by
FALLBACK, FAST-BRIDGE enables T to investigate untrusted
system memory with low overhead. In case that the Meta-Data
is not rich enough to guide FAST-BRIDGE, FAST-BRIDGE will
suspend its VM execution, and request the trusted VM inside
SLOW-BRIDGE to execute T with the same untrusted memory
snapshot as input through FALLBACK component. Similar to
VMST, SLOW-BRIDGE monitors the execution of T and uses
a taint analysis engine to infer the data redirection policy
for each instruction. These inferred information, being part

3

of the Meta-Data, are shared with FAST-BRIDGE. As soon as
FAST-BRIDGE receives the Meta-Data from SLOW-BRIDGE,
it resumes the execution of T .

As a concrete example, assume end users use ps to perform
the introspection of a memory snapshot from an untrused OS.
As illustrated in Fig. 2, if the Meta-Data is sufficient (provided
in step ∞), there will be no FALLBACK and FAST-BRIDGE
executes normally as in step ¨. Otherwise, FAST-BRIDGE will
be suspended, and FALLBACK will be invoked (step ≠) along
with the snapshot of the guest VM and the command log (that
is ps). Next in step Æ, SLOW-BRIDGE will be started with
the guest snapshot and the inspection command (namely ps

in this case) to produce the missing Meta-Data. After SLOW-
BRIDGE finishes (step Ø), it will send the Meta-Data for
training memoization and inform the FALLBACK to resume
the execution of FAST-BRIDGE with the new Meta-Data (step
∞). Step ≠ to ∞ will be repeated whenever the Meta-Data is
missing in FAST-BRIDGE. Except FAST-BRIDGE, the SLOW-
BRIDGE and FALLBACK components are both invisible to end
users.

HYBRID-BRIDGE requires that both trusted VMs in FAST-
BRIDGE and SLOW-BRIDGE deploy the same OS version as
the untrusted VMs. The specific OS version can be identified
through guest OS fingerprinting techniques (e.g., [48], [24]).
In order to efficiently bridge the semantic gap and turn the
commodity monitoring tools into introspection tools, HYBRID-
BRIDGE faces two new challenges: (1) how to pass the control
flow to the hypervisor and to orchestrate FAST-BRIDGE,
SLOW-BRIDGE, and FALLBACK in a seamless way, and (2)
how to identify both the data and instructions that should
be redirected. We will present how these two challenges are
addressed by FAST-BRIDGE and SLOW-BRIDGE in §III and
§IV, respectively.

Threat Model. HYBRID-BRIDGE shares the same threat
model with both VIRTUOSO and VMST; namely, it defeats
directly those attacks that tamper with the in-guest native
inspection software and the guest kernel code (though facing
more attack vectors than VIRTUOSO as discussed in §VIII).
Note that there are three type of VMs involved in HYBRID-
BRIDGE: a guest VM that runs guest OS for a particular
application (e.g., a web or database service), a secure VM that
runs in FAST-BRIDGE, and another secure VM that runs in
SLOW-BRIDGE. We distinguish between trusted and untrusted
VMs. The VM directly faced by attackers is the guest VM and
we call it untrusted VM. The other two VMs are maintained
by hypervisor and are invisible to attackers and we call them
trusted VMs. While HYBRID-BRIDGE can guarantee there
is no untrusted code redirected from untrusted VM to the
local trusted VM, it will not defend against those attacks that
subvert the hypervisors through other means (e.g., exploiting
hypervisor vulnerabilities).

Also note that in the rest of the paper, we refer the
trusted VMs or secure VMs as those (1) maintained by
cloud providers, (2) installed with clean OS (the same ver-
sion with the guest OS), and (3) invisible to attackers.
This can be achieved because cloud providers can physi-
cally isolate HYBRID-BRIDGE with guest VMs. For untrusted
VMs, they could be any type of product VMs (including
KVM/Xen/HyperV, etc.) that offer services to cloud users.

III. FAST-BRIDGE

FAST-BRIDGE is designed with fast performance in mind
and runs in hardware-based virtualization (e.g., KVM) to offer
a VMI solution. It is built based on the key insight that each
kernel instruction executed in a specific system call invocation
S shows a consistent data redirectable behavior for all invo-
cations of S (which forms the basis of the memoization [39]).
For example, sys_getpid in Linux kernel 2.6.32.8 has 14
instructions that need to be redirected by FAST-BRIDGE. These
14 instructions that will always touch the redirectable data are
called redirectable instructions.

To this end, FAST-BRIDGE needs to address two chal-
lenges:

• Performing the data redirection. For example, for
these 14 instructions in sys_getpid, FAST-BRIDGE
needs to redirect their memory access from untrusted
VM to trusted VM. While there is no dynamic binary
instrumentation engine in KVM, FAST-BRIDGE is
still capable of redirecting the data access for these
instructions at hypervisor layer transparently. This
capability is achieved by manipulating the physical to
virtual address translation and dynamic code patching.

• Identifying the redirectable instructions. To iden-
tify the redirectable instruction, it often requires a
taint analysis engine [19], which is heavy and slow.
Therefore, we propose the decoupling of the dynamic
taint tracking engine, the primary contributor to the
performance overhead of VMST, from FAST-BRIDGE
and implant it into SLOW-BRIDGE. As a result, SLOW-
BRIDGE executes the expensive taint analysis and
provides the list of redirectable instructions for FAST-
BRIDGE to bridge the semantic gap efficiently.

FAST-BRIDGE is depicted in the right hand side of Fig.
2. In this section, we present the detailed design of FAST-
BRIDGE.

A. Variable Redirectability

A redirectable variable is defined as the data in a kernel
data structure that is accessed by inspection tools to reveal
the system status. These data are redirectable because if a
monitoring tool in a secure VM is fed with redirectable
data from untrusted VM, it will report the internal status of
untrusted VM as if for the secure VM.

The most intuitive way to identify redirectable variables is
by monitoring the behavior of introspection tools. As discussed
in §II, an introspection tool usually starts an investigation by
first accessing specific kernel global variables and then follows
them to traverse the kernel internal data structures. These
specific global variables and internal data structures, traversed
through pointer dereferences, would belong to redirectable
variables. We will describe how SLOW-BRIDGE uses a taint
tracking engine to identify redirectable variables in greater
details in §IV-B.

B. Instruction Redirectability

An instruction that accesses redirectable variable is defined
as redirectable instruction. In general, kernel instructions are

4

divided into six categories based on how they interact with the
redirectable variables. Since SLOW-BRIDGE contains a taint
analysis engine, it is able to categorize the instructions. The
details on how SLOW-BRIDGE categorizes them are presented
in §IV-C. In the following, we describe what these categories
are and why we have them:

1) Redirectable: An instruction whose operand always ac-
cesses redirectable variables is called redirectable in-
struction. Instructions at line 5, 6 and 7 in Fig. 1 (a) are
the samples of such instructions, and the corresponding
redirectable variables for these instructions are depicted
in Fig. 1 (b). FAST-BRIDGE forwards all the memory ac-
cess of redirectable instructions to the untrusted memory
snapshot from the secure VM.

2) Non-Redirectable: An instruction that never interacts with
redirectable variables is categorized as non-redirectable.
For example, instructions at line 1, 3 and 8 in Fig. 1 (a)
fall into this non-redirectable instruction category. FAST-
BRIDGE confines these instructions to the memory of the
local secure VM only.

3) Semi-Redirectable: Semi-Redirectable instructions have
two memory references, and they copy data values be-
tween redirectable variables and non-redirectable vari-
ables. For instance, push[%fs:0xc17f34cc] is a
sample of such an instruction, because this push instruc-
tion reads a global redirectable variable (of interest) and
copies it to the stack which is non-redirectable.

FAST-BRIDGE forwards the redirectable variable memory
access to the untrusted memory snapshot and confines the
non-redirectable memory access to the local secure VM.
For push[%fs:0xc17f34cc], FAST-BRIDGE reads
the global variable (a redirectable variable) from the
untrusted memory snapshot and saves it on top of the
secure VM’s stack that is non-redirectable.

4) Bi-Redirectable: If an instruction shows both redirectable
and non-redirectable behavior in different execution con-
text, it is labeled as bi-redirectable. For example, function
strlen, which returns the length of a string, can be
invoked to return the length of either redirectable or non-
redirectable strings in different kernel kernel execution
context.

As such, for each invocation of a bi-bedirectable instruc-
tion, FAST-BRIDGE must determine whether to redirect
the data access (e.g., the argument of strlen) to un-
trusted memory snapshot or confine it to the local secure
VM based on the execution context, which is defined as
the kernel code path from the system call entry to the
point of the bi-redirectable instruction execution.

One of the key observations in HYBRID-BRIDGE is that
for a specific execution context, a bi-redirectable instruc-
tion always shows the same redirection policy. (Otherwise
the program behavior is non-deterministic). Introspection
program is deterministic: given the same snapshot, it
should always give the same output. Therefore, we can
determine the correct data redirection policy of a bi-
redirectable instruction based on its execution context. To
this end, HYBRID-BRIDGE first trains the data redirection

policy for each bi-bedirectable instruction (using SLOW-
BRIDGE), and then memoizes the same data redirection
policy in the next execution of the same kernel code path
in FAST-BRIDGE.

5) Neutral: Instructions in this category do not reference
memory. Instructions at line 2 and 4 of Fig. 1 (a) are
labelled as neutral instructions. Since these instructions
do not access memory, FAST-BRIDGE does not impose
any memory restriction with them.

6) Unknown: All the instructions that are not categorized
in any of above categories are called unknown. This
category is crucial for the synchronization and training
data memoization between FAST-BRIDGE and SLOW-
BRIDGE. Specifically, just before an unknown instruc-
tion gets executed, FAST-BRIDGE passes the control to
FALLBACK component to ask SLOW-BRIDGE to provide
detailed instruction categorization information for the
same snapshot. §V will describe the fall-back mechanism
in greater details.

C. Data Redirection Using Dynamic Patching

Observation. Having identified the redirectable instructions,
we must inform the CPU and let it redirect the data access
from secure-VM to untrusted VM for these instructions. We
could possibly use static kernel binary rewriting, but this
approach faces serious challenges such as accurate disassembly
and sophisticated kernel control flow analysis [49]. Then
an appealing alternative would be to use dynamic binary
instrumentation through emulation based virtualization such as
QEMU [3], but this approach suffers from high performance
overhead [19]. In contrast, we would like to run hardware
assisted virtualization such as KVM and thus we must exploit
new approaches.

Fortunately, we have a new observation and we propose
hijacking the virtual to physical address translation to achieve
data redirection in FAST-BRIDGE. In general, CPU accesses
data using their virtual addresses and the memory management
unit (MMU) is responsible to translate the virtual address
to physical address using page tables. By manipulating page
table entries, we are able to make a virtual address translate
to a different physical address. Therefore, FAST-BRIDGE can
redirect a memory access by manipulating the page table in
a way that a redirectable virtual address is translated to the
physical address of untrusted memory snapshot. FAST-BRIDGE
chooses this novel approach because it neither requires any
static binary rewriting of kernel code, nor suffers from high
overhead as of dynamic binary instrumentation. To the best of
our knowledge, we are the first to propose such a technique
for transparent data redirection as an alternative to static binary
code rewriting or dynamic binary instrumentation.

Our Approach. More specifically, after loading an untrusted
memory snapshot, FAST-BRIDGE controls data redirection by
manipulating the physical page number in page tables. In
order to redirect memory access for a redirectable variable
v, FAST-BRIDGE updates the physical page number of the
page containing v with a physical page number of a page in
untrusted snapshot which contains the same variable v. Then
FAST-BRIDGE flushes the TLB. From now on, any memory

5

L
in

e
N

u
m

b
er

In
st

ru
ct

io
n

T

y
p

e Original
Code Page

Non-Redirectable
Code Page

Redirectable
Code Page

1 NR <sys_getpid>:

<task_tgid_vnr>:

c10583e0: push %ebp push %ebp int 3

2 N c10583e1: mov %esp,%ebp mov %esp,%ebp mov %esp,%ebp

3 NR c10583e3: push %ebx push %ebx int 3

4 N c10583e4: sub $0x14,%esp sub $0x14,%esp $0x14,%esp

5 R c10583e7: mov %fs:0xc17f34cc,%ebx

c10583ea: R_386_32 current_task

int 3 mov %fs:0xc17f34cc,%ebx

c10583ea: R_386_32 current_task

6 R c10583fe: mov 0x220(%ebx),%eax int 3 mov 0x220(%ebx),%eax

7 R c1058404: mov 0x23c(%eax),%eax int 3 mov 0x23c(%eax),%eax

8 NR c105840a: call c1065660 <pid_vnr> call c1065660 <pid_vnr> int 3

9 N c105840f: add $0x14,%esp add $0x14,%esp $0x14,%esp

10 NR c1058412: pop %ebx pop %ebx int 3

11 NR c1058413: pop %ebp pop %ebp int 3

12

…
NR c1058414: ret

...

ret

...

int 3

36 U c106551a: xor %eax,%eax int 3 int 3

37 U c106551c: add $0x1c,%esp int 3 int 3

VMexit

(a) (b) (c)

VMexit

Instruction Types:

NR: Redirectable

NR: Non-Redirectable

NN: Neutral

NU: Unknown

TABLE I: A Code Snippet of sys_getpid and the Corresponding Patched Code for Non-Redirectable and Redirectable Page

access to v is redirected to untrusted memory snapshot because
all the virtual to physical address translations for variable
v points to the desired physical page in untrusted snapshot.
FAST-BRIDGE employs a similar technique to confine the
memory access within the secure VM.

Note that changing the page table for each single instruc-
tion will introduce performance overhead, and in fact FAST-
BRIDGE can avoid most of the overhead due to the instruction
locality. In particular, usually instructions with similar type are
located beside each other (this can be witnessed from Table I)
and FAST-BRIDGE leverages this feature to avoid frequent
page table updates for each instruction and set the page table
once for all the adjacent instructions of the same type. FAST-
BRIDGE uses code patching described below to inform KVM
when the page table should be updated.

Dynamic Code Patching. As mentioned before, FAST-
BRIDGE switches the data redirection policy by manipulating
the page tables. An important question popping up is “how
FAST-BRIDGE informs KVM it is time to change the data
redirection policy”. In our design, FAST-BRIDGE employs
int3, a common technique used by debuggers to set up a
break point. FAST-BRIDGE overwrites the first instruction that
has a different redirection policy from the previous instructions
by int3. In this way, when an int3 is executed, KVM
catches the software trap and knows this is the time to change
the data redirection policy by manipulating the page table.

For instance, instructions in line 1-4 of sys_getpid in
column (a) of Table I are non-redirectable or neutral and they
are executed with no data redirection policy. But instruction at
line 5 is redirectable and has a different data redirection policy
from previous instructions and thus FAST-BRIDGE patches
instruction at line 5 as shown in column (b) of Table I. Next,
when FAST-BRIDGE executes the code page as of column (b)
of Table I, int3 at line 5 will cause a software trap and notify
the KVM to change the data redirection policy.

The next question is “what should happen to the instruc-
tions that are overwritten by int3?” FAST-BRIDGE actually
makes several copies of the kernel code to make sure kernel
control flow would not be affected in spite of the dynamic code
patching. More precisely, FAST-BRIDGE makes four copies
of kernel code pages namely redirectable code page, non-
redirectable code page, semi-redirectable code page and bi-
redirectable code page. Each code page has some part of
original kernel code page as well as int3 patches for the
unknown instructions if there is any.

FAST-BRIDGE constructs non-redirectable code page by
copying all the non-redirectable and neutral kernel instruc-
tions and patch all the remaining instructions (redirectable,
semi-redirectable, bi-redirectable, and unknown instructions)
with int3. The column (b) in Table I depicts a non-
redirectable code page which is derived from a code snippet of
sys_getpid in column (a) of Table I. Instructions in lines
5, 6 and 7 in column (b) of Table I are patched because they

6

are redirectable and instructions at lines 36 and 37 are patched
since they are unknown instructions.

More specifically, FAST-BRIDGE constructs each code page
with kernel instruction of the corresponding category as well
as the kernel neutral instructions. The rest instructions of
that category are all patched with int3 to make sure KVM
always takes control and changes the data redirection for
different categories of instructions. FAST-BRIDGE constructs
redirectable, semi-redirectable and bi-redirectable code pages
by following this rule. For example, column (c) of Table I
shows redirectable code page which contains redirectable and
neutral instructions.

As we mentioned earlier, each of the four kernel code
pages has a special data redirection policy and FAST-BRIDGE
overwrites the instruction whose data redirection policy does
not match with the code page policy with an int3. Such a
simple technique notifies KVM the right moment to change
the data redirection policy. An important advantage of using
four different kernel code pages embedding with int3 is that
FAST-BRIDGE preserves the original kernel control flow as
what it should be, and changes the data redirection policy
without the need of any sophisticated kernel control flow
analysis.

Considering the virtual address of instructions in Table
I (b) and Table I (c), we notice that FAST-BRIDGE maps
the redirectable and non-redirectable code pages at the same
virtual address to preserve the kernel control flow. In other
words each time FAST-BRIDGE changes the data redirection,
it also re-maps the appropriate kernel code page. Next, we
describe how FAST-BRIDGE uses Algorithm 1 at the right
moment to map appropriate code page for each data redirection
policy.

The Control Transfers of the Patched Code. While instruc-
tions in FAST-BRIDGE have six different categories, control
flow will be as usual for neutral instructions. As such, in the
following we focus on the other five categories and describe
how FAST-BRIDGE uses Algorithm 1 to choose the appropriate
kernel code page and map it for each different category during
the kernel instruction execution:

1) Non-Redirectable: As described earlier, non-redirectable
instructions should be restricted to the secure VM mem-
ory. Line 7 of of Algorithm 1 restricts the memory access
to the local secure VM by using the original secure VM’s
page table and the non-redirectable code page through
manipulating the page table entires. Table I (b) shows
a non-redirectable code page which is mapped to the
same virtual address as original kernel code page in Table
I (a). We can see that the original program semantics
is still preserved. For instance, instructions in lines 1-
4 of non-redirectable code page in Table I (b) would
be executed just like the original kernel code page but
instruction 5, int3, would cause a software trap and a
VM exit. KVM then looks up the data redirection policy
for this instruction and finds out that instruction 5 is a
redirectable instruction by querying the memoized Meta-
Data, and consequently redirectable code page will be
mapped and executed.

Algorithm 1: SetPageTable(MD, pc, stack): Construct
Page Table to Enforce Data Redirection based on Instruc-
tion Type

Input: Meta-Data MD shared by SLOW-BRIDGE, Program
Counter of instruction under investigation pc and
Kernel stack of secure VM stack

Output: Return Appropriate PageTable to Enforce Data
Redirection for instruction located at address pc

1 Instruction Type it MD .InstructionType[pc];
2 if IsBi-Redirectable(it) then
3 CallSiteChains CSCs MD .CallSiteChain[pc];
4 it Match&FindType(stack , pc,CSCs)

5 switch it do
6 case Non-Redirectable:
7 return [Original Secure VM PageTable

+ Non-Redirectable Code Page];
8 case Redirectable:
9 return [Untrusted Snapshot PageTable

+ Redirectable Code Page];
10 case Semi -Redirectable:
11 return [Untrusted Snapshot PageTable

+ Original Secure VM PageTable[stack]
+ Semi -Redirectable Code Page];

12 case Unknown:
13 call FALLBACK

2) Redirectable: All the data access for redirectable instruc-
tions should be forwarded to untrusted memory snapshot
and the redirectable code page should be mapped instead
of the original kernel code. To this end, line 9 of
Algorithm 1 manipulates the page table to point to the
untrusted VM snapshot. During virtual to physical address
translation in secure VM using manipulated page table
entires, virtual addresses of secure VM are translated into
physical addresses of untrusted memory snapshot. In this
way secure VM (i.e., our KVM) can access the snapshot
memory of the untrusted VM transparently.

Line 9 of Algorithm 1 also maps redirectable kernel
code page. Table I (c) illustrates the redirectable kernel
code page of sys_getpid shown in Table I (a). Using
Algorithm 1, KVM changes the page table and maps
the redirectable code page, then instructions 5-7 are
executed while accessing the untrusted memory snapshot.
Instruction 8 of redirectable code page, int3, informs
KVM to change the data redirection policy to non-
redirectable by raising a software trap.

3) Semi-Redirectable: Based on semi-redirectable instruc-
tion definition, these instructions are allowed to reference
non-redirectable data (i.e., stack) in trusted VM and the
redirectable data of untrusted VM. Line 11 of Algorithm
1 manipulates page table to map the memory of un-
trusted VM snapshot, trusted VM kernel stack and semi-
redirectable code page.

4) Bi-Redirection: For bi-redirection instructions, whether
they are redirectable depends on the execution context.
Ideally, we should use the kernel code execution path to
precisely represent the execution context. To that end, we

7

have to instrument all the branch and call instructions to
track the path, which is very expensive and contradicts
our design. Therefore, we use a lightweight approach to
approximate the kernel execution path.

Specifically, we use a combination of the instruction
address (i.e., the PC) and the Call-Site-Chain (CSC),
which is defined as a concatenation of all return addresses
on the kernel stack, as the representation of a unique
execution context. SLOW-BRIDGE provides a set of CSC
that are stored in the Meta-Data for each bi-redirection
instruction bi. While this approximation is less precise,
our experimental results (§VII) reveal that for each bi, the
CSC and PC uniquely distinguishes the execution con-
text. If it happens that CSC and PC are not sufficient to
distinguish the correct execution context, then HYBRID-
BRIDGE will fail and we have to warn the user, though
we have not encountered such a case. Note that HYBRID-
BRIDGE is able to detect this by simply checking the
Meta-Data.

In particular, before a bi gets executed, as illustrated
in line 3 of Algorithm 1 FAST-BRIDGE retrieves the
CSCs for current instruction pointed by PC from the
Meta-Data. Line 4 of Algorithm 1 then matches CSCs
with current kernel stack. If any of the CSCs matches
with current stack then FAST-BRIDGE picks the correct
data redirection policy between redirectable or non-
redirectable and resumes the execution. Otherwise, the
instruction type would be unknown and FALLBACK is
invoked to find the appropriate policy.

To retrieve the CSC from the current kernel stack, FAST-
BRIDGE reads each specific return address from the offset
location information provided by the memoized Meta-
Data. This offset location of a return address inside
a stack frame is acquired by SLOW-BRIDGE through
dynamic binary instrumentation. In other words, we do
not actually need guest kernel to be compiled with stack
frame pointer.

5) Unknown: If an unknown instruction (e.g., line 36 in
Table I) gets executed, KVM catches the software trap and
queries Algorithm 1. Since FAST-BRIDGE dose not know
the corresponding data redirection policy for unknown
instructions, lines 13 and 14 of Algorithm 1 falls back
to SLOW-BRIDGE to find out the correct data redirection
policy. This is the only moment when SLOW-BRIDGE will
get invoked in HYBRID-BRIDGE.

IV. SLOW-BRIDGE

SLOW-BRIDGE, as depicted in the left hand side of Fig. 2,
consists of (1) a trusted VM that is installed with the same
version of the guest OS kernel as of FAST-BRIDGE, and
(2) an untrusted guest OS memory snapshot forwarded by
FALLBACK from FAST-BRIDGE. SLOW-BRIDGE provides two
important services for FAST-BRIDGE:

• Instruction Type Inference. As discussed in §III-B,
instructions are classified into six different categories,
and the classification is done by SLOW-BRIDGE.

• Fall Back Mechanism. When FAST-BRIDGE faces a

E TV[E] Comments
c 0 Constants are always untainted

esp 1 Stack pointer is always tainted
R TV[R] Taint value of register or memory

R
R := R

0
TV [R] := TV [R0]

R := ⇤(R0) TV [R] := TV [⇤R0] ⇤ is the dereference operator
(⇤R) := R

0
TV [⇤R] := TV [R0]

R

0
op R

00
TV [R0] || TV [R00] op represents a binary arithmetic

or bitwise operation
op R

0
TV [R0] op represents a unary arithmetic or

bitwise operation

TABLE II: Taint Propagation Rules

new code path and does not know the appropriate data
redirection policy, SLOW-BRIDGE provides a vital fall
back mechanism to deal with this issue.

At a high level, SLOW-BRIDGE works as follows: when
an inspection tool inside the trusted VM of SLOW-BRIDGE
invokes a system call, it will then identify the system call of
interest (§IV-A), pinpoint the redirectable variables (§IV-B),
infer the corresponding redirectable instruction types (§IV-C),
perform data redirection (§IV-D), and share the Meta-Data
with FAST-BRIDGE. In the following, we present how SLOW-
BRIDGE works regarding these behaviors.

A. Detecting the System Calls of Interest

SLOW-BRIDGE is interested in systems calls that reveal
the internal states of an OS. In terms of the identification
of the system call interest, SLOW-BRIDGE has no difference
compared to VMST. Specifically, SLOW-BRIDGE is interested
in two types of system calls: (1) state query system calls (e.g.
getpid) and (2) file system related system calls which inspect
the kernel by reading the proc files. SLOW-BRIDGE follows
a similar approach to VMST and inspects 14 file system and
28 state query system calls (c.f., [19]).

B. Redirectable Variables Identification

Redirectable variables, described in §III-A, are kernel data
accessed by inspection tools to reveal the system status. There
are two approaches to identify redirectable variables. The
first approach follows a typical introspection footsteps by
reading interesting kernel global variables which are exported
in System.map. Following the global variables, introspection
tools reach out to kernel data structures in heap and extract
system status. Finding relevant set of global variables for each
system call is a challenging task especially considering the fact
that this list has to be tailored for different versions of OSes.

As such, the second approach focuses on non-redirectable
variables and redirects the rest of kernel data in the specific
system call execution context. A simple definition of non-
redirectable variable is all variables derived from kernel stack
pointer (i.e., esp) which are tied to the local trusted system.
SLOW-BRIDGE follows the second approach and embodies a
taint analysis engine to find all the data derived from esp.
Note that this approach has been proposed in VMST [19] and
SLOW-BRIDGE has no technical contribution regarding this.

The taint analysis engine maps each register and memory
variable to a boolean value called taint value (TV). All TVs are

8

initialized to zero except the taint value of esp (TV[esp])
which is set to one. The initial taint values indicates that at the
start of a system call, esp is the only data that is considered
non-redirectable. A concise description of the rules for taint
propagation is presented in Table II, though more detailed rules
and design can be found in [19]. All the access to variable
R with TV[R] equal to zero is redirected to the untrusted
memory snapshot. If TV[R] is equal to one, FAST-BRIDGE
would use the local value of variable R from trusted VM.

C. Inferring Instruction Redirectability

Tracking redirectable variables also enables SLOW-
BRIDGE to infer kernel instruction’s data redirection types
based on their interaction with the redirectable variables. To
this end, SLOW-BRIDGE logs every instructions executed along
with all the memory references in the context of a monitored
system call. SLOW-BRIDGE then traverses the log file to infer
each instruction into one of the instruction category mentioned
in §III-B. More specifically, SLOW-BRIDGE uses the following
rules to infer the instruction redirection type:

1) Redirectable: If all execution records of an instruction
always accesses the redirectable variables, this instruction
is categorized as redirectable instruction.

2) Non-redirectable: If all execution records of an in-
struction always accesses non-redirectable variables, this
instruction is a non-redirectable instruction.

3) Semi-Redirectable: If an instructions access two vari-
ables, one redirectable and the other non-redirectable in a
single record, this instruction is called semi-redirectable.

4) Bi-Redirection: If there are several execution records
showing that an instruction accesses redirectable and non-
redirectable variables always in different execution con-
text, then this instruction is categorized as bi-redirectable.

Note that having taint tracking engine, SLOW-BRIDGE
infers whether bi-redirectable instruction is referencing
redirectable or non-redirectable variable in each execu-
tion. But FAST-BRIDGE needs a mechanism to differ-
entiate between different invocations of bi-redirectable
instructions, and it relies on Meta-Data information pro-
vided by SLOW-BRIDGE to enforce correct data redirec-
tion for each execution of bi-redirectable instruction.

In particular, before each bi-redirectable instruction gets
executed, SLOW-BRIDGE extracts the value of all return
addresses on the stack as well as their location offsets with
respect to the base address of the stack, and stores them
in the Meta-Data. The return value is used to form the
Call-Site-Chain (CSC) as a signature in the training data,
and the offset list is to facilitate FAST-BRIDGE retrieving
these return addresses at run-time in the FAST-BRIDGE
kernel stack.

5) Neutral: An instruction with no record of memory access
in the log is categorized as neutral instruction.

6) Unknown: All the instructions which are not executed
in the context of a system call are labelled as unknown
instructions, which is crucial for FALLBACK to take

over the control and invoke SLOW-BRIDGE to infer the
instruction redirection type.

D. Data Redirection

SLOW-BRIDGE enables the trusted VM to access the
untrusted memory snapshot transparently by forwarding all
the access of redirectable variable to the untrusted snapshot
memory. Unlike in FAST-BRIDGE which uses a page manip-
ulation technique to redirect the data, SLOW-BRIDGE uses
memory emulation at VMM level. More details on how to
use emulation-based VM for data redirection can be found in
VMST [19].

V. FALLBACK

The key component to connect FAST-BRIDGE and SLOW-
BRIDGE is the FALLBACK, which is shown in the middle of
Fig. 2. Since FAST-BRIDGE uses the Meta-Data provided by
SLOW-BRIDGE through dynamic analysis, there might exist
instructions that have not been trained by SLOW-BRIDGE and
we call them unknown instructions. At a high level, if FAST-
BRIDGE faces an unknown instruction (ui in short) during the
execution, it suspends its execution and falls back to SLOW-
BRIDGE through FALLBACK.

The rationale for such an OS page fault style fall back
mechanism is based on the observation that if FALLBACK
passes the same untrusted memory snapshot and introspection
command to SLOW-BRIDGE, then the trusted VM (i.e., the
QEMU emulator) in SLOW-BRIDGE would invoke the same
command and eventually execute the same ui. Because we
run the same code to examine the same state of the untrusted
memory snapshot, the program should follow the same path
and finally touch the same ui in both trusted VMs of FAST-
BRIDGE and SLOW-BRIDGE (the deterministic property of the
introspection program).

In order to execute the same introspection command
in trusted VM inside SLOW-BRIDGE, there are several ap-
proaches: one is to use network communication to connect
the trusted VM from hypervisor and invoke the command,
the other is to use a process implanting approach [25] to
inject the introspection process in trusted VM or use the in-
VM assisted approach that installs certain agent inside trusted
VM to invoke the command. After the introspection command
finishes the execution in the trusted VM, SLOW-BRIDGE will
update the Meta-Data, which is implemented using a hash
table for the memoization, and then inform FALLBACK to
resume the execution of trusted VM in FAST-BRIDGE for
further introspection.

VI. IMPLEMENTATION

We have developed a proof-of-concept prototype of
HYBRID-BRIDGE. Basically, we instrument KVM [33] to
implement FAST-BRIDGE and FALLBACK component, and
modify VMST [19] to implement SLOW-BRIDGE. Specifically:

FAST-BRIDGE. FAST-BRIDGE provides three main function-
alities and they are implemented in the following way:

• Guest VM system call interception: To activate
the data redirection policy on the system calls of

9

App. Name Description Neutral Non-Red. Red. Semi-Red. Bi-Red. Syntax Equal Semantics Equal
getpid Displays the current process pid 32 28 10 1 0 7 X

gettime Reports the current time 31 17 1 1 0 7 X
hostname Shows the system’s host name 92 53 26 1 0 X X

uname Prints system information 92 53 26 1 0 X X
arp Manipulates the system ARP cache 4649 3383 1852 55 34 X X

uptime Tells how long the system has been running 2339 1781 908 24 0 7 X
free Displays amount of free and used memory 2497 1958 987 28 0 7 X

lsmod shows the status of modules in kernel 2418 1752 923 26 19 X X
netstat Prints network connections statistics 2884 2020 1106 31 7 X X
vmstat Reports virtual memory statistics 2865 2432 1086 32 0 7 X
iostat Reports CPU statistics 3472 2793 1299 30 26 7 X
dmesg Prints the kernel ring buffer 106 54 13 2 0 X X
mpstat Reports processors related statistics 3219 2650 1205 44 21 7 X

ps Displays a list of active processes 5181 4185 1825 51 14 7 X
pidstat Reports statistics for Linux tasks 4325 3678 1630 44 28 7 X

TABLE III: Correctness Evaluation Result of HYBRID-BRIDGE and the Statistics of the number of each Instruction Types.

interest, FAST-BRIDGE needs to intercept all the guest
VM system calls. We implement the system call
interception feature atop a recent KVM based system
call interception system Nitro [47].

• Data redirection: As described in §III-C, FAST-
BRIDGE manipulates guest OS page table to achieve
a transparent data redirection.

• Finding the exact time to change the data redi-
rection policy: As mentioned earlier, FAST-BRIDGE
changes the data redirection policy only when the
instruction type of the next-to-be-executed instruction
is different with the current one. To this end, FAST-
BRIDGE needs an efficient mechanism to notify when
the current data redirection policy should be changed.
As described in §III-C, FAST-BRIDGE uses a software
trap technique to notify KVM to change the data redi-
rection policy. In particular, FAST-BRIDGE employs
Exception Bitmap, a 32-bit VM-Execution control
filed that contains one bit for each exception. If the
forth bit of the Exception Bitmap is set, then an int3
execution in guest VM will cause a VMExit. Using
this technique KVM is notified to take the control and
change the data redirection policy accordingly. In total,
we added 3.5K LOC to implement FAST-BRIDGE in
KVM code base.

SLOW-BRIDGE. We reused our prior VMST code base (es-
pecially the taint analysis component) to implement SLOW-
BRIDGE. Additionally, we developed over 1K LOC atop VMST
to infer the instruction’s data redirection type (described in
§IV-C) and memoizes it in the Meta-Data.

FALLBACK. We did not adopt the process implanting or in-VM
agent assisted approach to implement FALLBACK, and instead
we use a network communication approach. In particular, in
order to run the same introspection command in trusted VM
inside SLOW-BRIDGE, FALLBACK dynamically creates a shell
which uses ssh to invoke the command through system API
such that FALLBACK can precisely know when the command
finishes. Also, this ssh shell did not introduce any side effect
for our introspection purpose regarding the untrusted memory
snapshot. Also, it is straightforward to implement the logic
for parsing the command log, managing the Meta-Data, and

controlling the VM states. In total, we developed 300 LOC for
FALLBACK.

VII. EVALUATION

In this section, we present our evaluation results. We
took 15 native inspection tools to examine the correctness
of HYBRID-BRIDGE, and we report this set of experiment
in §VII-A. Then we evaluate the performance overhead of
HYBRID-BRIDGE, and compare it with both VIRTUOSO and
VMST in §VII-B. Note that we have the access to the source
code of VIRTUOSO (as it is public open [14]) as well as our
own VMST source code.

We run VMST, VIRTUOSO and HYBRID-BRIDGE on a box
with Intel Core i7 and 8GB of physical memory to collect the
performance results. Ubuntu 12.04 (kernel 2.6.37) and Debian
6.04 (kernel 2.6.32.8) were our host and guest OS, respectively.

A. Correctness

To evaluate the correctness of HYBRID-BRIDGE, we use
a cross-view comparison approach as in VMST. Specifically,
we first execute the native inspection tools shown in the first
column of Table III on an untrusted VM and save their outputs.
Then we take a memory snapshot of the untrusted VM and use
HYBRID-BRIDGE to execute the same set of inspections tools
inside the trusted VM and compare the two outputs.

The eighth column of Table III shows that six inspection
tools have exactly the same output for this two rounds of
execution. The manual investigation of the remaining nine
tools shows that the slight differences in outputs are due to the
timing. For example date and uptime have different output
because there is a time difference between running them on the
untrusted OS and taking the snapshot. If we consider this time
difference then the output are similar. Another example is ps
which also has a small difference in output. The ps command
in untrusted OS shows itself in the list of processes but when
we take the snapshot right after ps execution, ps is not
running anymore thus the output of HYBRID-BRIDGE shows
one process less compared to untrusted OS output. The last
column of Table III shows that considering timing differences
the output of all 15 tools are semantically equivalent.

In addition, Table III also presents the statistics of the dif-
ferent instruction types categorized by SLOW-BRIDGE during

10

HYBRID-BRIDGE w/
App. KVM VMST HYBRID-BRIDGE w/o Full Meta-Data (sec.) HYBRID-BRIDGE Speedup Slowdown
Name (sec.) (sec.) any Meta-Data (sec.) (i.e. FAST-BRIDGE) #VMExit FAST-BRIDGE vs. VMST FAST-BRIDGE vs. KVM
getpid 0.004 0.423 1.976 0.005 2 84.60X 1.25X
gettime 0.004 0.392 1.985 0.005 4 78.40X 1.25X

hostname 0.004 0.488 2.199 0.005 10 97.60X 1.25X
uname 0.003 0.389 2.211 0.005 10 77.80X 1.66X

arp 0.086 0.739 2.360 0.094 1852 7.86X 1.09X
uptime 0.005 0.591 1.810 0.012 1892 49.25X 2.40X

free 0.007 0.627 2.755 0.017 3927 36.88X 2.42X
lsmod 0.018 1.034 2.329 0.048 11875 21.54X 2.66X
netstat 0.014 1.454 1.719 0.107 23165 13.59X 7.64X
vmstat 0.007 2.195 4.186 0.109 86578 20.13X 15.57X
iostat 0.01 2.323 5.047 0.120 97390 19.35X 12.00X
dmesg 0.155 8.622 4.845 0.295 11663 29.22X 1.90X
mpstat 0.008 1.635 4.460 0.153 124525 10.68X 19.12X

ps 0.009 6.623 10.047 0.481 418124 13.76X 53.44X
pidstat 0.016 8.095 12.585 0.598 490713 13.53X 37.37X

TABLE IV: Performance of each component of HYBRID-BRIDGE and its comparison with VMST.

the execution of each command. These are shown from the
third to seventh columns. An interesting observation can be
drawn from these statistics is that semi-redirectable and bi-
redirectable instructions tend to be rare compared to other
instruction categories, and the majority of the instructions are
either neutral, or non-redirectable.

Also, note that HYBRID-BRIDGE does not have a direct
correspondence with the size of the user level program, and
all of our instrumentation execution occurs at kernel level for
the system call of interest, which is the primary factor for the
scalability of our system. For instance, the first three programs
in Table III have less monitored instructions even though their
user level code size is as big as others. In our experiment,
ps command has the largest number of trapped instructions
according to Table III. More specifically, we dynamically
observed over four million instruction execution at kernel side,
which is in total 10, 244 unique instructions according to sum
of the third column to the seventh of Table III.

B. Performance Evaluation

HYBRID-BRIDGE is designed to significantly improve the
performance of existing VMI solutions. In this subsection, we
present how and why HYBRID-BRIDGE advances the state-of-
the-art and meets our design goals.

Table IV shows the execution time of inspection tools
tested in §VII-A. The second and fifth columns of Table IV
display the execution time of inspection tools on a vanilla
KVM and FAST-BRIDGE, respectively. Comparing these two
columns reveals that FAST-BRIDGE has on average 10X
slowdown compared to the vanilla KVM. Fig. 3 illustrates the
details of the performance evaluation for each inspection tool
in FAST-BRIDGE compared to KVM.

The fourth column of Table IV displays the execution time
of inspection tools in SLOW-BRIDGE. Taint analysis engine
and the full emulation architecture of QEMU are the two main
contributors to 150X slowdown of SLOW-BRIDGE compared
to FAST-BRIDGE.

The third column of Table IV shows the running time
for VMST. FAST-BRIDGE speedup compared to VMST is
illustrated in the sixth column as well as in Fig. 4. It is

0

10

20

30

40

50

60

S
lo

w
d

o
w

n
 (

ti
m

es
)

Fig. 3: FAST-BRIDGE Slowdown Compared to KVM.

0
10
20
30
40
50
60
70
80
90

100

S
p

ee
d

u
p

 (
ti

m
es

)

Fig. 4: FAST-BRIDGE Speedup Compared to VMST.

important to notice that FAST-BRIDGE on average has 38X
speedup compared to VMST.

Speedup and Slowdown Gap. After examining the perfor-
mance data, a natural question that pops up is why there is
a huge gap between speedup of inspection tools in Table IV?
The very same question should be also answered for slowdown
gap between inspection tools. While there are several reasons
to justify the speedup or slowdown gap, we believe the main
contributor is the number of VMExits.

As we mentioned in §III-C FAST-BRIDGE notifies KVM
to change the data redirection policy by using code patching
technique. The software trap, raised by code patching, causes a
VMExit and transfers the execution to the KVM, as illustrated
in Table I. The sixth column of Table IV shows the number of

11

App. #X86 Inst. in FAST-BRIDGE vs.
Name Description Native (sec.) VIRTUOSO (sec.) VIRTUOSO FAST-BRIDGE (sec.) VIRTUOSO

gettime Tells current time of system 0.004 0.023 482 0.005 4.60X
getpid Shows pid of current process 0.004 0.024 516 0.005 4.80X
tinyps A compact version of PS 0.020 1.501 140843 0.064 23.45X

getprocname Displays current Process Name 0.006 2.716 294797 0.132 20.57X

TABLE V: Performance comparison of FAST-BRIDGE and VIRTUOSO

VMExit during the corresponding inspection tools’ execution.
We also illustrate this fact in Fig. 3, which sorts the inspection
tools based on the number of VMExits. We can observe
from Fig. 3 that as the number of VMExits increases from
left to right, FAST-BRIDGE slowdown compared to vanilla
KVM jumps from 25% to more than 20X. This trend clearly
illustrates that VMExit is the main contributor to the FAST-
BRIDGE overhead.

The FAST-BRIDGE speedup illustrated in Fig. 4 also
indicates the negative effect of VMExit on FAST-BRIDGE. In
particular, Fig.4 shows as the number of VMExit increases
from left to right, the speedup factor drops dramatically. For
example getpid achieved 84X speedup because it needs only
two VMExits but ps cannot achieved better than 13X speedup
because it causes more than 418,000 VMExits.

Comparison with VIRTUOSO. In addition, we use the four
inspection tools, shipped in VIRTUOSO source code, to com-
pare the performance of FAST-BRIDGE and VIRTUOSO. The
detailed result is presented in Table V. We can see that
FAST-BRIDGE achieves 4X-23X speed up (13X on average)
compared to VIRTUOSO. The fifth column in Table V shows
the number of x86 instructions extracted by VIRTUOSO for
each tool. Considering the fifth and the last columns of
Table V, we can see that as the size of inspection tool
increases FAST-BRIDGE achieves a better speedup compared
to VIRTUOSO.

We have verified that the two primary reasons of VIRTU-
OSO’s slowdown are: (1) micro operations code explosion –
the number of micro operations often increases by 3X to 4X,
and (2) executing the translated micro operations in Pythons
(which is very slow).

Number of Fall-Backs. HYBRID-BRIDGE outperforms VMST
and VIRTUOSO if the inspection tools primarily get executed
in FAST-BRIDGE. It is important to find out how many times
FAST-BRIDGE have to fall back to SLOW-BRIDGE before it
can execute an inspection tool completely in FAST-BRIDGE.

In order to answer this question we take five different
snapshots of untrusted VM and execute these inspections tools
using HYBRID-BRIDGE. As shown in Fig. 5, in the first round
when no Meta-Data is available, all the tools fall back to
SLOW-BRIDGE and they all have a very high overhead. Fig.
5 also shows that the first round of Meta-Data provides large
enough instruction category information for FAST-BRIDGE: 11
out of 15 inspection tools with no more memoization (no more
fall-back) to SLOW-BRIDGE.

The rest four inspection tools face new code paths in their
second executions and fall back to SLOW-BRIDGE for the
second time. After two rounds of execution on two different

6

8

10

12

14

S
ec

o
n

d
s

pidstat ps mpstat

dmesg iostat vmstat

netstat lsmod free

uptime arp hostname

uname gettime getpid

0

2

4

1st 2nd 3rd 4th 5th

N-th Snapshot

Fig. 5: Execution time of inspection tools in
HYBRID-BRIDGE with five different memory snapshots

memory snapshots, according to Fig.5, FAST-BRIDGE is able
to execute all the inspection tools on new memory snapshots
without any support from SLOW-BRIDGE. In other words, after
few runs all the inspection tools would be executed with a very
low overhead in FAST-BRIDGE.

VIII. LIMITATIONS AND FUTURE WORK

Homogeneity of Guest OS Kernel. As discussed in §II,
HYBRID-BRIDGE requires that both trusted VMs in FAST-
BRIDGE and SLOW-BRIDGE deploy the same OS version as
the untrusted VMs. Note that we only require the same version
of guest OS kernel, and do not require the same set of kernel
modules. For instance, lsmod can certainly return different
sets of running kernel modules for different running instances,
because end users might have different customizations for
kernel modules.

Memory-only Introspections. Similar to VIRTUOSO and
VMST, HYBRID-BRIDGE supports introspection tools that
investigate only memory but not on files in the disk. It might
be an option to directly mount disk file and inspect it. But for
encrypted file system, we have to seek other techniques. We
leave the introspection of disk files in future work.

Also, if a memory page is swapped out, HYBRID-BRIDGE,
including VMST and VIRTUOSO cannot perform the introspec-
tion on these pages. However, we may argue that OSes usually
tend not to swap out the kernel pages since they are shared
between applications. In fact, kernel memory pages are never
swapped out in Linux kernel [6].

Attacking HYBRID-BRIDGE. Since HYBRID-BRIDGE is built
atop KVM and QEMU, any individual successful exploits

12

against KVM or QEMU might be able to compromise
HYBRID-BRIDGE, if our infrastructure is not completely
isolated from attackers. Moreover, it might appear to be
possible to launch a returned-oriented programming (ROP)
attack, or other control flow hijack attacks against our trusted
VM by manipulating the non-executable data in the untrusted
VM kernel because HYBRID-BRIDGE consumes data from
untrusted memory snapshot.

However, it is important to mention that HYBRID-BRIDGE
monitors all the instruction execution (including the data flow),
and it never fetches a return address from the untrusted VM
(recall stack data is never redirected). Therefore, the only way
for attacker to mislead the control flow of our trusted VM is
to manipulate the function pointers. However, this can also
be detected because we check all the instruction execution:
whenever a function pointer value is loaded from untrusted
VM and later gets called, we can raise flags (because we can
observe this data flow) and stop the function call, though this
will lead to a denial of service attack.

Evading Our Introspection. HYBRID-BRIDGE assists VMI
developers to reuse inspection tools for introspection purposes.
However if system calls and well defined APIs used in
inspection tools are not rich enough to do a introspection task
then HYBRID-BRIDGE cannot help further. For example, if a
Linux rootkit removes a malicious task from task lined list then
an inspection tool which rely on task lined list to enumerate all
the running processes would fail to detect the malicious task.
Note that both VIRTUOSO and VMST also face this limitation.

More Precise Execution Context Identification for Bi-

Redirectable Instructions. FAST-BRIDGE depends on the exe-
cution context to determine the correct date redirection policy
for bi-redirectable instructions. While our current approxima-
tion design with CSC and PC has not generated any conflict
yet, if our SLOW-BRIDGE really detects such a case, we have
to resort other means such as instrumenting kernel code to
add certain wrapper to further differentiate the context or
developing kernel path encoding technique. We leave this as
another part of our future work if there does exist such a case.

Reducing VMExit Overhead. In §VII-B, we showed that
complicated introspection tools usually cause lots of VMExits,
which are the main contributor to the FAST-BRIDGE perfor-
mance overhead. Reducing VMExits would be an important
immediate task. Part of our future efforts will address this
problem. For instance, a possible way to improve the perfor-
mance of FAST-BRIDGE is not to catch int3 (no VM Exit) in
hypervisor level. Instead, we can introduce an in-guest kernel
module and patch the int3 interrupt handler to switch the
page table entries.

Supporting Kernel ASLR. HYBRID-BRIDGE currently works
with Linux kernel, which so far has not deployed the kernel
space address space layout randomization (ASLR) yet [17].
Addressing kernel ASLR for recent Windows-like system is
another avenue of future work.

IX. RELATED WORK

Virtual Machine Introspection (VMI). A common practice
to achieve better security is through strong isolation from
untrusted environment. Early introspection solutions such as
Copilot [45] employs two separate physical machines to
provide isolation and uses a PCI card to pull the memory to the
monitoring system. Recently, VMI has been increasingly used
in many security applications to provide strong isolation. For
instance, we have witnessed VMI being used in intrusion de-
tection [22], [43], [44], [15], [19], [20], memory forensics [26],
[15], [19], process monitoring [51], and malware analysis [13],
[31].

VProbes [4], a general purpose VMI framework, provides
basic operation to interact with VMM and guest OS but
introspection developer is responsible to traverse the guest OS
kernel data structures and find the required data in kernel.
VProbes does not provide any automatic mechanism to address
the semantic gap.

Min-c [29] is a C interpreter which extract kernel data
structure definitions automatically to assist VMI developers.
While Min-c cuts the development time of introspection
tool, it is different from HYBRID-BRIDGE, VIRTUOSO [15],
VMST [19], and EXTERIOR [21] (a guest VM writable exten-
sion of VMST) in a sense that it does not provide any support
to reuse the existing inspection tool and the VMI developer
must develop the introspection tool from scratch.

VIRTUOSO, VMST, EXTERIOR, and HYBRID-BRIDGE
pursue the same goal, namely, (automatically) bridging the
semantic-gap through binary code reuse. HYBRID-BRIDGE
outperforms VMST and VIRTUOSO by an order of magnitude
in terms of performance overhead. Furthermore, HYBRID-
BRIDGE supports a fall back mechanism to address the
coverage problem, whereas VIRTUOSO does not have a reliable
mechanism to solve this issue. Meanwhile, compared to VMST,
HYBRID-BRIDGE has a novel decoupled execution component
that runs a lazy taint analysis on a separate VM, which
significantly reduce the performance cost.

Hybrid-Virtualization. While recently there are a number
of systems which combine both hardware virtualization and
software virtualization (e.g. TBP [27], Aftersight [32], and
V2E [55]), they have different goals and different techniques.
In particular, TBP detects malicious code injection attack by
using taint tracking to prevent execution of network data.
The protected OS is running on Xen and uses page fault to
switch execution to QEMU for taint-tracking when tainted
data is being processed by the CPU. Aimed at heavyweight
analysis on production workload, Aftersight decouples analysis
from execution by recording all VM inputs on a VMware
Workstation and replaying them on QEMU. Designed for
malware analysis, V2E uses hardware virtualization to record
the malware execution trace at page level, and uses page fault
to transfer control to software virtualization; whereas HYBRID-
BRIDGE uses int3 patch to cause VMExit and control the
transitions between redirectable and non-redirecatable instruc-
tions at instruction level as well as control the transitions to
software virtualization.

13

Training Memoization. Memoization [39] is an optimiza-
tion technique that remembers the results corresponding to
some set of specific inputs, thus avoiding the recalculation
when encountering these inputs again. This has been used
in many applications such as deterministic multithreading
(via schedule memoization [11]) and taint optimization (e.g.,
FLEXITAINT [54] and DDFT [30]).

While HYBRID-BRIDGE and FLEXITAINT [54] may seem
similar at very high level regarding taint memoization but
they operate in different world and face different challenges.
FLEXITAINT is an instruction level CPU cache (very similar to
Translation Lookaside Buffer) to enhance taint operation with
low overhead in CPU, whereas HYBRID-BRIDGE is based on
the idea of decoupling taint analysis from the main execution
engine (i.e., FAST-BRIDGE) without any taint analysis inside
it. For DDFT [30], the substantial difference is that its taint
memoization works at user level program much like a compiler
optimization to speed up the taint analysis, whereas HYBRID-
BRIDGE works at hypervisor level with no intention to speed
up the taint analysis itself. Also, our memoization not only
does remember the tainted data, but also remember other types
of meta-data such as the offset for each return address for bi-
redirection instructions.

Binary Code Reuse. Recently, the concept of binary code
reuse has gained a lot of attention, and been exploited to
address a wide variety of interesting security problems such
as malware analysis [8], [34], [56], attack construction [37],
and VMI [15], [19], [21]. BCR [8] and Inspector Gadget [34]
extract certain malware feature in a self-contained manner and
reuse it to analyze the malware. Most recently, TOP [56]
demonstrates that we can dynamically decompile malware
code, unpack and transplant malware functions.

Dynamic Binary Code Patching. Dynamic binary patching
tools such as DDT [35] have been around for more than
50 years. In the past decade, general dynamic binary in-
strumentation tools such as DynInst [7], DynamoRIO [1],
PIN [38], and Valgrind [40] have been used for a wide variety
of tasks include performance profiling [52], tracing [42],
sandboxing [36], debugging [50] and code optimization [53].
In HYBRID-BRIDGE, we apply dynamic binary code patching
technique that is often used by debuggers to set up break point
on the monitored program, to trap the guest-OS execution to
hypervisor and enforce data redirection policies.

X. CONCLUSION

We have presented HYBRID-BRIDGE, a fast virtual ma-
chine introspection system that allows the reuse of the ex-
isting binary code to automatically bridge the semantic gap.
HYBRID-BRIDGE combines the strengths of both training
based scheme from VIRTUOSO, which is fast but incomplete,
and online kernel data redirection based scheme from VMST,
which is slow but complete. By using a novel fall back
mechanism with decoupled execution and training memo-
ization at hypervisor layer, HYBRID-BRIDGE decouples the
expensive execution of taint analysis engine from hardware-
based virtualization such as KVM and moves it to software-
based virtualization such as QEMU. By doing so, HYBRID-
BRIDGE significantly improves the performance of existing

solutions with one order of magnitude as demonstrated in our
experimental results.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
comments. This research was supported in part by a research
gift from VMware Inc. Any opinions, findings conclusions, or
recommendations expressed are those of the authors and not
necessarily of the VMware.

REFERENCES

[1] Dynamorio dynamic instrumentation tool platform.
http://dynamorio.org.

[2] Intel 64 and ia-32 architectures software developer’s
manual volume 3b: System programming guide.
http://www.intel.com/Assets/PDF/manual/253669.pdf.

[3] QEMU: an open source processor emulator. http://www.qemu.org/.
[4] Vprobe toolkit. https://github.com/vmware/vprobe-toolkit.
[5] F. Baiardi and D. Sgandurra. Building trustworthy intrusion detection

through vm introspection. In Proceedings of the 3rd International
Symposium on Information Assurance and Security (IAS’07), pages
209–214, 2007.

[6] D. Bovet and M. Cesati. Understanding The Linux Kernel. Oreilly &
Associates Inc, 2005.

[7] B. Buck and J. K. Hollingsworth. An api for runtime code patching.
International Journal of High Performance Computing Applications,
14(4):317–329, 2000.

[8] J. Caballero, N. M. Johnson, S. McCamant, and D. Song. Binary
code extraction and interface identification for security applications.
In Proceedings of the 17th Annual Network and Distributed System
Security Symposium (NDSS’10), San Diego, CA, February 2010.

[9] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang. Mapping
kernel objects to enable systematic integrity checking. In The 16th
ACM Conference on Computer and Communications Security (CCS’09),
pages 555–565, Chicago, IL. October 2009.

[10] P. M. Chen and B. D. Noble. When virtual is better than real.
In Proceedings of the Eighth Workshop on Hot Topics in Operating
Systems (HOTOS’01), pages 133–138, Elmau/Oberbayern, Germany.
2001.

[11] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable deterministic multi-
threading through schedule memoization. In Proceedings of the Ninth
Symposium on Operating Systems Design and Implementation (OSDI
’10). October 2010.

[12] W. Cui, M. Peinado, Z. Xu, and E. Chan. Tracking rootkit footprints
with a practical memory analysis system. In Proceedings of USENIX
Security Symposium. August, 2012.

[13] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: malware analysis
via hardware virtualization extensions. In Proceedings of the 15th ACM
conference on Computer and communications security (CCS’08), pages
51–62, Alexandria, Virginia. October 2008.

[14] B. Dolan-Gavitt. Virtuoso: Whole-system binary code extraction for
introspection. https://code.google.com/p/virtuoso/.

[15] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso:
Narrowing the semantic gap in virtual machine introspection. In
Proceedings of the 32nd IEEE Symposium on Security and Privacy
(SP’11), pages 297–312, Oakland, CA. May 2011.

[16] B. Dolan-Gavitt, B. Payne, and W. Lee. Leveraging forensic tools for
virtual machine introspection. Technical Report; GT-CS-11-05, 2011.

[17] J. Edge. Randomizing the kernel, 2013. http://lwn.net/Articles/546686/.
[18] B. Fabrice. Qemu, a fast and portable dynamic translator. In Pro-

ceedings of the 2005 USENIX Annual Technical Conference (ATC’05),
Anaheim, CA. June 2005.

[19] Y. Fu and Z. Lin. Space traveling across vm: Automatically bridging
the semantic gap in virtual machine introspection via online kernel data
redirection. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy (SP’12), pages 586–600, San Fransisco, CA. May 2012.

14

[20] Y. Fu and Z. Lin. Bridging the semantic gap in virtual machine
introspection via online kernel data redirection. ACM Trans. Inf. Syst.
Secur., 16(2):7:1–7:29, Sept. 2013.

[21] Y. Fu and Z. Lin. Exterior: Using a dual-vm based external shell for
guest-os introspection, configuration, and recovery. In Proceedings
of the Ninth Annual International Conference on Virtual Execution
Environments (VEE’13), Houston, TX. March 2013.

[22] T. Garfinkel and M. Rosenblum. A virtual machine introspection
based architecture for intrusion detection. In Proceedings Network and
Distributed Systems Security Symposium (NDSS’03), San Diego, CA.
February 2003.

[23] R. P. Goldberg. Architectural Principles of virtual machines. PhD
thesis. PhD thesis, Harvard University. 1972.

[24] Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin. Os-sommelier: Memory-
only operating system fingerprinting in the cloud. In Proceedings of
the 3rd ACM Symposium on Cloud Computing (SOCC’12), San Jose,
CA. October 2012.

[25] Z. Gu, Z. Deng, D. Xu, and X. Jiang. Process implanting: A new active
introspection framework for virtualization. In Proceedings of the 30th
IEEE Symposium on Reliable Distributed Systems (SRDS 2011), pages
147–156, Madrid, Spain. October 4-7, 2011.

[26] B. Hay and K. Nance. Forensics examination of volatile system data
using virtual introspection. SIGOPS Operating System Review, 42:74–
82, April 2008.

[27] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practical
taint-based protection using demand emulation. In Proceedings of the
1st ACM SIGOPS/EuroSys European Conference on Computer Systems
(EuroSys’06), pages 29–41. 2006.

[28] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel.
Ensuring operating system kernel integrity with osck. In Proceedings
of the sixteenth international conference on Architectural support for
programming languages and operating systems (ASPLOS’11), pages
279–290, Newport Beach, California. March 2011.

[29] H. Inoue, F. Adelstein, M. Donovan, and S. Brueckner. Automatically
bridging the semantic gap using a c interpreter. In Proceedings of the
2011 Annual Symposium on Information Assurance (ASIA’11), Albany,
NY. June 2011.

[30] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, and
A. D. Keromytis. A general approach for efficiently accelerating
software-based dynamic data flow tracking on commodity hardware.
In Proceedings Network and Distributed Systems Security Symposium
(NDSS’12), San Diego, CA. February 2012.

[31] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction. In Proceed-
ings of the 14th ACM Conference on Computer and Communications
Security (CCS’07), pages 128–138, Alexandria, Virginia. October 2007.

[32] P. M. Chen, J. Chow, and T. Garfinkel. Decoupling dynamic program
analysis from execution in virtual environments. In USENIX 2008 An-
nual Technical Conference on Annual Technical Conference (ATC’08),
pages 1–14, 2008.

[33] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
linux virtual machine monitor. In Proceedings of the Linux Symposium,
volume 1, pages 225–230, 2007.

[34] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector gadget:
Automated extraction of proprietary gadgets from malware binaries. In
Proceedings of 2010 IEEE Security and Privacy (SP’10), Oakland, CA.
May 2010.

[35] A. Kotok. Dec debugging tape (ddt). Massachusetts Institute of
Technology (MIT), 1964.

[36] W. Li, L.-c. Lam, and T.-c. Chiueh. Accurate application-specific sand-
boxing for win32/intel binaries. In Proceedings of the 3rd International
Symposium on Information Assurance and Security (IAS’07), pages
375–382, Manchester, UK. 2007.

[37] Z. Lin, X. Zhang, and D. Xu. Reuse-oriented camouflaging trojan:
Vulnerability detection and attack construction. In Proceedings of
the 40th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN-DCCS 2010), Chicago, IL. June 2010.

[38] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized program

analysis tools with dynamic instrumentation. In ACM SIGPLAN Notices,
volume 40, pages 190–200, 2005.

[39] D. Michie. ”Memo” Functions and Machine Learning. Nature,
218(5136):19–22, Apr. 1968.

[40] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and implemen-
tation (PLDI’07), pages 89–100, San Diego, CA. 2007.

[41] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. In Proceedings of the 14th Annual Network and Distributed
System Security Symposium (NDSS’05), San Diego, CA. February 2005.

[42] H. Pan, K. Asanović, R. Cohn, and C.-K. Luk. Controlling program
execution through binary instrumentation. SIGARCH Comput. Archit.
News, 33(5):45–50, Dec. 2005.

[43] B. D. Payne, M. Carbone, and W. Lee. Secure and flexible monitoring of
virtual machines. In Proceedings of the 23rd Annual Computer Security
Applications Conference (ACSAC’07). December 2007.

[44] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An architecture
for secure active monitoring using virtualization. In Proceedings of the
2008 IEEE Symposium on Security and Privacy (SP’08), pages 233–
247, Oakland, CA. May 2008.

[45] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh. Copilot -
A coprocessor-based kernel runtime integrity monitor. In Proceedings
of the 13th USENIX Security Symposium (Security’04), pages 179–194,
San Diego, CA. August 2004.

[46] N. L. Petroni, Jr., T. Fraser, A. Walters, and W. A. Arbaugh. An
architecture for specification-based detection of semantic integrity
violations in kernel dynamic data. In Proceedings of the 15th USENIX
Security Symposium (Security’06), Vancouver, B.C., Canada. August
2006.

[47] J. Pfoh, C. Schneider, and C. Eckert. Nitro: Hardware-based system call
tracing for virtual machines. In Advances in Information and Computer
Security (IWSEC’11), volume 7038 of Lecture Notes in Computer
Science, pages 96–112. November 2011.

[48] N. A. Quynh. Operating system fingerprinting for virtual machines,
2010. In DEFCON 18.

[49] M. Rajagopalan, S. Perianayagam, H. He, G. Andrews, and S. Debray.
Biray rewriting of an operating system kernel. In Proc. Workshop on
Binary Instrumentation and Applications, 2006.

[50] J. Seward and N. Nethercote. Using valgrind to detect undefined value
errors with bit-precision. In Proceedings of the annual conference on
USENIX Annual Technical Conference (ATC’05), pages 2–2, Anaheim,
CA. 2005.

[51] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu. Process out-grafting: an
efficient ”out-of-vm” approach for fine-grained process execution mon-
itoring. In Proceedings of the 18th ACM conference on Computer and
communications security (CCS’11), pages 363–374, Chicago, Illinois.
October 2011.

[52] A. Tamches and B. P. Miller. Fine-grained dynamic instrumentation of
commodity operating system kernels. In Proceedings of the 3rd sym-
posium on Operating systems design and implementation (OSDI’99),
pages 117–130, 1999.

[53] A. Tamches and B. P. Miller. Dynamic kernel i-cache optimization. In
Proceedings of the 3rd Workshop on Binary Translation, 2001.

[54] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. Flexi-
taint: A programmable accelerator for dynamic taint propagation. In
Proceedings of the 4th International Symposium on High Performance
Computer Architecture (HPCA’08), Salt Lake City, UT. 2008.

[55] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin. V2e: Com-
bining hardware virtualization and software emulation for transpar-
ent and extensible malware analysis. In Proceedings of the 8th
ACM SIGPLAN/SIGOPS conference on Virtual Execution Environments
(VEE’12), pages 227–238, London, UK, 2012.

[56] J. Zeng, Y. Fu, K. Miller, Z. Lin, X. Zhang, and D. Xu. Obfuscation-
resilient binary code reuse through trace-oriented programming. In
Proceedings of the 20th ACM Conference on Computer and Communi-
cations Security (CCS’13), Berlin, Germany. November 2013.

15

	Introduction
	Background and Overview
	Fast-Bridge
	Variable Redirectability
	Instruction Redirectability
	Data Redirection Using Dynamic Patching

	Slow-Bridge
	Detecting the System Calls of Interest
	Redirectable Variables Identification
	Inferring Instruction Redirectability
	Data Redirection

	FallBack
	Implementation
	Evaluation
	Correctness
	Performance Evaluation

	LIMITATIONS AND FUTURE WORK
	Related Work
	Conclusion
	References

