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  A flow network ( , ) is a directed graph with 

     a source node ,

     a sink node ,   

     a capacity function .

  Each edge ( , )  has a nonnegative capacity ( , ) 0.
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• If ( , ) , assume ( , ) 0. 

  Also, assume that every node  is on some path from  to .

     This implies ( ) ( ).

     A maxflow may only go through such nodes.
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  Let ( , ) be a flow network with capacity function ,

    source node , and sink node .

  A flow is a real-valued function :  satisfying

     Capacity constraint: , ,  ( , ) ( , ).
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     Skew symmetry: , ,  ( , ) ( , ).

     Flow conservation: { ,  },

        ( , )   ( , ) 0     

  value of a The  is ( , ) ( , ).
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  If no edge between  and , then ( , ) ( , ) 0.

  Flow conservation implies:  { ,  },

    Total positive flow into Total positive flow out of .

  For , ,  define

Some Properties of Flows 
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•   ( , ) ( , ).

  ( , ) 0.

  ( , ) ( , ).

  ( , ) ( , ) ( , ),   if .

  ( , ) ( , ) ( , ),   if .
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  Let ( , ) be a flow network and   a flow.

  Residual capacity of ( , ) is

    ( , ) ( , ) ( , ).

  Residual network induced by  is  ( , ),  where

    

Residual networks and augmenting paths
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  ( , ) : ( , ) 0 .

  Augmenting path: a simple path  from  to  in .

  Residual capacity of :

    ( ) min ( , ) : ( , ) is in .
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(a) Flow network and flow                        (b) Residual network and 

augmenting path p with 
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(c) Augmented flow                                             (d) No augmenting path



  Let ( , ) be a flow network with a capacity function ,

    source , and Assusink .  

    i.e., 

me  has no parallel edge

if ( , )  then (

s

, ) . 

,

Flow: an alternative defini (CLRS, 3rd ed.)tion 
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  A flow is a real-valued function : ,  satisfying

     Capacity constraint: 0

Flow conservatio

, ,  ( , ) ( , ).

     : { ,  },

          ( , ) ( , )         i.e.    ,

n
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when ( , ) ,  ( , ) 0
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  The value of a flow is , , .

  Note: .
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  If no edge between  and , then ( , ) ( , ) 0.

  Flow conservation implies:  { ,  },

    Total positi

Some of these properties do not hold any more 

(when using the second definition of flows)
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u V s t
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ve flow into Total positive flow out of .

  For , ,  define  ( , ) ( , ).

  ( , ) 0.

  ( , ) ( , ).

  ( , ) ( , ) ( , ),   if .

  ( , ) ( , ) ( , ),   if .
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  Let ( , ) be a flow network and   a f

Residual cap

low.

   of ( , ) is

( , ) ( , ) if ( , )

    ( , ) ( , ) if 

acity

Residual networks and augmenting paths

(using the second definition of flows)
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( , )

0 otherwise

  Residual network induced by  is  ( , ),  where

      ( , ) : ( , ) 0 .

  Augmenting path: a simple path  from  to  in .
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 Given a flow network ( , ) with source  and sink ,

    Initialize flow  to 0

     there exists an augmenting path  

              augment flow  along 

     

Ford-Fulkerson Method
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while do

do

return 
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   each edge ( , ) ( )

         ( , ) 0

             ( , ) 0

   there exists an augmenting path  in residual network  

            ( ) min ( , ) : ( , ) is on 

    

Ford-Fulkerson , ,  
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do

while

do

            each edge ( , ) is in 

                        ( , ) ( , ) ( )

                        ( , ) ( , )
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The running time depends on how the augmenting

   path  is determined.

If capacities are integers, the running time is  ,

   where  is the value of the maxflow.

   

 

 

Each iteration can 

Analysis 
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O E f

f





•

•

  be done in  time.

   There are at most  iterations.

If all capacities are integers, the flow 

produced by the Ford-Fulkerson method has the prope

Integral
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 for all , .u v V
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Let  be the residual network induced by flow .

Let  be a flow in .  Then  is a flow in  with 

.

 Skew symmetry:

( , ) ( , ) ( , )

   

Lemma 1.  
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 Capacity constraint:

( , ) ( , ) ( , )

( , ) ( , )
     

( , ) ( , ) ( , )

( , )
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 Flow conservation:   for all , ,

( , ) ( , ) ( , )
     

0 0 0

 Finally,

( , )

     ( , ) ( , )
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If  is an augmenting path in , then

augmenting   along  yields a flow 

Lemma 2.  

Corollary

in  with value

( ) .

  The  produced by Ford-F 3 ulkerson is a flo .. w

f
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p G
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 A  ,  of a flow network ( , ) is a partition of

   of  into  and  such that  and .

If  is a flow, ( , ) denotes the  across 

cut

net flo

 

the cut (w

capacit

, ).

The  of ( , ) s

 

iy   

Cuts
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( , ) ( , ).

Example:  ( , ) ( , ) ( , ) 12 14 26.

                   ( , ) ( , ) ( , ) ( , ) 12 11 4 19.
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Note that ( , ) 0   , .

( , ) ( , ) ( , )

( ,

Lemma 4.  For any cut ( , ),  ( , )

)
     

( , ) ( , )

( , )

( , ) ( , ).

.

Proof.  

Corollary 5.  ( , ).

Proof.   
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The following conditions are equivalent:

1.   is a maxflow in .

2. The residual network  contains no augmenting paths.

3. ( , ) for some cut ( , ) 

Theorem. 

in .    

The Max-flow Min-cut Theorem.  

f

f G

G

f c S T S T G //minimum cut//

 Immediately follows from Corollary 5.

Immediately follows from Lemma 2.  (If  

contains an augmenting path , augmenting 

Proof.  (3) (1): 

(1) (2):

 along  will

increase the flow.) 

  fG

p f p





18



 

(2) (3): 

2. The residual network  contains no augmenting paths.

3. ( , ) for some cut ( , ) in .

Suppose  contains no augmenting path.  Define

: there is a path from  to  in , 

.

( , )
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 is a cut since  and  (no path from  to  in ).

For all ,  ,  we have , since otherwise

( , )  and  would be in .   So,  
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In the while loop of Ford-Fulkerson, find the augmenting

   path  with a breadth-first search, that is, the augmenting 

   path is a shortest path from  to  in the residual 

 

ne

Edmonds-Karp Algorithm

p

s t

•

 2

twork, 

   where "shortest" is in terms of number of edges.

Running time:    (to be shown . )O VE•
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In the execution of Edmonds-Karp algorithm, for all

,  ,  ( ) is nondecreasing with each flow augmentation

where ( ) shortest distance (# edges) fr

Lem 6
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Analysis of the Edmonds-Karp Algorithm
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  Case 1: . Then, ( ) 1 ( ),  and  then

          ( ) ( ) 1 ( ) 1 ( ) ( ),

    a contradiction.

 

  Case 2: Now, ( , ) ,  but ( , ) .  

    

( ,

This means, the augmen
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 path contains edge ( , ). 

    As Edmonds-Karp always augments flow along shortest paths,

    ( , ) is the last edge of a shortest path from  to  in . 

    Therefore, ( ) ( ) 1 ( ) 1 ( ).
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 As in case 1, this will lead to a contrdiction.
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( ) decreases for red nodes; does not decrease for green nodes.

:  the red node closest to  in .

:  predecessor of  on shortest path  to  in ;  a green node.

f

f

v s G

u v s v G







st

ss st

augmentation                 



24

ss

vuf

f

G

G 
st

ss st

vu

( ) 1 ( )f fu v   

( ) 1 ( )f fu v  

If edge ( , ) exists in fu v G



25

ss

vu
f

f

G

G 
st

ss st

vu

( ) 1 ( )f fu v   

( ) 1 ( )f fu v  

If edge ( , ) does not exist in fu v G

augmenting 

path



 

 

 2

If Edmonds-Karp Algorithm runs on , , 

then the total number of flow augmentations is 

and hence the total running time is .

.  An edge ( , ) in  is  on an augm
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 path 

if ( ) ( , ).  Every augmenting path has a critical edge. 

An edge ( , ) may become critical only if ( , )  or ( , ) . 

So there are at most 2  edges that may become critical during

the algo

f f
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rithm's  execution.  We will show that each of these edges

may become critical at most 2  times, which will imply that

during the execution of the Edmonds-Karp algorithm there are 

at most  augmentati

V

O VE ons.
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 an edge ( , ) can become critical at most 2  times.

  When ( , ) becomes critical in a residual network , 

    ( ) ( ) 1.     (1)

  After flow augmentation along the augmenting path, 

Claim:

    (

f
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u v V

u v G
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aft

, ) disappears from the residual network.

  It may reappear later on another augmenting path only  

   , which occurs only if edge ( , ) 

    appears on an augmenting path i
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som
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v uf u v

•

 ,  in which case,

    ( ) ( ) 1 ( ) 1          by Lemma 6

                                ( ) 2          by (1).
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  Thus, if ( , ) becomes critical more than once, then for

    each additional time ( , ) becomes critical, ( ) increases 

    by at least 2.

  When ( , ) becomes critical for the last time, ( ) 2.

u v

u v u

u v u V





•

•    

  Thus, ( , ) can become critical no more than 2  times.

    This proves the claim and the theorem.

u v V•
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  , : flow network with

     sources:  , , ,

     sinks:  , , ,  

Networks with multiple sources and sinks
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   , : undirected graph

  Bipartite graph:  if  can be partitioned into  and  such

    that all edges in  go between  and .

  Theorem:   is bipartite iff it has no cy

Maximum Bipartite Matching
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• cles of odd length.

  Matching:  a set of edges  such that every vertex in

     is an endpoint of at most one edge in .

  Maximum matching: a matching with the max cardinality.

  A maximum matchin

M E

V M

• 

•

• g of a bipartite graph can be found

    using the Ford-Fulkerson method.
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  , :  a graph

  Edge-disjoint paths:  two paths are edge-disjoint if they

    do not share any edges.

  Problem:  Given a  graph ,  and two

    nodes ,  ,  find a

directed

 maxi

Edge-Disjoint Paths
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mum number of edge-disjoint

    paths from  to .

  Problem:  Given an  graph ,  and

    two nodes ,  ,  find a maximum number of edge-disjoint

    paths from

und

  to 
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  , :  a graph

  Node-disjoint paths:  two paths from  to  are 

    node-disjoint if they do not share any intermediate nodes.

  Problem:  Given a di  graph ,  andrect  twed o

  

Node-Disjoint Paths
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 undirec

  nodes ,  ,  find a maximum number of node-disjoint

    paths from  to .

  Problem:  Given an  graph ,  and two

     nodes ,  ,  find a maximum number of node-disjoint
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paths fro  

d
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  A fundamental problem in computer vision.

  Given a digital image (a set of pixels), we want to partition

    it into multiple segments.

  In a simple case, we just want to divide 

Image Segmentation

•

•

• the image into two

    segments: the foreground and the background.

  Represent the image by an undirected graph ( , ), 

    where  is the set of pixels and there is an edge

    between two pixels iff

G V E

V
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 there are neighbors.
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  Each pixel  has a likelihood (goodness) 0 to belong to

    the foreground and a likelihood 0 to belong to the

    background.

  Each edge ( , )  is associated with a separation

    penalty 

i

i

ij

i a

b

i j E

p
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• 

0,  which is incurred if pixels  and 

    are placed in different segments. 

jip i j 
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   Given a pixel graph ( , ),  likelihood functions

    , :  and penalty function : ,  we want

    to partition  into two sets  and  and 

  ( , )
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  Or, equivalently, 
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  We can solve the image segmentation problem by converting

    it to a flow network.  Let ( , ) be the pixel graph.

  Introduce two new vertices:  a source  and a sink .

  Connect  to each pixel

G V E

s t

s

•



•

•   with capacity .

  Connect  from each pixel  with capacity .

  Replace each edge ( , )  with two directed edges ( , )

    and ( , ) with capacities  and .

  Relationship between the 

i
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t i V b
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1-1 correspondence

pixel graph ,  and

    the constructed flow network , :

    Segmentations of   Cuts of 

                      ( , )  { }, { }
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Generic Push-Relabel Algorithms 
for Maximum Flows

 2Running time: O V E



  Flow net ( , ),  capacity function ,  source , sink .

  A  is a function : ,  satisfying

     Capacity constraint: , ,  ( , ) ( , ).

     Skew symmetry: , ,  (

preflow

, )

Preflows 
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      flow conservation: { },

          ( , ) 0

  The quantity ( ) ( , ) is calle excess f
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  Vertex  is  if  ( , ) 0.
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0    a function : ,  satisfying

     ( )

     ( ) 0

     ( ) ( ) 1 for every residual edge , .

   a height function is 

Height functio

defined relative to a preflow.Note:

Lemma:   If

n:

 ( )

f
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h u h v u v E
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 ( ) 1 then , .fh v u v E  
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Applicable when:

Act

  

            is overflowing, ( , ) 0,  and ( ) ( ) 1.

   push ( , ) min ( ),  ( , )  units of

    flow

io

 from  to . 

     ( , ) ( , ) ( , ).

     

n:

Operation Push( , ) 
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  The operation Push( , ) is called a  from  to .

   edge ( , ) becomes saturated

    (i.e., ( , ) 0) after the p

push

Saturating push:

Nonsaturating push

ush.

   ( , ) 0 after the push.

  Lemm

: 

a: 

f

f

u v u v

u v

c u v

c u v
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• After a nonsaturating push from  to , vertex

     is no longer overflowing.

      After the push, either ( ) 0 orProof  , 0.: ( )f

u v

u

e u c u v 
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         { , } is overflowing and

         ( ) ( ) for all edges ( , ) .

   increase the 

Applicable when:

Act height of .

     ( ) 1 min ( )

ion:

 Note

: ( , ) .

  s  : ince  

Operation Relabel( ) 

f

f

u s t

h u h v u v E

u

h u h v u v E

u

u

•



 



•

•

 

is overflowing, there is at least one edge

    ( , ) ,  so the above min is not over an empty set.

 

fu v E
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  Initial preflow:  For all , ,

( , ) if 

          ( , ) ( , ) if 

0 otherwise

  Corresponding excess flow function:

( , ) if ( , )

         ( ) ( , ) : ( , )

Initialize-Preflow( , , )

u v V

c u v u s
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if 

0 otherwise

  Initial height function:

if 
         ( )

0 otherwise

v s
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1.  Initialize-Preflow( , , )      // initialize a preflow //

2.   there is an applicable  or  operation

            an applicable operation an

push relabel

sele ect d p

Generic-Push-Relabel Algorithm

G s t f

while

do rform it 

  For correctness, what do we need toQuest  proion: ve? 
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  If  is an overflowing vertex, then either a

push or relabel operation can be appl

Lemma 1.

Lemm

ied to it.

  Whenever a relabel operation is applied to a

ver

a

tex 

 2.

Correctness of Generic-Push-Relabel

u t

u



, its height ( ) increases by at least 1.

  During the execution of the algorithm,  is

always a height function.

  During the execution of the algorithm, 

Lemma 3.

Lemma   is

always a pr

4.

eflow.

h u

h

f
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  Let  be a preflow.  If there is a height function

 relative to ,  then there is no path from  to  in the 

residual network .

.  Otherwise, if there is a simple pat

Le

h 

mma 5.

 in Proof  

from  to

f

f

f

h f s t

G

p G

s  , then 

                  ( ) ( ) length( ) 1

contradicting the fact that ( ) ( ) .

t

h s h t p V
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 the algorithm terminates, the preflow

it computes is a maximum flow.

.  When the algorithm terminates:

    is a preflow (by Lemma 4).

  No vertex is overf

Theorem.

lowin

 If/whe

g (by L

n

Pr

emm

 

a

oof

S

 1).

  

f•

•

• o,   is a flow

There is no augmenting

.

   is a height function (by Lemma 3).

   (by Lemma 5).

  So,   is a maxflow (by Max-flow M

 pa

in-cut Theorem)

t

.

h in f

h

f

f

G

•

•

•
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 Let   be a preflow.  Then, for any overflowing

vertex , there is a path from  to  i

Lemma 1.

Lemma 2

n .

 At any time during the execution of the algorithm

( 2 1

. ,

)

Analysis of Generic-Push-Relabel

f

f

u u s G

h u V   for any node . 

  When a vertex  is relabeled, it is overflowing and

has a simple path to  (which is still true after the relabel).  

Since the path has at most 1 edges, 

Proof.

Corollary

( ) 2 1.

u V

u

s

V h u V



  

  
2

 The total number

of relabel opera

 (bound on rela

tions is at mos

bel operat

t 2 1 2 2

ions).

.V V V  
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 The total number

of saturating pushes is at most 2 .

  Push( , ) may occur only if ( , )  or (

Lemma 3 (bou

, ) .

Between

nd on 

 two c

saturating p

onsecutive 

ushes).

Proof.

saturati  png ushes from  to , 

V E

u v u v E v u E

u v

 

 

Reasons:

    Between two saturating pushs from  to ,

      there must be a push from  to . 

    At the 1st Push( , ) :   sa

( )

y ( ) a . 

    At Push( , ) :   (

 

) (

increases

) 1

 by at least 2.  

u v

v u

u v h u

v u h v h

h u

u a



   1. 

    At the 2nd Push( , ) :   ( ) ( ) 1 2 .

So, for each ( , )  or ( , ) ,  satulating Push( , )

may occur no more than  times.

u v h u h v a

u v E v u E u v

V
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2

( ) 0

Lemma 4 (bound on nonsaturating pushes).

Proof.

 The number

of nonsaturating pushes is less than 4 .

Define ( ).   Initially, 0.

 Relabeling a vertex  increases  by less than 2 .

 A s

  

 a

e u

V V E

h u

u V





   

•

•



   
2 2

turating push from  to  increases  by less than 2 .

 Total amount of increase to  is less than 

   2 2 2 4 .

 A nonsaturating push from  to  deccreases  by at least 1.

 Thus, the total 

u v V

V V V E V V E

u v





   

•

•



•

 
2

number of nonsaturating pushes is less than

   4 .V V E
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 2

3

Each relabel can be done in  time and 

each push can be done in 1  time.

 The running time of the generic push-relabel 

algori

Lemma 5. 

Proof.

 

thm is .  

 Total time for rel  ( )abels: .

 

Theo .

 

rem

O V

O

O

O V

V E

2

  Total time for satulating pushes: .

 Total time for nonsatulating pushes:

( )

   ( ) . 

O VE

O V E
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The Relabel-to-Front Algorithm

 3Running time: O V



 , , ,

  An edge ( , ) is  if 

           ( , ) 0 and ( ) ( ) 1.

   , ,  where  is

    the set of admissible edges.  It is a subgrap

 admissible

Admissible network:

h 

Admissible edges and networks

f

f h f h f h

u v

c u v h u h v

G V E E

•

•

  



,

,

of .

  The admissible network  is acyclic.

  The height function ( ) is decreasing alo

Lem

ng

any path in  .

ma 1.

Proof. 

f

f h

f h

G

G

h

G
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,

  If a vertex  is overflowing and edge ( , )

is admissible, then Push(

When is Push( , ) applicable?   Ho

, ) is applicable.  The 

o

w does it affect ?

L

peration does not create any new adm

e

issi

mma 2.

f h

u u v

u v

u v G

ble edges,

but it may cause ( , ) to become inadmissible. 

  The Push( , ) operation reduces ( , )

and increases ( , ).  If ( , ) becomes 0,

( , ) becomes inadmissible.  Since ( ) ( ) 1,  

Proo

 

(

f. f

f f

u v

u v c u v

c v u c u v

u v h u h v

v

 

, ) cannot become admissible. u
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,

  If a vertex { , } is overflowing and there are

no admissible edges 

When is Relabel( ) applicable? 

leaving , then Relabel( ) is

applicable

 How does it affect ?

. 

Lemma 3.

 

f h

u

u

s t

G

u

u



After the relabel operat

Proof. Only the last claim needs a proof. 

If, after the relabel, ( , ) is an admissible edge entering

 

 v u

ion, there is at least

one admissible edge leaving u, but there are no

admissible edges entering u.

,  

then ( ) ( ) 1.  Before the relabel of , 

( ) ( ) 1 and thus ( , ) .   

 

f

u

h v h u u

h v h u v u E
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  Same as the adjacency lists of the flow network ( , ),

    except that the list of  contains  iff ( , )  

    or ( , ) .

  ( ) :  the neighbor list of .  It contains those vertice

Neighbor lists

G V E

u v u v E

v u E

N u u

•

•







 

s

     for which there may be a residual edge ( , ).

  ( ) :  pointing to the first element in ( ). 

  ( ) :  pointing to the vertex currently under

    consideration in ( ). Initially, 

v u v

head N u N u

current u

N u curre

•

•

 ( ) ( ) .

  - ( ) :  

nt u head N u

next neighbor



•
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  Discharge( ) :  push  excess flow of  thru admissible

    edges leaving , relabeling  as necessary.

  Procedure Discharge( ) //after Discharge( )

all

( ),  0//

    

Discharging an overflowing vertex

u u

u u

u u e u

•

• 

wh

 

 ( ) 0 

          ( )

           NIL 

Relabel( )

( ) ( )

           ( , ) is admissible 

Push( , )

           

e u

v current u

v

u

current u head N u

u v

u v

curren









ile do

if then

              

              

elseif then

              

else ( ) - ( )t u next neighbor v
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1 Initialize-Preflow( , , )

2 [ ] { , } in any order

3 Initialize ( ) for each [ ] { , } 

4 ( )

5 NIL  

6      Discharge( )

7        has been relabe

Algorithm Relabel-to-Front( , , )

G s t

L V G s t

current u u V G s t

u head L

u

u

u

G s t

 

 



while do

if led during Discharge( ) 

8           move  to the front of 

9      - ( )

u

u L

u next neighbor u

then
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,

Lemma 4.

 

 Relabel-to-Front performs push and relabel

operations only when they are applicable.

At each test in line 5 of Relabel-to-Front,  

 is a topological sort of { ,  } an

Lem

d n

ma

o

 

 

5.

vertex 

be

f hL G s t

fore  in the list has excess flow.

When Relabel-to-Front terminates,  there 

are no applicable push or relabel operations

(since by Lemma 5 there is no overflowing node).

Theore  

Coroll

 Relabm e

a

l

ry.

. F

 

-to-

u

ront is an implementation of

the generic push and relable algorithm.  
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,

, For iteration 1, it is

Proof of Lemma 5 (part 1)

 true, since initially

.  By induction, we show

 is a topologic

 .

 Assume that  is in topological order at the b

al sort of  {

eginn

,  }.

ing 

f h

f h

E

L G s t

L

• 



• of

   an iteration.  

 During the iteration, we perform pushes and relables.

     Pushes do not create any admissible edges (Lemma 2).

     By Lemma 3, Relabel( ) may create admissible edges 

       lea

u

•

ving ,  but after the relabel there will be no 

       admissible edge entering .  By moving  to the front

       of ,  remains in topological order.

u

u u

L L
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 Initially, it 

Proof of Lemma 

is true since 

5 (part 2).  By inductio

 is at the front o

n, we show that

vertices before  have no excess

f .  

 Assume the property holds at the beginning of an 

 flo

it

w.

u

u

L•

• eration.

 Let  be the vertex that will be the  in the next iteration. 

 We will show that no vertex before  has excess flow.

 If  is moved to front, it has no excess flow (since it has 

   been d

u u

u

u

•

•



•

vertices before  received no

   addi

ischarged), and it is the only vertex before .

 If  is not moved to front, 

 and thus still have no excess, and  itself

   now 

ti

ha

onal flow

s no excess.  

u

uu

u

•
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 3 The running time of Relabel-to-Front is . 

Proof. 

 The running time  

the total number of iterations (discharges)
         

 the time spent on executing the discharges

Theo

 We first det

em.

e

r O V

O



 


•


 

•



2

rmine the number of discharges: 

     There are at most ( ) relabels.

     Preceding each relabel there may be ( ) calls to

       Discharge.  Similarly, ( ) discharges after the last

       relabel

O V

O V

O V

3

.

     Thus, the total number of calls to Discharge is ( ).O V
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3

 Now we determine the total time spent within Discharge.

 Total time for moving the pointer : .

       Preceding each Relabel( ),  it takes  

          time to move ( ).  

   

  

 

)

 

 (

 

current

u O V

curren u

O V

t

•

2

3

3

3

   There are at most ( ) relabels.

 Total time for relabels: .

 Total time for satulating pushes: .

 Total time for nonsatulating pushes: . 

        Each discha

   ( )

   ( ) ( )

rge 

   ( )

has

O V

O VE O V

O V

O V



 at most 1 nonsatulating push.
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