Number-Theoretic Algorithms (RSA and related algorithms)

Chapter 31, CLRS book

Outline

- Modular arithmetic
- RSA encryption scheme
- Miller-Rabin algorithm (a probabilistic algorithm)

Modular Arithmetic

Integers

- $a \mid b: a$ divides b, a is a divisor of b.
- $\operatorname{gcd}(a, b):$ greatest common divisor of a and b.
- Coprime or relatively prime: $\operatorname{gcd}(a, b)=1$.
- Euclid's algorithm: compute $\operatorname{gcd}(a, b)$.
- Extented Euclid's algorithm: compute integers x and y such that $a x+b y=\operatorname{gcd}(a, b)$.

Integers modulo n

- Let $n \geq 2$ be an integer.
- Definition: a is congruent to b modulo n, written $a \equiv b \bmod n$, if $n \mid(a-b)$, i.e., a and b have the same remainder when divided by n.
- Note: $a \equiv b \bmod n$ and $a=b \bmod n$ are different.
- Definition: $[a]_{n}=\{x \in Z: x \equiv a \bmod n\}$.
- $[a]_{n}$ is called a residue class modulo n, and a is a representative of that class.
- There are exactly n residue classes modulo n :
[0], [1], [2], ..., [n-1].
- If $x \in[a], y \in[b]$, then $x+y \in[a+b]$ and $x \cdot y \in[a \cdot b]$.
- Define addition and multiplication for residue classes:

$$
\begin{aligned}
& {[a]+_{n}[b]=[a+b]} \\
& {[a]{ }_{n}[b]=[a \cdot b] .}
\end{aligned}
$$

Group

- A group, denoted by $(G, *)$, is a set G with a binary operation $*$ such that 1. $\forall x, y \in G, x * y \in G$ (closure) 1. $x *(y * z)=(x * y) * z$ (associativity)

2. $\exists e \in G$ s.t. $\forall x \in G, e * x=x * e=x$ (identity)
3. $\forall x \in G, \exists y \in G$ s.t. $x * y=y * x=e$ (inverse)

- A group $(G, *)$ is abelian if $\forall x, y \in G, x * y=y * x$.
- Examples: $(Z,+),(Q,+),(Q \backslash\{0\}, \times),(R,+)$, ($R \backslash\{0\}, \times$).
- Define $Z_{n}=\{[0],[1], \ldots,[n-1]\}$.
- Or, more conveniently, $Z_{n}=\{0,1, \ldots, n-1\}$.
- $\left(Z_{n},+\right)$ forms an abelian additive group.
- For $a, b \in Z_{n}$,
- $a+b=(a+b) \bmod n .(\operatorname{Or},[a]+[b]=[a+b]=[a+b \bmod n]$.
- 0 is the identity element.
- The inverse of a, denoted by $-a$, is $n-a$.
- When doing addition/substraction in Z_{n}, just do the regular addition/substraction and reduce the result modulo n.
- In $Z_{10}, 5+5+9+4+6+2+8+3=$?
- $\left(Z_{n}, *\right)$ is not a group, because 0^{-1} does not exist.
- Even if we exclude 0 and consider only $Z_{n}^{+}=Z_{n} \backslash\{0\}$, $\left(Z_{n}^{+}, *\right)$ is not necessarily a group; some a^{-1} may not exist.
- For $a \in Z_{n}, a^{-1}$ exists if and only if $\operatorname{gcd}(a, n)=1$.
- Let $Z_{n}^{*}=\left\{a \in Z_{n}: \operatorname{gcd}(a, n)=1\right\}$.
- $\left(Z_{n}, *\right)$ is an abelian multiplicative group.
- $a * b=a b \bmod n$.
- $a * b=a b \bmod n$.
- 1 is the identity element.
- The inverse of a, written a^{-1}, can be computed by the Extended Euclidean Algorithm.
- For example, $Z_{12}^{*}=\{1,5,7,11\} .5 * 7=35 \bmod 12=11$.
- Q: How many elements are there in Z_{n}^{*} ?
- Euler's totient function:

$$
\begin{aligned}
\varphi(n) & =\left|Z_{n}^{*}\right| \\
& =\mid\left\{a: a \in Z_{n} \text { and } \operatorname{gcd}(a, n)=1\right\} \mid
\end{aligned}
$$

- Facts:

$$
\begin{aligned}
& \text { 1. } \varphi\left(p^{e}\right)=(p-1) p^{e-1} \text { for prime } p \\
& \text { 2. } \varphi(a b)=\varphi(a) \varphi(b) \text { if } \operatorname{gcd}(a, b)=1
\end{aligned}
$$

- Let G be a (multiplicative) finite group.
- Lagrange's theorem: For any element $a \in G, a^{[G]}=e$.
- Corollary: For any element $a \in G, a^{m}=a^{m \bmod |G|}$.
- Euler's theorem:

If $a \in Z_{n}^{*}$ (for any $n>1$), then $a^{\varphi(n)}=1$ in Z_{n}^{*}.

- Fermat's little theorem:

If $a \in Z_{p}^{*}(p$ a prime $)$, then $a^{\varphi(p)}=a^{p-1}=1$ in Z_{p}^{*}.

Example: $n=15$

- $Z_{15}^{*}=\{1,2,4,7,8,11,13,14\}$
- $\left|Z_{15}^{*}\right|=\varphi(15)=\varphi(3) \times \varphi(5)=2 \times 4=8$
- | $a \in Z_{15}^{*}:$ | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\operatorname{ord}(a):$ | 1 | 4 | 2 | 4 | 4 | 2 | 4 | 2 |
- $\operatorname{ord}(a)$: smallest integer k such that $a^{k}=1$.
- $a^{\varphi(n)}=a^{8}=1$
- $13^{816243240481}=$?

Algorithms

- $\operatorname{gcd}(a, b)$
- $a^{-1} \bmod n$
- $a^{k} \bmod n$
- Running time: $O\left(\log ^{3} n\right)$
- Here we assume $a, b \in Z_{n}$.

Euclid's Algorithm

- Given $n>a>b \geq 0$, compute $\operatorname{gcd}(a, b) .\left(a, b \in Z_{n}\right)$
- Theorem: If $b=0, \operatorname{gcd}(a, b)=a$.

$$
\text { If } b>0, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)
$$

- $\operatorname{Euclid}(a, b)$

$$
\text { if } b=0
$$

then return (a)
else return $(\operatorname{Euclid}(b, a \bmod b))$

- The number of recursive calls to Euclid is $O(\log n)$.
- Computing $a \bmod b$ takes $O\left(\log ^{2} n\right)$.

Extended Euclidean Algorithm

Given $a>b \geq 0$, compute x, y such that $d=\operatorname{gcd}(a, b)=a x+b y$.
Example: $\operatorname{gcd}(299,221)=$?

$$
\begin{aligned}
& 299=1 \times 221+78 \\
& 221=2 \times 78+65 \\
& 78=1 \times 65+13 \\
& 65=5 \cdot 13+0 \\
& \begin{aligned}
\operatorname{gcd}(229,221) & =13=78-65 \\
& =78-(221-2 \times 78)=3 \cdot 78-221 \\
& =3 \times(299-1 \cdot 221)-221 \\
& =3 \times 299-4 \times 221
\end{aligned}
\end{aligned}
$$

Extended Euclidean Algorithm

Given $a>b \geq 0$, compute d, x, y such that $\operatorname{gcd}(a, b)=d=a x+b y$.
Extended-Euclid (a, b)
if $b=0$ then

$$
\text { return }(a, 1,0)
$$

else

$$
\begin{aligned}
& \left(d^{\prime}, x^{\prime}, y^{\prime}\right) \leftarrow(\operatorname{Extended}-\operatorname{Euclid}(b, a \bmod b)) \\
& (d, x, y) \leftarrow\left(d^{\prime}, y^{\prime}, x^{\prime}-\lfloor a / b\rfloor y^{\prime}\right) \\
& \operatorname{return}(d, x, y)
\end{aligned}
$$

Correctness Proof

- If $b=0, \operatorname{gcd}(a, b)=a=a \cdot 1+b \cdot 0$.

The returned answer $(a, 1,0)$ is correct.

- If ($d^{\prime}, x^{\prime}, y^{\prime}$) is correct,
$\Rightarrow \operatorname{gcd}(b, a \bmod b)=d^{\prime}=b \cdot x^{\prime}+(a \bmod b) \cdot y^{\prime}$
$\Rightarrow \operatorname{gcd}(b, a \bmod b)=d^{\prime}=b \cdot x^{\prime}+(a-\lfloor a / b\rfloor \cdot b) \cdot y^{\prime}$
$\Rightarrow \operatorname{gcd}(a, b)=d^{\prime}=a \cdot y^{\prime}+b \cdot\left(x^{\prime}-\lfloor a / b\rfloor y^{\prime}\right)$
$\Rightarrow(d, x, y) \leftarrow\left(d^{\prime}, y^{\prime}, x^{\prime}-\lfloor a / b\rfloor y^{\prime}\right)$ is correct

How to compute $a^{-1} \bmod n$?

- Compute a^{-1} in Z_{n}^{*}.
- a^{-1} exists if and only if $\operatorname{gcd}(a, n)=1$.
- Use extended Euclidean algorithm to find x, y such that $a x+n y=\operatorname{gcd}(a, n)=1 \quad($ in $Z)$

$$
\begin{aligned}
& \Rightarrow[a][x]+[n][y]=[1] \\
& \Rightarrow[a][x]=[1] \quad(\text { since }[n]=[0]) \\
& \Rightarrow[a]^{-1}=[x] .
\end{aligned}
$$

- Note: may omit [], but reduce everything modulo n.

Example

- Compute $15^{-1} \bmod 47$.
- Using extended Euclidean algorithm, we obtain $\operatorname{gcd}(15,47)=1=15 \times 22-47 \times 7$
$15^{-1} \bmod 47=22$
That is, $15^{-1}=22$ in Z_{47}^{*}

Algorithm: Square-and-Multiply (x, c, n)
Comment: compute $x^{c} \bmod n$, where $c=c_{k} c_{k-1} \ldots c_{0}$ in binary.
$z \leftarrow 1$
for $i \leftarrow k$ downto 0 do
$z \leftarrow z^{2} \bmod n$ if $c_{i}=1$ then $z \leftarrow(z \cdot x) \bmod n$
return (z)

Note: $x^{c}= \begin{cases}\left(x^{\lfloor c / 2\rfloor}\right)^{2} & \text { if } c \text { is even } \\ \left(x^{\lfloor c / 2\rfloor}\right)^{2} \cdot x & \text { if } c \text { is odd }\end{cases}$

Example: $11^{23} \bmod 187$
$23=10111_{b}$
$z \leftarrow 1$
$z \leftarrow z^{2} \cdot 11 \bmod 187=11 \quad$ (square and multiply)
$z \leftarrow z^{2} \bmod 187=121 \quad$ (square)
$z \leftarrow z^{2} \cdot 11 \bmod 187=44 \quad$ (square and multiply)
$z \leftarrow z^{2} \cdot 11 \bmod 187=165$ (square and multiply)
$z \leftarrow z^{2} \cdot 11 \bmod 187=88 \quad$ (square and multiply)

RSA Encryption

Public-key Encryption

The RSA Cryptosystem

- By Rivest, Shamir \& Adleman of MIT in 1977.
- Best known and most widely used public-key scheme.
- Based on the assumed one-way property of modular powering:

$$
\begin{gathered}
f: x \rightarrow x^{e} \bmod n \\
f^{-1}: x^{e} \rightarrow x \bmod n \\
\text { (hard) }
\end{gathered}
$$

- In turn based on the hardness of integer factorization.

Idea behind RSA

It works in group Z_{n}^{*}. Let $x \in Z_{n}^{*}$ be a message.
Encryption (easy):

$$
x \xrightarrow{\mathrm{RSA}} x^{e}
$$

Decryption (hard): $\quad x \stackrel{\mathrm{RSA}^{-1}}{\longleftarrow} x^{e}$
Decryption (easy with "trapdoor"):
$x \stackrel{\mathrm{RSA}^{-1}}{\longleftarrow} x^{e}$
Looking for a "trapdoor": $\left(x^{e}\right)^{d}=x$.
If d is a number such that $e d \equiv 1 \bmod \varphi(n)$, then $e d=k \varphi(n)+1$ for some k, and
$\left(x^{e}\right)^{d}=x^{e d}=x^{\varphi(n) k+1}=\left(x^{\varphi(n)}\right)^{k} \cdot x=1 \cdot x=x$.

RSA Cryptosystem

- Key generation:
(a) Choose large primes p and q, and let $n:=p q$.
(b) Choose $e(1<e<\varphi(n))$ coprime to $\varphi(n)$, and compute $d:=e^{-1} \bmod \varphi(n) .(e d \equiv 1 \bmod \varphi(n)$.
(c) Public key: $p k=(n, e)$. Secret key: $s k=(n, d)$.
- Encryption: $E_{p k}(x):=x^{e} \bmod n$, where $x \in Z_{n}^{*}$.
- Decryption: $D_{s k}(y):=y^{d} \bmod n$, where $y \in Z_{n}^{*}$.

RSA Example: Key Setup

- Select two primes: $p=17, q=11$.
- Compute the modulus $n=p q=187$.
- Compute $\varphi(n)=(p-1)(q-1)=160$.
- Select e between 0 and 160 such that $\operatorname{gcd}(e, 160)=1$. Say $e=7$.
- Compute $d=e^{-1} \bmod \varphi(n)=7^{-1} \bmod 160=23$
(using extended Euclid's algorithm).
- Public key: $p k=(e, n)=(7,187)$.
- Secret key: $s k=(d, n)=(23,187)$.

RSA Example: Encryption \& Decryption

- Suppose $m=88$.
- Encryption: $c=m^{e} \bmod n=88^{7} \bmod 187=11$.
- Decryption: $m=c^{d} \bmod n=11^{23} \bmod 187=88$.
- When computing $11^{23} \bmod 187$, we do not first compute 11^{23} and then reduce it modulo 187.
- Rather, use square-and-multiply, and reduce intermediate results modulo 187 whenever they get bigger than 187 .

Attacks on RSA

Attacks on RSA

- There are many attacks on RSA:
- brute-force key search
- mathematical attacks
- timing attacks
- chosen ciphertext attacks
- The most important one is integer factorization:

If the adversary can factor n into $p q$. Then he can calculate $\varphi(n)=(p-1)(q-1)$ and the secret key $d=e^{-1} \bmod \varphi(n)$.

Integer Factorization

- A difficult problem.
- More and more efficient algorithms have been developed.
- In 1977, RSA challenged researchers to decode a ciphertext encrypted with a modulus n of 129 digits (428 bits). Prize: $\$ 100$. RSA thought it would take quadrillion years to break the code using fastest algorithms and computers of that time. Solved in 1994.
- In 1991, RSA put forward more challenges (called RSA numbers), with prizes, to encourage research on factorization.

RSA Numbers

- Each RSA number is a semiprime. (A number is semiprime if it is the product of two primes.)
- There are two labeling schemes.
- by the number of decimal digits: RSA-100, ..., RSA-500, RSA-617.
- by the number of bits: RSA-576, 640, 704, 768, 896, 1024, 1536, 2048.

RSA Numbers which have been factored

- RSA-100 (332 bits), 1991, 7 MIPS-year, Quadratic Sieve.
- RSA-110 (365 bits), 1992, 75 MIPS-year, QS.
- RSA-120 (398 bits), 1993, 830 MIPS-year, QS.
- RSA-129 (428 bits), 1994, 5000 MIPS-year, QS.
- RSA-130 (431 bits), 1996, 1000 MIPS-year, GNFS.
- RSA-140 (465 bits), 1999, 2000 MIPS-year, GNFS.
- RSA-155 (512 bits), 1999, 8000 MIPS-year, GNFS.
- RSA-160 (530 bits), 2003, Lattice Sieve.
- RSA-576 (174 digits), 2003, Lattice Sieve.
- RSA-640 (193 digits), 2005, Lattice Sieve.
- RSA-200 (663 bits), 2005, Lattice Sieve.

RSA-200 =
27,997,833,911,221,327,870,829,467,638, 722,601,621,070,446,786,955,428,537,560, 009,929,326,128,400,107,609,345,671,052, $955,360,856,061,822,351,910,951,365,788$, 637,105,954,482,006,576,775,098,580,557, 613,579,098,734,950,144,178,863,178,946, 295,187,237,869,221,823,983.

Remark

- In light of current factorization technologies, RSA recommends using an n of 1024-2048 bits.

Generating large primes

To set up an RSA cryptosystem, we need two large primes p and q.

How to generate a large prime number?

- Generate a random odd number n of desired size.
- Test if n is prime.
- If not, discard it and try a different number.

Primality test: Is n a prime?

- Can it be solved in polynomial time?
- A long standing open problem until 2002.
- AKS(Agrawal, Kayal, Saxena) : $O\left((\log n)^{12+\varepsilon}\right)$.
- Later improved by others to $O\left((\log n)^{10.5}\right)$, and then to $O\left((\log n)^{6+\varepsilon}\right)$.
- In practice, Miller-Rabin's probabilistic algorithm is still the most popular --- much faster, $O\left((\log n)^{3}\right)$.

Miller-Rabin primality test: Is n a prime?

- Using some characteristic property of prime numbers:
- n is prime $\Leftrightarrow \forall a \in 2 . . \sqrt{n}, a$ does not divide n.
- Miller-Rabin's idea: look for some property $P(a)$ s.t.
- n is prime \Rightarrow For all $a \in Z_{n}^{*}, P(a)=$ true
n not prime \Rightarrow For at most a portion $1 / k$ of elements

$$
a \in Z_{n}^{*}, P(a)=\text { true }
$$

- Algorithm: Randomly pick t elements $a \in Z_{n}^{*}$. If $P(a)$ is true for all of them then return prime else return composite.
- A "prime" answer may be incorrect with probability
$\leq(1 / k)^{t}$

7_{n}^{*}

$$
P(a)=\text { true }
$$

If n is prime, then for all $a \in Z_{n}^{*}, P(a)$ is true.

Z_{n}

$$
P(a)=\text { true }
$$

If n is not prime, then there are strong witnesses, which are elements $a \in Z_{n}^{*}$ s.t $\quad P(a)=$ false. Say, at most $1 / k$ of Z_{n}^{*} are black.

The property $P(a)$

- Write $n-1=u 2^{k}$, where u is odd.
- Let $P(a)=\left\{\begin{array}{l}a^{u} \equiv 1 \bmod n \text { or } \\ a^{u 2^{i}} \equiv-1 \bmod n \text { for some } i, 0 \leq i \leq k-1\end{array}\right.$
- Consider the sequence

$$
a^{u}, a^{u 2}, a^{u 2^{2}}, \ldots, a^{u 2^{k-1}}
$$

- If n is prime, then $P(a)=t r u e$ for all $a \in Z_{n}^{*}$.
- If n is an odd composite and not a prime power, then at most one half of the elements $a \in Z_{n}^{*}$ are black (i.e., $P(a)=t r u e)$.
- A composite number n is a prime power if $n=p^{e}$ for some prime p and integer $e \geq 2$; a perfect power if $n=k^{e}$ for some integer k and $e \geq 2$.)

Algorithm: Miller-Rabin primality test

- Input: integer $n>2$ and parameter t
- Output: a decision as to whether n is prime or composite

1. if n is even, return "composite"
2. if n is a perfect power, return "composite"
3. for $i:=1$ to t do
choose a random integer $a, 2 \leq a \leq n-1$
if $\operatorname{gcd}(a, n) \neq 1$, return "composite"
if a is a strong witness, return "composite"
4. return ("prime")

Analysis: Miller-Rabin primality test

- If the algorithm answers "composite", it is always correct.
- If the algorithm answers "prime", it may or may not be correct.
- The algorithm gives a wrong answer if n is composite but the algorithm fails to find a strong witness in t iterations.
- This may happen with probability at most 2^{-t}.
- Actually, at most 4^{-t}, by a more sophisticated analysis.

Monte Carlo algorithms

- A Monte Carlo algorithm is a probabilistic algorithm
- which always gives an answer
- but sometimes the answer may be incorrect.
- A Monte Carlo algorithm for a decision problem is yes-biased if its "yes" answer is always correct but a "no" answer may be incorrect with some error probability.
- A t-iteration Miller-Rabin is a "composite"-biased Monte Carlo algorithm with error probability at most $1 / 4^{t}$.

Las Vegas algorithms

- A Las Vegas algorithm is a probabilistic algorithm
- which may sometimes fail to give an answer
- but never gives an incorrect one
- A Las Vegas algorithm can be converted into a Monte Carlo algorithm.

