CSE 6331 Homework 1

Due Thursday, January 18 by class time

1. Order the following function by asymptotic dominance. That is, produce an order $f_{1}(n), f_{2}(n), \ldots$ such that $f_{i}=O\left(f_{i+1}\right)$.
(a) $f(n)=n!* n^{2}$

Hint: use Stirling's formula, $n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\Theta\left(\frac{1}{n}\right)\right)$.
(b) $f(n)=2^{23}$
(c) $f(n)=1 / n^{2}$
(d) $f(n)=4^{\sqrt{n}}$
(e) $f(n)=n^{2 n}$
(f) $f(n)=\log _{2} \log _{2}\left(n^{5}+n^{2}\right)$
(g) $f(n)=19 n^{1.5}+3 n^{2.1}+\sqrt{n}$
(h) $f(n)=27 \log _{7}(n)+\sqrt{\log _{2}(n)}$
(i) $f(n)=\left(\log _{2} n\right)^{3}$
(j) $f(n)=5^{\log _{2} n}+\sqrt{n}$
(k) $f(n)=2^{\left(2^{n}\right)}$
2. Let $f(n)$ be a function defined for all positive integers n. Prove or disprove the following statement: If $f(n)=\Theta\left(n^{2}\right)$, then $f(n)$ is asymptotically monotonically nondecreasing (i.e., $f(n) \leq f(n+1)$ for all sufficiently large integers n). (Note: to disprove a statement, you need to give a concrete counterexample.)
3. Let $f(n)$ be a function defined for all positive integers n. Prove or disprove the following statement: If $f(n)=O(g(n))$, then $2^{f(n)}=O\left(2^{g(n)}\right)$. (Note: to disprove, you need to give a concrete counterexample.)
4. How many dollar signs (\$'s) will the following procedure print? Give your answer in Θ notation. Justify your answer.

```
Procedure dollar(n)
        j
        while }j<n\mathrm{ do
        j}\leftarrowj+
        k\leftarrow2
        while }k<n\mathrm{ do
            k\leftarrowk*k
            print($)
```

