Elementary Graph Algorithms

CSE 6331

Reading Assignment: Chapter 22

1 Basic Depth-First Search

- Algorithm

$$
\begin{aligned}
& \text { procedure } \operatorname{Search}(G=(V, E)) \\
& \quad / / \text { Assume } V=\{1,2, \ldots, n\} / / \\
& / / \text { global array visited }[1 . . n] / / \\
& \text { visited }[1 . . n] \leftarrow 0 ; \\
& \text { for } i \leftarrow 1 \text { to } n \\
& \quad \text { if } \text { visited }[i]=0 \text { then call } d f s(i) \\
& \text { procedure } d f s(v) \\
& \text { visited }[v] \leftarrow 1 ; \\
& \text { for each node } w \text { such that }(v, w) \in E \text { do } \\
& \quad \text { if } \text { visited }[w]=0 \text { then call } d f s(w)
\end{aligned}
$$

- Questions
- How to implement the for-loop (i) if an adjacency matrix is used to represent the graph and (ii) if adjacency lists are used?
- How many times is $d f s$ called in all?
- How many times is "if visited $[\cdot]=0$ " executed in all?
- What's the over-all time complexity of the command "for each node w such that $(v, w) \in E "$
- Time complexity
- Using adjacency matrix: $O\left(n^{2}\right)$
- Using adjacency lists: $O(|V|+|E|)$
- Definitions
- Depth first tree/forest, denoted as G_{π}
- Tree edges: those edges in G_{π}
- Forward edges: those non-tree edges (u, v) connecting a vertex u to a descendant v.
- Back edges: those edges (u, v) connecting a vertex u to an ancestor v.
- Cross edges: all other edges.
- If G is undirected, then there is no distinction between forward edges and back edges. Just call them back edges.

2 Depth-First Search Revisited

```
procedure Search(G=(V,E))
    // Assume V = {1,2,\ldots,n} //
    time }\leftarrow0
    d[1..n]\leftarrow0; /* d stands for discovery time */
    for }i\leftarrow1\mathrm{ to }
        if }d[i]=0\mathrm{ then call dfs(i)
procedure dfs(v)
    d[v]}\leftarrow\mathrm{ time }\leftarrow\mathrm{ time + 1;
    for each node w such that (v,w)\inE do
        if d[w] = 0 then call df s(w);
    f[v]\leftarrowtime \leftarrowtime +1 /* f stands for finishing time */
```


3 Topological Sort

- Problem: given a directed acyclic graph $G=(V, E)$, obtain a linear ordering of the vertices such that for every edge $(u, v) \in E$, u is ahead of v in the ordering.
- Solution:
- Use depth-first search, with an initially empty list L.
- At the end of procedure $d f s(v)$, insert v to the front of L.
- L gives a topological sort of the vertices.
- Observation: the list of nodes in the descending order of finishing times yields a topological sort .

4 Strongly Connected Components

- A directed graph is strongly connected if for every two nodes u and v there is a path from u to v and one from v to u.
- Decide if a graph G is strongly connected:
- G is strongly connected iff (i) every node is reachable from node 1 and (ii) node 1 is reachable from every node.
- The two conditions can be checked by applying $d f s(1)$ to G and to G^{T}, where G^{T} is the graph obtained from G by reversing the edges.
- A subgraph G^{\prime} of a directed graph G is said to be a strongly connected component of G if G^{\prime} is strongly connected and is not contained in any other strongly connected subgraph.
- An interesting problem is to find all strongly connected components of a directed graph.
- Each node belongs in exactly one component. So, we identify each component by its vertices.
- The component containing v equals

$$
\{d f s(v) \text { on } G\} \cap\left\{d f s(v) \text { on } G^{T}\right\},
$$

where $\{d f s(v)$ on $G\}$ denotes the set of all vertices visited during $d f s(v)$ on G.

- Ideas:

- If C is a strongly connected component, define

$$
f(C)=\max \{f(x): x \in C\} .
$$

- Let C, C^{\prime} be two distinct strongly connected components. If there is an edge in G from C to C^{\prime}, then $f(C)>f\left(C^{\prime}\right)$. (In G, edges between two strongly connected components go from the component with higher finishing time to the component with lower finishing time.)
- Let C, C^{\prime} be two distinct strongly connected components. If there is an edge in G^{T} from C^{\prime} to C, then $f(C)>f\left(C^{\prime}\right)$. (In G^{T}, edges between two strongly connected components go from the component with lower finishing time to the component with higher finishing time.)

- Algorithm:

1. Apply depth-first search to G and compute $f[u]$ for each node.
2. Compute G^{T}.
3. Apply the basic depth-first search to G^{T} :

$$
\begin{aligned}
& \text { visited }[1 . . n] \leftarrow 0 \\
& \text { for each vertex } u \text { in decreasing order of } f[u] \text { do } \\
& \quad \text { if } \text { visited }[u]=0 \text { then call } d f s(u)
\end{aligned}
$$

4. The vertices on each tree in the depth-first forest of Step 3 form a strongly connected component.

5 Articulation Points and Biconnected Components

5.1 Definitions

- Let G be a connected, undirected graph.
- An articulation point of G is a vertex whose removal will disconnect G.
- A bridge of G is an edge whose removal will disconnect G
- Definition: A (connected) graph is biconnected if it contains no articulation points.
- A biconnected component of G is a maximal biconnected subgraph.
- Each edge belongs to exactly one biconnected component.

5.2 Identifying All Articulation Points

- Let G_{π} be any depth-first tree of G.
- An edge in G is a back edge iff it is not in G_{π}.
- The root of G_{π} is an articulation of G iff it has at least two children.
- A non-root vertex v in G_{π} is an articulation point of G iff v has a child w in G_{π} such that no vertex in $\operatorname{subtree}(w)$ is connected to a proper ancestor of v by a back edge. ($\operatorname{subtree}(w)$ denotes the subtree rooted at w in G_{π}.)
- Define
$\operatorname{low}[w]=\min \left\{\begin{array}{l}d[w] \\ d[x]: x \text { is joined to some vertex in } \operatorname{subtree}(w) \text { by a back edge }\end{array}\right.$
- A non-root vertex v in G_{π} is an articulation point of G iff v has a child w such that $l o w[w] \geq d[v]$.
- Note that

$$
l o w[v]=\min \left\{\begin{array}{l}
d[v] \\
d[w]: w \text { is connected to } v \text { by a back edge } \\
l o w[w]: w \text { is a child of } v
\end{array}\right.
$$

- Computing low $[v]$ for each vertex v :

```
procedure \(\operatorname{Art}(v, u)\)
    /* visit \(v\) from \(u^{* /}\)
    low \([v] \leftarrow d[v] \leftarrow\) time \(\leftarrow\) time \(+1 ;\)
    for each vertex \(w \neq u\) such that \((v, w) \in E\) do
        if \(d[w]=0\) then
            call \(\operatorname{Art}(w, v)\)
            \(l o w[v] \leftarrow \min \{l o w[v], l o w[w]\}\)
        else
            \(l o w[v] \leftarrow \min \{l o w[v], d[w]\}\)
        endif
    endfor
```

- Initial call: $\operatorname{Art}(1,0)$.
- Problem: Print all articulation points.

```
procedure Art(v,u)
    /* visit v from u*/
    low [v]}\leftarrowd[v]\leftarrow\mathrm{ time }\leftarrow\mathrm{ time + 1;
    for each vertex }w\not=u\mathrm{ such that }(v,w)\inE\mathrm{ do
        if }d[w]=0\mathrm{ then
            call }\operatorname{Art}(w,v
            low[v]}\leftarrow\operatorname{min}{low[v],low[w]
            if (d[v]=1) and (d[w]\not=2) then
                print v}\mathrm{ is an articulation point
            if (d[v]\not=1) and (low[w]\geqd[v]) then
                print v}\mathrm{ is an articulation point
        else
            low[v]}\leftarrow\operatorname{min}{low[v],d[w]
        endif
    endfor
```

- Problem: Identify all biconnected components.

```
procedure Art(v,u)
    /* visit v from u*/
    low [v]}\leftarrowd[v]\leftarrow\mathrm{ time }\leftarrow\mathrm{ time + 1;
    for each vertex }w\not=u\mathrm{ such that (v,w) &E do
        if }d[w]<d[v]\mathrm{ then add (v,w) to Stack
        if }d[w]=0\mathrm{ then
            call }\operatorname{Art}(w,v
            low[v]}\leftarrow\operatorname{min}{low[v],low[w]
            if low[w]\geqd[v] then
                    Pop off all edges from Stack till edge (v,w)
                    //these edges form a biconnected component//
        else
            low[v]}\leftarrow\operatorname{min}{low[v],d[w]
        endif
    endfor
```

