Number-Theoretic Algorithms

Chapter 31, CLRS book
Modular Arithmetic
Integers

- $a | b$: a divides b, a is a divisor of b.
- $\text{gcd}(a,b)$: greatest common divisor of a and b.
- Coprime or relatively prime: $\text{gcd}(a,b) = 1$.
- Euclid's algorithm: compute $\text{gcd}(a,b)$.
- Extended Euclid's algorithm: compute integers x and y such that $ax + by = \text{gcd}(a,b)$.
Integers modulo n

- Let $n \geq 2$ be an integer.
- Def: a is congruent to b modulo n, written $a \equiv b \mod n$, if $n \mid (a - b)$, i.e., a and b have the same remainder when divided by n.
- Note: $a \equiv b \mod n$ and $a = b \mod n$ are different.
- Def: $[a]_n = \{\text{all integers congruent to } a \text{ modulo } n\}$.
- $[a]_n$ is called a residue class modulo n, and a is a representative of that class.
- There are exactly n residue classes modulo n:
 \[[0], [1], [2], \ldots, [n-1]. \]
- Note: "congruence mod n" is an equivalence relation, whose equivalence classes are the residue classes.
- If \(x \in [a], y \in [b], \) then \(x + y \in [a + b] \) and \(x \cdot y \in [a \cdot b] \).
- Define addition and multiplication for residue classes:
 \[
 [a] \underbrace{+}_n [b] = [a + b] \\
 [a] \underbrace{\cdot}_n [b] = [a \cdot b].
 \]
Group

• A group, denoted by \((G,\ast)\), is a set \(G\) with a binary operation \(\ast : G \times G \to G\) such that
 1. \(\forall x, y \in G, \ x \ast y \in G\) (closure)
 2. \(x \ast (y \ast z) = (x \ast y) \ast z\) (associativity)
 3. \(\exists e \in G\) s.t. \(\forall x \in G, \ e \ast x = x \ast e = x\) (identity)
 4. \(\forall x \in G, \ \exists y \in G\) s.t. \(x \ast y = y \ast x = e\) (inverse)

• A group \((G,\ast)\) is abelian if \(\forall x, y \in G, \ x \ast y = y \ast x\).

• Examples: \((Z,+), (Q,+), (Q \setminus \{0\}, \times), (R,+), (R \setminus \{0\}, \times)\).
• Define $Z_n = \{[0], [1], ..., [n-1]\}$.

• Or, more conveniently, $Z_n = \{0, 1, ..., n-1\}$.

• $(Z_n, +)$ forms an abelian additive group.

• For $a, b \in Z_n$,
 - $a + b = (a + b) \mod n$. (Or, $[a] + [b] = [a + b] = [a + b \mod n]$.)
 - 0 is the identity element.
 - The inverse of a, denoted by $-a$, is $n - a$.

• When doing addition/subtraction in Z_n, just do the regular addition/subtraction and reduce the result modulo n.
 - In Z_{10}, $5 + 5 + 9 + 4 + 6 + 2 + 8 + 3 = ?$
• \((Z_n, *)\) is not a group, because \(0^{-1}\) does not exist.

• Even if we exclude 0 and consider only \(Z_n^+ = Z_n \setminus \{0\}\), \((Z_n^+, *)\) is not necessarily a group; some \(a^{-1}\) may not exist.

• For \(a \in Z_n\), \(a^{-1}\) exists if and only if \(\gcd(a, n) = 1\).
Let $Z_n^* = \{ a \in Z_n : \gcd(a, n) = 1 \}$.

(Z_n, \ast) is an abelian multiplicative group.

$a \ast b = ab \mod n$.

$\ast = \ast \mod n$.

1 is the identity element.

The inverse of a, written a^{-1}, can be computed by the Extended Euclidean Algorithm.

For example, $Z_{12}^* = \{1, 5, 7, 11\}$. $5 \ast 7 = 35 \mod 12 = 11$.

Q: How many elements are there in Z_n^*?
• Euler's totient function:

\[\varphi(n) = \left| \mathbb{Z}_n^* \right| \]

\[= \left| \{a : 1 \leq a \leq n \text{ and } \gcd(a, n) = 1\} \right| \]

• Facts:

1. \(\varphi(p^e) = (p - 1)p^{e-1} \) for prime \(p \)

2. \(\varphi(ab) = \varphi(a) \varphi(b) \) if \(\gcd(a, b) = 1 \)
• Let G be a (multiplicative) finite group.
• The order of $a \in G$, written $\text{ord}(a)$, is the smallest positive integer t such that $a^t = e$. (\textit{e}, identity element.)
• Lagrange's theorem: For any element $a \in G$, $\text{ord}(a) | |G|$.
• Corollary: For any element $a \in G$, $a^{|G|} = e$.
• Fermat's little theorem:
 If $a \in \mathbb{Z}_p^* \ (p \text{ a prime})$, then $a^{\phi(p)} = a^{p-1} = 1$ in \mathbb{Z}_p^*.
• Euler's theorem:
 If $a \in \mathbb{Z}_n^* \ (\text{for any } n > 1)$, then $a^{\phi(n)} = 1$ in \mathbb{Z}_n^*.
Example: $n = 15$

- $Z_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$
- $|Z_{15}^*| = \phi(15) = \phi(3) \times \phi(5) = 2 \times 4 = 8$

<table>
<thead>
<tr>
<th>$a \in Z_{15}^*$</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>ord(a)</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

- $a^{\phi(n)} = a^8 = 1$
Algorithms

- $\gcd(a, b)$
- $a^{-1} \mod n$
- $a^k \mod n$
- Running time: $O(\log^3 n)$
Euclidean Algorithm

Comment: compute $\gcd(a, b)$, where $a > b > 1$.

$$r_0 := a$$
$$r_1 := b$$

for $i := 1, 2, \ldots$ until $r_{n+1} = 0$

$$r_{i+1} := r_{i-1} \mod r_i$$

return (r_n)

Running time:

- $O(\log a)$ iterations; $O(\log^2 a)$ time for each mod.
- Overall running time: $O(\log^3 a)$
Extended Euclidean Algorithm

Given \(a > b > 0 \), compute \(x, y \) such that \(\gcd(a,b) = ax + by \).

Example: \(\gcd(299, 221) = ? \)

\[
299 = 1 \times 221 + 78 \\
221 = 2 \times 78 + 65 \\
78 = 1 \times 65 + 13 \\
65 = 5 \cdot 13 + 0
\]

\[
\gcd(229, 221) = 13 = 78 - 65 \\
= 78 - (221 - 2 \times 78) = 3 \cdot 78 - 221 \\
= 3 \times (299 - 1 \cdot 221) - 221 \\
= 3 \times 299 - 4 \times 221
\]
How to compute $a^{-1} \mod n$?

- Compute a^{-1} in \mathbb{Z}_n^*.
- a^{-1} exists if and only if $\gcd(a, n) = 1$.
- Use extended Euclidean algorithm to find x, y such that $ax + ny = \gcd(a, n) = 1$ (in \mathbb{Z})

 $\Rightarrow [a][x] + [n][y] = [1]$

 $\Rightarrow [a][x] = [1] \quad \text{ (since } [n] = [0])$

 $\Rightarrow [a]^{-1} = [x].$

- Note: may omit $[\]$, but reduce everything modulo n.
Example

- Compute $15^{-1} \mod 47$.

 $47 = 15 \times 3 + 2$ (divide 47 by 15; remainder = 2)
 $15 = 2 \times 7 + 1$ (divide 15 by 2; remainder = 1)

 $1 = 15 - 2 \times 7$ (mod 47)
 $= 15 - (47 - 15 \times 3) \times 7$ (mod 47)
 $= 15 \times 22 - 47 \times 7$ (mod 47)
 $= 15 \times 22$ (mod 47)

 $15^{-1} \mod 47 = 22$

 That is, $15^{-1} = 22$ in \mathbb{Z}_{47}^*
Algorithm: Square-and-Multiply(x, c, n)

Comment: compute $x^c \mod n$, where $c = c_k c_{k-1} \ldots c_0$ in binary.

$z \leftarrow 1$

for $i \leftarrow k$ downto 0 do

$z \leftarrow z^2 \mod n$

if $c_i = 1$ then $z \leftarrow (z \cdot x) \mod n$

return (z)

Note: At the end of iteration i, $z = x^{c_k \ldots c_i}$.
Example: $11^{23} \mod 187$

$23 = 10111_b$

$z \leftarrow 1$

$z \leftarrow z^2 \cdot 11 \mod 187 = 11$ (square and multiply)

$z \leftarrow z^2 \mod 187 = 121$ (square)

$z \leftarrow z^2 \cdot 11 \mod 187 = 44$ (square and multiply)

$z \leftarrow z^2 \cdot 11 \mod 187 = 165$ (square and multiply)

$z \leftarrow z^2 \cdot 11 \mod 187 = 88$ (square and multiply)
The RSA Cryptosystem
The RSA Cryptosystem

- Best known and most widely used public-key scheme.
- Based on the assumed one-way property of modular powering:
 \[f : x \rightarrow x^e \mod n \]
 \[f^{-1} : x^e \rightarrow x \mod n \]
- In turn based on the hardness of integer factorization.
Idea behind RSA

It works in group \(\mathbb{Z}_n^* \). Let \(x \in \mathbb{Z}_n^* \) be a message.

Encryption (easy): \(x \xrightarrow{\text{RSA}} x^e \)

Decryption (hard): \(x \leftarrow x^e \xrightarrow{\text{RSA}^{-1}} \)

Looking for a "trapdoor": \((x^e)^d = x \).

If \(d \) is a number such that \(ed \equiv 1 \pmod{\varphi(n)} \), then \(ed = k\varphi(n) + 1 \) for some \(k \), and

\[
(x^e)^d = x^{ed} = x^{\varphi(n)k+1} = (x^{\varphi(n)})^k \cdot x = 1 \cdot x = x.
\]
RSA Cryptosystem

- **Key generation:**

 (a) Choose large primes p and q, and let $n := pq$.

 (b) Choose $e \ (1 < e < \varphi(n))$ coprime to $\varphi(n)$, and compute $d := e^{-1} \mod \varphi(n)$. ($ed \equiv 1 \mod \varphi(n)$.)

 (c) Public key: $pk = (n, e)$. Secret key: $sk = (n, d)$.

- **Encryption:** $E_{pk}(x) := x^e \mod n$, where $x \in \mathbb{Z}_n^*$.

- **Decryption:** $D_{sk}(y) := y^d \mod n$, where $y \in \mathbb{Z}_n^*$.
Why RSA Works?

- The setting of RSA is the group \((Z_n^*, \cdot)\):
 - In group \((Z_n^*, \cdot)\), for any \(x \in Z_n^*\), we have \(x^{\phi(n)} = 1\).
 - We have chosen \(e, d\) such that \(ed \equiv 1 \mod \phi(n)\), i.e., \(ed = k\phi(n) + 1\) for some positive integer \(k\).
 - For \(x \in Z_n^*\), \((x^e)^d = x^{ed} = x^{k\phi(n)+1} = (x^{\phi(n)})^k x = x\).
RSA Example: Key Setup

- Select two primes: \(p = 17, \ q = 11 \).
- Compute the modulus \(n = pq = 187 \).
- Compute \(\varphi(n) = (p - 1)(q - 1) = 160 \).
- Select \(e \) between 0 and 160 such that \(\gcd(e, 160) = 1 \). Say \(e = 7 \).
- Compute \(d = e^{-1} \mod \varphi(n) = 7^{-1} \mod 160 = 23 \) (using extended Euclid's algorithm).
- Public key: \(pk = (e, \ n) = (7, \ 187) \).
- Secret key: \(sk = (d, \ n) = (23, \ 187) \).
RSA Example: Encryption & Decryption

• Suppose $m = 88$.
• Encryption: $c = m^e \mod n = 88^7 \mod 187 = 11$.
• Decryption: $m = c^d \mod n = 11^{23} \mod 187 = 88$.
• When computing $11^{23} \mod 187$, we do not first compute 11^{23} and then reduce it modulo 187.
• Rather, use square-and-multiply, and reduce intermediate results modulo 187 whenever they get bigger than 187.
Encryption Key e

- To speed up encryption, small values are usually used for e.

- Popular choices are 3, $17 = 2^4 + 1$, $65537 = 2^{16} + 1$. These values have only two 1's in their binary representation.

- There is an interesting attack on small e.
Attacks on RSA
Attacks on RSA

- Four categories of attacks on RSA:
 - brute-force key search
 (infeasible given the large key space)
 - mathematical attacks
 - timing attacks
 - chosen ciphertext attacks
Mathematical Attacks

- **Factor** \(n \) **into** \(pq \). Then \(\varphi(n) = (p - 1)(q - 1) \) and
 \[d = e^{-1} \mod \varphi(n) \]
 can be calculated easily.

- **Determine** \(\varphi(n) \) **directly**. Equivalent to factoring \(n \). Knowing \(\varphi(n) \) will enable us to factor \(n \) by solving
 \[
 \begin{align*}
 n &= pq \\
 \varphi(n) &= (p - 1)(q - 1)
 \end{align*}
 \]

- **Determine** \(d \) **directly**. If \(d \) is known, \(n \) can be factored with high probability.
Integer Factorization

- A difficult problem, assumed to be infeasible.
- More and more efficient algorithms have been developed.
- In 1977, RSA challenged researchers to decode a ciphertext encrypted with a key \((n)\) of 129 digits (428 bits). Prize: $100. RSA thought it would take quadrillion years to break the code using fastest algorithms and computers of that time. Solved in 1994.
- In 1991, RSA put forward more challenges, with prizes, to encourage research on factorization.
RSA Numbers

- Each RSA number is a semiprime. (A number is semiprime if it is the product of two primes.)
- There are two labeling schemes.
 - by the number of decimal digits:
 RSA-100, ..., RSA-500, RSA-617.
 - by the number of bits:
 RSA-576, 640, 704, 768, 896, 1024, 1536, 2048.
RSA Numbers which have been factored

- RSA-100 (332 bits), 1991, 7 MIPS-year, Quadratic Sieve.
- RSA-110 (365 bits), 1992, 75 MIPS-year, QS.
- RSA-120 (398 bits), 1993, 830 MIPS-year, QS.
- RSA-129 (428 bits), 1994, 5000 MIPS-year, QS.
- RSA-130 (431 bits), 1996, 1000 MIPS-year, GNFS.
- RSA-140 (465 bits), 1999, 2000 MIPS-year, GNFS.
- RSA-155 (512 bits), 1999, 8000 MIPS-year, GNFS.
- RSA-160 (530 bits), 2003, Lattice Sieve.
- RSA-200 (663 bits), 2005, Lattice Sieve.
RSA-200 =
27,997,833,911,221,327,870,829,467,638,
722,601,621,070,446,786,955,428,537,560,
009,929,326,128,400,107,609,345,671,052,
955,360,856,061,822,351,910,951,365,788,
637,105,954,482,006,576,775,098,580,557,
613,579,098,734,950,144,178,863,178,946,
295,187,237,869,221,823,983.
Remarks

- In light of current factorization technologies, RSA recommends \(|n| = 1024-2048\) bits.

- If a message \(m \in \mathbb{Z}_n \setminus \mathbb{Z}_n^*\),
 - RSA works, but
 - Since \(\gcd(m, n) > 1\), the sender can factor \(n\).
 - Since \(\gcd(m^e, n) > 1\), the adversary can factor \(n\), too.

- Question: how likely is \(m \in \mathbb{Z}_n \setminus \mathbb{Z}_n^*\)?
Generating large primes

To set up an RSA cryptosystem, we need two large primes p and q.
How many prime numbers are there?

- Infinitely many.
- First proved by Euclid:
 - Assume only a finite number of primes p_1, p_2, \ldots, p_n.
 - Let $M = p_1 p_2 \ldots p_n + 1$.
 - M is not a prime, because $M \neq p_i$, $1 \leq i \leq n$.
 - So, M is composite and has a prime factor p_i for some i
 \[\Rightarrow p_i \mid M \Rightarrow p_i \mid 1 \Rightarrow \text{contradiction}. \]
Distribution of Prime Numbers

The Prime Number Theorem:
Let \(\pi(x) \) denote the number of primes \(\leq x \). Then
\[
\pi(x) \approx \frac{x}{\ln x} \quad \text{for large } x.
\]

Dirichlet's Theorem: For \(b \in \mathbb{Z}_n^* \), let \(\pi_{n,b}(x) \) denote the number of primes \(y \) such that \(y \leq x \) and \(y \equiv b \mod n \). Then,
\[
\pi_{n,b}(x) \approx \frac{x}{\ln x} \cdot \frac{1}{\varphi(n)} \quad \text{for large } x.
\]
How to generate a large prime number?

- Generate a random odd number n of desired size.
- Test if n is prime.
- If not, discard it and try a different number.
- Q: How many numbers are expected to be tested before a prime is found?
Primality test: Is n a prime?

- Can it be solved in polynomial time?
- A long standing open problem until 2002.
- AKS (Agrawal, Kayal, Saxena): $O\left(\left(\log n\right)^{12+\varepsilon}\right)$.
 - Later improved by others to $O\left(\left(\log n\right)^{10.5}\right)$, and then to $O\left(\left(\log n\right)^{6+\varepsilon}\right)$.
- In practice, Miller-Rabin's probabilistic algorithm is still the most popular --- much faster, $O\left(\left(\log n\right)^{3}\right)$.
Miller-Rabin primality test: Is n a prime?

- Looking for a characteristic property of prime numbers:
 - n is prime \iff what?
 - n is prime $\iff \forall a \in \mathbb{Z}_n^*, P(a) = \text{true}$
 - n is prime $\Rightarrow \forall a \in \mathbb{Z}_n^*, P(a) = \text{true}$

 not prime $\Rightarrow \exists k$ elements $a \in \mathbb{Z}_n^*, P(a) = \text{false}$

- Check $P(a)$ for t random elements $a \in \mathbb{Z}_n^*$.
 - If $P(a)$ all true, then return "prime"

 else return "composite."
 - A "prime" answer may be incorrect with prob $p(k,t)$.
 - If $k \geq \frac{1}{2} |\mathbb{Z}_n^*|$, then $p(k,t) \leq \frac{1}{2^t}$.
If n is prime, then for all $a \in \mathbb{Z}_n^*$, $P(a)$ is true.
If n is not prime, then there are strong witnesses, which are elements $a \in \mathbb{Z}_n^*$ s.t. $P(a) = false$.
• Looking for $P(a)$:
 • How about $P(a) = \left[a^{n-1} \equiv 1 \mod n \right]$?

• Fermat's little theorem:
 If n is prime $\Rightarrow \forall a \in \mathbb{Z}_n^*, a^{n-1} \equiv 1 \mod n$.

• If n is not prime \Rightarrow maybe no strong witnesses.

 (Carmichael numbers: composite numbers n
 for which $a^{n-1} \equiv 1 \mod n \ \forall a \in \mathbb{Z}_n^*$.)

• Need to refine the condition $\left[a^{n-1} \equiv 1 \mod n \right]$.
• Fact: if \(n \neq 2 \) is prime, then 1 has exactly two square roots in \(\mathbb{Z}_n^* \), namely \(\pm 1 \).

• Write \(n - 1 = u2^k \), where \(u \) is odd.

• If \(n \) is prime

\[
\Rightarrow \quad \forall a \in \mathbb{Z}_n^*, \quad a^{u2^k} \equiv 1 \mod n \quad \text{(Fermat's little theorem)}
\]

\[
\Rightarrow \quad \forall a \in \mathbb{Z}_n^*, \ P(a) = true, \text{ where }
\]

\[
P(a) = \begin{cases}
 a^u \equiv 1 \mod n \text{ or } \\
 a^{u2^i} \equiv -1 \mod n \text{ for some } i, \ 0 \leq i \leq k - 1
\end{cases}
\]

• Why? Consider the sequence

\[
a^u, \ a^{u2}, \ a^{u2^2}, \ldots, \ a^{u2^{k-1}}, \ a^{u2^k} = 1
\]
• If n not prime \Rightarrow do strong witnesses always exist?

• Loosely speaking, yes: if n is an odd composite and not a prime power, then at least one half of the elements $a \in Z_n^*$ are strong witnesses.

• A composite number n is a prime power if $n = p^e$ for some prime p and integer $e \geq 2$. (A perfect power if $n = k^e$ for some integer k and $e \geq 2$.)
• **Theorem:** If n is an odd composite and not a prime power, then at least one half of the elements $a \in \mathbb{Z}_n^*$ are strong witnesses.

• **Sketch of proof:** The set A of *non*-strong witnesses forms a proper subgroup of \mathbb{Z}_n^*. So, $\text{ord}(A) < \text{ord}(\mathbb{Z}_n^*)$ and $\text{ord}(A) | \text{ord}(\mathbb{Z}_n^*)$. So, $\text{ord}(A) \leq \frac{1}{2} \text{ord}(\mathbb{Z}_n^*)$.
Algorithm: Miller-Rabin primality test

- Input: integer $n > 2$ and parameter t
- Output: a decision as to whether n is prime or composite

1. if n is even, return "composite"
2. if n is a perfect power, return "composite"
3. for $i := 1$ to t do
 - choose a random integer a, $2 \leq a \leq n-1$
 - if $\gcd(a, n) \neq 1$, return "composite"
 - if a is a strong witness, return "composite"
4. return ("prime")
Analysis: Miller-Rabin primality test

- If the algorithm answers "composite", it is always correct.
- If the algorithm answers "prime", it may or may not be correct.
- The algorithm gives a wrong answer if n is composite but the algorithm fails to find a strong witness in t iterations.
- This may happen with probability at most 2^{-t}.
- Actually, at most 4^{-t}, by a more sophisticated analysis.
Monte Carlo algorithms

• A Monte Carlo algorithm is a probabilistic algorithm
 • which always gives an answer
 • but sometimes the answer may be incorrect.

• A Monte Carlo algorithm for a decision problem is yes-biased if its “yes” answer is always correct but a “no” answer may be incorrect with some error probability.

• A t-iteration Miller-Rabin is a “composite”-biased Monte Carlo algorithm with error probability at most $1/4^t$.
Las Vegas algorithms

- A Las Vegas algorithm is a probabilistic algorithm
 - which may sometimes fail to give an answer
 - but never gives an incorrect one
- A Las Vegas algorithm can be converted into a Monte Carlo algorithm.
Integer Factorization

Reference on quadratic sieve:

http://blogs.msdn.com/b/devdev/archive/2006/06/19/637332.aspx
Fermat's Method

- **Difference of squares**
 - To factor \(n \), find an \(a > n \) such that \(a^2 - n \) is a square, say \(b^2 \).
 - Then, \(n = a^2 - b^2 = (a - b)(a + b) \).
 - Search for \(a \) starting from \(a = \left\lceil \sqrt{n} \right\rceil \).

- **Example:** Suppose \(n = 5959 \). Then, \(\left\lceil \sqrt{n} \right\rceil = 78 \).
 - \(a^2 - n \) is not a square for \(a = 78 \) and 79.
 - \(a^2 - n \) is a square for \(a = 80 \): \(80^2 - 5959 = 441 = 21^2 \).
 - Hence \(5959 = 80^2 - 21^2 = (80 - 21)(80 + 21) = 59 \times 101 \).
 - **Slow:** a linear search for \(b^2 = a^2 - n \) is a poor strategy.
Dixon's Random Squares Algorithm

- Basic idea: a generation of Fermat's difference of squares.
 - To factor n, find $x \not\equiv \pm y \pmod{n}$ such that $x^2 \equiv y^2 \pmod{n}$.
 - Then, $n \mid (x - y)(x + y)$, but n divides neither of $x \pm y$.
 - Hence, $\gcd(x \pm y, n)$ are nontrivial factors of n.

- Example: $32^2 \equiv 10^2 \pmod{77}$. $\gcd(32 \pm 10, 77) = 7$ and 11.

- Question: how to produce such x and y?

- Factor base: a set B of small primes, say, $B = \{p_1, p_2, \ldots p_b\}$.

- An integer z is smooth if it can be factored over $B \mod n$, i.e., $z \equiv p_1^{e_1} p_2^{e_2} \ldots p_b^{e_b} \mod n$ for some $e_1, e_2, \ldots, e_b \geq 0$.
• Our goals:
 • First, find a set U of integers x_i such that x_i^2 are smooth:
 \[x_i^2 \equiv p_1^{e_{i1}} p_2^{e_{i2}} \ldots p_b^{e_{ib}} \mod n \]
 • Second, select a subset $S \subseteq U$ such that the product
 \[\prod_{x_i \in S} x_i^2 \] has an even exponent for each p_i, say,
 \[\prod_{x_i \in S} x_i^2 \equiv p_1^{2e_1} p_2^{2e_2} \ldots p_b^{2e_b} \mod n \] for some $e_1, e_2, \ldots, e_b \geq 0$.

• Let $X = \prod_{x_i \in S} x_i \mod n$ and $Y = p_1^{e_1} p_2^{e_2} \ldots p_b^{e_b} \mod n$, and

 we have $X^2 \equiv Y^2 \mod n$.

• If $X \equiv \pm Y \mod n$, no luck, try a different set of x_i's.
Example (from Stinson's book on Cryptography)

- Suppose \(n = 15770708441 \) and \(B = \{2, 3, 5, 7, 11, 13\} \).
- Consider the three congruences:
 \[
 8340934156^2 \equiv 3 \times 7 \mod n \\
 12044942944^2 \equiv 2 \times 7 \times 13 \mod n \\
 2773700011^2 \equiv 2 \times 3 \times 13 \mod n.
 \]
- \[
 (8340934156 \times 12044942944 \times 2773700011)^2 \\
 \equiv (2 \times 3 \times 7 \times 13)^2 \mod n.
 \]
- Reducing by modulo \(n \) yields \((9503435785)^2 \equiv (546)^2 \mod n \).
- A factor of \(n \): \(\gcd(9503435785 - 546, 15770708441) = 115759 \).
To achieve our second goal

- Suppose \(B = \{p_1, p_2, \ldots p_b\} \). Let \(c > b \).

- Suppose we have a set \(U \) of \(c \) integers \(x_i \) such that \(x_i^2 \) are smooth:
 \[
x_i^2 \equiv p_1^{e_{i1}} p_2^{e_{i2}} \ldots p_b^{e_{ib}} \mod n \quad (1 \leq i \leq c).
 \]

- Let \(e_i = (e_{i1} \mod 2, e_{i2} \mod 2, \ldots, e_{ib} \mod 2) \).

- The \(c \) vectors \(e_i \) are linearly dependent (because \(c > b \)), and we can find a subset \(S \) of \(e_i \)'s that sum modulo 2 to \((0, 0, \ldots, 0)\).

- Let \(X = \prod x_i \mod n \) be the product of the \(x_i \)'s corresponding to the \(e_i \)'s in \(S \).
Example (cont.)

- We have $B = \{2, 3, 5, 7, 11, 13\}$ and

 $x_1^2 = 8340934156^2 \equiv 3 \times 7 \mod n$

 $x_2^2 = 12044942944^2 \equiv 2 \times 7 \times 13 \mod n$

 $x_3^2 = 2773700011^2 \equiv 2 \times 3 \times 13 \mod n.$

- $e_1 = (0, 1, 0, 1, 0, 0)$

 $e_2 = (1, 0, 0, 1, 0, 1)$

 $e_3 = (1, 1, 0, 0, 0, 1)$

- $e_1 + e_2 + e_3 \equiv (0, 0, 0, 0, 0, 0) \mod 2.$

- Thus, we let $X^2 = (x_1 x_2 x_3)^2 \mod n$ and

 $Y^2 = (3 \times 7)(2 \times 7 \times 13)(2 \times 3 \times 13) \mod n.$
Searching for smooth squares x_i^2

- Dixon's strategy: choose x_i at random, hence the name Random Squares Method.

- Trick 1: try numbers of the form $x = j + \left\lfloor \sqrt{kn} \right\rfloor$, $j = 0, 1, 2, \ldots$, and $k = 1, 2, \ldots$. For such x, $x^2 \mod n$ tends to be small and has a better chance than average to be smooth.

- Trick 2: also try numbers of the form $x = \left\lfloor \sqrt{kn} \right\rfloor - j$, $j = 0, 1, 2, \ldots$, and $k = 1, 2, \ldots$. For such x, $x^2 \mod n$ is a little bit smaller than n. Try to factor $(x^2 \mod n) - n$ instead of $x^2 \mod n$.

- Trick 3: to play trick 2, we need to include -1 in B.
Example (from Stinson's book on Cryptography)

- Suppose $n = 1829$ and $B = \{-1, 2, 3, 5, 7, 11, 13\}$.
- $\sqrt{n} = 42.77, \quad \sqrt{2n} = 60.48, \quad \sqrt{3n} = 74.07, \quad \sqrt{4n} = 85.53$.
- Thus we try $x = 42, 43, 60, 61, 74, 75, 85, 86$, and obtain

\[
\begin{align*}
x_1^2 & \equiv 42^2 \equiv -65 \equiv (-1) \times 5 \times 13. & e_1 & = (1, 0, 0, 1, 0, 0, 1) \\
x_2^2 & \equiv 43^2 \equiv 20 \equiv 2^2 \times 5. & e_2 & = (0, 0, 0, 1, 0, 0, 0) \\
x_3^2 & \equiv 61^2 \equiv 63 \equiv 3^2 \times 7. & e_3 & = (0, 0, 0, 0, 1, 0, 0) \\
x_4^2 & \equiv 74^2 \equiv -11 \equiv (-1) \times 11. & e_4 & = (1, 0, 0, 0, 0, 1, 0) \\
x_5^2 & \equiv 85^2 \equiv -91 \equiv (-1) \times 7 \times 13. & e_5 & = (1, 0, 0, 0, 1, 0, 1) \\
x_6^2 & \equiv 86^2 \equiv 80 \equiv 2^4 \times 5. & e_6 & = (0, 0, 0, 1, 0, 0, 0)
\end{align*}
\]
\begin{itemize}
 \item $e_2 + e_6 = (0,0,0,0,0,0)$, but does not yield a factorization of n.
 \item $(43 \times 86)^2 \equiv (2^3 \times 5)^2 \mod 1829$.
 \item $(3698)^2 \equiv (40)^2 \mod 1829$.
 \item $(40)^2 \equiv (40)^2 \mod 1829$.
 \item $e_1 + e_2 + e_3 + e_5 = (0,0,0,0,0,0)$.
 \item $(42 \times 43 \times 61 \times 85)^2 \equiv (-1 \times 2 \times 3 \times 5 \times 7 \times 13)^2 \mod 1829$.
 \item $1459^2 \equiv 901^2 \mod 1829$.
 \item $\gcd(1459 - 901, 1829) = 31$.
 \item $1829 = 31 \times 59$.
\end{itemize}
Quadratic Sieve

• Consider the interval \([M_1, M_2]\) around \(\sqrt{n}\) for some suitable integers \(M_1, M_2\).

• Let \(Q(x) = x^2 - n\). We want to find a set \(U\) of integers \(x\) for which \(Q(x)\) is smooth.

• Recall the factor base \(B = \{p_1, p_2, \ldots, p_b\}\).

• Recall Dixon's method (pick an \(x \in [M_1, M_2]\) and test if \(Q(x)\) is smooth) and observe how the computing time is wasted.

• Idea of QS: use each \(p \in B\) as a "sieve" and sieve it through \(A\).

• Notice that if \(p \in B\), \(x, y \in [M_1, M_2]\), and \(p \mid Q(x)\), then we have \(p \mid Q(y)\) iff \(x \equiv y \text{ mod } p\).
Sketch of the Quadratic Sieve Algorithm

1. Array $QA[M_1..M_2]$. Initially, $QA[i] \leftarrow i^2 - n$.

2. for each $p \leftarrow p_1, p_2, \ldots, p_b \in B$ do
 • find an $i \in [M_1..M_2]$ such that $p \mid Q(i)$;
 • for each $j \in [M_1..M_2]$ such that $i \equiv j \mod p$ do
 $QA[i] \leftarrow QA[i]/p^{e_i}$, where e_i is the largest possible;
 keep record of $e_i \mod 2$.

3. Let U be the set of all $i \in [M_1..M_2]$ such that $QA[i] = 1$.
 // $Q(i)$ is smooth for each $i \in S$ //

4. Construct a subset $S \subseteq U$ as in Dixon's.