
Paving the Road to Exascale

Kathy Yelick
Associate Laboratory Director for Computing

Sciences and NERSC Division Director, Lawrence
Berkeley National Laboratory

EECS Professor, UC Berkeley

NERSC Overview
NERSC represents science needs

•Over 3000 users, 400 projects, 500

code instances

•Over 1,600 publications in 2009

•Time is used by university

researchers (65%), DOE Labs (25%)

and others

1 Petaflop Hopper system, late 2010

• High application performance

• Nodes: 2 12-core AMD processors

• Low latency Gemini interconnect

2

DOE Explores Cloud Computing

• In spite of NERSC and other DOE centers

– Many scientists still buy their own clusters

– Not efficient for energy or operations

– Clouds provide centralized resources for diverse
workloads, including “private virtual clusters”

• Magellan is a “Science Cloud” Testbed for DOE

– Installed in early 2010; iDataplex cluster

• Cloud questions to explore on Magellan:
– Can a cloud serve DOE’s mid-range computing needs?

– What features (hardware and software) are needed in a
Science Cloud?

– What part of the workload benefits from clouds?

– Is a Science Cloud from commercial clouds which serve
primarily independent serial jobs?

3

Science at NERSC

Fusion: Simulations

of Fusion devices at

ITER scale

Combustion: New

algorithms (AMR)

coupled to experiments

Energy storage:
Catalysis for

improved

batteries and fuel

cells

Capture &
Sequestration: EFRCs

Materials:
For solar

panels and

other

applications. Climate modeling: Work

with users on scalability of

cloud-resolving models

Nano devices: New

single molecule

switching element

4

Algorithm Diversity

Science areas

Dense

linear

algebra

Sparse

linear

algebra

Spectral

Methods

(FFT)s

Particle

Methods

Structured

Grids

Unstructured or

AMR Grids

Accelerator
Science

Astrophysics

Chemistry

Climate

Combustion

Fusion

Lattice Gauge

Material Science

NERSC Qualitative In-Depth Analysis of Methods by Science Area

Numerical Methods at NERSC

6

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

%Projects

% Allocation

• Quantitative (but not so deep) measure of algorithms classes

• Based on hours allocated to a project that the PI claims uses the method

NERSC Interest in Exascale

107

106

105

104

103

102

10

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Top500

COTS/MPP + MPI

COTS/MPP + MPI (+ OpenMP)

GPU CUDA/OpenCL
Or Manycore BG/Q, R

Exascale + ???

Franklin (N5)

19 TF Sustained

101 TF Peak

Franklin (N5) +QC

36 TF Sustained

352 TF Peak

Hopper (N6)

>1 PF Peak

NERSC-7

10 PF Peak

NERSC-8

100 PF Peak

NERSC-9

1 EF Peak

P
e
a
k
 T

e
ra

fl
o
p
/s

7

Danger: dragging users into a local optimum for programming

Exascale is really about Energy
Efficient Computing

At $1M per MW, energy costs are substantial
• 1 petaflop in 2010 will use 3 MW

• 1 exaflop in 2018 possible in 200 MW with “usual” scaling

• 1 exaflop in 2018 at 20 MW is DOE target

goal

usual

scaling

2005 2010 2015 2020

8

Performance Has Also Slowed,
Along with Power

9

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (in Thousands)

Frequency (MHz)

Power (W)

Perf

Cores

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,

Burton Smith, Chris Batten, and Krste Asanoviç

Moore’s Law Continues with core doubling

Memory is Not Keeping Pace

Technology trends against a constant or increasing memory per core

• Memory density is doubling every three years; processor logic is every two

• Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

10

Question: Can you double concurrency without doubling memory?

Source: IBM

10

The Challenge

• Power is the leading design constraint in
HPC system design

• How to get build an exascale system without
building a nuclear power plant next to my

HPC center?

• How can you assure the systems will be
balanced for a reasonable science workload?

• How do you make it “programmable?”

11

System Balance

• If you pay 5% more to double the FPUs and get 10%
improvement, it’s a win (despite lowering your % of peak
performance)

• If you pay 2x more on memory BW (power or cost) and get 35%
more performance, then it’s a net loss (even though % peak
looks better)

• Real example: we can give up ALL of the flops to improve
memory bandwidth by 20% on the 2018 system

• We have a fixed budget
– Sustained to peak FLOP rate is wrong metric if FLOPs are cheap
– Balance involves balancing your checkbook & balancing your

power budget

– Requires a application co-design make the right trade-offs

12

Anticipating and Influencing the Future

Hardware Design

13 13

Architecture Paths to Exascale

• Leading Technology Paths (Swim Lanes)
– Multicore: Maintain complex cores, and replicate (x86

and Power7)

– Manycore/Embedded: Use many simpler, low power
cores from embedded (BlueGene)

– GPU/Accelerator: Use highly specialized processors
from gaming space (NVidia Fermi, Cell)

• Risks in Swim Lane selection
– Select too soon: users cannot follow
– Select too late: fall behind performance curve
– Select incorrectly: Subject users to multiple disruptive

changes

• Users must be deeply engaged in this process
– Cannot leave this up to vendors alone

14

Manycore/Embedded Swim Lane

• Cubic power improvement with
lower clock rate due to V2F

• Slower clock rates enable use
of simpler cores

• Simpler cores use less area
(lower leakage) and reduce
cost

• Tailor design to application to
REDUCE WASTE

Intel Core2

Intel Atom

Tensilica XTensa

Power 5

This is how iPhones and MP3 players are designed to maximize
battery life and minimize cost

15
Slide by John Shalf,

Green Flash Project PI

Manycore/Embedded Swim Lane

Intel Core2

Intel Atom

Tensilica XTensa

Power 5

16

• Power5 (server)

– 120W@1900MHz

– Baseline

• Intel Core2 sc (laptop) :

– 15W@1000MHz

– 4x more FLOPs/watt than
baseline

• Intel Atom (handhelds)

– 0.625W@800MHz

– 80x more

• Tensilica XTensa DP (Moto Razor) :

– 0.09W@600MHz

– 400x more (80x-100x sustained)

Slide by John Shalf,

Green Flash Project PI

Manycore/Embedded Swim Lane

• Power5 (server)

– 120W@1900MHz

– Baseline

• Intel Core2 sc (laptop) :

– 15W@1000MHz

– 4x more FLOPs/watt than
baseline

• Intel Atom (handhelds)

– 0.625W@800MHz

– 80x more

• Tensilica XTensa DP (Moto Razor) :

– 0.09W@600MHz

– 400x more (80x-100x sustained)

Intel Core2

Tensilica XTensa

Power 5

Even if each simple core is 1/4th as computationally efficient as complex core, you can
fit hundreds of them on a single chip and still be 100x more power efficient.

17
Slide by John Shalf,

Green Flash Project PI

Technology Investment Trends

1990s: Computing R&D dominated by desktop/COTS
– Learned to use COTS technology for HPC

2010s: Computing R&D moving to consumer electronics
– Need to leverage embedded/consumer technology for HPC

From Tsugio Makimoto: ISC2006

Co-Design in the Green Flash Project

• Demonstrated during SC ‘09

• CSU atmospheric model ported to
low-power core design

– Dual Core Tensilica processors running
atmospheric model at 25MHz

– MPI Routines ported to custom Tensilica
Interconnect

• Memory and processor Stats
available for performance analysis

• Emulation performance advantage
– 250x Speedup over merely function

software simulator

• Actual code running - not
representative benchmark

Icosahedral mesh

for algorithm scaling

John Shalf, Dave Donofrio, Lenny Oliker, Michael

Wehner, Marghoob Mohiyuddin, Shoaib Kamil

19

Autotuning: Write Code
Generators for Nodes

20

3D Grid

+Y

+Z

+X
7-point nearest neightbors

y+1

y-1

x-1

z-1

z+1

x+1
x,y,z

Nearest-neighbor 7point stencil on a 3D array

Use Autotuning!
 Write code generators and let

computers do tuning

Example pattern-specific compiler:
Structured grid in Ruby

• Ruby class
encapsulates SG
pattern
– body of anonymous

lambda specifies filter
function

• Code generator
produces OpenMP
– ~1000-2000x faster than

Ruby
– Minimal per-call runtime

overhead

class LaplacianKernel < Kernel
 def kernel(in_grid, out_grid)
 in_grid.each_interior do |point|

 in_grid.neighbors(point,1).each
 do |x|
 out_grid[point] += 0.2*x.val
 end
 end

end

VALUE kern_par(int argc, VALUE* argv, VALUE
self) {

unpack_arrays into in_grid and out_grid;

#pragma omp parallel for default(shared)
private (t_6,t_7,t_8)
for (t_8=1; t_8<256-1; t_8++) {

 for (t_7=1; t_7<256-1; t_7++) {
 for (t_6=1; t_6<256-1; t_6++) {

 int center = INDEX(t_6,t_7,t_8);
 out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(t_6-1,t_7,t_8)]));

 ...
 out_grid[center] = (out_grid[center]

 +(0.2*in_grid[INDEX(t_6,t_7,t_8+1)]));
;}}}
return Qtrue;}

Shoaib Kamil,

Armando Fox, John

Shalf,

 Understand your machine limits

The “roofline” model

S. Williams, D. Patterson, L. Oliker, J. Shalf, K. Yelick

22

The Roofline Performance Model

• The top of the roof is
determined by peak
computation rate
(Double Precision
floating point, DP for
these algorithms)

• The instruction mix,
lack of SIMD
operations, ILP or
failure to use other
features of peak will
lower attainable

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

0.5

1.0

1/8

actual flop:byte ratio

at
ta

in
ab

le
 G
flo

p/
s

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4
1/2 1 2 4 8 16

Generic Machine

The Roofline Performance Model

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

0.5

1.0

1/8

actual flop:byte ratio

at
ta

in
ab

le
 G
flo

p/
s

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4
1/2 1 2 4 8 16

Generic Machine
The sloped part of the
roof is determined by
peak DRAM bandwidth
(STREAM)
Lack of proper prefetch,
ignoring NUMA, or
other things will reduce
attainable bandwidth

The Roofline Performance Model

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

0.5

1.0

1/8

actual flop:byte ratio

at
ta

in
ab

le
 G
flo

p/
s

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4
1/2 1 2 4 8 16

Generic Machine
Locations of posts in the
building are determined
by algorithmic intensity
Will vary across
algorithms and with
bandwidth-reducing
optimizations, such as
better cache re-use
(tiling), compression
techniques

Roofline model for Stencil
(out-of-the-box code)

Large datasets
2 unit stride streams
No NUMA
Little ILP
No DLP
Far more adds than
multiplies (imbalance)
Ideal flop:byte ratio 1/3

High locality
requirements
Capacity and conflict
misses will severely
impair flop:byte ratio

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8

25% FP

peak DP

12% FP

w/out FMA

peak DP

w/out ILP

w/out SIMD

peak DP

mul/add imbalance

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

Opteron 2356
(Barcelona)

Intel Xeon E5345
(Clovertown)

Sun T2+ T5140
(Victoria Falls)

w/out SIMD

w/out ILP

No naïve SPE
implementation

IBM QS20
Cell Blade

Roofline model for Stencil
(out-of-the-box code)

Large datasets
2 unit stride streams
No NUMA
Little ILP
No DLP
Far more adds than
multiplies (imbalance)
Ideal flop:byte ratio 1/3

High locality
requirements
Capacity and conflict
misses will severely
impair flop:byte ratio

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8

25% FP

peak DP

12% FP

w/out FMA

peak DP

w/out ILP

w/out SIMD

peak DP

mul/add imbalance

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

Opteron 2356
(Barcelona)

Intel Xeon E5345
(Clovertown)

Sun T2+ T5140
(Victoria Falls)

w/out SIMD

w/out ILP

No naïve SPE
implementation

IBM QS20
Cell Blade

Roofline model for Stencil
(NUMA, cache blocking, unrolling, prefetch, …)

Cache blocking helps
ensure flop:byte ratio is as
close as possible to 1/3

Clovertown has huge
caches but is pinned to
lower BW ceiling
Cache management is
essential when capacity/
thread is low

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8

25% FP

peak DP

12% FP

w/out FMA

peak DP

w/out ILP

w/out SIMD

peak DP

mul/add imbalance

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

Opteron 2356
(Barcelona)

Intel Xeon E5345
(Clovertown)

Sun T2+ T5140
(Victoria Falls)

w/out SIMD

w/out ILP

No naïve SPE
implementation

IBM QS20
Cell Blade

Roofline model for Stencil
(SIMDization + cache bypass)

Make SIMDization
explicit
Use cache bypass
instruction: movntpd
Increases flop:byte ratio
to ~0.5 on x86/Cell

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8

25% FP

peak DP

12% FP

w/out FMA

peak DP

w/out ILP

w/out SIMD

peak DP

mul/add imbalance

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

Opteron 2356
(Barcelona)

Intel Xeon E5345
(Clovertown)

Sun T2+ T5140
(Victoria Falls)

w/out SIMD

w/out ILP

IBM QS20
Cell Blade

Programming Models that Match
Machines

30

0

2

4

6

8

10

12

14

0

100

200

300

400

500

600

700

1 2 3 6 12

M
e
m

o
ry

 p
e
r

n
o

d
e
 (

G
B

)

T
im

e
 (

s
e
c
)

cores per MPI process

fvCAM
 (240 cores on Jaguar)

Time

Memory

Develop Best Practices in
Multicore Programming

NERSC/Cray Programming
Models “Center of
Excellence” combines:
• LBNL strength in languages,

tuning, performance analysis

• Cray strength in languages,
compilers, benchmarking

Goals:

• Immediate goal is training
material for Hopper users:
hybrid OpenMP/MPI

• Long term input into
exascale programming
model

= OpenMP thread parallelism

31
Work by Nick Wright and John Shalf with Cray

Develop Best Practices in
Multicore Programming

0

2

4

6

8

10

12

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 6 12

M
e
m

o
ry

 p
e
r

n
o

d
e
 (

G
B

)

T
im

e
 (

s
e
c
)

cores per MPI process

PARATEC
 (768 cores on Jaguar)

Time

Memory

= OpenMP thread parallelism

Conclusions so far:
• Mixed OpenMP/MPI

saves significant
memory

• Running time impact
varies with application

• 1 MPI process per
socket is often good

Run on Hopper next:

• 12 vs 6 cores per socket

• Gemini vs. Seastar

32
Work by Nick Wright and John Shalf with Cray

PGAS Languages: Why use 2 Languages
(MPI+X) when 1 will do?

Global address space: thread may directly read/write remote data
Partitioned: data is designated as local or global

G
lo

b
al

 a
d

d
re

ss
 s

p
ac

e

x: 1

y:

l: l: l:

g: g: g:

x: 5

y:

x: 7

y: 0

p0 p1 pn

Remote put and get: never have to say “receive”
No less scalable than MPI!
Permits sharing, whereas MPI rules it out!
Gives affinity control, useful on shared and distributed memory

Hybrid Partitioned Global Address
Space

Local
Segment

on Host
Memory

Processor 1

Shared
Segment

on Host
Memory

Local
Segment

on GPU
Memory

Local
Segment

on Host
Memory

Processor 2

Local
Segment

on GPU
Memory

Local
Segment

on Host
Memory

Processor 3

Local
Segment

on GPU
Memory

Local
Segment

on Host
Memory

Processor 4

Local
Segment

on GPU
Memory

Each thread has only two shared segments

Decouple the memory model from execution models; one

thread per CPU, vs. one thread for all CPU and GPU “cores”

Caveat: type system and therefore interfaces blow up with

different parts of address space

Shared
Segment

on GPU
Memory

Shared
Segment

on Host
Memory

Shared
Segment

on GPU
Memory

Shared
Segment

on Host
Memory

Shared
Segment

on GPU
Memory

Shared
Segment

on Host
Memory

Shared
Segment

on GPU
Memory

Work by Yili Zheng

GASNet GPU Extension Performance

Latency Bandwidth

Work by Yili Zheng

Algorithms to Optimize for
Communication

36 36

 Communication-Avoiding
Algorithms

• Consider Sparse Iterative Methods
• Nearest neighbor communication on a mesh

• Dominated by time to read matrix (edges) from DRAM

• And (small) communication and global
synchronization events at each step

Can we lower data movement costs?
• Take k steps “at once” with one matrix read
 from DRAM and one communication phase
– Parallel implementation

 O(log p) messages vs. O(k log p)

– Serial implementation
 O(1) moves of data moves vs. O(k)

Joint work with Jim Demmel, Mark
Hoemman, Marghoob Mohiyuddin

37

Know your mathematics!

Communication-Avoiding
GMRES on 8-core Clovertown

General Lessons

• Early intervention with hardware designs

• Optimize for what is important:

 energy data movement

• Anticipating and changing the future

– Influence hardware designs

– Understand hardware limits

– Write code generators / autotuners

– Use programming models that match machines

– Redesign algorithms for communication

40

Questions?

See jobs.lbl.gov or send mail if
you’re interested in joining the team.

41

