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Number-Theoretic Algorithms
(RSA and related algorithms)

Chapter 31, CLRS book
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Outline

• Modular arithmetic

• RSA encryption scheme

• Miller-Rabin algorithm (a probabilistic algorithm)
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Modular Arithmetic
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  | :   divides ,  is a divisor of .

  gcd( , ):  greatest common divisor of  and .

  Coprime or relatively prime: gcd( , ) 1.

  Euclid's algorithm:  compute gcd( , ).

  Extented Eucli

Integers
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     and  such that gcd( , ).x a b ay x y b 
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   Let 2 be an integer.

   Definition:  is congruent to  modulo , written 

     ,  if  | ( ),  i.e.,  and  have the

     same remainder when divided by .
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 and  are different.

   Definition: [ ] : mod .

   [ ]  is called a residue class modulo , and  is a 

     representative of that
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 class.
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  There are exactly  residue classes modulo :

    [0],  [1],  [2],  ,  [ 1].  

  If [ ],  [ ],  then [ ] and [ ].

  Define addition and multiplication for residue classes:
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 A group, denoted by ( , ),  is a set  with a 

   binary operation  such that

   1. , ,    (closure)

   1. ( ) ( )   (associativity)

   2.   s.t. ,    ( )
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  Define  [0],  [1],  ...,  [ 1] .

  Or, more conveniently, 0,  1,  ...,  1 .

  ,  forms an abelian  group.

  For ,
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e identity element.

  The inverse of ,  denoted by , is .

  When doing addition/substraction in , just do the regular

    addition/substraction and reduce the result modulo .

    

    In  ,  5 

n

a a n a

Z

n

Z



 

5 9 4 6 2 8 3 ?      



p9.

 

 

1

1

1

  ,  is not a group, because 0  does not exist.

   Even if we exclude 0 and consider only \ {0},

    ,  is not necessarily a group; some  may not exist.

   For ,   exists if and on
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   Let :  gcd( , ) 1 .

  ,  is an abelian multiplicative group.

   mod  .

   mod  .  

  1 is the identity elemen
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        Extended Euclidean Algorithm.

  For example, 1,5,7,
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  Euler's totient function:

  Fac

          ( )

                  = :   and gcd( , ) 1

          1.  ( ) ( 1)   for prime   
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  Let  be a (multiplicative)  group.

  Lagrange's theorem:  For any element ,  
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 rollary:  For any element ,

  Euler's theorem: 

    If   (for any
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  Fermat's little theorem: 

    If   (  a prime), then 1 in . 
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(15) (3) (5) 2 4 8

:  1 2 4 7 8 11 13 14

ord( ) :  1 4 2 4 4 2 4 2

ord( ) :  smallest integer  such that 1.
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Algorithms
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 gcd ,

  mod

  mod

  Running time:  log

  Here we assume , .
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 Given 0, compute gcd( , ).   

 Theorem: If 0, gcd( , ) . 

                    If 0, gcd( , ) gcd( , mod )

 Euclid( , ) 

       0  
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then

( ,

 retur
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Euclid's Algorithm
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n( )

             return Euclid( , mod )

 The number of recursive calls to Euclid is (log ).

 Computing mo
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Example: gcd(299,221)

Given 0,  compute ,  such that gcd( , ) .

1 78

2 65
    

1 13

65 5 13 0
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Given 0,  compute , ,  such that gcd( , ) .

 Extende

 if  

d - Euclid( , ) 

       0  t

            return( ,1,0)
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  If  0,   gcd( , ) .

    The returned answer  is correct.

   If  ( , , ) is correct, 

    

1 0

( ,1,0)

gcd( ,  mod ) ( mod )

    gcd( ,  mod )
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  Compute  in .   

   exists if and only if gcd( , ) 1.

  Use extended Euclidean algorithm to find ,  

    such that  gcd( , ) 1   (in )
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[ ] [ ][ ] [1]  

                    [ ][ ] [1]       (since [ ] [0])

                    [ ] [ ].

  Note: may omit [ ],  but reduce everything modulo .
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47

  Compute 15  mod 47.

  Using extended Euclidean algorithm, we obtain

   gcd(15,47) 1 15 47 7

   15  mod 47 22
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That is,  15 22 in

2

 

Example

Z











    







p21.

 

1 0

2

   Comment:  compute  mod  ,  where  in binary.

   1

   for    downto  0  do  

           mod 

          if  1 then   mod             

Algorithm: Square-and-Multiply( ,  ,  )
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   23 10111

   1

   11 mod 187 11    (square and multiply)

    mod 187 121       (square)

   11 mod 187 44   (square and multiply)

   11 mod 187 165  (square and

11 mod187
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RSA Encryption
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mcE D

Bob Alice
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Alice’s                                Alice’s

public key                          secret key

Public-key Encryption

plaintext   encryption      ciphertext decryption 

algorithm                            algorithm
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By ivest,  hamir &  dleman of MIT in 1977. 

Best known and most widely used public-key scheme. 

Based on the  one-way property 
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The RSA Cryptosystem
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                      :   mod  
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RSA
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Encryption (easy):          

Decryption 

It works in group .   Let  be

(hard):        

Decryption (easy with "trapdoor"):     

 a messa
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    (a) Choose large primes  and ,  and let : .

    (b) Choose  (1 ( )) coprime to ( ),  and 

          compute : mod  ( ). ( .)

    (c) Public ke

Key generation:

1 mod ( )

RSA Cryptosystem
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  Select two primes:  17,  11.

  Compute the modulus 187.   

  Compute ( ) ( 1)( 1) 160.

  Select  between 0 and 160 such that gcd( ,160) 1. 

    Say 7.

  Compute 

RSA Example: Key Setup

p q

n pq

n p q

e e

e

d



 

 





  









 

1 1mod  ( ) 7 mod160 23 

    (using extended Euclid's algorithm).

  Public key:  .   
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  Suppose 88.

  Encryption:  mod 88 mod187 11.

  Decryption:  mod 11 mod187 88.

  When computing 11 mod187,  we  first

    compute 11  and
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Attacks on RSA
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   There are many attacks on RSA:

  brute-force key search 

  mathematical attacks

  timing attacks 

  chosen ciphertext attack
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ost important one is intege

Attacks on RSA
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If the adversary can   Then he can

     calculate ( ) ( 1)( 1) and the secret key
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  A difficult problem.

  More and more efficient algorithms have been developed.

  In 1977, RSA challenged researchers to decode a

 ciphertext encrypted with a modulus  of 129   

Integer Factorization 

n







 digits (428 bits).

    Prize: $100.  RSA thought it would take quadrillion years

    to break the code using fastest algorithms and computers

    of that time.  Solved in 1994.  

  In 1991, RSA put forw ard more challenges (called RSA numbers),

    with prizes, to encourage research on factorization.
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  Each RSA number is a semiprime.  (A number is

    semiprime if it is the product of two primes.)

  There are two labeling schemes.

      by the number of decimal digits: 

       RSA-100, .

RSA Numbers





.., RSA-500, RSA-617.

      by the number of bits: 

       RSA-576, 640, 704, 768, 896, , 1536, 210 .24 048
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  RSA-100 (  bits), 1991, 7 MIPS-year, Quadratic Sieve.

  RSA-110 (  bits), 1992, 75 MIPS-year, QS.

  RSA-120

332

365

3 ( bits), 1993, 830 MIPS-year, QS.

  RSA-129 

98 

4(

RSA Numbers which have been factored







  bits), 1994, 5000 MIPS-year, QS.

  RSA-130 (  bits), 1996, 1000 MIPS-year, GNFS.

  RSA-140 (  bits), 1999, 2000 MIPS-year, GNFS.

  RSA-155 (  bits), 1999, 8000 MIPS-year, GNFS.
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 bits), 2003, Lattice Sieve.

  RSA- (174 digits), 2003, Lattice Sieve.

  RSA-  (193 digits), 2005, Lattice Sieve.

  RSA-200 (  bits), 2005, Lattice

40

663  Sieve.
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RSA-200 =

27,997,833,911,221,327,870,829,467,638,

722,601,621,070,446,786,955,428,537,560,

009,929,326,128,400,107,609,345,671,052,

955,360,856,061,822,351,910,951,365,788,

637,105,954,482,006,576,775,098,580,557,

613,579,098,734,950,144,178,863,178,946,

295,187,237,869,221,823,983. 
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  In light of current factorization technologies, 

    RSA recommends using an  of 1024-2048 bits.

Remark

n
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Generating large primes

To set up an RSA cryptosystem, 

we need two large primes p and q.
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  Generate a random odd number  of desired size.

  Test if  is prime.

  If not, discard it and try a different number.

How to generate a large prime number?

n

n
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  Can it be solved in polynomial time?

  A long standing open problem until 2002.

  AKS(Agrawal,  Kayal,  Saxena) :  log .

      Later improved by others to log , 

Primality test :  Is  a prime?
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and then

       to  log .

  In practice,  Miller-Rabin's probabilistic algorithm is still

    the most popular --- much faster, log .
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  Using some characteristic property of prime numbers:

       is prime   2.. ,   does not divide .

  Miller-Rabin's idea: look for some property ( ) s

Miller-Rabin primality test :  Is  a prime?

n a n a n
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                                                else return .

  A "prime" answer may be incorrect with
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  Write 1 2 ,  where  is odd.
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  If  is prime,  then ( )  for all .

  If  is an odd composite and not a prime power,

    then  of the elements  are

    black (i.e., ( ) ).

  A composite num
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   Input: integer 2 and parameter 

    Output: a decision as to whether  is prime or 

    if  is even, return "composit

composite

1. e"

    if  is a per2

 

. fect 

Algorithm: Miller-Rabin primality test
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power, return "composite"

  for : 1 to  do            

            choose a random integer ,  2 1

            if gcd( , ) 1, return "composite"

            if  is a strong witness,  ret
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  return ("pri4.   me")
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  If the algorithm answers "composite", it is always correct.

  If the algorithm answers "prime", it may or may not be correct.

  The algorithm gives a wrong answ

Analysis: Miller-Rabin primality test





 er if  is composite but

    the algorithm fails to find a strong witness in  iterations. 

  This may happen with probability at most 2 .

  Actually, at most 4 , by a more sophisticated analysis. 
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  A  is a probabilistic algorithm

      which always gives an answer

      but sometimes the answer may be inco

Mo
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ect.
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Monte Carlo algorithm for a decisi

Monte Carlo algorithms



 on problem is 

    if its “yes” answer is always correct but a “no” answer may

    be incorrect with some error probability.

  A -iteration Miller-Rabin is a “composite”-biased Mon
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 algorithm with error probability at most 1 4 .t
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  A  is a probabilistic algorithm 

      which may sometimes fail to give an answer

      but never gives an incorrect 

Las Ve

one

 

gas algori

 A Las Vegas algorithm can be conver

thm

Las Vegas algorithms



 ted into a

    Monte Carlo algorithm.


