
SgxElide: Enabling Enclave Code Secrecy via
Self-Modification

Erick Bauman
The University of Texas at Dallas

Richardson, Texas, USA

erick.bauman@utdallas.edu

Huibo Wang
The University of Texas at Dallas

Richardson, Texas, USA

huibo.wang@utdallas.edu

Mingwei Zhang
Intel Labs

Hillsboro, Oregon, USA

mingwei.zhang@intel.com

Zhiqiang Lin
The University of Texas at Dallas

Richardson, Texas, USA

zhiqiang.lin@utdallas.edu

Abstract

Intel SGX provides a secure enclave in which code and data

are hidden from the outside world, including privileged code

such as the OS or hypervisor. However, by default, enclave

code prior to initialization can be disassembled and therefore

no secrets can be embedded in the binary. This is a problem

for developers wishing to protect code secrets. This paper

introduces SgxElide, a nearly-transparent framework that

enables enclave code confidentiality. The key idea is to treat

program code as data and dynamically restore secrets after

an enclave is initialized. SgxElide can be integrated into

any enclave, providing a mechanism to securely decrypt or

deliver the secret code with the assistance of a developer-

controlled trusted remote party. We have implemented Sgx-

Elide atop a recently released version of the Linux SGX SDK,

and our evaluation with a number of programs shows that

SgxElide can be used to protect the code secrecy of practical

applications with no overhead after enclave initialization.

CCSConcepts · Security andprivacy→Digital rights

management; Software reverse engineering;

Keywords SGX, self-modifying code, code obfuscation

ACM Reference Format:

Erick Bauman, Huibo Wang, Mingwei Zhang, and Zhiqiang Lin.

2018. SgxElide: Enabling Enclave Code Secrecy via Self-Modification.

In Proceedings of 2018 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO’18). ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3168833

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

CGO’18, February 24ś28, 2018, Vienna, Austria

© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5617-6/18/02. . . $15.00

https://doi.org/10.1145/3168833

1 Introduction

Most software today is delivered in the form of binary ex-

ecutables, which are normally executed on a platform out of

the control of software developers. Secrets in the form of bi-

nary code are not directly visible to most users. However, cu-

rious or malicious attackers can still reverse engineer the ex-

ecutable to uncover secrets (e.g., particular algorithms, data

structures, or values of variables) inside the software, since

they control the entire computing stack, including the operat-

ing system, libraries, runtime environment (e.g., debuggers),

and the application code of the software, and they can easily

disassemble the binary, or monitor (e.g., trace, or debug) the

execution of the binary. Keeping code and data secret in a

compiled executable has long been a challenge. Many inter-

esting and important applications require such a capability.

One area in need of the ability to hide code secrets is in

defending against cheating in computer games [15]. The pop-

ularity of multiplayer games, including highly competitive

games that offer substantial monetary rewards in tourna-

ments, or games with economies that allow for the trading of

virtual items for real money, gives players incentive to cheat

the system for personal gain. Many techniques have been

developed to cheat in games [23]. For instance, attackers

can reverse-engineer the game code to find exploits, search

gamememory for certain game values that can be changed to

benefit the attacker, or use automated tools that can perform

better than a human (such as improved reflexes).

In addition, vendors of software, including games, have

strong incentives to prevent users from running unlicensed

copies of their software. Over the past few decades, vendors

have developed a wide range of Digital Rights Management

(DRM) [32] techniques to protect the unauthorized redistri-

bution of their software. Historically, there has been no way

to trust a remote machine, and therefore the only way to

enable DRM has been through various obfuscation strate-

gies [19, 28], including control flow flatting, signal-based

control flow hiding (e.g., [31]), code encryption and packing,

etc. Therefore, to prevent illegal copying DRM must remain

confidential, because once the DRM is reverse-engineered,

75

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3168833
https://doi.org/10.1145/3168833

CGO’18, February 24ś28, 2018, Vienna, Austria Erick Bauman, Huibo Wang, Mingwei Zhang, and Zhiqiang Lin

attackers can circumvent the copy protection and upload
executables with the DRM removed onto the Internet, or
rebuild new software using the stolen algorithm. This results
in an escalating arms race between application crackers and
developers, with each side trying to outwit the other.
In the past several years, we have also witnessed the

growth of cloud computing, in which cloud providers host a
platform for selling computing power to third parties. But
unfortunately, the customer must trust the cloud provider
with their confidential code or data. This prevents certain
industries, such as hospitals, from being able to use the
(public) cloud, due to strict privacy legislation. In addition,
companies with software that may contain valuable trade
secrets cannot use such platforms lest a malicious cloud
provider extract and sell their secrets. This is also a concern
for software that runs on an end user’s machine, as secrets
can also be extracted from more traditional software.
Therefore, there is a need to provide true confidentiality

guarantees. This issue has only recently begun to be solved,
and one important step forward is Intel’s Software Guard eX-
tensions (SGX) [22], which allow code to execute in a secure
łenclavež opaque to any other code. This allows applications
to hide their secrets from all other software on a machine,
including privileged code such as the OS or hypervisor. As
was shown by Haven [17], this can be extended to protect
arbitrary legacy code from being spied on by a cloud provider.
SGX is already being deployed in consumer-grade hardware
starting with Intel’s Skylake processor. This means that even-
tually a high percentage of users may own SGX-enabled hard-
ware, allowing software developers to take advantage of its
features. This may enable much stronger copy protection and
trade secrets by hiding crucial code and data in SGX enclaves.
However, despite the substantial benefits provided by

SGX, there remains an unfortunate omission in what SGX
currently protects, as the SGX SDK Guide explicitly states:
łThe enclave file can be disassembled, so the algorithms used
by the enclave developer will not remain secretž [9]. There-
fore, while SGX does protect code and data integrity, it only
protects the confidentiality of data, while code confidentiality
is not assured. SGX does not protect code and data until
after enclave initialization. This, combined with the fact that
enclave code must be signed and cannot be modified before
being loaded, means that there is no straightforward way to
hide the actual enclave code from would-be attackers.

To address this shortcoming of SGX’s programmingmodel,
we introduce SgxElide, a framework that leverages SGX
to provide complete confidentiality and integrity for both
code and data. The key idea is to treat program code as
data, and dynamically decrypt the secret code or retrieve
the secret code from the trusted remote parties after an
enclave is initialized. SgxElide can be almost transparently
integrated into any enclave code, providing a mechanism to
securely decrypt or deliver the secret codewith the assistance
from a trusted remote party controlled by the developer.

We have implemented SgxElide atop Intel’s Linux SGX
SDK [12], and our evaluation with a number of programs
shows that SgxElide can be used to protect code secrecy for
applications of interest without introducing any additional
runtime overhead for the enclave code.
In short, we make the following contributions:
- We present a systematic protection model for software
that uses SGX, and show that the default SGX program-
ming model lacks an oblivious mechanism to provide
code confidentiality.

- We design a framework for providing code confidential-
ity to SGX applications, thereby providing both code
and data integrity and confidentiality.

- We have implemented our framework on the Linux
platform and demonstrate that it is easy to add to
existing SGX projects and effective at protecting the
confidentiality of code, without introducing any run-
time overhead to the applications.

2 Background and Motivation

2.1 Intel SGX

At a high level, SGX allows an application or part of an
application to run inside a secure enclave, which is an isolated
execution environment. SGX hardware, as a part of the CPU,
protects enclaves against malicious software, including the
operating system, hypervisor, or even low-level firmware
code (e.g., SMM) from compromising its confidentiality and
integrity. At a low level, Intel SGX is an extension to the x86
instruction set architecture (ISA).

SGX Enclaves. The first step in creating an enclave is to call
the instruction ECREATE. This allocates memory inside the
Enclave Page Cache (EPC) to hold enclave code and data [22].
EPC memory is encrypted by the Memory Encryption En-
gine (MEE) and decrypted when accessed by enclave code.
Enclave contents are added with the EADD instruction, which
copies a 4KB page from ordinarymemory into an EPC page [29].

However, SGX must also calculate the enclave’s measure-

ment, a cryptographic hash that is used for remote attestation.
This is donewith the EEXTEND instruction. Every time EEXTEND
is executed, it measures 256 bytes, and therefore it must be
executed 16 times to cover a full page [29].

The enclave cannot be entered until it has been initialized
with the EINIT instruction. However, unless the enclave’s
measurement matches the original measurement calculated
by the enclave’s creator, the hardware will not initialize it.
The creator of the enclave provides the measurement inside
the SIGSTRUCT data structure, which the creator signs with
their private key and provides along with the enclave.

Attestation. Once an enclave has been created, a signed
report can be obtained from the processor by using the
new EREPORT instruction. This report provides a guarantee
to enclaves on the same machine as the enclave. This allows

76

SgxElide: Enabling Enclave Code Secrecy via Self-Modification CGO’18, February 24ś28, 2018, Vienna, Austria

enclaves to perform local attestation and to establish secure
channels between each other.
A special platform enclave called the quoting enclave

is used to support remote attestationÐauthenticating an
enclave to a remote server. This enclave signs reports with
a device-specific key, producing a structure called a quote.
The device-specific key is only visible to the quoting enclave,
and therefore a remote server can trust quotes signed with
this key. The actual key itself is embedded in the processor
by Intel and therefore Intel is the root of trust [11, 22].
After remote attestation is complete, a server is assured

that the enclave it is talking to matches its declared measure-
ment, and a secure channel has been established between
them, allowing the server to provide secrets to the enclave.

Sealing. In order to save an enclave’s state, SGX provides
a sealing mechanism to save and restore data from disk.
Using hardware-derived keys unique to every processor and
enclave, secrets can be decrypted and restored [11, 22].

Bridge Functions. At the assembly level, enclaves have
only a single entry point. In addition, data must be copied
to and from an enclave since enclave memory cannot be
read from outside the enclave. Therefore, Intel provides a
mechanism to create bridge functions in their SGX SDK. At
the enclave entry point there is a function that dispatches
calls into the enclave (ecalls) to the correct enclave functions,
which allows an enclave to enforce a set of functions (speci-
fied by the developer) that can be called from untrusted code
and vice versa (i.e., ocalls, untrusted functions that can be
called from trusted code). Functions are identified by index-
ing into a table of function pointers. The bridge functions
(both ecalls and ocalls) automatically handle copying the
contents of buffers across the enclave boundary and allow
for the illusion that enclave functions are being directly
called from outside the enclave [11, 22].

2.2 The Default Protection Model of SGX

While SGX has been presented as an environment guaran-
teeing both confidentiality and integrity within enclaves, it
is possible to analyze and inspect all enclave code; the code
loaded into an enclave can be disassembled prior to enclave
initialization [29]. Therefore, despite the claims of SGX, there
is no framework for code confidentiality by default.

- Data Integrity. Since the code in an enclave can be
attested, it is possible to ensure all code that modifies
data is trusted. Data in an enclave can be encrypted
when it is sent to a remote server. This, combined
with a message authentication code (MAC), ensures
that an attacker can never modify data without it being
detected. This is important in preventing software tam-
pering, because it prevents an attacker from directly
changing any data.

- Code Integrity. Similarly to data integrity, the in-
tegrity of the code in an enclave can be assured via

remote attestation. The original vendor of software
can ensure that the code that the client is running is
identical to the code provided by the vendor. This also
defends against any tampering of program code.

- Data Confidentiality. While an enclave is running,
all data inside it is invisible to all other software run-
ning on the machine, including the OS or hypervisor.
Since data sent to and from enclaves can be encrypted,
an enclave can communicate with a trusted server
without any chance of eavesdropping. This helps en-
able DRM and protection of secrets by making it im-
possible to perform runtime analysis on an enclave.

- Code Confidentiality. In contrast to runtime data,
the code (and static data) of an enclave is in plain text
and can be disassembled and statically analyzed. There
are no current defenses in place to prevent this. This
means that it is possible to reverse-engineer algorithms
or DRM mechanisms by analyzing the enclave binary.
Our framework aims to provide a default solution to
cover this crucial aspect of enclave security.

3 Overview

In this section, we provide an overview of our SgxElide
framework. We first describe the challenges we will be facing
in ğ3.1, then present our key insights and solutions in ğ3.2.
Next, we describe how SgxElide works in ğ3.3, and finally
present how a developer would use our framework in ğ3.4.

3.1 Challenges

Our objective is to ensure the confidentiality of code in-
side an enclave. We focus on compiled C/C++ code (instead
of scripting languages) running inside enclaves, meaning
enclaves must be self-modifying in order to run code that
was not present when it was first initialized. Therefore, any
enclave contents that we want to keep confidential must
not be visible in the initial enclave binary, and said contents
must be decrypted and restored at runtime. While adding
code encryption and decryption to enclaves seems obvious
and straightforward in theory, there are subtle complications
and challenges in practice, particularly from the constraints
of enclave code execution.

- Enclaves must be signed and cannot be modified

until after they are initialized. We therefore must
have self-modifying enclaves. In addition, since en-
claves cannot be modified until after loading, we must
set the code pages as writable before signing or after
loading. However, it turns out that dynamically setting
page permissions for an enclave at runtime is not
permitted by the hardware.

- The entire enclave cannot be encrypted. An intu-
itive and simple solution may be to simply encrypt the
entire enclave, leaving only a tiny bootstrap function
to decrypt the rest of the code after the enclave is
started. Unfortunately, calls in and out of the enclave

77

CGO’18, February 24ś28, 2018, Vienna, Austria Erick Bauman, Huibo Wang, Mingwei Zhang, and Zhiqiang Lin

must pass through bridge functions created during
compilation by the SGX SDK. If we blindly encrypt
these bridge functions, control will never reach our
decryption function, as the applicationwill crashwhen
trying to run the encrypted entry point. In order to
make our solution work with the official SDK, we must
be careful not to disrupt any of the bridge functions.

- The decryptionkey or plaintext secret codemust

not be in the enclave. There is no way for an enclave
to securely decrypt itself; any key contained in the
binary can be extracted by an attacker. While the SGX
platform could be used to generate a key, each piece
of SGX hardware has its own hardware key. This is
perfect for an enclave on a specific machine to seal its
own secrets, but insufficient for deploying a general
application. Since there is no way to hide the key in
the enclave, the enclave must retrieve the key or secret
code from a trusted remote source.
An important result of this is that a remote enclave
on an untrusted machine is inherently vulnerable to
denial-of-service attacks, because it requires a trusted
remote server. If an attacker prevents the remote server
from communicating with the enclave, it will not func-
tion. Since this is unavoidable, we can only seek to
minimize the amount of communication required with
the trusted server.

- The toolchain should have minimal changes. In
order to make our solution usable, it must be com-
patible with arbitrary SGX applications, requiring no
major restructuring of an application in order to work.

3.2 Key Insights and Solutions

Our key insights. One straightforward approach might
be to encrypt the entire enclave and unpack it at runtime,
similar to a binary unpacker [10]. However, this leads to
more challenges: it is not possible to create and initialize
one enclave from inside another (i.e. pages added before
initialization should not be in the EPC), and each enclave is
designed with bridge functions designed to enter and exit
the enclave, complicating unpacking.

Therefore, instead of taking inspiration from packers, we
instead try a different approach: redacting confidential en-
clave functions and then restoring them later. This can be
thought of as łsanitizingž the enclave. Next, we have to
consider the best way to specify the functions to be redacted,
since we are now focused on redacting certain functions
in an enclave. There are two ways to approach this: with a
blacklist or a whitelist.

- Blacklist. A blacklist-based approach involves spec-
ifying which functions should be redacted. One way
this could be implemented is for the developer to anno-
tate each function that they want to keep confidential.
While this can keep the number of functions that are
redacted to a minimum, it puts the burden of securing

the enclave on the developer. It requires the developer
to decide which functions are secret and mark them
accordingly, leading to potential mistakes.

- Whitelist. Amore general approach is using awhitelist.
Instead of having to specify which functions to redact,
we instead specify which functions we should not

redact. This information is applicable to any enclave,
and does not need to be specified by a developer be-
cause it consists of only the functions required to
restore redacted functions, meaning we can redact
all other functions.

Initial Approach.We explored several solutions before our
final design. Since the objective is to provide confidential-
ity for code considered sensitive, we at first considered it
important to encrypt only secret functions, since there may
be many functions in an enclave that are safe being public
and need no encryption. Therefore, we originally used a
blacklist approach, requiring secret functions to be annotated.
Those functions were then placed in a special text section
separate from the public functions, and that section was then
encrypted. At runtime, the secret functions were restored
within this special memory region. This meant that the only
self-modifying code was the secret text section (a smaller
attack surface) at the expense of requiring developers to
determine which functions were confidential. We eventually
decided that greater transparency was more important, and
therefore we decided not to use this approach.

Our Solution.We therefore use a whitelist. Since we would
like our framework to be as transparent as possible to a
developer, it is tempting to simply place the code for restoring
the encrypted functions in the enclave’s initialization code,
thus requiring no changes in how an enclave is initialized.
However, there are a number of things that could go wrong
when trying to restore the encrypted data. Therefore, we
designed SgxElide so that a developer must call a single
function to restore all encrypted functions. This allows them
to handle errors in a way unique to their application. We
used the following strategies to design SgxElide.

- Sign a dummy enclave and restore all secrets af-

ter initializing. We can create and sign a dummy
enclave with most functions redacted. All functions
for restoring redacted code are untouched. The dummy
enclave restores the redacted code at runtime.

- Encrypt all nonessential functions. The enclave
requires the functions required to retrieve and decrypt
secret code from a server. By whitelisting all neces-
sary functions and leaving them intact in the dummy
enclave, the code will be able to initialize successfully.
All other functions can be redacted.

- Use remote attestation. An SGX enclave can guar-
antee to a server it was unmodified before it was
initialized via remote attestation. This means that the
decryption key or code can be held remotely and is

78

SgxElide: Enabling Enclave Code Secrecy via Self-Modification CGO’18, February 24ś28, 2018, Vienna, Austria

Enclave

Runtime

Restorer
Sanitizer

secret.so

dummy.so

secret

enclave

code

Compiler,

Linker

Compiler,

Linker

dummy

enclave

code

secret.so

sanitized.so

secret

data

Dummy Enclave Code Generation

Normal Enclave Code Generation

Runtime Secret Enclave Code Restoration

Figure 1. Overview of Our SgxElide Framework.

only ever provided over a secure channel to an enclave
that has attested it is running the developer’s trusted
dummy enclave.

- Use both local and remote storage. If stored locally,
the secret code must be stored encrypted either in
the dummy enclave or as an encrypted file on disk.
However, there is no reason that the code must be
stored locally. It could also be sent from a trusted
server over an encrypted connection, and thus the
code itself can simply be loaded after it is obtained
from the server. However, this introduces a tradeoff
between size overhead on the client and network over-
head. If the secret code is included encrypted with the
enclave, then the enclave will only need to retrieve the
decryption key from the server, whereas if the code is
stored remotely, then the encrypted code must be sent
to the client before the enclave can be used.

3.3 SgxElide Overview

An overview of SgxElide is provided in Figure 1. From a
developer’s perspective, there are just two components: a
Sanitizer and a Runtime Restorer. To use SgxElide, an enclave
programmer will develop the (secret) enclave code as usual,
integrate the regular enclave code with our library, and
compile it to produce secret.so.
Next, our Sanitizer takes secret.so and redacts all user

defined functions in this shared library. To know precisely
which function is user defined, our Sanitizer uses a whitelist
our framework provides. All functions not on the whitelist
are considered user functions and will be sanitized. Our
Sanitizer produces sanitized.so with all secret functions
redacted. We place metadata in a enclave.secret.meta file
and the original raw bytes in enclave.secret.data.
At runtime, sanitized.so is initialized as usual. Then

elide_restore is invoked by developer code to perform re-
mote attestation and then retrieves the secrets from a trusted
party through a secure channel. Then our Runtime Restorer

restores the secret enclave code. Note that the implementa-
tion of the Runtime Restorer is embedded in sanitized.so.

3.4 How to Develop Secret Enclave Code

As stated earlier, we aim to require as few changes as possible
to an SGX application, and our solution was to sanitize
all developer functions. This requires no input from the
developer, as thewhitelist is identical for all SGX applications.
However, we do require a developer to call elide_restore
in order to restore enclave functions. We require this instead
of automatically restoring the enclave because the enclave
is not necessarily entered when created. One solution would
be to insert a call to elide_restore at the top of all ecalls
before the original functions are restored, meaning the first
ecall to be called would restore the enclave before continuing.
However, this would result in unpredictable latency from
the first ecall invocation. In addition, by explicitly having
developers call elide_restore, they can handle various
errors the enclave might encounter (e.g., a network error).
Therefore, the only changes a developer must make to

the enclave application are adding the library and a single
call to elide_restore. However, the library also requires
an authentication server to give an attested enclave the data
it needs to restore its functions. Our framework contains a
very small number of public API functions: only one ecall
(elide_restore) and two ocalls (elide_server_request
and elide_read_file). The ocalls are automatically called
by our library, so the required developer effort is minimal.
Finally, in our framework, the server stands alone and

requires no developer input, but in many applications it may
be desirable for the developer to add custom functionality
between enclave and server. However, for the task of simply
attesting that an enclave is running on real SGX hardware,
the process can be automatic. Thus our framework only
requires a server with access to the secret data and metadata
that the enclave requires.

4 Detailed Design

As outlined in Figure 1, our system’s operation is divided
into three main stages: whitelist generation (ğ4.1), enclave
sanitization (ğ4.2), and runtime code restoration (ğ4.3).

79

CGO’18, February 24ś28, 2018, Vienna, Austria Erick Bauman, Huibo Wang, Mingwei Zhang, and Zhiqiang Lin

4.1 Whitelist Generation

The first stage involves building a dummy enclave (dummy.so)
containing only SgxElide helper functions and required SGX
libraries. This stage is required to generate the whitelist of
functions not to be sanitized. Building the dummy enclave
is quite straightforward; we write an enclave containing the
helper APIs introduced by our framework and link with the
libraries they require (e.g., SGX crypto libraries).

This base enclave is analyzed by our sanitizer to extract the
whitelist of functions that do not need to be redacted. Normal
users of our framework will never touch dummy.so. Also,
note that our sanitizer does not need to analyze dummy.so to
sanitize an enclave, as the extracted whitelist can be reused
across all developer enclaves.

4.2 Sanitized Enclave Generation

Our sanitizer component takes an unsigned enclave as input
and outputs an unsigned enclave with the contents of all
functions not on the whitelist removed. In order for this
to work, the developer must build the enclave with the
SgxElide library and their own functions. Then, before
signing the enclave, they pass it to the sanitizer, which strips
out the content of all their functions based on the whitelist
functions from dummy.so, and outputs a sanitized enclave
and two files pertaining to the secrets that were stripped out.
The first file produced is enclave.secret.meta, which

contains information about the data itself such as its size
and whether it is encrypted. If the data is encrypted, the
metadata also includes the decryption key. This file must
never be distributed with the enclave and only reside on
the authentication server. The second file contains the con-
fidential data (i.e., enclave.secret.data), and must be en-
crypted (if delivered with the enclave) or kept only with the
authentication server so that its secrets cannot be leaked. An
extra flag tells the sanitizer whether to encrypt the data.

4.3 Runtime Secret Restoration

The restoration component must run before any of the en-
crypted functions can be executed. These runtime libraries
are compiled into the enclave and applicationwhen the devel-
oper adds SgxElide to their project. As shown in Figure 2, the
library can operate in two ways depending on whether the
data is stored locally or remotely. However, both approaches
share common steps.

- Step ❶: The application calls elide_restore. This
is the single enclave call that the library requires to
perform the entire process.

- Step❷: The enclave calls elide_server_requestwith
REQUEST_META. This function connects to the server
and requests the metadata about the stored secrets that
the the enclave requires.

- Step ❸: The server responds with the metadata. Since
this data is sent over a secure connection, it may con-
tain the decryption key for the secret data.

Authentication

Server

User Platform

Application

Enclave

Untrusted Code

File

System

2

3

4

5

1

7

6

secret

data
meta

data

secret

data

meta

data

sealed

secret data

4

encrypted

secret data

5

Figure 2. Runtime operation of SgxElide, showing how the
enclave communicates with a server. Step ❹ and Step ❺

demonstrate communication with a server holding the secret
data, while Step ➃ and Step ➄ demonstrate communication
with a server holding the decryption key, with the encrypted
secrets stored locally.

After this point, the behavior diverges based on the meta-
data contents. If the metadata states that the secret data is
encrypted, then the data is stored encrypted locally. Oth-
erwise, the server has the data. Note that the enclave does
not need to contact the server every time. SGX’s sealing
mechanism provides the ability for the enclave to seal data
to disk using an enclave-specific key derived from the SGX
hardware key and unseal the data later, therefore allowing
all accesses to the secret code after the first to require no
network communications at all.

Remote Data. If the secret data is stored on the authentica-
tion server, it can simply be sent over the secure connection
directly to the enclave, where it will be stored in its secure
memory. This approach corresponds to the continued com-
munications with the server in Figure 2.

- Step❹: The enclave calls elide_server_requestwith
REQUEST_DATA.

- Step❺: The server responds with the data. As with the
other approach, this secret data is sent over a secure
channel.

Local Data. If the data is stored locally, then it must be
encrypted, and the metadata will contain the decryption
key for the encrypted data. This allows the enclave to finish
without needing to contact the server again. The details for
this approach are shown in Figure 2.

- Step ➃: The enclave calls elide_read_file to load
the encrypted secret data file into its memory.

- Step ➄: The enclave calls the SGX library’s standard
decryption functions to decrypt the secret data.

80

SgxElide: Enabling Enclave Code Secrecy via Self-Modification CGO’18, February 24ś28, 2018, Vienna, Austria

The final two steps are identical for both approaches in
Figure 2.

- Step ❻: The enclave copies the original bytes over
the sanitized ones. After this point, all previously en-
crypted functions can now be called by other enclave
functions, or they can be called from outside the en-
clave via a corresponding bridge function.

- Step ❼: Before shutting down, the enclave seals the
secret data with its sealing key so that it will not need
to contact the server in the future.

These two approaches represent a tradeoff between local
storage and data transmitted over the network. Storing the
enclave data locally requires less data to be sent from the
server, but takes up more initial disk space, while storing
the enclave on the server requires the server to send the
redacted enclave content to the enclave.

5 Implementation

We have implemented SgxElide, which is made publicly
available, in C/C++ and python on Linux. Code inside the
enclave is C/C++, but the sanitizer and server components
can be implemented in any language. Therefore, we wrote
the sanitizer and server in python, while the enclave helper
functions are written in C/C++. For enclave encryption and
decryption we used the SGX SDK crypto libraries, while
we used the cryptography package for the python server.
Below we provide some implementation details of how we
implement SgxElide.

Sanitizer.We provide a list of our library and default SGX
functions from the dummy enclave to the sanitizer. Every
time an enclave (e.g., enclave.so) is compiled, it is passed
to the sanitizer. The sanitizer parses the ELF section headers
and enumerates through each function in the shared object.
Any function not on the whitelist is sanitized by overwrit-
ing its contents with zeroes. Once we finish sanitizing the
original shared object, we save the original contents of the
text section to an enclave.secret.data file. If the sanitizer
is told to encrypt the data, it encrypts the original text
section with a new encryption key and writes metadata to
an enclave.secret.meta file.

Server Protocol. Communication between our client and
server is simple. The client sends a single byte request rep-
resenting what resource it requires (i.e., REQUEST_META in
Step ❷, and REQUEST_ DATA in Step ❹, respectively), and
the server responds with the data. The client and server
communicate using AES GCM encryption, and if the secret
data is encrypted on disk it also uses AESGCM. Themetadata
provided by the server consists of the data length, offset,
whether it is encrypted, and (if encrypted) its encryption
key, initialization vector (IV), and MAC. The offset value is
the offset of the elide_restore function from the start of
the text section.

Enclave Self-Modification. There is in fact some challenge
involved to enable a self-modifying enclave. An intuitive
approach to this is to change the permissions of all pages
in the text section as writable right before writing to those
pages. In Linux this can be done with the mprotect system
call, although the call itself would have to be be performed
outside the enclave. However, this approach does not work,
as the SGX hardware enforces the original permissions.
Our solution to this is to set the permissions of the text

section’s pages statically when we sanitize the enclave. In
ELF files, the executable file format for Linux, segments
specify which parts of the file are to be loaded at certain
addresses. In the program headers table in an ELF file, there is
an entry for each segment, and each segment has a p_flags
field specifying the permissions for the pages in that seg-
ment.We therefore modify the p_flags field for the program
header entry for the text section in the enclave .so file; we
or the existing field’s value with PF_W (the flag specifying
a segment is writable), making the section writable. Note
that this makes the section writable through the enclave’s
lifetime. We discuss ways to mitigate this in ğ7.

When it is time to restore the enclave’s contents, we load
the secret data retrieved either from the server or from disk
and containing the exact contents of the original text section,
which we then copy over the sanitized version of the text
section in memory. We use position-independent code to do
this by taking the offset value from the metadata (offset of
elide_restore from the text section’s start) and subtracting
it from the address of elide_restore. This gives the starting
address of the text section, so we can copy the original text
section contents directly over the sanitized contents.
This approach could be made more space efficient by

keeping track of the ranges of each sanitized function and
storing only that data in enclave.secret.data, but this
would produce a more complicated implementation not nec-
essary for a proof-of-concept. We therefore use the simple
approach of saving and restoring the entire original text
section instead of the individual sanitized functions.

6 Evaluation

In this section, we present how we evaluate SgxElide. We
describe how we created the benchmarks in ğ6.1 and how
SgxElide performs over the benchmarks in ğ6.2.

6.1 Experiment Setup

Since SGX is a new platform and requires development effort
to create new SGX software, we had no benchmarks available
to evaluate SgxElide. While it is possible to use a library
OS (e.g., Haven [16]) to directly run legacy applications atop
SGX, it does not offer the full benefits of enclave protection.
Therefore, we must first develop applications that use SGX.
It turns out this is actually non-trivial, because we have to
select the appropriate programs in which to hide secrets and
port them into SGX.

81

CGO’18, February 24ś28, 2018, Vienna, Austria Erick Bauman, Huibo Wang, Mingwei Zhang, and Zhiqiang Lin

Benchmark Creation. We selected seven open source pro-
grams and ported them to SGX. We then inserted our frame-
work into each ported application. As shown in Table 1,
we selected four cryptographic algorithms, two games, and
one reverse engineering challenge program. Our choice in
selecting games is obvious, since games are frequent targets
of reverse engineering. We use the cryptographic functions
for illustrative purposes since their implementations are
public and have no need to be hidden.

At a high level, an SGX application needs to be divided into
trusted and untrusted components. The trusted component,
containing all application secrets, will be executed inside the
enclave. The rest of the application, including all runtime
libraries, belongs to the untrusted component. According to
the SGX developer manual [11], a developer should make
the trusted component as small as possible because larger
enclaves could have more vulnerabilities.
Therefore, to port an application to SGX, we must first

find the secret functions we aim to protect, put them into
the trusted component, and leave the rest in the untrusted
component. Take the first benchmark, AES, as an example:
we protected its 4 encryption and decryption related func-
tions. However, we also needed to port another 11 functions
into the enclave as they are transitively called by the first 4
functions. Partitioning a process into untrusted and trusted
components is often the most difficult step because most
applications are not designed to be partitioned in this way.

When porting these functions inside the enclave, we have
to declare bridge functions: ecalls for the untrusted com-
ponent to call enclave code (e.g., cryptographic functions),
and ocalls for enclave code to call untrusted functions (e.g.,
system calls). Note that this is often tedious due to the strong
dependency between trusted and untrusted code. We may
end up with many ecalls/ocalls, depending on the secret we
aim to protect. The sizes of the ported benchmarks are shown
in Table 1. Details are elided for brevity.

The secrets we aim to protect are application specific. For
the cryptographic functions, the secrets are the correspond-
ing algorithms. crackme is similar. The secrets for the games
are code that loads/decrypts the assets from disk to defeat
reverse engineering.

Having ported the regular programs to SGX, we next add
the protection of SgxElide. For each ported program, we
simply recompile them with our framework code with no
enclave code modifications. We manually insert an explicit
elide_restore call into the untrusted component. There-
fore, as illustrated in the 5th and 6th columns in Table 1, the
final untrusted code size is always 50 LOC more (the call
to elide_restore and our library’s ocalls), and the trusted
component is always 113 LOC more (our library’s ecalls and
additional library helper functions).

Our above description demonstrates that it is indeed very
convenient to use our framework; we simply add one func-
tion call in the untrusted component of any SGX program,

and then recompile both the trusted and untrusted compo-
nent with our library to get a new SGX program protected
by SgxElide. The most tedious work lies in creating the
SGX programs themselves. This explains why all of our
original benchmark programs are mostly small to middle
sized programs (from 412 LOC to 3523 LOC).

Environment Configuration. Our experiment ran on an
Ubuntu 14.04.4 LTS machine with 64GB RAM and a 3.40Ghz
Intel i7-6700 Skylake CPU. We compiled our benchmarks
with gcc/g++ 4.8.4 and the Linux SGX SDK [12].

6.2 Experimental Result

Sanitizer.After we have compiled and linked each enclave’s
code, our sanitizer takes the enclave .so as input and pro-
duces a sanitized enclave. As reported in Table 1, for each
enclave binary, we sanitize any function not on the required
function whitelist. Our sanitizer sanitizes all functions ex-
cept the 170 on the whitelist. Note we have 170 unsanitized
functions due to many statically linked library functions (e.g.,
sgx_rijndael128GCM_decrypt) in our dummy enclave, in
addition to our framework’s functions. These whitelist func-
tions consist of all the functions within a minimal enclave
containing only our restoration code and standard SGX li-
braries, and provide the functionality for the enclave to
restore the developer’s functions.
We also measured how long it takes to sanitize an en-

clave, as shown in Table 2. We ran the sanitizer 10 times per
benchmark, then took the average and standard deviation.
The sanitization time for each enclave is around 0.09 ms for
remote data and 0.15ms for local data as they are all of similar
size. The process takes less time for remote data because in
that case the sanitizer does not encrypt the secret data until
runtime, when the server sends it to the enclave. Sanitization
will take longer for larger enclaves, but we emphasize that
this occurs offline, without any impact on runtime execution.

Runtime Restorer. When called, our runtime restorer will
contact the server to retrieve and restore the sanitized func-
tions. We measured the overhead for restoration, performing
restoration 10 times for every benchmark, with the result
also presented in Table 2. We ran the enclave application
and server on the same machine connecting over network
sockets, so there was very little network latency. In our
testing environment the restoration process took less than 5
ms. The overhead of using remote data was very similar to
local data, with only slightly more benchmarks taking longer
with remote than local; the difference is minimal. Also, note
that such overhead only occurs once (when the enclave is
first created), and is fixed for each specific enclave.

Overall PerformanceOverhead. Finally, we alsomeasured
the performance overhead of SgxElide over the SGX-only
versions. Since the games run forever, we did not measure
their overhead and instead measured the four cryptographic
programs and Crackme. We used the built-in test suites for

82

SgxElide: Enabling Enclave Code Secrecy via Self-Modification CGO’18, February 24ś28, 2018, Vienna, Austria

Table 1. The ported benchmarks, each divided into an Untrusted Component (UC) and Trusted Component (TC).

Original LOC w/ SGX LOC w/ SgxElide TC TC Sanitized Sanitized
Benchmarks LOC UC TC UC TC Functions Bytes Functions Bytes

AES [1] 802 472 427 522 540 185 75999 15 3840
DES [2] 473 463 372 513 485 179 75455 9 3296
Sha1 [3] 315 423 251 473 364 179 73791 9 1632
Shas [4] 2417 1529 1240 1579 1353 224 80127 54 7968
2048 [5] 413 551 192 601 305 208 76351 38 4448
Biniax [6] 3523 3582 193 3632 306 208 76351 38 4448
Crackme [7] 48 316 93 366 206 182 73711 12 1536

Table 2. Sanitization/restoration execution time (ms) with remote/local data.

Remote Data Local Data
Sanitize Stand. Restore Stand. Sanitize Stand. Restore Stand.

Benchmarks Time Dev. Time Dev. Time Dev. Time Dev.

AES 0.09 0.01 4.06 0.54 0.15 0.01 3.76 0.20
DES 0.09 0.01 3.99 0.52 0.14 0.01 3.97 0.75
Sha1 0.09 0.01 3.67 0.35 0.14 0.01 3.97 0.98
Shas 0.09 0.00 4.06 0.53 0.15 0.01 4.26 0.97
2048 0.09 0.01 3.78 0.52 0.15 0.01 3.73 0.28
Biniax 0.09 0.00 4.44 0.61 0.15 0.01 4.32 0.92
Crackme 0.09 0.01 3.53 0.28 0.15 0.00 3.54 0.78

the cryptographic programs for testing and directly exe-
cute Crackme since it does not require input. We ran the
selected benchmarks 10 times each. The normalized average
performance overhead for this measurement is presented
in Figure 3 and Figure 4. The runtime overhead increase is
tiny (all < 3% over the SGX version for both remote and
local data). This is expected because all SgxElide applica-
tions have fixed startup overhead from restoring the enclave
functions, determined by the amount of code restored; after
that point the code is identical to the plain SGX version, and
the runtime is dominated by identical enclave computations.

7 Discussions

Security Implications. The goal of SgxElide is to offer
developers an almost transparent approach (requiring only
one line of code to call elide_restore) to provide code
secrecy. No prior works, nor Intel, offer such a capability.
While the high level concept may appear trivial, many seem-
ingly obvious approaches are unfeasible. We had to examine
various alternatives and experiment with what is and is not
allowed in enclaves. The result is a combination of existing
concepts such as self-modifying code.

By making enclaves self-modifying, SgxElide introduces
new security challenges and changes assumptions about how
enclave code can be vettedÐcode screening as in Apple’s
iPhone app store will not work since SgxElide enclaves are
self-modifying. This also introduces the security issue of
whether a platform owner (e.g., a cloud provider) should
trust enclave code. For instance, an enclave can pass an

initial scan for malicious code, but later unpack a malicious
payload. Therefore, there is a need for new research to
search for solutions in defending against malicious enclaves.
However, enclaves are isolated and depend on the OS and
host application to interact with the outside world, so a
security policy could restrict an enclave’s capabilities. Also,
developers must sign enclaves before distributing them, so
there is a degree of attribution that may make it possible to
blacklist or identify malicious developers.

However, security concerns go beyond intentionally mali-
cious enclaves. Since SgxElide makes the enclave text sec-
tion writable, certain vulnerabilities in an enclave could re-
sult in an attacker inserting arbitrary malicious code into the
enclave. We added an mprotect call revoking PROT_WRITE

for the enclave text section immediately after restoring the
enclave code. However, mprotectmust be called outside the
enclave, so this would not defend against a malicious OS
or host application. Note that this still requires a vulnera-
bility in the enclave to allow an attacker to actually modify
enclave code, and this can be protected against by using
software-based DEP, in which the enclave code is compiled
with memory write instructions that can never write to the
text section [34]. Only the restoration instructions would
be allowed to overwrite code. Also, while there is no way
to securely change runtime permissions in the currently
available SGX-v1, SGX-v2 will provide this ability [8].
The recent discovery of the powerful controlled-channel

attacks against SGX showed that enclave code could poten-
tially leak extensive amounts of data to a malicious OS [39].

83

CGO’18, February 24ś28, 2018, Vienna, Austria Erick Bauman, Huibo Wang, Mingwei Zhang, and Zhiqiang Lin

However, our solution is in fact an excellent defense against
such attacks, because controlled-channel attacks require
knowledge of the code in order to extract secrets. If the code
itself is hidden, an attacker will not have this information.

Limitations and Future Work. We have demonstrated
that we can use SgxElide to protect enclave code secrecy, but
there are several ways to improve our work. One is to make
our framework totally transparent if a user does not mind
unpredictable runtime latency imposed during restoration.
As discussed in ğ3.4, we decided to have developers explicitly
call elide_restore; we could remove this explicit call by
having restoration occur the first time an ecall is made.

Second, we only ported a handful of benchmarks to eval-
uate our framework. Our immediate task is to investigate
using SgxElide to protect large scale and more practical soft-
ware. Another valuable research direction lies in developing
automatic techniques to partition code [26], which could
significantly boost the speed of enclave code development.
Third, we currently only focus on code secrecy against

existing reverse engineering techniques. SgxElide does not
protect against data leakage vulnerabilities. We will look into
how to secure the enclave against other attacks.
Finally, we did not implement a few details of our frame-

work, such as the final sealing step or performing full attesta-
tion. These would be important for an actual production
system, but our implemented framework is sufficient to
demonstrate the effectiveness of our approach.

8 Related Work

Binary Code Protection. The goal of code obfuscation is
to disrupt analysis of the code and deter reverse engineering
efforts. In general, there are three types of widely used binary
analysis platforms: disassembler, debugger, and VM. Conse-
quently, obfuscation techniques can be categorized into anti-
disassembler, anti-debugger, and anti-VM. For each category,
there exists a variety of techniques. For example in the anti-
dissembler category, there exists the techniques of garbage
code insertion (e.g., [27]), control flow obfuscation (e.g., [25]),
instruction aliasing (e.g., [30]), or binary code compression
and encryption (e.g., various packers such as UPX [10]).
SgxElide offers a new way of protecting binary code by

using the security provided by enclaves. With hardware-
enforced security provided by SGX, existing disassembler,
debugger, and VM-based reverse engineering techniques will
no longer work.

SGXApplications. Since SGX holds great potential to solve
challenging security problems [13], many efforts have started
to explore the potential of SGX. Haven [16], SCONE [14],
and Graphene SGX [38] run native applications inside SGX
enclave without modification. VC3 [33] demonstrated code
and data confidentiality of MapReduce computation in the
cloud. SGXRand [18] mitigated the side channel leakage of
data analytics with SGX by using data noise. Most recently,

AE
S

DE
S

Sha
1

Sha
s

Cra
ckm

e
99%

100%

101%

102%

103%

104%

105%

R
el
at
iv
e
P
er
fo
rm

an
ce w/ SGX

w/ SgxElide

Figure 3. Overhead of running the SgxElide protected
benchmark with remote data.

AE
S

DE
S

Sha
1

Sha
s

Cra
ckm

e
99%

100%

101%

102%

103%

104%

105%

R
el
at
iv
e
P
er
fo
rm

an
ce w/ SGX

w/ SgxElide

Figure 4. Overhead of running the SgxElide protected
benchmark with local data.

SGX-BigMatrix [36] provided a framework to secure matrix
operations for data analytics in the cloud.

Improving Security with SGX. SGX-LAPD [20] thwarts
the controlled side channel attacks [39] via compiler exten-
sions. T-SGX [37] defeats them via hardware transactional
memory (HTM) and compiler extensions, and Cloak [21]
defeats cache side channel attacks against SGX with just
HTM. SGX-Shield [35] enables ASLR to defeat memory cor-
ruptions, and SGXBounds [24] provides memory safety for
enclave programs.

9 Conclusion

In this paper, we presented SgxElide, a framework to ensure
enclave code confidentiality. By treating code as data, we
dynamically restore code at runtime bywriting the decrypted
code over the sanitized functions. SgxElide can easily be in-
tegrated with any SGX project to provide code secrecy, with
secrets delivered by a developer-controlled trusted party. We
have implemented SgxElide atop the Linux SGX SDK, and
our evaluation with SGX programs shows that SgxElide can
be used to protect the code secrecy of practical applications
without any runtime overhead after the enclave is initialized.

84

SgxElide: Enabling Enclave Code Secrecy via Self-Modification CGO’18, February 24ś28, 2018, Vienna, Austria

A Artifact description

A.1 Abstract

The artifact contains the SgxElide framework and its as-
sociated benchmarks as described in our CGO 2018 paper
SGXElide: Enabling Enclave Code Secrecy via Self-Modification.
It requires an Intel Skylake processor (or newer) that sup-
ports Intel SGX instructions (or simply an x86-64 processor if
running in simulation mode). The benchmarks were used to
create the data for the performance evaluation in the paper.

A.2 Description

A.2.1 Checklist (Artifact Meta Information)

- Program: SgxElide framework written in C++ and Python,
Benchmark programs written in C/C++

- Compilation: gcc/g++
- Binary: x86-64 executables for SGX-compatible hardware
(Unless in simulation mode)

- Run-time environment: 64-bit Ubuntu with Intel SGX
SDK installed

- Hardware: Any Intel Skylake processor (or newer), SGX-
compatible BIOS (SGX hardware support not required for
simulation mode)

- Output: SGX applications with encrypted enclaves
- Experiment workflow: Git clone; Install SGX SDK; Install
dependencies; Compile BaseEnclave for whitelist; Compile
SampleEnclave, start server.py and run app for simple ex-
ample; Compile benchmarks; Start server.py for each bench-
mark; Run each benchmark for results

- Publicly available?: Yes

A.2.2 How Delivered

SgxElide and its associated benchmarks are hosted onGithub
at https://github.com/utds3lab/sgxelide.

A.2.3 Hardware Dependencies

SgxElide requires any Intel Skylake processor (or newer)
and an SGX-compatible BIOS. If running in simulation mode
(for testing purposes only), SGX hardware support is not
required. However, it may be difficult to get SGX applications
running in simulation mode on incompatible hardware, so
running on a compatible system is strongly recommended.

A.2.4 Software Dependencies

SgxElide requires the Intel SGX SDK, Python 2.7, gcc, g++,
and the pyelftools and cryptography python libraries. The
two graphical game benchmarks also require libsdl1.2,
libsdl-image1.2, and libsdl-mixer1.2.

A.3 Installation

Clone the git repository and install all dependencies. De-
pending on the SGX SDK version (or if running in software
versus hardware mode), SgxElide’s function whitelist may
need to be re-generated, which is done by running make in

the BaseEnclave directory. The resulting whitelist.json then
needs to be copied to the other project directories.
To run an example of SgxElide, compile SampleEnclave

with make, start server.py, and run the binary called app.
The benchmarks are compiled the same as SampleEnclave.
The python script server.py needs to be run before each
SgxElide application, as they need to communicate with the
server.

More detailed installation information can be found in the
README in the git repository.

A.4 Experiment Workflow

When a benchmark is compiled, the sanitizer is run as part
of the build process. The sanitization time is calculated by
using the output of the time command when running the
sanitizer.
In order to measure the performance of the benchmarks

on remote data versus local data, a single change needs to
be made to the Makefile of each benchmark. The sanitizer
will encrypt enclave data if the -c flag is passed (local data),
and not encrypt the data if no flag is passed (remote data).

Each benchmark once compiled can be run by first starting
the benchmark’s server with python server.py and then
running the benchmark with ./app. The benchmark will
print timing information (the line that says "Time elapsed
in enclave initialization") as well as perform its original
functionality (e.g., run the game for the game benchmarks).

In order to measure the overall performance overhead of
the non-game benchmarks, the time command was run for
each benchmark.
The benchmarks without SgxElide (used for baseline

performance) can be run with ./app.

A.5 Evaluation and Expected Result

The sanitizer for each benchmark will run when compiling
each benchmark and will print the time it took to sanitize
the enclave. This was used to obtain the data for Sanitize
Time in Table 2.
The timing information for the benchmarks both with

and without SgxElide is printed when the benchmark is run.
This was used to obtain data in Table 2, Figure 3, and Figure 4.
Timing data will be different when running in simulation
mode, so hardware mode should be used to compare results.

Acknowledgement

We thank the anonymous reviewers for their very help-
ful comments. This research was partially supported by
NSF awards CNS-1453011, CNS-1564112, and CNS-1629951.
Any opinions, findings, conclusions, or recommendations
expressed are those of the authors and not necessarily of the
NSF.

85

https://github.com/utds3lab/sgxelide

CGO’18, February 24ś28, 2018, Vienna, Austria Erick Bauman, Huibo Wang, Mingwei Zhang, and Zhiqiang Lin

References
[1] https://github.com/kokke/tiny-AES128-C.
[2] https://github.com/tarequeh/DES.
[3] https://tools.ietf.org/html/rfc3174.
[4] https://tools.ietf.org/html/rfc6234.
[5] https://github.com/poupou9779/z2048.
[6] http://mordred.dir.bg/biniax/download2.html.
[7] https://exploit.ph/reverse-engineering/2014/05/11/

an-easy-linux-crackme/.
[8] https://software.intel.com/en-us/forums/

intel-software-guard-extensions-intel-sgx/topic/624878.
[9] Intel software guard extensions sdk for linux os. https:

//download.01.org/intel-sgx/linux-1.6/docs/Intel_SGX_SDK_

Developer_Reference_Linux_1.6_Open_Source.pdf.
[10] Upx: the ultimate packer for executables. http://upx.sourceforge.net/.
[11] Intel software guard extensions programming reference.

https://software.intel.com/sites/default/files/managed/48/88/

329298-002.pdf, Oct. 2014.
[12] Intel sgx for linux. https://github.com/01org/linux-sgx, June 2016.
[13] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology

for cpu based attestation and sealing. In Proceedings of the 2nd

International Workshop on Hardware and Architectural Support for

Security and Privacy, page 10, 2013.
[14] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,

D. Muthukumaran, D. O’Keeffe, M. Stillwell, et al. Scone: Secure linux
containers with intel sgx. In OSDI, pages 689ś703, 2016.

[15] E. Bauman and Z. Lin. A case for protecting computer games with
sgx. In Proceedings of the 1st Workshop on System Software for Trusted

Execution (SysTEX’16), Trento, Italy, December 2016.
[16] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from

an untrusted cloud with haven. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2014.
[17] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an

untrusted cloud with haven. ACM Transactions on Computer Systems

(TOCS), 33(3):8, 2015.
[18] S. Chandra, V. Karande, Z. Lin, L. Khan, M. Kantarcioglu, and

B. Thuraisingham. Securing data analytics on sgx with randomization.
In Proceedings of the 22nd European Symposium on Research in Computer

Security, Oslo, Norway, September 2017.
[19] C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing,

and obfuscation-tools for software protection. IEEE Transactions on

software engineering, 28(8):735ś746, 2002.
[20] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin. Sgx-lapd: Thwarting

controlled side channel attacks via enclave verifiable page faults. In
Proceedings of the 20th International Symposium on Research in Attacks,

Intrusions and Defenses (RAID’17), Atlanta, Georgia. USA, September
2017.

[21] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa.
Strong and efficient cache side-channel protection using hardware
transactional memory. In 26th USENIX Security Symposium (USENIX

Security 17), pages 217ś233, Vancouver, BC, 2017. USENIX Association.
[22] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo.

Using innovative instructions to create trustworthy software solutions.
In Proceedings of the 2nd International Workshop on Hardware and

Architectural Support for Security and Privacy (HASP), pages 1ś8, Tel-
Aviv, Israel, 2013.

[23] G. Hoglund and G. McGraw. Exploiting online games: cheating

massively distributed systems. Addison-Wesley Professional, 2007.
[24] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber,

and C. Fetzer. Sgxbounds: Memory safety for shielded execution. In
Proceedings of the Twelfth European Conference on Computer Systems,
pages 205ś221. ACM, 2017.

[25] T. László and Á. Kiss. Obfuscating c++ programs via control flow
flattening. Annales Universitatis Scientarum Budapestinensis de Rolando
Eötvös Nominatae, Sectio Computatorica, 30:3ś19, 2009.

[26] J. Lind, C. Priebe, D. Muthukumaran, D. OâĂŹKeeffe, P.-L. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, et al. Glamdring:
Automatic application partitioning for intel sgx. In 2017 USENIX

Annual Technical Conference (USENIX ATC 17), Santa Clara, CA, 2017.
[27] C. Linn and S. Debray. Obfuscation of executable code to improve

resistance to static disassembly. In Proceedings of the 10th ACM

conference on Computer and communications security, pages 290ś299.
ACM, 2003.

[28] A. Majumdar, C. Thomborson, and S. Drape. A survey of control-
flow obfuscations. In International Conference on Information Systems

Security, pages 353ś356. Springer, 2006.
[29] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,

V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. In Proceedings of the 2nd

International Workshop on Hardware and Architectural Support for

Security and Privacy (HASP), pages 1ś8, Tel-Aviv, Israel, 2013.
[30] T. Mudge, C.-C. Lee, and S. Sechrest. Correlation and aliasing in

dynamic branch predictors. In Computer Architecture, 1996 23rd Annual

International Symposium on, pages 22ś22. IEEE, 1996.
[31] I. V. Popov, S. K. Debray, and G. R. Andrews. Binary obfuscation using

signals. In Usenix Security, 2007.
[32] W. Rosenblatt, S. Mooney, and W. Trippe. Digital rights management:

business and technology. John Wiley & Sons, Inc., 2001.
[33] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-

Ruiz, and M. Russinovich. VC3: Trustworthy Data Analytics in the
Cloud using SGX. 2015.

[34] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim. Sgx-shield:
Enabling address space layout randomization for sgx programs. In
Proceedings of the 2017 Annual Network and Distributed System Security

Symposium (NDSS), San Diego, CA, 2017.
[35] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim. Sgx-shield:

Enabling address space layout randomization for sgx programs. In
Proceedings of the 2017 Annual Network and Distributed System Security

Symposium (NDSS), San Diego, CA, 2017.
[36] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan. A practical encrypted

data analytic framework with trusted processors. In Proceedings of

the 24th ACM Conference on Computer and Communications Security

(CCS’17), Dallas, TX, November 2017.
[37] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-sgx: Eradicating

controlled-channel attacks against enclave programs. In Proceedings of

the 2017 Annual Network and Distributed System Security Symposium

(NDSS), San Diego, CA, 2017.
[38] C.-C. Tsai, D. E. Porter, andM. Vij. Graphene-sgx: A practical library os

for unmodified applications on sgx. In 2017 USENIX Annual Technical

Conference (USENIX ATC), 2017.
[39] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Determin-

istic side channels for untrusted operating systems. In Security and

Privacy (SP), 2015 IEEE Symposium on, pages 640ś656. IEEE, 2015.

86

https://github.com/kokke/tiny-AES128-C
https://github.com/tarequeh/DES
https://tools.ietf.org/html/rfc3174
https://tools.ietf.org/html/rfc6234
https://github.com/poupou9779/z2048
http://mordred.dir.bg/biniax/download2.html
https://exploit.ph/reverse-engineering/2014/05/11/an-easy-linux-crackme/
https://exploit.ph/reverse-engineering/2014/05/11/an-easy-linux-crackme/
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/624878
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/624878
https://download.01.org/intel-sgx/linux-1.6/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.6_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.6/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.6_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.6/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.6_Open_Source.pdf
http://upx.sourceforge.net/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://github.com/01org/linux-sgx

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Intel SGX
	2.2 The Default Protection Model of SGX

	3 Overview
	3.1 Challenges
	3.2 Key Insights and Solutions
	3.3 SgxElide Overview
	3.4 How to Develop Secret Enclave Code

	4 Detailed Design
	4.1 Whitelist Generation
	4.2 Sanitized Enclave Generation
	4.3 Runtime Secret Restoration

	5 Implementation
	6 Evaluation
	6.1 Experiment Setup
	6.2 Experimental Result

	7 Discussions
	8 Related Work
	9 Conclusion
	A Artifact description
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Result

	References

