CSE 6331 Homework 3

Due: Thursday, January 25 by class time

1. A function $T(n)$ (defined for positive integers n) satisfies the following recurrence:

$$
T(n)= \begin{cases}c, & \text { if } n \leq 1 \\ 3 T(\lfloor n / 4\rfloor)+n, & \text { if } n>1\end{cases}
$$

where c ia a positive constant. Prove that $T(n)$ is asymptotically nondecreasing.
2. Determine the tight asymptotic complexity of the following function. Give your answer in Θ notation with a proof.

$$
T(n)= \begin{cases}b, & \text { if } n \leq 3 \\ T(\lfloor n / 2\rfloor)+T(\lfloor n / 4\rfloor)+c n, & \text { if } n>3\end{cases}
$$

3. Determine the tight asymptotic complexity of the following function. Give your answer in Θ notation with a proof.

$$
T(n)= \begin{cases}b, & \text { if } n \leq 3 \\ T(\lfloor n / 2\rfloor)+2 T(\lfloor n / 4\rfloor)+c n, & \text { if } n>3\end{cases}
$$

4. Use the master method to solve the following recurrences.
(a) $T(n)=4 T(n / 2)+n^{2}$.
(b) $T(n)=4 T(n / 2)+n^{2} \log ^{2} n$.
(c) $T(n)=4 T(n / 2)+n^{3}$.
5. The running time of an algorithm A is described by the recurrence $T(n)=$ $7 T(n / 2)+n^{2}$. A competing algorithm A^{\prime} has a running time of $T^{\prime}(n)=a T^{\prime}(n / 4)+$ n^{2}. What is the largest integer value for a such that A^{\prime} is asymptotically faster than A.
