Number-Theoretic Algorithms (RSA and related algorithms)

Chapter 31, CLRS book

Outline

- Modular arithmetic
- RSA encryption scheme
- Miller-Rabin algorithm (a probabilistic algorithm)

Modular Arithmetic

Integers

- *a* | *b*: *a* divides *b*, *a* is a divisor of *b*.
- gcd(a,b): greatest common divisor of a and b.
- Coprime or relatively prime: gcd(a,b) = 1.
- Euclid's algorithm: compute gcd(a,b).
- Extented Euclid's algorithm: compute integers x and y such that ax + by = gcd(a, b).

Integers modulo n

- Let $n \ge 2$ be an integer.
- Definition: *a* is congruent to *b* modulo *n*, written $a \equiv b \mod n$, if $n \mid (a-b)$, i.e., *a* and *b* have the same remainder when divided by *n*.
- Note: $a \equiv b \mod n$ and $a = b \mod n$ are different.
- Definition: $[a]_n = \{x \in Z : x \equiv a \mod n\}.$
- $[a]_n$ is called a residue class modulo *n*, and *a* is a representative of that class.

- There are exactly *n* residue classes modulo *n*:
 [0], [1], [2], ..., [*n*−1].
- If $x \in [a]$, $y \in [b]$, then $x + y \in [a + b]$ and $x \cdot y \in [a \cdot b]$.
- Define addition and multiplication for residue classes:

 $[a] +_{n} [b] = [a+b]$ $[a] \cdot_{n} [b] = [a \cdot b].$

Group

- A group, denoted by (*G*,*), is a set *G* with a binary operation * such that
 - 1. $\forall x, y \in G, x * y \in G$ (closure) 1. x * (y * z) = (x * y) * z (associativity) 2. $\exists e \in G$ s.t. $\forall x \in G, e * x = x * e = x$ (identity) 3. $\forall x \in G, \exists y \in G$ s.t. x * y = y * x = e (inverse)
- A group (G, *) is abelian if $\forall x, y \in G, x * y = y * x$.
- Examples: (Z, +), (Q, +), $(Q \setminus \{0\}, \times)$, (R, +), $(R \setminus \{0\}, \times)$.

- Define $Z_n = \{[0], [1], ..., [n-1]\}.$
- Or, more conveniently, $Z_n = \{0, 1, ..., n-1\}$.
- $(Z_n, +)$ forms an abelian additive group.
- For $a, b \in Z_n$,
 - $a+b = (a+b) \mod n$. (Or, $[a]+[b] = [a+b] = [a+b \mod n]$.)
 - 0 is the identity element.
 - The inverse of a, denoted by -a, is n-a.
- When doing addition/substraction in Z_n , just do the regular addition/substraction and reduce the result modulo n.
 - In Z_{10} , 5+5+9+4+6+2+8+3=?

- $(Z_n, *)$ is not a group, because 0^{-1} does not exist.
- Even if we exclude 0 and consider only $Z_n^+ = Z_n \setminus \{0\}$, $(Z_n^+, *)$ is not necessarily a group; some a^{-1} may not exist.
- For $a \in Z_n$, a^{-1} exists if and only if gcd(a,n) = 1.

- Let $Z_n^* = \{a \in Z_n : \gcd(a, n) = 1\}.$
- $(Z_n, *)$ is an abelian multiplicative group.
- $a * b = ab \mod n$.
 - $a * b = ab \mod n$.
 - 1 is the identity element.
 - The inverse of *a*, written *a*⁻¹, can be computed by the Extended Euclidean Algorithm.
- For example, $Z_{12}^* = \{1, 5, 7, 11\}$. $5*7 = 35 \mod 12 = 11$.
- Q: How many elements are there in Z_n^* ?

• Euler's totient function:

$$\varphi(n) = \left| Z_n^* \right|$$
$$= \left| \left\{ a \colon a \in Z_n \text{ and } gcd(a, n) = 1 \right\} \right|$$

• Facts:

1.
$$\varphi(p^e) = (p-1)p^{e-1}$$
 for prime p
2. $\varphi(ab) = \varphi(a)\varphi(b)$ if $gcd(a,b) = 1$

- Let *G* be a (multiplicative) finite group.
- Lagrange's theorem: For any element $a \in G$, $a^{|G|} = e$.
- Corollary: For any element $a \in G$, $a^m = a^{m \mod |G|}$.
- Euler's theorem:

If $a \in Z_n^*$ (for any n > 1), then $a^{\varphi(n)} = 1$ in Z_n^* .

• Fermat's little theorem:

If $a \in Z_p^*$ (p a prime), then $a^{\varphi(p)} = a^{p-1} = 1$ in Z_p^* .

Example: n = 15

•
$$Z_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$$

•
$$|Z_{15}^*| = \varphi(15) = \varphi(3) \times \varphi(5) = 2 \times 4 = 8$$

•
$$\frac{a \in Z_{15}^*}{\operatorname{ord}(a):}$$
 1 2 4 7 8 11 13 14
 $\frac{a \in Z_{15}^*}{\operatorname{ord}(a):}$ 1 4 2 4 2 4 2

• ord(*a*): smallest integer *k* such that $a^k = 1$.

•
$$a^{\varphi(n)} = a^8 = 1$$

•
$$13^{816243240481} = ?$$

Algorithms

- gcd(a,b)
- $a^{-1} \mod n$
- $a^k \mod n$
- Running time: $O(\log^3 n)$
- Here we assume $a, b \in Z_n$.

Euclid's Algorithm

- Given $n > a > b \ge 0$, compute gcd(a,b). $(a,b \in Z_n)$
- Theorem: If b = 0, gcd(a,b) = a. If b > 0, $gcd(a,b) = gcd(b, a \mod b)$
- Euclid(*a*,*b*)

if b = 0
 then return(a)
 else return(Euclid(b, a mod b))

- The number of recursive calls to Euclid is $O(\log n)$.
- Computing $a \mod b$ takes $O(\log^2 n)$.

15

Extended Euclidean Algorithm

Given $a > b \ge 0$, compute x, y such that d = gcd(a,b) = ax + by. Example: gcd(299,221) = ?

- $299 = 1 \times 221 + 78$ $221 = 2 \times 78 + 65$ $78 = 1 \times 65 + 13$
 - $65 = 5 \cdot 13 + 0$

gcd(229,221) = 13 = 78 - 65= 78 - (221 - 2 × 78) = 3 · 78 - 221 = 3 × (299 - 1 · 221) - 221 = 3 × 299 - 4 × 221

Extended Euclidean Algorithm

Given $a > b \ge 0$, compute d, x, y such that gcd(a, b) = d = ax + by.

Extended - Euclid(a, b)

if b = 0 then

```
return(a,1,0)
```

else

 $(d', x', y') \leftarrow (\text{Extended} - \text{Euclid}(b, a \mod b))$ $(d, x, y) \leftarrow (d', y', x' - \lfloor a/b \rfloor y')$ return(d, x, y)

Correctness Proof

• If
$$b = 0$$
, $gcd(a,b) = a = a \cdot 1 + b \cdot 0$.

The returned answer (a, 1, 0) is correct.

• If
$$(d', x', y')$$
 is correct,

$$\Rightarrow \gcd(b, a \mod b) = d' = b \cdot x' + (a \mod b) \cdot y'$$

$$\Rightarrow \gcd(b, a \mod b) = d' = b \cdot x' + (a - \lfloor a/b \rfloor \cdot b) \cdot y'$$

$$\Rightarrow \gcd(a, b) = d' = a \cdot y' + b \cdot (x' - \lfloor a/b \rfloor y')$$

$$\Rightarrow (d, x, y) \leftarrow (d', y', x' - \lfloor a/b \rfloor y') \text{ is correct}$$

How to compute $a^{-1} \mod n$?

- Compute a^{-1} in Z_n^* .
- a^{-1} exists if and only if gcd(a,n) = 1.
- Use extended Euclidean algorithm to find x, y such that $ax + ny = \gcd(a, n) = 1$ (in Z) $\Rightarrow [a][x] + [n][y] = [1]$ $\Rightarrow [a][x] = [1]$ (since [n] = [0]) $\Rightarrow [a]^{-1} = [x]$.
- Note: may omit [], but reduce everything modulo *n*.

Example

- Compute $15^{-1} \mod 47$.
- Using extended Euclidean algorithm, we obtain $gcd(15, 47) = 1 = 15 \times 22 - 47 \times 7$ $15^{-1} \mod 47 = 22$ That is, $15^{-1} = 22$ in Z_{47}^*

Algorithm: Square-and-Multiply(*x*, *c*, *n*)

Comment: compute $x^c \mod n$, where $c = c_k c_{k-1} \dots c_0$ in binary.

$$z \leftarrow 1$$

for $i \leftarrow k$ downto 0 do
 $z \leftarrow z^2 \mod n$
if $c_i = 1$ then $z \leftarrow (z \cdot x) \mod n$
return (z)

Note:
$$x^{c} = \begin{cases} \left(x^{\lfloor c/2 \rfloor}\right)^{2} & \text{if c is even} \\ \left(x^{\lfloor c/2 \rfloor}\right)^{2} \cdot x & \text{if c is odd} \end{cases}$$

Example: $11^{23} \mod 187$ $23 = 10111_{h}$ $z \leftarrow 1$ $z \leftarrow z^2 \cdot 11 \mod 187 = 11$ (square and multiply) $z \leftarrow z^2 \mod 187 = 121$ (square) $z \leftarrow z^2 \cdot 11 \mod 187 = 44$ (square and multiply) $z \leftarrow z^2 \cdot 11 \mod 187 = 165$ (square and multiply) $z \leftarrow z^2 \cdot 11 \mod 187 = 88$ (square and multiply)

RSA Encryption

Public-key Encryption

The RSA Cryptosystem

- By Rivest, Shamir & Adleman of MIT in 1977.
- Best known and most widely used public-key scheme.
- Based on the assumed one-way property of modular powering:

 $f: x \to x^e \mod n$ (easy) $f^{-1}: x^e \to x \mod n$ (hard)

• In turn based on the hardness of integer factorization.

Idea behind RSA

It works in group Z_n^* . Let $x \in Z_n^*$ be a message.

Encryption (easy): $x \xrightarrow{\text{RSA}} x^e$ Decryption (hard): $x \xleftarrow{\text{RSA}^{-1}} x^e$

Decryption (easy with "trapdoor"): $x \leftarrow \frac{RSA^{-1}}{x^e} x^e$

Looking for a "trapdoor": $(x^e)^d = x$. If *d* is a number such that $ed \equiv 1 \mod \varphi(n)$, then $ed = k\varphi(n) + 1$ for some *k*, and $(x^e)^d = x^{ed} = x^{\varphi(n)k+1} = (x^{\varphi(n)})^k \cdot x = 1 \cdot x = x.$

RSA Cryptosystem

• Key generation:

(a) Choose large primes p and q, and let n := pq.
(b) Choose e (1 < e < φ(n)) coprime to φ(n), and compute d := e⁻¹ mod φ(n). (ed ≡ 1 mod φ(n).)
(c) Public key: pk = (n, e). Secret key: sk = (n, d).

- Encryption: $E_{pk}(x) := x^e \mod n$, where $x \in Z_n^*$.
- Decryption: $D_{sk}(y) := y^d \mod n$, where $y \in Z_n^*$.

RSA Example: Key Setup

- Select two primes: p = 17, q = 11.
- Compute the modulus n = pq = 187.
- Compute $\varphi(n) = (p-1)(q-1) = 160$.
- Select *e* between 0 and 160 such that gcd(*e*,160) = 1.
 Say *e* = 7.
- Compute d = e⁻¹ mod φ(n) = 7⁻¹ mod160 = 23 (using extended Euclid's algorithm).
- Public key: pk = (e, n) = (7, 187).
- Secret key: sk = (d, n) = (23, 187).

RSA Example: Encryption & Decryption

- Suppose m = 88.
- Encryption: $c = m^e \mod n = 88^7 \mod 187 = 11$.
- Decryption: $m = c^d \mod n = 11^{23} \mod 187 = 88$.
- When computing 11^{23} mod187, we do not first compute 11^{23} and then reduce it modulo 187.
- Rather, use square-and-multiply, and reduce intermediate results modulo 187 whenever they get bigger than 187.

Attacks on RSA

Attacks on RSA

- There are many attacks on RSA:
 - brute-force key search
 - mathematical attacks
 - timing attacks
 - chosen ciphertext attacks
- The most important one is integer factorization: If the adversary can factor *n* into *pq*. Then he can calculate $\varphi(n) = (p-1)(q-1)$ and the secret key $d = e^{-1} \mod \varphi(n)$.

Integer Factorization

- A difficult problem.
- More and more efficient algorithms have been developed.
- In 1977, RSA challenged researchers to decode a ciphertext encrypted with a modulus *n* of 129 digits (428 bits).
 Prize: \$100. RSA thought it would take quadrillion years to break the code using fastest algorithms and computers of that time. Solved in 1994.
- In 1991, RSA put forward more challenges (called RSA numbers), with prizes, to encourage research on factorization.

RSA Numbers

- Each RSA number is a semiprime. (A number is semiprime if it is the product of two primes.)
- There are two labeling schemes.
 - by the number of decimal digits: RSA-100, ..., RSA-500, RSA-617.
 - by the number of bits: RSA-576, 640, 704, 768, 896, 1024, 1536, 2048.

RSA Numbers which have been factored

- RSA-100 (332 bits), 1991, 7 MIPS-year, Quadratic Sieve.
- RSA-110 (365 bits), 1992, 75 MIPS-year, QS.
- RSA-120 (398 bits), 1993, 830 MIPS-year, QS.
- RSA-129 (428 bits), 1994, 5000 MIPS-year, QS.
- RSA-130 (431 bits), 1996, 1000 MIPS-year, GNFS.
- RSA-140 (465 bits), 1999, 2000 MIPS-year, GNFS.
- RSA-155 (512 bits), 1999, 8000 MIPS-year, GNFS.
- RSA-160 (530 bits), 2003, Lattice Sieve.
- RSA-576 (174 digits), 2003, Lattice Sieve.
- RSA-640 (193 digits), 2005, Lattice Sieve.
- RSA-200 (663 bits), 2005, Lattice Sieve.

RSA-200 =

27,997,833,911,221,327,870,829,467,638, 722,601,621,070,446,786,955,428,537,560, 009,929,326,128,400,107,609,345,671,052, 955,360,856,061,822,351,910,951,365,788, 637,105,954,482,006,576,775,098,580,557, 613,579,098,734,950,144,178,863,178,946, 295,187,237,869,221,823,983.

Remark

In light of current factorization technologies,
 RSA recommends using an *n* of 1024-2048 bits.

Generating large primes

To set up an RSA cryptosystem, we need two large primes p and q.

How to generate a large prime number?

- Generate a random odd number *n* of desired size.
- Test if *n* is prime.
- If not, discard it and try a different number.

Primality test: Is *n* a prime?

- Can it be solved in polynomial time?
- A long standing open problem until 2002.
- AKS(Agrawal, Kayal, Saxena): $O((\log n)^{12+\varepsilon})$.
 - Later improved by others to $O((\log n)^{10.5})$, and then to $O((\log n)^{6+\varepsilon})$.
- In practice, Miller-Rabin's probabilistic algorithm is still the most popular --- much faster, $O((\log n)^3)$.

Miller-Rabin primality test : Is *n* a prime?

- Using some characteristic property of prime numbers:
 n is prime ⇔ ∀a ∈ 2..√n, a does not divide n.
- Miller-Rabin's idea: look for some property P(a) s.t.
 - *n* is prime \Rightarrow For all $a \in Z_n^*$, P(a) = true *n* not prime \Rightarrow For at most a portion 1/k of elements $a \in Z_n^*$, P(a) = true
- Algorithm: Randomly pick *t* elements *a* ∈ Z_n^{*}.
 If *P*(*a*) is true for all of them then return prime else return composite.
- A "prime" answer may be incorrect with probability $\leq (1/k)^t$

If *n* is prime, then for all $a \in Z_n^*$, P(a) is true.

The property P(a)

• Write $n-1 = u2^k$, where *u* is odd.

• Let
$$P(a) = \begin{cases} a^u \equiv 1 \mod n \text{ or} \\ a^{u2^i} \equiv -1 \mod n \text{ for some } i, \ 0 \le i \le k-1 \end{cases}$$

• Consider the sequence

$$a^{u}, a^{u^{2}}, a^{u^{2^{2}}}, \ldots, a^{u^{2^{k-1}}}$$

- If *n* is prime, then P(a) = true for all $a \in Z_n^*$.
- If *n* is an odd composite and not a prime power, then at most one half of the elements $a \in Z_n^*$ are black (i.e., P(a) = true).
- A composite number n is a prime power if n = p^e for some prime p and integer e ≥ 2; a perfect power if n = k^e for some integer k and e ≥ 2.)

Algorithm: Miller-Rabin primality test

- Input: integer n > 2 and parameter t
- Output: a decision as to whether *n* is prime or composite
- 1. if *n* is even, return "composite"
- 2. if *n* is a perfect power, return "composite"
- 3. for i := 1 to t do

choose a random integer *a*, $2 \le a \le n-1$

if $gcd(a, n) \neq 1$, return "composite"

if *a* is a strong witness, return "composite"

4. return ("prime")

Analysis: Miller-Rabin primality test

- If the algorithm answers "composite", it is always correct.
- If the algorithm answers "prime", it may or may not be correct.
- The algorithm gives a wrong answer if *n* is composite but the algorithm fails to find a strong witness in *t* iterations.
- This may happen with probability at most 2^{-t} .
- Actually, at most 4^{-t} , by a more sophisticated analysis.

Monte Carlo algorithms

- A Monte Carlo algorithm is a probabilistic algorithm
 - which always gives an answer
 - but sometimes the answer may be incorrect.
- A Monte Carlo algorithm for a decision problem is yes-biased if its "yes" answer is always correct but a "no" answer may be incorrect with some error probability.
- A *t*-iteration Miller-Rabin is a "composite"-biased Monte Carlo algorithm with error probability at most $1/4^t$.

Las Vegas algorithms

- A Las Vegas algorithm is a probabilistic algorithm
 - which may sometimes fail to give an answer
 - but never gives an incorrect one
- A Las Vegas algorithm can be converted into a Monte Carlo algorithm.