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ABSTRACT

In old times, castles were surrounded by moats (deep trenches
filled with water, and even alligators) to thwart or discourage
intrusion attempts. One can now replace such barriers with
stealthy and wireless sensors. In this paper, we develop theo-
retical foundations for laying barriers of wireless sensors. We
define the notion of k-barrier coverage of a belt region us-
ing wireless sensors. We propose efficient algorithms using
which one can quickly determine, after deploying the sen-
sors, whether a region is k-barrier covered. Next, we establish
the optimal deployment pattern to achieve k-barrier coverage
when deploying sensors deterministically. Finally, we con-
sider barrier coverage with high probability when sensors are
deployed randomly. We introduce two notions of probabilis-
tic barrier coverage in a belt region — weak and strong barrier
coverage. While weak barrier-coverage with high probability
guarantees the detection of intruders as they cross a barrier
of stealthy sensors, a sensor network providing strong barrier-
coverage with high probability (at the expense of more sen-
sors) guarantees the detection of all intruders crossing a bar-
rier of sensors, even when the sensors are not stealthy. Both
types of barrier coverage require significantly less number of
sensors than full-coverage, where every point in the region
needs to be covered. We derive critical conditions for weak k-
barrier coverage, using which one can compute the minimum
number of sensors needed to provide weak k-barrier coverage
with high probability in a given belt region. Deriving critical
conditions for strong k-barrier coverage for a belt region is
still an open problem.
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Figure 1: A Castle with a moat to discourage intrusion.
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1. INTRODUCTION

In the days of castles and forts, a popular defense mech-
anism from intruders were moats (a deep and wide trench
that is usually filled with water). One such castle with moat
around it is shown in Figure 1. Some forts used to put even
alligators in those water. Other defense mechanisms were
mires, fire barriers, and even forests. These mechanisms are
no longer viable in today’s world of high-technology.

Wireless sensor networks can replace such barriers today at
the building level and at the estate level, where barriers can
be more than a kilometer long [1]. Efforts are currently un-
derway to extend the scalability of wireless sensor networks
so that they can be used to monitor one of the largest inter-
national borders [1]. Intrusion detection and border surveil-
lance constitute a major application category for wireless sen-
sor networks. A major goal in these applications is to detect
intruders as they cross a border or as they penetrate a pro-
tected area. This type of coverage is referred to as barrier
coverage, where the sensors form a barrier for the intruders.
A given belt region is said to be k-barrier covered with a sen-
sor network if all crossing paths through the region are k-
covered!, where a crossing path is any path that crosses the
width of the region completely. This is in contrast to the other
type of coverage, where every point in the deployment region
is covered, referred to as full coverage in this paper.

LA path is said to be k-covered if it intersects with the sensing
disks of at least & distinct sensors. This is in contrast with the
notion when every point in the path is covered by at least k
distinct sensors.



By their very nature, the deployments for barrier coverage
are expected to be in long (sometimes very long, as in interna-
tional borders) thin belts (a region bounded by two parallel
curves) as opposed to in regular structures such as squares
and disks [3, 11]. Further, since the goal is only to detect
intruders before they have crossed the border as opposed to
detecting them at every point in their trajectory, using the
results on full coverage is often an overkill. Therefore, the
traditional work on coverage [9, 12, 25] are not directly ap-
plicable to barrier coverage. A natural question then is how
does one determine the minimum number of sensors to
deploy to have k-barrier coverage in a given belt region?
And, how does one determine, after deploying sensors in
a region, whether the region is indeed k-barrier covered?

In this paper, we establish equivalence conditions between
k-barrier coverage and the existence of k¥ node-disjoint paths
between two vertices in a graph. With such a condition, effi-
cient (global) algorithms already existing to test the existence
of k node-disjoint paths can now be used to test whether or
not a given region is k-barrier covered by a network of wire-
less sensors. We also establish that it is not possible to locally
come up with a yes/no answer to the question of whether the
given region is k-barrier covered. This should be contrasted
with the fact that for full k-coverage, it is possible to locally
come up with a no answer to the question of whether the
given region is fully k-covered [9].

Next, we prove that when deploying sensors determinis-
tically, the optimal deployment pattern to achieve k-barrier
coverage is to deploy k rows of sensors on the shortest path
across the length of the belt region such that consecutive sen-
sors’ sensing disks abut each other. This should be contrasted
with the fact that optimal deployment pattern to achieve full
k-coverage for general values of k are not known.

Finally, we consider barrier coverage with high probability.
We introduce two notions of barrier coverage with high prob-
ability — weak and strong barrier coverage. Let ¢ be a crossing
path through a belt region and let L(i) denote the set of all
crossing paths congruent to 4. Then, a belt region is said to be
weakly k-barrier covered with high probability if and only if*

Vi: imPr[Vj € L(7) : j is k-covered] = 1,

and it is said to be strongly k-barrier covered with high proba-
bility if and only if

lim Pr[Vi : 4 is k-covered] = 1,
which is also equivalent to the following condition
lim Pr[Vi : Vj € L(7) : j is k-covered] = 1.

The conditions for both the weak barrier coverage and strong
barrier coverage will be same when both of these events need
to have probabilities exactly 1, i.e. make deterministic guar-
antee. Otherwise, the conditions may be different.

To provide weak barrier coverage in a belt region with high
probability, one is likely to require significantly less sensors
than that required for strong barrier coverage with high prob-
ability. Also, if the sensors are stealthy, then having weak
barrier coverage with high probability may be enough to de-
tect all intruders with high probability. Finally, if the intruders
are known to traverse in groups (when they will follow con-
gruent or nearly congruent paths), weak barrier coverage will

2We define these notions more formally in Section 2.

guarantee detection with high probability. With the three no-
tions of coverage, weak k-barrier coverage, strong k-barrier
coverage, and full k-coverage, a deployer now has more de-
sign freedom to trade the number of sensors with the quality
of surveillance desired.

We derive critical conditions for weak k-barrier coverage in
this paper, using which one can compute the minimum num-
ber of sensors needed to provide weak k-barrier coverage with
high probability in a given belt region when the sensors are
deployed with Poisson distribution or with random uniform
distribution. We prove that our conditions hold not only for
rectangular belt regions, but also for arbitrary belt regions (a
long and narrow region bounded by two uniformly separated
curves such as a pair of concentric circles). Deriving critical
conditions for strong k-barrier coverage for a belt region is
still an open problem. We provide details in Section 3.2 on
why standard percolation theory results do not directly yield
critical conditions for strong k-barrier coverage in long belt
regions.

Our critical conditions can be used to design efficient sleep-
wakeup schemes for a sensor network providing continuous
weak k-barrier coverage. Because sensors can not locally de-
termine whether or not the region is k-barrier covered (a re-
sult established in this paper), it is not possible to design local
and deterministic sleep/wakeup algorithms to increase net-
work lifetime and still maintain barrier coverage of the region
with an arbitrary sensor network topology. However, it is pos-
sible to design a purely local, but randomized sleep/wakeup
algorithm to increase the network lifetime by a given factor,
while guaranteeing that the region is weakly k-barrier cov-
ered with high probability at all times.

Randomized Independent Sleeping (RIS) scheme proposed
in [12] is one such scheme. In this algorithm, time is divided
in intervals and in every interval each sensor is active with
probability p, independently of every other sensor. With this
scheme, the network will last (1/p)-times the lifetime of in-
dividual sensors. If the number of sensors to be deployed is
chosen using our critical conditions for weak k-barrier cover-
age, then the RIS scheme will increase the network lifetime by
the desired factor, (1/p), while guaranteeing the continuous
weak k-barrier coverage of the region with high probability.

The rest of the paper is organized as follows. In Section 2,
we formally define the network model, key assumptions and
the conditions for k-barrier coverage. In Section 3, we de-
scribe key contributions of this paper and discuss some re-
lated work. In Section 4, we prove equivalence conditions
that lead to efficient algorithms for determining whether a
given belt region is k-barrier covered. In Section 5, we estab-
lish the optimal deployment pattern for achieving k-barrier
coverage when deploying sensors deterministically. In Sec-
tion 6, we derive critical conditions for weak k-barrier cover-
age with high probability in an arbitrary belt region. In Sec-
tion 7, we provide some results from numerical computation
and simulation. Section 8 concludes the paper.

2. THE NETWORK MODEL

Model of Deployment. We consider a long, narrow region,
referred to as a belt, where sensors are deployed randomly
with Poisson distribution of rate n. As proved in [8, Page 39]
for a region of unit area, as n becomes larger and larger, Pois-
son distribution of sensors with rate n is equivalent to random
uniform distribution of n sensors, where each sensor has an
equal likelihood of being at any location within the deployed



region, independently of the other sensors. Therefore, all the
results we prove here for Poisson distribution also hold for
uniform distribution.

AssuMPTION 2.1. [Disc-based sensing] We assume a disc-
based sensing model where each active sensor has a sensing ra-
dius of r; any object within the disc of radius r centered at an
active sensor is reliably detected by it. The sensing disk of a
sensor located at location u is denoted by D, (u).

We would like to note that the results of Section 4 and that
of Section 5 will continue to hold if sensing is directional and
does not follow the disk model.

DEFINITION 2.1. [RIS scheme [12]] Time is divided in
regular intervals and in each interval, each sensor is active with
a probability of p, independently of all the other sensors.

DEFINITION 2.2. [Sensor network N(n,r)] A sensor net-
work where sensors are distributed with Poisson distribution of
rate n and each sensor has a sensing radius of r is denoted by
N(n,r). If each sensor in a sensor network N(n,r) sleeps ac-
cording to the RIS scheme [12] so that each sensor is active with
probability p, then the sensor network is denoted by N(n,p,r).

DEFINITION 2.3. [Belt of dimension s x (1/s)] A rectan-
gular region is said to be a belt of dimension s x (1/s), if it
has length s and width 1/s.

Figure 3 illustrates such a belt. Note that even if s approaches
to oo, the area of the region always remains 1.

DEFINITION 2.4. [d(u,v)] Let the Euclidean distance be-
tween points u and v be denoted by d(u,v). If l is a line or a
path, then d(u,!) = min{d(u,v) : v € l}.

DEFINITION 2.5. [Belt of dimension (A1, Az, (1/5))] Two
curves l; and l; are uniformly separated with separation 1/s
if d(li,y) = d(z,l) = 1/s for all points x € l; and all
points y in la. A region bounded by two curves 1 and la, which
are uniformly separated with separation 1/s and are of lengths
A1 and A2 respectively, is referred to as a belt of dimensions
(A1, A2, (1/s)), in which case 1/s is referred to as the belt’s
width and A\ and X\ its lengths.

A belt as defined in Definition 2.5 occurs between railroad
tracks. Such a belt also occurs if sensors are dropped from
a moving vehicle. Figure 2 illustrates an example of such a
belt with dimensions (2771, 27rr2, 71 —r2), which is the region
between the circumference of two concentric circles of radii
T1 and T2.

ASSUMPTION 2.2. [Small Width] We assume that the width
of the belt, 1/s, is in the same order of magnitude as the sensing
radius, ryi.e. Im,M :m <r/s < M.

In practice, most of the barrier coverage deployments are
expected to satisfy Assumption 2.2.

ASSUMPTION 2.3. We also assume that n — oo as s — co.

With assumptions 2.2 and 2.3, it follows that the parameters
r and n are actually functions of s and should have been de-
noted as r(s) and n(s). However, we write n, r in place of
n(s), r(s) to improve the clarity of presentation. The same
convention applies to any other parameter that is potentially
a function of s. Also, if some parameter is a function of n,
then it is also a function of s because n is a function of s.

Figure 2: A belt region with dimension (2771, 27re,m1 —
r2), which is the region between the circumference of two
concentric circles with radii 1 and r».

Figure 3: A belt region showing some crossing paths that
are congruent (also parallel in this case) to the width of
the belt. Note that the total number of crossing paths that
are congruent to the width is uncountable.

DEFINITION 2.6. [Intruder] An intruder is any person or
object that is subject to detection by the sensor network as it
crosses the barrier.

DEFINITION 2.7. [Stealthiness] A sensor network is said to
satisfy the stealthiness assumption if no intruder is aware of
the locations of the sensors.

DEFINITION 2.8. [k-coverage of a Path] A path (i.e. line
or curve) 1 is said to be k-covered if I N D, (u) # ( for at least
k active sensors u. We denote this event by Ax(l). (In contrast,
a path is said to be “fully” k-covered if every point in it is
covered by at least k sensors. This paper is concerned only with
k-coverage.)

Thus, if an intruder moves along a k-covered path, it will be
detected by at least k sensors.

DEFINITION 2.9. [Crossing line (or Crossing path)] A
line segment (or path) in a belt region is said to be a crossing
line (or crossing path) if it crosses the complete width of the
region. A crossing line is orthogonal if its length equals the
belt’s width.

Figure 3 illustrates orthogonal crossing lines.

DEFINITION 2.10. [k-barrier Coverage] A belt region with
a sensor network deployed over it is said to be k-barrier cov-
ered if and only if all crossing paths through the belt are k-
covered by the sensor network.

We use Pr[T'] to denote the probability that event T' occurs;
and Pr[T], the probability that T’ does not occur. We use E[X]
to denote the expected value of a random variable X.



DEFINITION 2.11. [With high probability (whp)] We say
that event T'(n) occurs with high probability (whp) if

lim Pr(T(n)] = 1.

We use the concept of congruency in the next definition.
Two curves in the Euclidean plane are said to be congruent iff
one can be transformed into another by an isometry [5]. An
isometry is a (Euclidean) distance preserving transformation.
Of all possible isometric transformations, we only consider
translation and rotation.

Note that by the definition of congruency and by the defi-
nition of an orthogonal crossing line (Definition 2.9), all or-
thogonal crossing lines in a belt region (whether of dimen-
sion s x (1/s) or of dimension (A1, A2, (1/s))) are congruent
to each other.

DEFINITION 2.12. [k-barrier coverage modulo [] Let B
be a belt region with a sensor network deployed over it. Let
l be a crossing path through B and let L(l) denote the set of
all crossing paths congruent to I. B is said to be k-barrier
covered modulo [ if and only if

Pr[Vi e L(l) : Ax(3)] =1,
i.e. every path in L(l) is k-covered by the sensor network.

Note that congruent crossing paths in a rectangular belt will
be parallel to each other as in Figure 3. But, if the belt region
is non-rectangular, then congruent paths need not be parallel.
For example, orthogonal crossing paths in a belt region such
as the one shown in Figure 2 will all be congruent to each
other, but not mutually parallel.

DEFINITION 2.13. [Weak k-barrier coverage whp] Let
B; be a belt region of dimension s x (1/s) or (A1, A2, (1/s))
with a sensor network N (n,r) deployed over it. Let I be a cross-
ing path through Bs. Then, B, is said to be weakly k-barrier
covered whp if and only if®

vi: Sli}n;o Pr[B; is k-barrier covered modulo []=1. (1)

DEFINITION 2.14. [Strong k-barrier coverage whp] Let
B; be a belt region of dimension sx (1/s) or (A1, A2, (1/s)) with
a sensor network N(n,r) deployed over it. Let i be a crossing
path through Bs. Then, B, is said to be strongly k-barrier
covered whp if and only if

lim PriNi: Agp(i)]=1. 2)
8§—r00
To see the difference between weak barrier coverage and

strong barrier coverage whp, note that (2) is equivalent to the
following condition:

1i_>m Pr[Vl : B, is k-barrier covered modulo ] = 1.

8 Although this definition is intuitively clear, it may be math-
ematically ambiguous. For rectangular belts B;, this issue
can be addressed as follows. Let Bs; be the belt region
[0,s] x [0,1/s]. In particular, B, is the Bs with s = 1. Let
Ly be the set of all crossing paths in B;. For each crossing
path! € L, define l; = {(z * s,y *1/s) : (z,y) € I}, which is
a crossing path in B, naturally corresponding to I. Now, (1)
can be more precisely stated as

VI € Ly : lim Pr[B, is k-barrier covered modulo /] = 1.
88— 00
For non-rectangular belts Bs, the issue can be addressed sim-

ilarly by introducing a natural one-one mapping between B,
(the Bs with s = 1) and Bs.

Also note that

lim Pr[Vi: Ax(i)] = 1< lim Pr[3i: Ax(d)] =0,
S—r0o0 8§—r00
but

VI : lim Pr[B; is k-barrier covered modulo /] =1
8§— 00

# lim Pr[3i: Ax(i)] = 0,
8§— 00

which means that strong barrier coverage whp is a stronger
condition than weak barrier coverage whp. A consequence
of this distinction between strong and weak barrier coverage
whp is that if a region is strongly barrier covered whp, then
even if the intruders can see the location of sensors, whp they
can not find an uncovered path through the region. On the
other hand, if the region is weakly barrier covered whp, then
all intruders will be detected whp if they can not see the sen-
sors. However, if the region is weakly barrier covered whp
and the network does not satisfy the stealthiness assumption
(Definition 2.7), then an intruder may be able to find an un-
covered path through the region.

3. SUMMARY OF CONTRIBUTIONS AND
RELATED WORK

3.1 Summary of Contributions

In this section, we summarize our main results. We divide
them in three categories:
Algorithms for k-barrier Coverage:

We establish the following three key results on the issue
of how to determine whether a given belt region is k-barrier
covered with a sensor network:

1) We establish that it is not possible to locally come up
with a “yes” or a “no” answer to the question of whether a
given belt region is k-barrier covered. This is in contrast to
the results known for the case of full coverage, where it is
possible to locally come up with a “no” answer to the analo-
gous question [9].

2) We prove (in Theorem 4.1) that the condition for an
open belt region (such as the one shown in Figure 3) to be
k-barrier covered can be reduced to problem of determining
whether there exist k£ node-disjoint paths between a pair of
vertices in a graph. One can now use existing algorithms for
testing the existence of k£ node-disjoint paths between two
vertices to globally test k-barrier coverage.

3) We prove (in Theorem 4.2) that the condition for a closed
belt region (such as the one shown in Figure 7) to be k-
barrier covered can be reduced to the problem of determin-
ing whether there exist ¥ node-disjoint cycles, each of which
loops around the entire belt region*. Notice that the prob-
lem of finding node-disjoint cycles that go around the entire
belt region is not the same as finding node-disjoint cycles in
graphs (which could be local cycles). The good news is that
it can be decided in polynomial time whether there exist k&
node-disjoint cycles that go around the entire closed belt, al-
though it appears to be similar to the multi-commodity flow
problem, which is known to be NP-Complete.

The equivalence conditions we have established are differ-
ent from other known results on the relation between cover-
age and connectivity [23]. (See Section 4.4).

*We formally define node-disjoint cycles that go around the
entire belt in Section 4.3.



Optimal Configuration for Deterministic Deployment:

For k-barrier coverage, we prove in Theorem 5.1 that the
optimal configuration for achieving k-barrier coverage in a
belt region is to deploy & rows of sensors on the shortest path
across the length of the region, where each line has consecu-
tive sensors’ sensing disks abut each other. This is in contrast
to the fact that the analogous problem of determining an op-
timal configuration for achieving full k-coverage for general
values of k is still an open problem.

Critical Conditions for Weak k-barrier Coverage for Ran-
domized Deployments:

If in a Poisson distributed sensor network with rate n, each
sensor sleeps according to the RIS sleep/wakeup scheme [12]
so that it is active with probability p at any given time, then
the distribution of the active sensors follows Poisson distri-
bution of rate np [20]. Assume that sensors are Poisson dis-
tributed with rate np over a belt region. We establish a critical
condition for the belt region to be weakly k-barrier covered
whp. Such a condition will allow us to easily compute the
number of sensors necessary to ensure weak k-barrier cover-
age of the region with high probability.

DEFINITION 3.1. [¢(np)] We use ¢(np) to denote an arbi-
trary, slowly and monotonically increasing function that goes to

infinity, where ¢(np) = o(log log(np)).
DEFINITION 3.2. We define

c(s) = 2npr/(slog(np)) 3)
_ ¢(np) + (k — 1) log log(np)
fr(n) = log(np) 4

The following two results establish a critical condition for
weak k-barrier coverage in a belt region:

1) Let N(n,p,r) be a Poisson distributed sensor network
over a belt of dimension (A1, A2,(1/s)). We prove (in Theo-
rem 6.5) that if

c(s) 2 1+ fi(n)

for sufficiently large s, then the belt region is weakly k-barrier
covered whp (as s — 00).

2) Again, let N(n,p,r) be a Poisson distributed sensor net-
work over a belt of dimension (A1, A2, (1/s)). We prove (in
Theorem 6.4) that if

e(s) S 1— fa(n)

then whp there exists an orthogonal crossing line in the region
that is not 1-covered as s — co. This implies that in order for
a belt region to be weakly barrier-covered whp, it is necessary
that ¢(s) > 1 — fa(n).

Notice that since ¢(s) =3 1 in both of the results above,
the critical value of the function ¢(s) is 1 for the case of weak

k-barrier coverage of a belt region of dimension (A1, Az, (1/s)).

Roughly speaking, the critical condition indicates that in or-
der to ensure barrier coverage whp, there must be at least
log(np) active sensors in each orthogonal crossing line’s 7-
neighborhood.

3.2 Related Work

Most of the existing work on coverage focus on full-coverage
[9, 12, 25] and that too in regular regions rather than in a
thin belt region. The proofs and the conditions developed for
full-coverage do not readily carry over to the case of barrier
coverage in thin belt regions.

The concept of barrier coverage first appeared in [6] in
the context of robotic sensors. Simulations were performed
in [10] to find the optimal number of sensors to be deployed
to achieve barrier coverage. To the best of our knowledge,
ours is the first work to address the theoretical foundation for
determining the minimum number of sensors to be deployed
(using critical conditions) to achieve barrier coverage in belt
regions.

Full-coverage in one dimension and barrier-coverage in a
square region were addressed in [14]. It is pointed out in
this work that percolation theory results can be used to es-
tablish critical conditions for the existence of a giant cluster
of overlapping sensing disks. It was concluded that beyond
the critical threshold, no crossing path will exist because a
giant cluster of overlapping sensing disks exists. However,
as pointed out earlier, deployments for barrier coverage are
expected to be in thin belt regions as opposed to square re-
gions and the percolation theory results developed for square
regions are not directly applicable to thin belt regions. For
instance, the crossing probability (which, in a sense is equiv-
alent to strong barrier coverage) in rectangular regions ap-
proaches 0 at the percolation threshold, as the ratio of width
to length approaches 0 (which is the case in our s x (1/s)
model with s — 00). For details, we refer the reader to [13].
Also, notice that for barrier coverage even in a square region,
all one needs is a set of sensors whose sensing disks overlap
and cover the entire length of the region. It does not need
to be a giant component, as is demanded by the percolation
theory.

The work on maximal exposure paths in [15, 16, 22] fo-
cus on devising algorithms to find a least covered crossing
path through the region between a given set of initial and
final points. The problems addressed in these work are com-
plementary to our algorithm for determining whether a belt
region is k-barrier covered. Once it is found out using our
algorithm that the region is not k-barrier covered, the Maxi-
mal Breach Path algorithm [15] or its localized version [22]
can be executed for those sets of initial and final points that
the intruders are most likely to follow in the protected region,
to find the least covered paths. It may be too prohibitive to
use Maximal Breach Path algorithms to determine whether a
region is k-barrier covered. We also note that the work on
maximal exposure paths do not address the issue of deriving
critical conditions, although they do observe the existence of
critical thresholds in their experiments.

Another work related to ours is [7]. This work addresses
the issue of intruder tracking in regular regions such as a
square. The focus of this work is the following problem —
Given a value of [, what is the minimum number of sensors
needed so that if the nodes are independently and uniformly
distributed, the average length of an uncovered path traveled
by an intruder that starts at a random (uniformly chosen) lo-
cation within the field, will be less than [? In other words,
the question addressed in this work is — Under what condi-
tion does the largest uncovered region have a diameter of less
than a given value of {7 Although this is an important prob-
lem for tracking applications, it does not address the problem
of k-barrier coverage. For instance, a region may be k-barrier
covered, and yet the largest hole may be as long as the length
of the entire region (for example, see Figure 5).

As can be seen from the discussion of some related work
above, a lot of interesting work have come close to the prob-
lem of barrier coverage, but none have addressed the issue



Figure 4: What is the largest value of k£ such that this
region k-barrier covered?

of deriving critical conditions for barrier coverage in a belt re-
gion, which is a more realistic model for sensor deployments
for barrier coverage than a square or a disk. Also, no existing
work, to the best of our knowledge, has addressed the issue
of developing efficient algorithms for determining whether a
given belt region is k-barrier covered.

4. ALGORITHMS FOR k-BARRIER COV-
ERAGE

Looking at the sensor deployment in Figure 5, one can eas-
ily conclude that the region is 3-barrier covered. However,
if we look at the sensor deployment in Figure 4, it would be
harder to see for what value of % this region is k-barrier cov-
ered. Therefore, it is desirable to have an efficient algorithm
for determining whether or not a given belt region is k-barrier
covered.

We first establish in Section 4.1 that it is not possible to
determine locally if a given region is not k-barrier covered.
We then derive conditions, using which one can design effi-
cient global algorithms to determine whether a given region
is k-barrier covered. Divide belt regions into two categories
— open belts and closed belts. We show the following: (1)
The problem of determining whether an open belt region is
k-barrier covered can be reduced to the problem of determin-
ing whether two nodes in a graph are k-connected (in Sec-
tion 4.2). (2) The problem of determining whether a closed
belt region is k-barrier covered can be reduced to the problem
of determining whether there exist k£ node-disjoint cycles each
of which loops around the entire belt region (in Section 4.3).
Such reductions will enable us to use existing graph theoretic
algorithms for k& node-disjoint paths to determine if an open
or closed belt is k-barrier covered. Finally, in Section 4.4,
we discuss how the conditions we establish in Sections 4.2
and 4.3 are different from a similar sounding result devel-
oped in [23].

The results of this section do not depend on either Assump-
tion 2.2 or Assumption 2.3 described in Section 2. Also, the
belt region considered in this section need not be of the form
of Definition 2.3 or of Definition 2.5. Finally, the results of this
section will continue to hold even if sensing is directional.

4.1 Non-locality of x-barrier Coverage
We first define what we mean by local algorithms. This
definition is based on a model proposed in [19].

DEFINITION 4.1. [Local Algorithms] Assume that each
computation step takes one unit of time and so does every mes-

Figure 5: The above region is 3-barrier covered since
there does not exist any path that crosses the complete
width of the region without being detected by at least
three sensors.

sage to get from one node to its directly connected neighbors.
With this model, an algorithm is called local if its computation
time is O(1), in terms of the number of nodes n in the system.

In [9], it was established that sensors can locally determine
if a given region is not fully k-covered. (If any point on the
perimeter of a sensor’s sensing disk is covered by less than &
sensors, then this sensor can locally conclude that the region
is not fully k-covered.) However, in the case of k-barrier cov-
erage, individual nodes can neither locally say “yes” nor “no”
to the question of whether a given region is k-barrier covered.
To see this, consider sensors deployed as in Figure 5. Assume
that the communication range of each sensor is exactly twice
its sensing range so that the sensors whose sensing disks over-
lap can communicate with each other.

The region is not 1-barrier covered iff there is at least one
inactive sensor in each of the three rows. No sensor can lo-
cally determine whether at least one sensor in each of the
three rows is inactive. Therefore, it is not possible to locally
determine whether the belt region is not 1-barrier covered, in
general.

As a result of this non-locality property, one cannot possibly
design a deterministic local algorithm that allows sensors to
locally decide whether to go to sleep or remain active, and
still guarantees that the belt region is continuously k-barrier
covered.

4.2 Open Belt Regions

Corresponding to a sensor network deployed in a belt re-
gion, we derive a coverage graph CG = (V, E), where V is
the set of all sensor locations plus two virtual nodes « and v
(see Figure 6). The set of edges FE is derived as follows: Each
pair of sensors whose sensing disks overlap are connected by
an edge. Additionally, the sensors whose sensing disks inter-
sect with the left boundary are connected to node » and the
sensors whose sensing disks intersect with the right boundary
are connected to node v. The resulting coverage graph for the
sensor network in Figure 5 is shown in Figure 6.

The following theorem establishes that the conditions for a
region to be k-barrier covered and the conditions for the cor-
responding coverage graph to have k-connectivity between
nodes u and v are equivalent.



Figure 6: Coverage graph CG of the sensor network rep-
resented by Figure 5.

ASSUMPTION 4.1. Let B be the belt region in consideration.
If two sensing disks D, and D, have overlap, then (D,UD>)NB
is a connected sub-region in B.

THEOREM 4.1. An open belt region B that satisfies Assump-
tion 4.1 is k-barrier covered iff uw and v are k-connected in the
corresponding coverage graph, CG.

PROOF. Let us first prove the “if” part. Assume that w and
v are k-connected in the corresponding coverage graph CG.
Then, by definition, there exist k¥ node-disjoint paths in CG
that connect u to v. These paths define & disjoint sets of sen-
sors, each of which provides 1-barrier coverage for the belt.
This is because sensing disks of neighboring sensors overlap
with each other and, in addition, the sensor next to u (or to
v) has its sensing disk intersecting the belt’s left (or right)
boundary. Therefore, the sensing disks of the sensors in each
set cover the entire length of the belt and thereby provide 1-
barrier coverage. This last claim relies on Assumption 4.1.
Since there are k such sets (of sensors) which are mutually
disjoint, the belt region is k-covered.

Now, we prove the “only if” part. Assume that v and v
are not k-connected in CG. By Menger’s Theorem [24, page
167], there exist (k — 1) vertices in V' — {u, v}, removal of
which will make » and v disconnected in CG. Let us denote
one such set of (k — 1) vertices by . Let the coverage sub-
graph induced by the vertex set V. — W be called CG’.

Since « and v are disconnected in CG’, there exists a cross-
ing path P in the belt region that is not covered by any sensor
(corresponding to any vertex) in V' —W. This path, P, may be
covered by some or all of the sensors in W. Since [W| =k—1,
P is covered by at most k — 1 sensors in V. The existence of
such a P means that the belt region is not k-barrier covered
— it is at most (k — 1)-barrier covered. []

Algorithm for an Open Belt:

After proving the equivalence between k-barrier coverage
and k-connectivity between » and v, we can now use the al-
gorithms developed for determining whether two vertices in
a given graph are k-connected to determine whether a given
belt region is k-barrier covered. According to [21], the best
known-algorithm for testing whether v and v are k-connected
has O(k*|V|) complexity.

4.3 Closed Belt Regions

The equivalence condition established in Theorem 4.1 does
not work when the belt region is looped around as the one

Figure 7: A sensor network deployed over a closed belt
region.

Figure 8: Coverage graph CG of the sensor network rep-
resented by Figure 7.

shown in Figure 7. In this section, we prove a theorem analo-
gous to Theorem 4.1 for closed belt regions.

Construct a coverage graph CG as described in Section 4.2,
except that the set of nodes V' no longer contains virtual
nodes u and v. (The coverage graph corresponding to the sen-
sor network in Figure 7 appears in Figure 8.) We first make
precise what we mean by node-disjoint cycles that go around
the entire belt. This definition is taken from [17].

DEFINITION 4.2. [Disjoint Essential Cycles] Let G be a
graph embedded on some surface. A cycle C of G is called es-
sential if C is non-contractible on the surface. A set of essential
cycles are disjoint if they do not share a vertex in G.

In Figure 8, i1 — 42 — i3 — 41 is a cycle, but not essential; the
edges of this cycle can be “contracted.” The cycle that starts
at 41, goes through 43 and comes back to 4; through j; after
looping the entire belt is an essential cycle; this cycle can not
be contracted on the belt’s surface. In Figure 8, there exist
two disjoint essential cycles. We refer the reader to [17] for
more details on essential cycles and to [18] for more details
on graphs embedded on surfaces.



THEOREM 4.2. A closed belt region B that satisfies Assump-
tion 4.1 is k-barrier covered iff there exist k node-disjoint essen-
tial cycles in the corresponding coverage graph, CG.

PROOF. The “if” part can be proved in the same way as in
Theorem 4.1. The “only if” part follows from Theorem 76.2
in [21] when applied to CG. O

Algorithm for a Donut-shaped Belt:

A polynomial time algorithm for determining whether there
exist k node-disjoint cycles in the coverage graph correspond-
ing to a sensor network deployed over a closed belt region
follows from the proof of Theorem 76.2 in [21].

4.4 Difference Between Our Results and Other
Known Results

The equivalence conditions we established in Theorems 4.1
and 4.2 are different from the result on the relation between
full-coverage and connectivity established in Theorem 3 of [23]
in several ways:

1. Goal: The goal of Theorems 4.1 and 4.2 are to de-
rive conditions that one can use to determine whether a
belt region is k-barrier covered. The goal of Theorem 3
in [23] is to establish conditions such that k-full cover-
age of a region will imply k-connectivity among all the
sensors if the communication range is at least twice the
sensing range.

2. Result: The equivalence conditions in Theorems 4.1
and 4.2 imply that if one uses a communication radius
at least twice the sensing radius and if the region is
k-barrier covered, then there will exist k¥ node-disjoint
paths between the two shorter sides of the belt region.
This is not the same condition as the existence of &
node-disjoint paths between every pair of sensor nodes
as is implied by Theorem 3 in [23].

3. Proofs: The proof of Theorems 4.1 and 4.2 are very
different than those of Theorem 3 in [23].

5. OPTIMAL CONFIGURATION FOR DE-
TERMINISTIC DEPLOYMENTS

It is well known that the optimal configuration for achiev-
ing full 1-coverage is to deploy sensors on a triangular lat-
tice [4]. However, to the best of our knowledge, the problem
of determining an optimal configuration for achieving full k-
coverage for general values of & is still an open problem.

For k-barrier coverage, we prove in the following theorem
that the optimal configuration for achieving k-barrier cover-
age in a belt region is to deploy k rows of sensors along a
shortest path (line or curve) across the length of the region,
where each path has consecutive sensors’ sensing disks abut-
ting each other. For instance, for a rectangular belt region
such as the one shown in Figure 3, the shortest path across
the length of the region is a line parallel to its length. So, the
optimal configuration to achieve k-barrier coverage in this re-
gion is to deploy k rows of sensors parallel to the length such
that consecutive sensors are separated by a distance of 2r. For
the belt region in Figure 2, an optimal configuration will be k&
rows of sensors along the circumference of the inner circle.

THEOREM 5.1. Consider a belt region. Let s denote the length
of the shortest path across the length of the region. Then, the

Figure 9: An s x (1/s) belt region. The dotted lines repre-
sent virtual crossing lines. The number of such lines is ¢
and the separation between neighboring lines is t = s//.

number of sensors necessary and sufficient to achieve k-barrier
coverage in this region is k * [s/2r], assuming sensors are de-
ployed to satisfy Assumption 4.1.

PrROOF. The sufficient part of the theorem is obvious. For
the necessary part, first consider an open belt. By Theorem 4.1,
for the region to be k-barrier covered, it is necessary that the
two shorter sides of the belt region are connected via k node-
disjoint paths in the coverage graph. Each such path entails
at least [s/2r] sensors. Since the k paths are node-disjoint, a
total of k x [s/2r] sensors at least are needed. Similar argu-
ments can be made for a closed belt using Theorem 4.2. [

6. CRITICAL CONDITIONS FOR WEAK k-
BARRIER COVERAGE

In this section, we develop critical conditions for weak k-
barrier coverage in a belt region. We first establish a key
lemma (Lemma 6.1) in Section 6.1 to move from the con-
tinuous domain to the discrete domain. Then, we establish
critical conditions for the k-coverage of orthogonal crossing
lines in a rectangular s x (1/s) belt region (sufficient condi-
tion for coverage whp in Section 6.2 and sufficient condition
for non-coverage whp in Section 6.3). We then extend these
results when the region of deployment is a belt of dimension
(A1, A2,(1/s)) in Section 6.4 (Theorem 6.3 and Theorem 6.4).
Finally, we extend the results to the k-coverage of any set of
congruent crossing paths in a belt of dimension (A1, Az, (1/s))
in Section 6.5 (Theorem 6.5). Theorems 6.5 and 6.4 together
provide critical conditions for weak k-barrier coverage in an
arbitrary belt when the model of deployment is Poisson or
random uniform.

6.1 Finite Set of Orthogonal Crossing Lines

Let L, for any positive integer £ be the set of ¢ regularly-
spaced orthogonal crossing lines in an s x (1/s) belt region,
as illustrated in Figure 9, with any two consecutive lines a
distance of s/¢ apart. The L, in the following lemma refers to
this set.

LEMMA 6.1. All orthogonal crossing lines in an sx (1/s) belt
region are k-covered by a sensor network with a sensing radius
of r if all orthogonal crossing lines in L, are k-covered by the
same network with a sensing radius of v’ = r — s/(2¢).

PROOF. Assume that all lines in L, are k-covered by a sen-
sor network with a sensing radius of ' = r — s/(2¢). Let
i be an arbitrary orthogonal crossing line in the region, and
let 7' be an orthogonal crossing line in L, that is closest to
i. Obviously, 4 and i’ (which are parallel to each other, if not
identical) are apart by a distance no more than s/2¢. By as-
sumption, 4’ is k-covered and, thus, intersects at least k active



sensors’ sensing discs D, (u). Let u be any of such sensors,
and let a be any point in the intersection of i’ and D, (u).
Note that d(u,a) < r'. Let v be the point on 4 that is closest
to a. Then, d(a,v) < s/(2¢). From triangle inequality,

S p—
20
Therefore, v is covered by w and so is line i. Since there are
at least k such sensors u, 7 is k-covered using a sensing radius
of r. This proves the lemma. []

d(u,) < d(u,0) + d(a,0) <7’ + o =7,

With this lemma, when wanting to show that all orthog-
onal crossing lines in the protected region are k-covered by
a sensor network with a sensing radius of r, we will only
have to show that all orthogonal crossing lines in L, with
an appropriate value of £ and with a reduced sensing radius
of r — s/(2¢), are k-covered. This result also helps in simula-
tion because whenever we need to show that all orthogonal
crossing lines (uncountable) are covered using a sensing ra-
dius of r, we will only need to show that all crossing lines in
L, (finite) are covered using a sensing radius of r — s/(2¢).

6.2 Sufficient Condition for k-Coverage of Or-
thogonal Crossing Lines
In this section, we prove a sufficient condition for the cov-
erage of all orthogonal crossing lines in a rectangular belt re-
gion. Note that orthogonal crossing lines in a rectangular belt
region are not only congruent, but also parallel to each other.
Let N(n,p,r) be as defined in Definition 2.2, c¢(s) be as
defined in (3), and ¢(np) be as defined in Definition 3.1. Let

£ = (np)d(np). 5)

And again, let L; be the set of £ orthogonal crossing lines as
defined in Section 6.1.

The following lemma indicates a sufficient condition for all
crossing lines in L, to be k-covered whp.

LEMMA 6.2. Let N(n,p,r) be a Poisson distributed sensor
network over an sx(1/s) belt region. If ¢(s) = 2npr/(slog(np))
satisfies

_ 1, ¢(np) + (k —1)log log(np)
c(s) =1+ log(np) ) (6)

for sufficiently large s, then all orthogonal crossing lines in Ly
are k-covered whp as s — oo.

PROOE. Since the probability of a crossing line to be k-
covered partly depends on whether it is close to either of the
two vertical sides, we partition L, into two sets: I and S. Set
I contains all the inner crossing lines which are at least a dis-
tance of r away from either of the belt’s two vertical sides. Set
S contains the remaining crossing lines, which are less than a
distance of » away from a side. We will follow the following
approach for both the subregions.

Let A (i) denote the event that the crossing line 4 is k-
covered. For Z € {I,S}, we will obtain a lower bound on
Pr[/\iez A (i)] and show it to approach 1 as s — oo. Let
X}, (4) be a random variable assuming a value of 1 if the cross-
ing line 7 is not k-covered, and O otherwise. In other words,
Xy (4) is an indicator of the event Ay (7). Let X,z = X (1) +
Xk(2) + -+ + Xi(|Z])- Now, E[X}, (¢)] = Pr[Ag(:)]. Further,

since X,z is a nonnegative integral valued random variable,
Pr[Xy,z > 0] < E[Xy,z], and therefore, we have

PriA;cz Ak())] = Pr[Xy z = 0]
= 1—-Pr[Xgz > 0]
2 1-EXjz]. 7

By showing E[X,z] — 0, we will prove the k-coverage of all
crossing lines in Z, whp.

We first apply the above approach to prove the k-coverage
of all orthogonal crossing lines in the interior, I. Let P; (%)
denote the probability that exactly j sensors cover crossing
line 7. Since sensors are deployed with Poisson distribution,
for any line i € I, we have

P;(i) = exp (‘?”’") ((Mf)]) . ®)

This is because sensors are distributed in the r-neighborhood
of the crossing line ¢, whose area is 2r /s, with a Poisson dis-
tribution of rate 2npr/s. Using the definition of ¢ from (3),
we can simplify (8) to the following, when j > 0:

Bt = (npy (o8l

7!
< (np)~“(clog(np))’
(np) (e, ©
where
a = clog(np). (10)

Now, the event A (i) occurs iff 7 is covered by less than &
sensors. Thus,

k—1 k-1
PrlA; ()] = Y Pi(i) < (np)™° ) o = (np)°a""" (11)
j=0 j=0
and, therefore,
|1
E[Xk] =) E[Xx(5)] < £(np) a1 (12)

i=1

We claim that E[X} ;] — 0 as s — oo. To verify this, take
the logarithm of both sides of (12) and simplify it using (5)
and (6) as follows:

log(E[Xk,7]) < —¢(np) + log(é(np)) + (k — 1) log(c). (13)

Since —@(np) dominates the other two terms, log(E[X} r])
goes to —oo making E[X}] to approach 0, as s — oo. Thus,
from (7), we conclude Pr[/\iel Ar(i)] = 1as s — oo.

Next, we prove the k-coverage whp of all orthogonal cross-
ing lines in the side region, S. Let P;(¢) be as defined above.
Since the r-neighborhood of any orthogonal crossing line i €
S is at least /s, we obtain the following in place of (8)

P;(i) < exp (%) (@) . (14
7!
In place of (9), we obtain
Piti) < )% (2), (15)
where « is as defined in (10); and in place of (11), we obtain

PrAG] < ()T (2) (16)



Since the total number of orthogonal crossing lines in S is
2rf/s, we obtain the following in place of (12):

#Xes] < ) (3)" < sam)np) et A7)

where notice that 2r¢/s can be written as clog(np)@(np) us-
ing (5) and (3). Take the logarithm of both sides of (17) and
simplify it using (6) as follows:

log(E[Xk,s]) < log(¢(np)) —log(np) — é(np)
+klog(c) + loglog(np). (18)

Observe that the right hand side of (18) approaches —oco, and
hence E[X;,s] — 0, as s — oo. Thus, from (7), we conclude
Pr[A;cs Ax(4)] = 1 as s — oco. This completes the proof. []

Now, let us consider the same sensors deployed on the long
belt, but with the original sensing radius of r. We will now use
Lemma 6.2 together with Lemma 6.1 to establish a sufficient
condition for the k-coverage whp of all orthogonal crossing
lines in the protected region, in the following theorem.

THEOREM 6.1. Let N(n, p,r) be a Poisson distributed sensor
network over an sx(1/s) belt region. If c(s) = 2npr/(slog(np))
satisfies

¢(np) + (k — 1) log log(np) (19)
log(np)

for sufficiently large s, then all the orthogonal crossing lines in
the region are k-covered whp as s — oo.

co(s) >1+

PROOF. First, assume that condition (19) is satisfied with
equality. Let L, be the set of orthogonal crossing lines intro-
duced in Section 6.1. Let 7’ = r —s/(2¢) be a reduced sensing
radius; let ¢ (s) = 2npr’ /(slog(np)); and £ = np¢(np) as de-
fined in (5). It is easy to verify that

2np (r — s/(2£))

‘) = slog(np)
= o(s) - 2/¢(np)
log(np)
¢'(np) + (k — 1) log log(np)
' log(np) 20

where ¢’ (np) = ¢(np) — 2/¢p(np). Note that ¢'(np) shares
¢(np)’s property of being asymptotically monotonically in-
creasing, approaching infinity, and in o(log log(np). Applying
Lemma 6.2 now ensures the k-coverage whp of all crossing
lines in L, when the reduced sensing radius =’ is used; and,
applying Lemma 6.1 ensures the k-coverage whp of all cross-
ing lines in the protected region when the original sensing
radius r is used.

Now suppose the inequality in (19) holds. Then there exists
an r; < r for which ¢;(s) = 2npr;/(slog(np)) satisfies

#(np) + (k — 1) log log(np)
log(np)

and so, by the first part of this proof, all the orthogonal cross-
ing lines in the region are k-covered whp using this smaller
sensing radius r;. All the crossing lines in the region are ev-
idently covered when the original, larger sensing radius r is
used. [

a(s)=1+

6.3 Sufficient Condition for Non-coverage of
Orthogonal Crossing Lines

In this section, we prove a sufficient condition for the exis-
tence of an uncovered orthogonal crossing path in a rectan-
gular belt region.

If P(s) denotes the probability that all the orthogonal cross-
ing lines in the protected region are k-covered by Poisson dis-
tributed sensors of rate np, in view of Theorem 6.1, a nec-
essary condition for k-coverage whp may take the following
form: Ifc(s) < f(s) for sufficiently large s, then lim,_, o P(s)
< 1. In the next theorem, we establish a condition under
which it is not just lim,_,o, P(s) < 1, but lim,_,o P(s) = 0.
Such a result is stronger than a mere necessary condition
when we are dealing with probabilities. This is because if
the probability of the event of non-coverage is close to one
then we expect that if the condition for non-coverage is satis-
fied, then there will exist a non-covered orthogonal crossing
line, whp. Whereas, if we were to prove a necessary condition
for coverage, then all we could claim is that if the necessary
condition is not satisfied, then sometimes there may exist a
non-covered orthogonal crossing line, but not always.

In the following theorem and its proof, ¢(s) and ¢(np), as
well as £ and L, are all the same as defined in Section 6.2.

THEOREM 6.2. Let N(n,p,r) be a Poisson distributed sensor
network over an sx(1/s) belt region. If ¢(s) = 2npr/(slog(np))
satisfies

$(np) + loglog(np)
c(s) <1-— Tog(np) 21

for sufficiently large s, then there exists a non-k-covered orthog-
onal crossing line in the region whp as s — oo.

PROOF. First assume that the ”=" in condition (21) holds.
That is,
o(s) = 1— #(np) + log log(np) ©22)
log(np)

Consider the set of interior crossing lines I C L, as defined
in the proof of Lemma 6.2. We show that whp there exists a
non-1-covered crossing line in I.

For any crossing line 7 € I, let A(¢) denote the event that
i is 1-covered; and A(%), its negation. Also, let X; be the
indicator random variable of event m, i.e. X; = 1if4is not
1-covered and 0, otherwise. Let X be the number of lines in
I which are not 1-covered. Then, X = X1 + X2 + -+ + Xx,
where k = |I|. We will show that X > 0 whp using Corollary
4.3.4 of [2], which states that whp X > 0 if

E[X] — oo and A = o(E’[X]), (23)

where E[X] denotes the expected value of X and

A = ZPr[m/\m],

where v ~ v means v # v and A(u) and A(v) are not inde-
pendent.
We first show E[X] — co. From the first equality of (9) and

the fact E[X;] = Pr[A(i)] = Po(4), we obtain

E[X;] = PrlA(i)] = Po(i) = (np)~*, 24



and
E[X] =Y E[Xi] = x(np) *, (25)
i=1
where
k=|I|=(1-2r/s)L. (26)

Taking the logarithm of x(np)~° and simplifying it using (22)
and the relation £ = (np)¢(np) yields

log (k(np)™) = log(1—2r/s) + ¢(np) + loglog(np)
+log(¢(np))- @7

As s — oo, the right hand side of (27) goes to infinity, thereby
forcing E[X] to go to infinity.

Next, we show A = o(E*[X]) by obtaining an upper bound
on A and then showing the upper bound to be o(E?[X]). To

this end, we first obtain an upper bound on Pr[A(:) A A(5)1:

Pr[A(i) A A(j)] < Pr[A(§)] = Po(d) = (np)™°.  (28)
There are no more than 2r¢2 /s pairs of 4 and j such that i ~ j,
for |I| < ¢ and, for any ¢ € I, at most 2r¢/s lines satisfy the
”~"” relation with ¢. Therefore,

e 2182 -
A= AG)ANA@G)] < ‘.
> PrAGN) A A()] < L (7p) 29

(iGN (3,5 €T)
Using (25) and (29), we obtain an upper bound on A/ IE]2 [X:

A 2r(np) ¢ _ log(np)(np)* "
E2[X] — s(1—2r/s)?(np)~2c — (1—2r/s)?

In the last inequality, we have used r/s = ¢(s) log(np)/(np),
a relation that follows from (3) and the fact ¢(s) < 1 implied
by (22).

Taking the logarithm of the right hand side of (30) and
simplifying it using (22) yields

—¢(np) — 2log(1 —2r/s), B

which goes to —oo as s — oo, thereby forcing the right hand
side of (30) to approach 0. This proves A = o(E?[X]). From
this and the earlier proved result, E[X] — oo, we conclude
by Corollary 4.3.4 of [2] that X > 0 whp and, therefore, whp
there exists a non-covered crossing line.

Now suppose the inequality in (21) holds. There exists an
ry > 1 for which ¢, (s) = 2npr./(slog(np)) satisfies (22),
and so by the first part of this proof whp there exists a non-1-
covered orthogonal crossing line when using the sensing ra-
dius r,. Thus, when the original, smaller sensing radius r is
used, evidently there there will exist a non-1-covered orthog-
onal crossing line in the region. [

B0

6.4 Coverage of Orthogonal Crossing Lines in
a Belt

In this section, we extend the critical conditions for the k-
coverage of orthogonal crossing lines (sufficient condition for
coverage derived in Section 6.2 and sufficient condition for
non-coverage derived Section 6.3) in rectangular belt regions
to belt regions of dimension (A1, A2, (1/s)).

Recall the definition of a belt of dimension (A1, A2, (1/s))
from Section 2 (Definition 2.5). For ease of presentation, we
assume in this paper that belts have a nominal total length of
2s; i.e. A1 + A2 = 2s. Under this assumption, the area of a
belt with dimension (A1, Az, (1/s)) is 1.

Recall from Definition 2.9 that a crossing line over a belt
of width 1/s is said to be orthogonal to the belt if its length
is 1/s (i.e. it crosses the belt along a shortest path). No-
tice that the orthogonal crossing lines for a belt of dimension
(A1, A2, (1/s)) need not be parallel to each other. For exam-
ple, at most two orthogonal crossing lines (out of uncountably
many of them) in the belt region shown in Figure 2 are paral-
lel to each other. At the same time, since orthogonal crossing
lines are the shortest paths through the belt region, we would
like to establish a sufficient condition for their coverage whp,
for use in applications. This is the subject of the following
theorem.

THEOREM 6.3. Let N(n,p,r) be a Poisson distributed sen-
sor network over a belt of dimension (A1, A2, (1/s)). If ¢(s) =

2npr/(slog(np)) satisfies
log(np)

for sufficiently large s, then all orthogonal crossing lines over
the belt are k-covered whp as s — oo.

c(s)>1+

PROOF. The proof is not much different from that of Theo-
rem 6.1, so we will only give a sketch of it here.

First, let £ = (np)¢p(np) as in (5). We claim that if N(n,p,r)
satisfies (32), then N(n,p,r") withr' = r—s/(2¢) and ¢'(s) =
2npr’ /(slog(np)), will satisfy

log(np)

This claim can be easily proved in the same way as (20) was
obtained in the proof of Theorem 6.1.

Second, we define a set of crossing lines L} such that if
(33) holds for all sufficiently large s then all crossing lines
in L, will be k-covered whp by N(n,p,r'). L; is defined as
follows. Let the two lines of the belt be I; and I, which have
lengths A1 and \g, respectively. (Recall that A1 +A2 = 2s.) On
the two lines, mark a total of 2¢ points regularly spaced at a
distance of s/£. This results in £A; /s marked points on line I,
and £z /s points on line I;. Connect each marked point to the
nearest point on the other line with a line segment of length
1/s. Let Lj be the set of all such line segments, which are
each an orthogonal crossing line. Note that |Ly| < 2¢. Now,
we divide L} into two subsets, I' and ', just as we divided
L, into I and S in the proof of Lemma 6.2, then |I'| < 2¢.

In place of (8), we obtain the following

P;(i) < exp (_2npr> ((2”%)]) : (34)

d(s)>1+

s 7!
because the r-neighborhood of an orthogonal crossing line
may now be larger than 2r/s. Corresponding to (9), we ob-
tain
P;(i) < (np) (), (35)

where « is as defined in (10).
Since with the above inequalities, (11) continues to hold,
we obtain the following in place of (12)

E[X}] < 2¢(np) ™1, (36)
and in place of (13), we obtain

log(E[Xk]) < —¢(np) + log(2¢(np)) + (k — 1) log(c). (37)



Since —¢(np) still dominates the other two terms, log(E[ X} ])
goes to —oo making H[ X, ] to approach 0, as s — oo. Thus,
Pr[/\ieI, Ar(i)] = 1 as s — oo. The proof for crossing lines
in S can be carried out in a similar manner.

Third, we claim that if all (orthogonal) crossing lines in L’
are k-covered by N(n, p,r’), then all orthogonal crossing lines
in the protected belt are k-covered by N(n,p,r). To see this,
we observe that for any orthogonal crossing line [ in the belt,
there is a crossing line I’ in L} such that ! and I’ are separated
by a distance no more than s/(2¢). The proof of Lemma 6.1
can now be carried over here to prove the claim. From the
above three claims, the theorem follows immediately. [

The following theorem establishes a sufficient condition for
the existence of an uncovered crossing path in a belt of di-
mension (A, Az, (1/s)).

THEOREM 6.4. Let N(n,p,r) be a Poisson distributed sen-
sor network over a belt of dimension (A1, A2, (1/s)). If c(s) =
2npr/(slog(np)) satisfies

o(s) < 1— #(np) + log log(np)’ (38)
log(np)

for sufficiently large s, then there exists a non-k-covered orthog-
onal crossing line in the belt whp as s — oco.

PROOF. Again, the proof is not much different from that of
Theorem 6.2, so we will only give a sketch.

Let L}, and I' be as defined in the proof of Theorem 6.3. Let
X and A(¢) be as defined in the proof of Theorem 6.2 and let
& be as defined in (26). Then, x < |I’|. Since (24) continues
to hold here, we obtain the following in place of (25),

E[X] = |I'|(np)”° > K(np)~°. (39)

As was shown in the proof of Theorem 6.2, the right hand
side of (39) approaches co as s — oco. Therefore, FJX] — oo
as s — 0.

We further note that (28) continues to hold here. Now,
given a crossing line 4 € L}, there are at most trf/s crossing
lines j € L; for some constant ¢ such that 4 ~ j. This is
because of our model assumption that the lengths A; and A,
are both of the order s and the width is 1/s. Since there are at
most 274 lines in L}, total number of pairs of crossing lines in
L, that satisfy i ~ j is at most 2tr¢?/s. Therefore, we obtain
the following in place of (29)

2
A< 2tre

(np)~°, (40)

and in place of (30), we obtain

A 2tr(np)~°

E[X]* = s(np)—2°

Taking the logarithm of the right hand side of (41) and
simplifying it using (38) yields

log (log(np) (np)(*~") =log(t) ~4(mp).  (42)

The right hand side of (42) still goes to —co as s — oo,
thereby forcing the right hand side of (41) to approach O.
This proves A = o(E?[X]).

The rest of the proof is the same as in Theorem 6.2. [

< tlog(np)(np)c™" 41)

6.5 Coverage of Any Set of Parallel Crossing
Paths

In this section, we extend Theorem 6.3 to the k-coverage
whp of any set of congruent crossing paths in Theorem 6.5.
The sufficient condition for non-coverage established in The-
orem 6.4 continues to hold when considering any set of con-
gruent crossing paths and therefore it constitutes one of the
two components of a critical condition for weak k-barrier cov-
erage.

THEOREM 6.5. Let N(n,p,r) be a Poisson distributed sensor
network over a belt B, of dimensions (A1, A2, (1/s)). If ¢(s) =
2npr [(slog(np)) satisfies

o(s) > 14 2p) + (k — 1) loglog(np) 43)
log(np)

for sufficiently large s, then the belt region B, is weakly k-
barrier covered whp as s — .

PROOE. Recall the definition of weak k barrier coverage
from (1). The basic difference between the claim made here
and that in Theorem 6.3 is the following: Here we claim that
for each set of congruent crossing paths, all the crossing paths
in that set are k-covered whp. In Theorem 6.3, we consid-
ered only the set of orthogonal crossing lines. The proof here,
though, is not much different from that of Theorem 6.3, so
we will only make key observations.

As in the proof of Theorem 6.3 we divide the proof into
three claims. For the first claim, there is no change from The-
orem 6.3. For the second claim, there are two differences.
The first is the following observation: Let P; (i) be as defined
in the proof of Lemma 6.2. We observe that for any crossing
path [ in the belt region and any orthogonal crossing line /,,
P;(l) < P;(l,). This is because with Poisson distribution the
rate of Poisson distribution depends only on the area of the
region and not on the location of the region and the regions
in consideration here are the r-neighborhoods of I and [, and
the r-neighborhood of [ is larger than that of /,.

The second change is in the construction of Lj. Given a
crossing path 4, we construct a set L (%) (corresponding to L})
that comprises O(¥) crossing paths congruent to ¢. Envision
the belt as having the left end and the right end. We first
include in L,(4) the leftmost crossing path j that is congruent
to 4. Next, we consider all crossing paths that are congruent
to ¢ but not entirely contained in the (s/£)-neighborhood of
any path that is already in L,(%), and include the leftmost
such crossing path in L,(%). We continue this process until the
right end of the belt. Since there are at most O(¢) crossing
paths in L, (%) for any crossing path 7, the proof of the second
claim in Theorem 6.3 can be carried over here.

For the third claim, we observe that Lemma 6.1 can be
proved for the coverage of any set of congruent crossing paths
in the same way as in the proof of Theorem 6.3, with L re-
placed by L,(i) constructed in the preceding paragraph. No-
tice that for any crossing path j that is congruent to 4, there
is a crossing path I € L,(7) that is at most a distance of s/(2¢)
from j. O

7. SIMULATION AND NUMERICAL COM-
PUTATION

In this section, we present some numerical computation
and simulation results to help a deployer get a sense of how



realistic are our critical conditions for weak k-barrier cover-
age. The critical conditions are asymptotic results that get
more and more accurate as one considers a larger and larger
deployment area (so that the number of sensors deployed gets
larger and larger). However, deployment regions, in prac-
tice, will have a fixed dimension and therefore one might ask
— What kind of confidence can one get in real deployments
when using our critical conditions to determine the minimum
number of sensors to deploy? This is precisely the motivation
for presenting simulation results.

Consider a deployment scenario where a rectangular belt
region of dimension 10km x 100m is to be barrier-covered by
sensors, each of which has a sensing radius of 10m. Since our
model of a rectangular belt region was that of s x (1/s), the
parameter s, which is the square root of the ratio of length to
width, assumes a value of 10 (since the length is 100 times
that of the width). With this scaling, the length of the re-
gion becomes s = 10, the width becomes 1/s = 0.1, and
the radius that was 1/10*" that of the width becomes r =
(1/10) * (1/s) = 0.01. Let us suppose that the network is de-
sired to last 10 times longer than the active lifetime of an in-
dividual sensor, which implies a duty cycle of 10%. Therefore,
p = 0.1. We answer the following questions for this deploy-
ment scenario from analysis as well as from simulation:

1. What is the minimum number of sensors such that if
more than this many are be deployed then the proba-
bility that the belt region is weakly 1-barrier covered
is close to 1? How closely does theoretical prediction
match simulation results?

2. What is the largest number of sensors such that if less
than this many are deployed, the probability that the re-
gion is weakly 1-barrier covered is close to zero? Again,
how closely does theoretical prediction match simula-
tion results?

3. How does k (in weak k-barrier coverage) grow as the
number of sensors deployed is increased?

Another interesting question is the following: We know that
if a given belt region is weakly barrier covered whp, then all
crossing paths in any set of congruent crossing paths are cov-
ered whp. There are uncountably many such sets of congruent
crossing paths. Which set should we check? We first check the
set of orthogonal crossing paths because they are the shortest
crossing paths through the region. Later, we show that the
probability of any other set of congruent crossing paths be-
ing barrier covered is only higher, as would be expected with
Poisson or uniform deployment. We do not make use of The-
orem 4.1 in checking whether a region is k-barrier covered
as this would not allow us to compute the probability of the
region being weakly k-barrier covered.

For determining the probability of the region being weakly
barrier covered, we tile the belt region with a set, L, of £
orthogonal crossing lines each of which are equally spaced
with a spacing of s/¢ between two consecutive lines, where
¢ = npo(np). We use 4/loglog(np) for ¢(np). We use a re-
duced sensing radius of r' = r — s/(2¢). Whenever all the
crossing lines in this set L are covered with the sensing radius
r’, we can conclude by Lemma 6.1 that all the orthogonal
crossing lines (uncountably many of them) in the rectangular
belt region will be covered with the actual sensing radius, r.
Therefore, the probability of coverage of all the crossing paths

in the set L is a lower bound on the probability of the region
being weakly barrier covered.

During the experiment, we vary the rate of Poisson distri-
bution, n, from 10,000 to 100,000 in steps of 5,000. For each
value of n, we generate an instance of a Poisson distributed
random variable of rate n. This gives us the actual number
of sensors to be deployed in this iteration of the experiment.
Now, for each of these sensors, their z and y locations within
the rectangular belt are generated randomly with uniform dis-
tribution®. Finally, each sensor is activated with a probability
of p = 0.1. After the process of activation, we compute the
number of lines in L that are 1-covered using the sensing ra-
dius of r'. This experiment of determining how many sensors
to deploy, choosing the x and y location for each sensor, and
activating each with a probability of p, is repeated 100 times
for each value of n to get statistical validation. Then, we com-
pute the following for each value of n,

Pr[All Crossing Lines in L 1-Covered]
__ Number of times all crossing lines 1-covered
N 100 ’

which approximates the probability of weak 1-coverage.
We use (3) and (19) to define the following for a given
value of p and r.

Chigh = min {c(s) te(s) > 1+

$(np)
log(np) } '

With this definition of cpign, we expect by Theorem 6.1 that
if 2npr/(slog(np)) > chigh, wherep = 0.1, s = 10, and r =
0.01, then Pr[All Crossing Lines 1-Covered] should be close
to 1. Figure 10 shows the results of simulation for 1-barrier
coverage. When ¢ = caign, Pr[All Crossing Lines 1-Covered]
is approximately 0.99 (close to 1), as predicted by the analysis
(Theorem 6.1). At this value of ¢, n = 62, 000. We see that the
answer to Question 1 posed at the beginning of this section is
n = 62, 000. Further, our analytical result matches very well
with our simulation result.

Similarly, for a given value of p and r, we define the follow-
ing using (3) and (21).

Clow = max {c(s) e(s) <1— #(np) + log log(np) } _

log(np)

With this definition of ¢;4,,, We expect by Theorem 6.2 that
if 2npr/(slog(np)) < ciow, Where p = 0.1, s = 10, and
r = 0.01, then Pr[All Crossing Lines 1-Covered] should be
close to 0. We observe in Figure 10 that when ¢ < ciow,
Pr[All Crossing Lines 1-Covered] is zero, which is again pre-
dicted well by our analysis (Theorem 6.2). We observe that
when ¢ = ¢jou, n = 21,000. So, the answer to Question 2
posed at the beginning of this section is n = 21,000 from
analysis. However, simulation suggests that Pr[All Crossing
Lines 1-Covered] continues to be zero for values of n < 30, 000.
This suggests that although our condition for weak non-barrier
coverage is the strongest possible asymptotically, one may be
able to prove a slightly stronger condition (for the 27¢ or-
der term) for weak non-barrier coverage than what we have
proved in this paper.

Next, we consider the case of k-coverage (Question 3). We
first derive the value of k predicted by the analysis as n is

5For a Poisson distributed random variable, the location of
each sensor, conditioned on the knowledge of how many sen-
sors are to be deployed, is randomly distributed with uniform
distribution.
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Figure 10: The variation in Pr[All Crossing Lines 1-
Covered] for all orthogonal crossing lines when n sensors
are deployed with Poisson distribution of rate n. The value
of n varies from 10,000 to 100,000 in steps of 5,000. The
value of ¢ corresponds to the value of 2npr/(slog(np)),
where s =10, » = 0.01 and p = 0.1.

increased. We substitute k by kqnaiysis in (6) to obtain

log(np) ¢(np)
b = gy (= (14 ooy ))
The result of simulation appears in Figure 11, from which we
observe that kqctva1, the value of k that was actually observed
in the simulation is close t0 kqnaiysis, the value of k predicted
by the analysis.

Finally, we consider a set of slanted crossing lines that are
parallel to each other. These crossing lines make an angle of
arctan(r /w) with respect to the width. For simulation, we
again consider a subset of these slanted crossing lines. We
consider ¢ slanted crossing lines, which are parallel to each
other and are spaced at a regular separation of s/¢. Let us
denote this set of slanted crossing lines as L. We use a sens-
ing radius of ' = r — s/(2f) to cover these slanted lines.
We again apply Lemma 6.1° to ensure that all slanted cross-
ing lines (making an angle of arctan(r/w) with respect to the
width) are covered with a sensing radius of r, if the £ slanted
lines in L’ are covered using a sensing radius of ’. The graph
in Figure 12 shows the results from simulation for the cover-
age of slanted crossing lines in L’. We observe from Figure 12
that the behavior of Pr[All Crossing Lines 1-Covered] is sim-
ilar (and slightly better) to that observed for the orthogonal
crossing lines, as expected.

We claimed at the beginning of Section 2 that our criti-
cal conditions also hold for random uniform distribution. We
conducted experiments for random uniform distribution also
and the results are very similar to what we have presented
for Poisson distribution in this section. We have omitted the
graphs for brevity.

We observe that for the case of barrier coverage, random
placements need approximately log(n) more sensors than that

6Lemma 6.1 can be easily proved for slanted crossing lines in
the same manner as it has been proved for orthogonal cross-
ing lines.
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Figure 11: The variation of k£ for the k-coverage of or-
thogonal crossing lines when n sensors are deployed with
Poisson distribution of rate n. The value of n varies from
60,000 to 140,000 in steps of 5,000. The value of ¢ cor-
responds to the value of 2npr/(slog(np)), where s = 10,
r =0.01 and p = 0.1.

needed for deterministic placement (compare Theorem 5.1
and Theorem 6.1), which conforms to the analogous results
well known in the random graphs literature. For the exam-
ple considered in this section, we will need 500 sensors to
achieve 1-barrier coverage if deploying sensors deterministi-
cally. For random placement, we will need 6,200 sensors’ to
get 1-barrier coverage whp.

8. CONCLUSION

Detection of intruders breaching the perimeter of a build-
ing or an estate, or those crossing an international border is
increasingly being seen as an important application for wire-
less sensor networks. We need a theoretical foundation to
determine the minimum number of sensors to be deployed
so that intruders crossing a barrier of sensors will always be
detected by at least k active sensors. In this paper, we de-
fined the concept of k-barrier coverage (arguably the weakest
form of coverage in the area of wireless sensor networks) and
derived several key results such as the optimal number of sen-
sors needed to achieve k-barrier coverage, and efficient algo-
rithms to determine whether a given belt region is k-barrier
covered or not.

As the concept of barrier coverage is a relatively new con-
cept, several problems still remain open in this space. One
such problem is the derivation of critical conditions for strong
k-barrier coverage for a belt region. Another open problem
is that of topology control when a wireless sensor network
has been deployed for barrier coverage. Also, the impact of
barrier coverage on classification and tracking of intruders is
not yet fully explored. In our future work, we plan to address
these and other open problems in the area of barrier cover-
age.

"n % p = 62000 % 0.1 = 6200.
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Figure 12: The variation in Pr[All Crossing Lines 1-
Covered] for all crossing lines making an angle of
arctan(r/w) with respect to the width, when n sensors are
deployed with Poisson distribution of rate n. The value of
n varies from 10,000 to 100,000 in steps of 5,000. The
value of ¢ corresponds to the value of 2npr/(slog(np)),
where s =10, r = 0.01 and p = 0.1.
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