Cryptographic Hash Functions Message Authentication Digital Signatures

Abstract

We will discuss

- Cryptographic hash functions
- Message authentication codes - HMAC and CBC-MAC
- Digital signatures

Encryption/Decryption

• Provides message confidentiality.

• Does it provide message authentication?

Message Authentication

- Bob receives a message *m* from Alice, he wants to know
 - (Data origin authentication) whether the message was really sent by Alice;
 - (Data integrity) whether the message has been modified.
- Solutions:
 - Alice attaches a message authentication code (MAC) to the message.
 - Or she attaches a digital signature to the message.

Hash function

- A hash function maps from a domain to a smaller range, typically many-to-one.
- Properties required of a hash function depend on its applications.
- Applications:
 - Fast lookup (hash tables)
 - Error detection/correction
 - Cryptography: cryptographic hash functions
 - Others

Cryptographic hash function

- Hash functions: $h: X \to Y$, |X| > |Y|.
- For example, $h: \{0,1\}^* \to \{0,1\}^n$

$$h: \{0,1\}^* \to Z_n$$

 $h: \{0,1\}^k \to \{0,1\}^l, \ k > l.$

- If *X* is finite, *h* is also called a compression function.
- A classical application: users/clients passwords are stored in a file

not as (username, password), but as (username, *h*(password)) using some cryptographic hash function *h*.

Security requirements

- Pre-image: if h(m) = y, *m* is a pre-image of *y*.
- Each hash value typically has multiple pre-images.
- Collision: a pair of (m, m'), $m \neq m'$, s.t. h(m) = h(m').
- A hash function is said to be:
- Pre-image resistant if it is computationally infeasible to find a pre-image of a hash value.
- Collision resistant if it is computationally infeasible to find a collision.
- A hash function is a cryptographic hash function if it is collision resistant.

 Collision-resistant hash functions can be built from collision-resistant compression functions using Merkle-Damgard construction.

Merkle-Damgard construction

- Construct a cryptographic hash function $h: \{0,1\}^* \to \{0,1\}^n$ from a compression function $f: \{0,1\}^{n+b} \to \{0,1\}^n$.
 - 1. For $m \in \{0,1\}^*$, add padding to *m* so that |m'| is a multiple of *b*.

Let padded $m' = m_1 m_2 \dots m_k$, each m_i of length *b*. (padding = 10...0 |m|, where |m| is the length of *m*)

3. Let
$$v_0 = IV$$
 and $v_i = f(v_{i-1} || m_i)$ for $1 \le i \le k$.

4. The hash value $h(m) = v_k$.

Theorem. If f is collision-resistant, then h is collision-resistant.

Merkle-Damgard Construction

Compression function $f: \{0,1\}^{n+b} \rightarrow \{0,1\}^n$

The Secure Hash Algorithm (SHA-1)

- an NIST standard.
- using Merkle-Damgard construction.
- input message *m* is divided into blocks with padding.
- padding = 10...0 ℓ , where $\ell \in \{0,1\}^{64}$ indicates |m| in binary.
- thus, message length limited to $|m| \leq 2^{64} 1$.
- block = 512 bits = 16 words = $W_0 || ... || W_{15}$.
- IV = a constant of 160 bits = 5 words = $H_0 \parallel \ldots \parallel H_4$.
- resulting hash value: 160 bits.
- underlying compression function $f : \{0,1\}^{160+512} \rightarrow \{0,1\}^{160}$, a series (80 rounds) of \land , \lor , \oplus , \neg , +, and Rotate on words W_i 's & H_i 's.

Is SHA-1 secure?

- An attack is to produce a collision.
- Birthday attack: randomly generate a set of messages $\{m_1, m_2, ..., m_k\}$, hoping to produce a collision.
- n = 160 is big enough to resist birthday attacks for now.
- There is no mathematical proof for its collision resistancy.
- In 2004, a collision for a "58 rounds" SHA-1 was produced. (The compression function of SHA-1 has 80 rounds.)
- Newer SHA's have been included in the standard: SHA-256, SHA-384, SHA-512.

- Birthday problem: In a group of *k* people, what is the probability that at least two people have the same birthday?
 - Having the same birthday is a collision?
- Birthday paradox: $p \ge 1/2$ with k as small as 23.
- Consider a hash function $h: \{0,1\}^* \to \{0,1\}^n$.
- If we randomly generate *k* messages, the probability of having a collision depends on *n*.
- To resist birthday attack, we choose *n* to be sufficiently large that it will take an infeasibly large *k* to have a non-negligible probability of collision.

Applications of cryptographic hash functions

- Storing passwords
- Used to produce modification detection codes (MDC)
 - h(m), called an MDC, is stored in a secure place;
 - if *m* is modified, we can detect it;
 - protecting the integrity of *m*.
- We will see some other applications.

Message Authentication

- Bob receives a message *m* from Alice, he wants to know
 - (Data origin authentication) whether the message was really sent by Alice;
 - (Data integrity) whether the message has been modified.
- Solutions:
 - Alice attaches a message authentication code (MAC) to the message.
 - Or she attaches a digital signature to the message.

MAC

- Message authentication protocol:
 - 1. Alice and Bob share a secret key k.
 - 2. Alice sends $m \parallel MAC_k(m)$ to Bob.
 - 3. Bob authenticates the received $m' \parallel MAC'$ by checking if $MAC' = MAC_k(m')$?
- $MAC_k(m)$ is called a message authentication code.
- Security requirement: infeasible to produce a valid pair
 (x, MAC_k(x)) without knowing the key k.

Constructing MAC from a hash

• A common way to construct a MAC is to incorporate a secret key *k* into a fixed hash function *h* (e.g. SHA-1).

- $MAC_k(m) = h_k(m) = h(m)$ with IV = k
- $MAC_k(m) = h_k(m) = h(k || m)$

• Insecure: $MAC_k(m) = h(m)$ with IV = k. (For simplicity, without padding)

• Easy to forge: $(m', h_k(m')),$ where $m' = m \parallel m_{s+1}$

$$m_{s+1}$$

$$\downarrow$$

$$h_k(m) \longrightarrow f \longrightarrow h_k(m//m_{s+1})$$

HMAC (Hash-based MAC)

• A FIPS standard for constructing MAC from a hash function *h*. Conceptually,

 $\mathrm{HMAC}_{k}(m) = \mathbf{h}(k_{2} \parallel \mathbf{h}(k_{1} \parallel m))$

where k_1 and k_2 are two keys generated from k.

- Various hash functions (e.g., SHA-1, MD5) may be used for *h*.
- If we use SHA-1, then HMAC is as follows:

 $HMAC_{k}(m) = SHA-1(k \oplus opad || SHA-1(k \oplus ipad || m))$

where

- k is padded with 0's to 512 bits
- $ipad = 3636 \cdots 36$ (x036 repeated 64 times)
- $opad = 5c5c \cdots 5c$ (x05c repeated 64 times)

CBC-MAC

- A FIPS and ISO standard.
- One of the most popular MACs in use.
- Use a block cipher in CBC mode with a fixed, public IV.
- Called DES CBC-MAC if the block cipher is DES.
- Let $E: \{0,1\}^n \to \{0,1\}^n$ be a block cipher.
- CBC-MAC(m, k)

 $m = m_1 || m_2 || \dots || m_l, \text{ where } |m_i| = n.$ $c_0 \leftarrow \text{IV (typically 0^n)}$ for $i \leftarrow 1$ to l do $c_i \leftarrow E_k(c_{i-1} \oplus m_i)$ return (c_l)

Cipher Block Chaining (CBC)

(a) Encryption

CMAC (Cipher-based MAC)

- A refined version of CBC-MAC.
- Adopted by NIST for use with AES and 3DES.
- Use two keys: k, k' (assuming |m| is a multiple of n).
- Let $E: \{0,1\}^n \to \{0,1\}^n$ be a block cipher.
- CMAC(m,k)

 $m = m_1 || m_2 || \dots || m_l, \text{ where } |m_i| = n.$ $c_0 \leftarrow \text{IV (typically 0^n)}$ for $i \leftarrow 1$ to l - 1 do $c_i \leftarrow E_k(c_{i-1} \oplus m_i)$ $c_l \leftarrow E_k(c_{l-1} \oplus m_l \quad)$ return (c_l)

Digital Signatures

- RSA can be used for digital signatures.
- A digital signature is the same as a MAC except that the tag (signature) is produced using a public-key cryptosystem.
- Digital signatures are used to provide message authentication and non-repudiation.

- Digital signature protocol:
 - 1. Bob has a key pair (pr, pu).
 - 2. Bob sends $m || \operatorname{Sig}_{pr}(m)$ to Alice.
 - 3. Alice verifies the received $m' \parallel s'$ by checking if $s' = \text{Verify}_{pu}(m')$.
- $\operatorname{Sig}_{pr}(m)$ is called a signature for *m*.
- Security requirement: infeasible to forge a valid pair (m, Sig_{pr}(m)) without knowing pr.

Encryption (using RSA):

Digital signature (using RSA⁻¹):

RSA Signature

• Keys are generated as for RSA encryption:

Public key: PU = (n, e). Private key: PR = (n, d).

• Signing a message $m \in Z_n^*$: $\sigma = D_{PR}(m) = m^d \mod n$.

That is,
$$\sigma = RSA^{-1}(m)$$
.

• Verifying a signature (*m*, *σ*):

check if $m = E_{PU}(\sigma) = \sigma^e \mod n$, or $m = \text{RSA}(\sigma)$.

• Only the key's owner can sign, but anybody can verify.

Security of RSA Signature

- Existential forgeries:
 - 1. Every message $m \in Z_n^*$ is a valid signature for its ciphertext c := RSA(m).

Encryption (using Bob's public key): $m \xrightarrow{\text{RSA}} c$ Sign (if using Bob's private key): $m \xleftarrow{\text{RSA}^{-1}} c$

- 2. If Bob signed m_1 and m_2 , then the signature for m_1m_2 can be easily forged: $\sigma(m_1m_2) = \sigma(m_1)\sigma(m_2)$.
- Countermeasure: hash and sign: $\sigma = \text{Sign}_{PR}(h(m))$, using some collision resistant hash function *h*.

• Question:

Does hash-then-sign make RSA signature secure against all chosen-message attacks?

• Answer:

Yes, if h is a full-domain random oracle, i.e.,

- *h* is a random oracle mapping $\{0,1\}^* \rightarrow Z_n$
- $(Z_n \text{ is the full domain of RSA})$

- Problem with full-domain hash: In practice, *h* is not full-domain. For instance, the range of SHA-1 is $\{0,1\}^{160}$, while $Z_n = \{0,1,...,2^n - 1\}$, with $n \ge 1024$.
- Desired: a secure signature scheme that does not require a full-domain hash.

Probabilistic signature scheme

• Hash function $h: \{0,1\}^* \to \{0,1\}^l \subset Z_N$ (not full domain).

l < n = |N|. (E.g., SHA-1, l = 160; RSA, n = 1024.)

• Idea:
$$m \xrightarrow{\text{pad}} m \parallel r$$

 $\xrightarrow{\text{hash}} w = h(m \parallel r)$
 $\xrightarrow{\text{expand}} y = w \parallel (r \parallel 0^{n-1-l-k}) \oplus G(w)$
 $\xrightarrow{\text{sign}} \sigma = \text{RSA}^{-1}(y)$
where $r \in \{0,1\}^k$
 $G: \{0,1\}^l \to \{0,1\}^{n-1-l}$ (pseudorandom generator)

- Signing a message $m \in \{0,1\}^*$:
 - 1. choose a random $r \in \{0,1\}^k$; compute w = h(m || r);
 - 2. compute $y = w || r \oplus G_1(w) || G_2(w); // G = G_1 || G_2 //$
 - 3. The signature is $\sigma = RSA^{-1}(y)$.

Remarks

- PSS is secure against chosen-message attacks in the random oracle model (i.e., if *h* and *G* are random oracles).
- PSS is adopted in PKCS #1 v.2.1.
- Hash functions such as SHA-1 are used for *h* and *G*.
- For instance,

let
$$n = 1024$$
, and $l = k = 160$
let $h = SHA-1$
 $(G_1, G_2)(w) = G(w) = h(w || 0) || h(w || 1) || h(w || 2), ...$