Cryptographic Hash Functions
Message Authentication Digital Signatures

Abstract

We will discuss

- Cryptographic hash functions
- Message authentication codes
- HMAC and CBC-MAC
- Digital signatures

Encryption/Decryption

- Provides message confidentiality.
- Does it provide message authentication?

Message Authentication

- Bob receives a message m from Alice, he wants to know
- (Data origin authentication) whether the message was really sent by Alice;
- (Data integrity) whether the message has been modified.
- Solutions:
- Alice attaches a message authentication code (MAC)
to the message.
- Or she attaches a digital signature to the message.

Hash function

- A hash function maps from a domain to a smaller range, typically many-to-one.
- Properties required of a hash function depend on its applications.
- Applications:
- Fast lookup (hash tables)
- Error detection/correction
- Cryptography: cryptographic hash functions
- Others

Cryptographic hash function

- Hash functions: $h: X \rightarrow Y,|X|>|Y|$.
- For example, $h:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

$$
\begin{aligned}
& h:\{0,1\}^{*} \rightarrow Z_{n} \\
& h:\{0,1\}^{k} \rightarrow\{0,1\}^{\prime}, k>l .
\end{aligned}
$$

- If X is finite, h is also called a compression function.
- A classical application: users/clients passwords are stored in a file
not as (username, password),
but as (username, h (password)) using some cryptographic hash function h.

Security requirements

- Pre-image: if $h(m)=y, m$ is a pre-image of y.
- Each hash value typically has multiple pre-images.
- Collision: a pair of $\left(m, m^{\prime}\right), m \neq m^{\prime}$, s.t. $h(m)=h\left(m^{\prime}\right)$.

A hash function is said to be:

- Pre-image resistant if it is computationally infeasible to find a pre-image of a hash value.
- Collision resistant if it is computationally infeasible to find a collision.
- A hash function is a cryptographic hash function if it is collision resistant.
- Collision-resistant hash functions can be built from collision-resistant compression functions using Merkle-Damgard construction.

Merkle-Damgard construction

- Construct a cryptographic hash function $h:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ from a compression function $f:\{0,1\}^{n+b} \rightarrow\{0,1\}^{n}$.

1. For $m \in\{0,1\}^{*}$, add padding to m so that $\left|m^{\prime}\right|$ is a multiple of b.
Let padded $m^{\prime}=m_{1} m_{2} \ldots m_{k}$, each m_{i} of length b. (padding $=10 \ldots 0|m|$, where $|m|$ is the length of m)
2. Let $v_{0}=\operatorname{IV}$ and $v_{i}=f\left(v_{i-1} \| m_{i}\right)$ for $1 \leq i \leq k$.
3. The hash value $h(m)=v_{k}$.

Theorem. If f is collision-resistant, then h is collision-resistant.

Merkle-Damgard Construction

Compression function $f:\{0,1\}^{n+b} \rightarrow\{0,1\}^{n}$

The Secure Hash Algorithm (SHA-1)

- an NIST standard.
- using Merkle-Damgard construction.
- input message m is divided into blocks with padding.
- padding $=10 \ldots 0 \ell$, where $\ell \in\{0,1\}^{64}$ indicates $|m|$ in binary.
- thus, message length limited to $|m| \leq 2^{64}-1$.
- block $=512$ bits $=16$ words $=W_{0}\|\ldots\| W_{15}$.
- $\mathrm{IV}=$ a constant of 160 bits $=5$ words $=H_{0}\|\ldots\| H_{4}$.
- resulting hash value: 160 bits.
- underlying compression function $f:\{0,1\}^{160+512} \rightarrow\{0,1\}^{160}$, a series (80 rounds) of $\wedge, \vee, \oplus, \neg,+$, and Rotate on words W_{i} 's \& H_{i} 's.

Is SHA-1 secure?

- An attack is to produce a collision.
- Birthday attack: randomly generate a set of messages
$\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}$, hoping to produce a collision.
- $n=160$ is big enough to resist birthday attacks for now.
- There is no mathematical proof for its collision resistancy.
- In 2004, a collision for a "58 rounds" SHA-1 was produced. (The compression function of SHA-1 has 80 rounds.)
- Newer SHA's have been included in the standard: SHA-256, SHA-384, SHA-512.
- Birthday problem: In a group of k people, what is the probability that at least two people have the same birthday?
- Having the same birthday is a collision?
- Birthday paradox: $p \geq 1 / 2$ with k as small as 23 .
- Consider a hash function $h:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$.
- If we randomly generate k messages, the probability of having a collision depends on n.
- To resist birthday attack, we choose n to be sufficiently large that it will take an infeasibly large k to have a non-negligible probability of collision.

Applications of cryptographic hash functions

- Storing passwords
- Used to produce modification detection codes (MDC)
- $h(m)$, called an MDC, is stored in a secure place;
- if m is modified, we can detect it;
- protecting the integrity of m.
- We will see some other applications.

Message Authentication

- Bob receives a message m from Alice, he wants to know
- (Data origin authentication) whether the message was really sent by Alice;
- (Data integrity) whether the message has been modified.
- Solutions:
- Alice attaches a message authentication code (MAC) to the message.
- Or she attaches a digital signature to the message.

MAC

- Message authentication protocol:

1. Alice and Bob share a secret key k.
2. Alice sends $m \| \mathrm{MAC}_{k}(m)$ to Bob.
3. Bob authenticates the received $m^{\prime} \| \mathrm{MAC}^{\prime}$ by checking if $\mathrm{MAC}^{\prime}=\mathrm{MAC}_{k}\left(m^{\prime}\right)$?

- $\mathrm{MAC}_{k}(m)$ is called a message authentication code.
- Security requirement: infeasible to produce a valid pair ($x, \mathrm{MAC}_{k}(x)$) without knowing the key k.

Constructing MAC from a hash

- A common way to construct a MAC is to incorporate a secret key k into a fixed hash function h (e.g. SHA-1).
- $\mathrm{MAC}_{k}(m)=h_{k}(m)=h(m)$ with IV $=k$
- $\mathrm{MAC}_{k}(m)=h_{k}(m)=h(k \| m)$
- Insecure: $M A C_{k}(m)=h(m)$ with $I V=k$.
(For simplicity, without padding)

- Easy to forge:
($\left.m^{\prime}, h_{k}\left(m^{\prime}\right)\right)$,
where $m^{\prime}=m \| m_{s+1}$

HMAC (Hash-based MAC)

- A FIPS standard for constructing MAC from a hash function h. Conceptually,

$$
\operatorname{HMAC}_{k}(m)=h\left(k_{2} \| h\left(k_{1} \| m\right)\right)
$$

where k_{1} and k_{2} are two keys generated from k.

- Various hash functions (e.g., SHA-1, MD5) may be used for h.
- If we use SHA-1, then HMAC is as follows:

$$
\operatorname{HMAC}_{k}(m)=\operatorname{SHA}-1(k \oplus \text { opad } \| \text { SHA- } 1(k \oplus \operatorname{ipad} \| m))
$$

where

- k is padded with 0 's to 512 bits
- ipad $=3636 \cdots 36$ (x036 repeated 64 times)
- opad $=5 c 5 c \cdots 5 c \quad(x 05 c$ repeated 64 times)

CBC-MAC

- A FIPS and ISO standard.
- One of the most popular MACs in use.
- Use a block cipher in CBC mode with a fixed, public IV.
- Called DES CBC-MAC if the block cipher is DES.
- Let $E:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher.
- CBC-MAC (m, k)

$$
\begin{aligned}
& m=m_{1}\left\|m_{2}\right\| \ldots \| m_{l} \text {, where }\left|m_{i}\right|=n . \\
& c_{0} \leftarrow \text { IV (typically } 0^{n} \text {) } \\
& \text { for } i \leftarrow 1 \text { to } l \text { do }
\end{aligned}
$$

$$
c_{i} \leftarrow E_{k}\left(c_{i-1} \oplus m_{i}\right)
$$

return $\left(c_{l}\right)$

Cipher Block Chaining (CBC)

(a) Encryption

CMAC (Cipher-based MAC)

- A refined version of CBC-MAC.
- Adopted by NIST for use with AES and 3DES.
- Use two keys: k, k^{\prime} (assuming $|m|$ is a multiple of n).
- Let $E:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher.
- CMAC (m, k)

$$
\begin{aligned}
& m=m_{1}\left\|m_{2}\right\| \ldots \| m_{l} \text {, where }\left|m_{i}\right|=n . \\
& \left.c_{0} \leftarrow \text { IV (typically } 0^{n}\right) \\
& \text { for } i \leftarrow 1 \text { to } l-1 \text { do } \\
& \quad c_{i} \leftarrow E_{k}\left(c_{i-1} \oplus m_{i}\right) \\
& c_{l} \leftarrow E_{k}\left(c_{l-1} \oplus m_{l}\right) \\
& \text { return }\left(c_{l}\right)
\end{aligned}
$$

Digital Signatures

- RSA can be used for digital signatures.
- A digital signature is the same as a MAC except that the tag (signature) is produced using a public-key cryptosystem.
- Digital signatures are used to provide message authentication and non-repudiation.

- Digital signature protocol:

1. Bob has a key pair ($p r, p u$).
2. Bob sends $m \| \operatorname{Sig}_{p r}(m)$ to Alice.
3. Alice verifies the received $m^{\prime} \| s^{\prime}$
by checking if $s^{\prime}=\operatorname{Verify}_{p u}\left(m^{\prime}\right)$.

- $\operatorname{Sig}_{p r}(m)$ is called a signature for m.
- Security requirement: infeasible to forge a valid pair $\left(m, \operatorname{Sig}_{p r}(m)\right.$) without knowing $p r$.

Encryption (using RSA):

Digital signature (using RSA $^{-1}$):

RSA Signature

- Keys are generated as for RSA encryption:

Public key: $P U=(n, e)$. Private key: $P R=(n, d)$.

- Signing a message $m \in Z_{n}^{*}: \sigma=D_{P R}(m)=m^{d} \bmod n$.

$$
\text { That is, } \sigma=\mathrm{RSA}^{-1}(m) \text {. }
$$

- Verifying a signature (m, σ) :
check if $m=E_{P U}(\sigma)=\sigma^{e} \bmod n$, or $m=\operatorname{RSA}(\sigma)$.
- Only the key's owner can sign, but anybody can verify.

Security of RSA Signature

- Existential forgeries:

1. Every message $m \in Z_{n}^{*}$ is a valid signature for its ciphertext $c:=\operatorname{RSA}(m)$.

Encryption (using Bob's public key):

Sign (if using Bob's private key):
$m \stackrel{\mathrm{RSA}^{-1}}{\longleftarrow} C$
2. If Bob signed m_{1} and m_{2}, then the signature for $m_{1} m_{2}$ can be easily forged: $\sigma\left(m_{1} m_{2}\right)=\sigma\left(m_{1}\right) \sigma\left(m_{2}\right)$.

- Countermeasure: hash and sign: $\sigma=\operatorname{Sign}_{P R}(h(m))$, using some collision resistant hash function h.
- Question:

Does hash-then-sign make RSA signature secure against all chosen-message attacks?

- Answer:

Yes, if h is a full-domain random oracle, i.e.,

- h is a random oracle mapping $\{0,1\}^{*} \rightarrow Z_{n}$
- (Z_{n} is the full domain of RSA)
- Problem with full-domain hash:

In practice, h is not full-domain.
For instance, the range of SHA- 1 is $\{0,1\}^{160}$, while $Z_{n}=\left\{0,1, \ldots, 2^{n}-1\right\}$, with $n \geq 1024$.

- Desired: a secure signature scheme that does not require a full-domain hash.

Probabilistic signature scheme

- Hash function $h:\{0,1\}^{*} \rightarrow\{0,1\}^{l} \subset Z_{N}$ (not full domain).
$l<n=|N|$. (E.g., SHA-1, $l=160 ;$ RSA, $n=1024$.)
- Idea: $m \xrightarrow{\mathrm{pad}} m \| r$

$$
\xrightarrow{\text { hash }} w=h(m \| r)
$$

$$
\begin{aligned}
& \in\{0,1\}^{*} \\
& \in\{0,1\}^{l} \\
& \in\{0,1\}^{n} \\
& \in Z_{N}
\end{aligned}
$$

$$
\xrightarrow{\text { expand }} y=w \|\left(r \| 0^{n-1-l-k}\right) \oplus G(w) \quad \in\{0,1\}^{n-1}
$$

$$
\xrightarrow{\text { sign }} \sigma=\operatorname{RSA}^{-1}(y)
$$

where $r \in\{0,1\}^{k}$

$$
G:\{0,1\}^{l} \rightarrow\{0,1\}^{n-1-l} \quad \text { (pseudorandom generator) }
$$

- Signing a message $m \in\{0,1\}^{*}$:

1. choose a random $r \in\{0,1\}^{k}$; compute $w=h(m \| r)$;
2. compute $y=w\left\|r \oplus G_{1}(w)\right\| G_{2}(w) ; \quad / / G=G_{1} \| G_{2} / /$
3. The signature is $\sigma=\operatorname{RSA}^{-1}(y)$.

Remarks

- PSS is secure against chosen-message attacks in the random oracle model (i.e., if h and G are random oracles).
- PSS is adopted in PKCS \#1 v.2.1.
- Hash functions such as SHA-1 are used for h and G.
- For instance,
let $n=1024$, and $l=k=160$ let $h=$ SHA-1

$$
\left(G_{1}, G_{2}\right)(w)=G(w)=h(w \| 0)\|h(w \| 1)\| h(w \| 2), \ldots
$$

