
Greedy Algorithms
CSE 6331

Reading: Sections 16.1, 16.2, 16.3, Chapter 23.

1 Introduction

Optimization Problem:

Construct a sequence or a set of elements {x1, . . . , xk} that satisfies

given constraints and optimizes a given objective function.

The Greedy Method

for i← 1 to k do

select an element for xi that “looks” best at the moment

Remarks

• The greedy method does not necessarily yield an optimum solu-

tion.

• Once you design a greedy algorithm, you typically need to do

one of the following:

1. Prove that your algorithm always generates optimal solu-

tions (if that is the case).

2. Prove that your algorithm always generates near-optimal

solutions (especially if the problem is NP-hard).

3. Show by simulation that your algorithm generates good

solutions.

• A partial solution is said to be feasible (or promising) if it is

contained in an optimum solution. (An optimum solution is of

course feasible.)

• A choice xi is said to be correct if the resulting (partial) solution

{x1, . . . , xi} is feasible.

• If every choice made by the greedy algorithm is correct, then

the final solution will be optimum.

1

2 Activity Selection Problem

Problem: Given n intervals (si, fi), where 1 ≤ i ≤ n, select a maxi-

mum number of mutually disjoint intervals.

Greedy Algorithm:

Greedy-Activity-Selector

Sort the intervals such that f1 ≤ f2 ≤ . . . ≤ fn

A← ∅
f ← −∞
for i← 1 to n

if f ≤ si then

include i in A

f ← fi

return A

2

Proof of Optimality

Theorem 1 The solution generated by Greedy-Activity-Selector is opti-
mum.

Proof. Let A = (x1, . . . , xk) be the solution generated by the greedy

algorithm, where x1 < x2 < · · · < xk. It suffices to show the following

two claims.

(1) A is feasible.

(2) No more interval can be added to A without violating the “mu-

tually disjoint” property.

Claim (2) is obvious, and we will prove claim (1) by showing that

for any i, 0 ≤ i ≤ k, the (partial) solution Ai = (x1, . . . , xi) is feasible.

(Ai is feasible if it is the prefix of an optimum solution.)

Induction Base: A0 = ∅ is obviously feasible.

Induction Hypothesis: Assume Ai is feasible, where 0 ≤ i < k.

Induction Step: We need to show that Ai+1 is feasible. By the

induction hypothesis, Ai is a prefix of some optimum solution, say

B = (x1, . . . , xi, yi+1, . . . , ym).

• If xi+1 = yi+1, then Ai+1 is a prefix of B, and so feasible.

• If xi+1 6= yi+1, then fxi+1
≤ fyi+1

, i.e.,

finish time of interval xi+1 ≤ finish time of interval yi+1.

Substituting xi+1 for yi+1 in B yields an optimum solution that

contains Ai+1. So, Ai+1 is feasible.

Q.E.D.

3

3 Huffman Codes

Problem: Given a set of n characters, C, with each character c ∈
C associated with a frequency f(c), we want to find a binary code,

code(c), for each character c ∈ C, such that

1. no code is a prefix of some other code, and

2.
∑

c∈C f(c) · |code(c)| is minimum, where |code(c)| denotes the

length of code(c).

(That is, given n nodes with each node associated with a frequency,

use these n nodes as leaves and construct a binary tree T such that∑
f(x) ·depth(x) is minimum, where x ranges over all leaves of T and

depth(x) means the depth of x in T . Note that such a tree must be

full, every non-leaf node having two children.)

Greedy Algorithm:

Regard C as a forest with |C| single-node trees

repeat

merge two trees with least frequencies

until it becomes a single tree

4

Implementation:

Huffman(C)

n← |C|
initialize a priority queue, Q, to contain the n elements in C

for i← 1 to n− 1 do

z ← Get-A-New-Node()

left[z]← x← Delete-Min(Q)

right[z]← y ← Delete-Min(Q)

f [z]← f [x] + f [y]

insert z to Q

return Q

Time Complexity: O(n log n).

5

Proof of Correctness:

The algorithm can be rewritten as:

Huffman(C)

if |C|=1 then return a single-node tree;

let x and y be the two characters in C with least frequencies;

let C ′ = C ∪ {z} − {x, y}, where z /∈ C and f(z) = f(x) + f(y);

T ′ ← Huffman(C ′);

T ← T ′ with two children x, y added to z;

return(T).

Lemma 1 If T ′ is optimal for C ′, then T is optimal for C.

Proof. Assume T ′ is optimal for C ′. First observe that

Cost(T) = Cost(T ′) + f(x) + f(y).

To show T optimal, we let α be any optimal binary tree for C, and

show Cost(T) ≤ Cost(α).

Claim: We can modify α so that x and y are children of the same

node, without increasing its cost.

Let β be the resulting tree, which has the same cost as α. Let

z denote the common parent of x and y. Let β′ be the tree that is

obtained from β by removing x and y from the tree. β′ is a binary tree

for C ′. We have the relation

Cost(β) = Cost(β′) + f(x) + f(y).

Since T ′ is optimal for C ′,

Cost(T ′) ≤ Cost(β′)

which implies

Cost(T) ≤ Cost(β) = Cost(α).

Q.E.D.

6

Theorem 2 The Huffman algorithm produces an optimal prefix code.

Proof. By induction on |C|.
I.B.: If |C| = 1, it is trivial.

I.H.: Suppose that the Huffman code is optimal whenever |C| ≤
n− 1.

I.S.: Now suppose that |C| = n. Let x and y be the two charac-

ters with least frequencies in C. Let C ′ be the alphabet that is ob-

tained from C by replacing x and y with a new character z, with

f(z) = f(x) + f(y). |C ′| = n − 1. By the induction hypothesis, the

Huffman algorithm produces an optimal prefix code for C ′. Let T ′ be

the binary tree representing the Huffman code for C ′. The binary tree

representing the Huffman code for C is simply the the tree T ′ with

two nodes x and y added to it as children of z. By Lemma 1, the

Huffman code is optimal. Q.E.D.

7

4 Minimum Spanning Trees

Problem: Given a connected weighted graph G = (V,E), find a span-

ning tree of minimum cost.

Assume V = {1, 2, . . . , n}.

4.1 Prim’s Algorithm

function Prim(G = (V,E))

E ′ ← ∅
V ′ ← {1}
for i← 1 to n− 1 do

find an edge (u, v) of minimum cost such that u ∈ V ′ and v /∈ V ′

E ′ ← E ′ ∪ {(u, v)}
V ′ ← V ′ ∪ {v}

return(T = (V ′, E ′))

Implementation:

• The given graph is represented by a two-dimensional array cost[1..n, 1..n].

• To represent V ′, we use an array called nearest[1..n], defined as

below:

nearest[i] =

{
0 if i ∈ V ′
the node in V ′ that is “nearest” to i, if i /∈ V ′

• Initialization of nearest:

nearest(1) = 0;

nearest(i) = 1 for i 6= 1.

• To implement “find an edge (u, v) of minimum cost such that

u ∈ V ′ and v /∈ V ′”:

min←∞
for i← 1 to n do

if nearest(i) 6= 0 and cost(i, nearest(i)) < min then

min← cost(i, nearest(i))

v ← i

u← nearest(i)

8

• To implement “V ′ ← V ′ ∪ {v}”, we update nearest as follows:

nearest(v)← 0

for i← 1 to n do

if nearest(i) 6= 0 and cost(i, v) < cost(i, nearest(i)) then

nearest(i)← v

Complexity: O(n2)

9

Alternative Implementations:

• Let the given graph be represented by an array of adjacency lists

Adj[1..n].

• To represent V − V ′, we use a min-priority queue Q. Each node

v ∈ Q has two attributes: key[v] and π[v], where π[v] has the

same meaning as nearest[v] and key[v] = weight(v, π[v]).

• Initialization of Q: let Q contain all nodes in V − {1} with

key[v] = weight(1, v)

π[v] = 1.

• To implement “find an edge (u, v) of minimum cost such that

u ∈ V ′ and v /∈ V ′”:
v ← Delete-Min(Q)

u← π[v]

• To implement “V ′ ← V ′ ∪ {v}”, we update Q as follows:

for i ∈ Adj[v] do

if i ∈ Q and weight(i, v) < key[i] then

π[i]← v

decrease key[i] to weight(i, v) //need to update the heap//

Complexity:

• Implement Q as a binary min-heap: O(E log V) (worst-case run-

ning time).

• Implement Q as a Fibonacci heap: O(E + V log V) (amortized

running time).

10

Correctness Proof:

A set of edges is said to be promising if it can be expanded to a min-

imum cost spanning tree. (The notion of “promising” is the same as

that of “feasible”.)

Lemma 2 If a tree T is promising and e = (u, v) is an edge of minimum
cost such that u is in T and v is not, then T ∪ {(u, v)} is promising.

Proof. Let T ′min be a minimum spanning tree of G such that T ⊆ T ′min.

We need to show T ∪ {e} is contained in a minimum spanning tree.

• If e ∈ T ′min, then there is nothing to prove—T ∪ {e} is obviously

contained in a minimum spanning tree.

• If e /∈ T ′min, we want to modify T ′min to Tmin such that T ∪ {e} ⊆
Tmin. Since e /∈ T ′min, {e} ∪ T ′min contains a cycle. The cycle

contains e and another edge e′ that has one node in T and the

other node not in T . Since e has the minimum cost (among

all edges that have one end in T and the other end not in T),

cost(e) ≤ cost(e′). Replacing e′ ∈ T ′min by e will result in a span-

ning tree Tmin that contains T ∪{e}, and cost(Tmin) ≤ cost(T ′min).

Therefore, Tmin is a minimum spanning tree, and T ∪ {e} is

promising.

Q.E.D.

Theorem 3 The tree generated by Prim’s algorithm has minimum cost.

Proof. Let T0 = ∅ and Ti (1 ≤ i ≤ n−1) be the tree as of the end of the

ith iteration. T0 is promising. By Lemma 1 and induction, T1, . . . , Tn−1
are all promising. So, Tn−1 is a minimum cost spanning tree. Q.E.D.

11

4.2 Kruskal’s Algorithm

Sort edges by increasing cost

T ← ∅
Let G′ = (V, T), which is a forest

repeat

(u, v)← next edge of the sorted list

if u and v are on different trees of the forest then

T ← T ∪ {(u, v)}
until T has n− 1 edges

Analysis: If we use an array E[1..e] to represent the graph and use

the union-find data structure to represent the forest T , then the time

complexity of Kruskal Algorithm is O(e log n), where e is the number

of edges in the graph.

12

4.3 The union-find data structure

There are N objects numbered 1, 2, . . . , N .

Initial situation:{1}, {2}, . . . , {N}.
We expect to perform a sequence of find and union operations.

Data structure: use an integer array A[1..N] to represent the sets.

procedure init(A)

for i← 1 to N do A[i]← 0

procedure find(x)

i← x

while A[i] > 0 do i← A[i]

return(i)

procedure union(a, b)

case

A[a] < A[b]: A[b]← a //−A[a] > −A[b]//

A[a] > A[b]: A[a]← b //−A[a] < −A[b]//

A[a] = A[b]: A[a]← b, A[b]← A[b]− 1

end

Theorem 4 After an arbitrary sequence of union operations starting
from the the initial situation, a tree containing k nodes will have a height
at most blog kc.

13

5 Single Source Shortest Path

• Problem: Given an undirected, connected, weighted graphG(V,E)

and a node s ∈ V , find a shortest path between s and x for each

x ∈ V . (Assume positive weights.)

• Assume V = {1, 2, . . . , n}.

• Let d(x) denote the shortest distance between s and x.

• Theorem: Suppose s ∈ V ′ ⊆ V . Suppose d(u) is known for

every node u ∈ V ′. Define

f(u, v) = d(u) + length(u, v) for u ∈ V ′ and v ∈ V − V ′.

If f(ū, v̄) is minimum among all f(u, v), u ∈ V ′, v ∈ V −V ′, then

f(ū, v̄) = d(v̄).

• If d(v1) ≤ d(v2) ≤ d(v3) ≤ · · · ≤ d(vn), we will compute shortest

paths for nodes vk in the order of v1, v2, v3, . . . , vn.

• The resulting paths form a spanning tree.

• We will construct such a tree using an algorithm similar to Prim’s.

14

Dijkstra’s Algorithm(G = (V,E), s)

D[s]← 0

Parent[s]← 0

V ′ ← {s}
for i← 1 to n− 1 do

find an edge (u, v) such that u ∈ V ′, v /∈ V ′

and D[u] + length[u, v] is minimum;

D[v]← D[u] + length[u, v];

Parent[v]← u;

V ′ ← V ′ ∪ {v};
endfor

Data Structures:

• The given graph: length[1..n, 1..n].

• Shortest distances: D[1..n], where D[i] = the shortest distance

between s and i. Initially, D[s] = 0.

• Shortest paths: Parent[1..n]. Initially, Parent[s] = 0.

• nearest[1..n], where

nearest[i] =


0 if i ∈ V ′

the node x in V ′ that
minimizes D[x] + length[x, i], if i /∈ V ′

Complexity: O(n2)

15

