Greedy Algorithms

CSE 6331

Reading: Sections 16.1, 16.2, 16.3, Chapter 23.

1 Introduction

Optimization Problem:

Construct a sequence or a set of elements $\left\{x_{1}, \ldots, x_{k}\right\}$ that satisfies given constraints and optimizes a given objective function.

The Greedy Method

for $i \leftarrow 1$ to k do
select an element for x_{i} that "looks" best at the moment

Remarks

- The greedy method does not necessarily yield an optimum solution.
- Once you design a greedy algorithm, you typically need to do one of the following:

1. Prove that your algorithm always generates optimal solutions (if that is the case).
2. Prove that your algorithm always generates near-optimal solutions (especially if the problem is NP-hard).
3. Show by simulation that your algorithm generates good solutions.

- A partial solution is said to be feasible (or promising) if it is contained in an optimum solution. (An optimum solution is of course feasible.)
- A choice x_{i} is said to be correct if the resulting (partial) solution $\left\{x_{1}, \ldots, x_{i}\right\}$ is feasible.
- If every choice made by the greedy algorithm is correct, then the final solution will be optimum.

2 Activity Selection Problem

Problem: Given n intervals $\left(s_{i}, f_{i}\right)$, where $1 \leq i \leq n$, select a maximum number of mutually disjoint intervals.

Greedy Algorithm:

Greedy-Activity-Selector
Sort the intervals such that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
$A \leftarrow \emptyset$
$f \leftarrow-\infty$
for $i \leftarrow 1$ to n
if $f \leq s_{i}$ then
include i in A
$f \leftarrow f_{i}$
return A

Proof of Optimality

Theorem 1 The solution generated by Greedy-Activity-Selector is optiтит.

Proof. Let $A=\left(x_{1}, \ldots, x_{k}\right)$ be the solution generated by the greedy algorithm, where $x_{1}<x_{2}<\cdots<x_{k}$. It suffices to show the following two claims.
(1) A is feasible.
(2) No more interval can be added to A without violating the "mutually disjoint" property.

Claim (2) is obvious, and we will prove claim (1) by showing that for any $i, 0 \leq i \leq k$, the (partial) solution $A_{i}=\left(x_{1}, \ldots, x_{i}\right)$ is feasible. (A_{i} is feasible if it is the prefix of an optimum solution.)

Induction Base: $A_{0}=\emptyset$ is obviously feasible.
Induction Hypothesis: Assume A_{i} is feasible, where $0 \leq i<k$.
Induction Step: We need to show that A_{i+1} is feasible. By the induction hypothesis, A_{i} is a prefix of some optimum solution, say $B=\left(x_{1}, \ldots, x_{i}, y_{i+1}, \ldots, y_{m}\right)$.

- If $x_{i+1}=y_{i+1}$, then A_{i+1} is a prefix of B, and so feasible.
- If $x_{i+1} \neq y_{i+1}$, then $f_{x_{i+1}} \leq f_{y_{i+1}}$, i.e.,
finish time of interval $x_{i+1} \leq$ finish time of interval y_{i+1}.
Substituting x_{i+1} for y_{i+1} in B yields an optimum solution that contains A_{i+1}. So, A_{i+1} is feasible.
Q.E.D.

3 Huffman Codes

Problem: Given a set of n characters, C, with each character $c \in$ C associated with a frequency $f(c)$, we want to find a binary code, $\operatorname{code}(c)$, for each character $c \in C$, such that

1. no code is a prefix of some other code, and
2. $\sum_{c \in C} f(c) \cdot|\operatorname{code}(c)|$ is minimum, where $|\operatorname{code}(c)|$ denotes the length of code (c).
(That is, given n nodes with each node associated with a frequency, use these n nodes as leaves and construct a binary tree T such that $\sum f(x) \cdot \operatorname{depth}(x)$ is minimum, where x ranges over all leaves of T and depth (x) means the depth of x in T. Note that such a tree must be full, every non-leaf node having two children.)

Greedy Algorithm:

Regard C as a forest with $|C|$ single-node trees repeat
merge two trees with least frequencies
until it becomes a single tree

Implementation:

```
Huffman(C)
n\leftarrow|C|
initialize a priority queue, Q, to contain the n elements in C
for}i\leftarrow1\mathrm{ to }n-1\mathrm{ do
    z \leftarrow \text { Get-A-New-Node()}
    left[z]}\leftarrowx\leftarrow\mathrm{ Delete-Min (Q)
    right[z]}\leftarrowy\leftarrow\mathrm{ Delete-Min (Q)
    f[z]}\leftarrowf[x]+f[y
    insert z to Q
return Q
```

Time Complexity: $O(n \log n)$.

Proof of Correctness:

The algorithm can be rewritten as:

```
Huffman(C)
    if }|C|=1\mathrm{ then return a single-node tree;
    let }x\mathrm{ and }y\mathrm{ be the two characters in C with least frequencies;
    let }\mp@subsup{C}{}{\prime}=C\cup{z}-{x,y}\mathrm{ , where z}\not\inC\mathrm{ and }f(z)=f(x)+f(y)
    T'}\leftarrow\operatorname{Huffman}(\mp@subsup{C}{}{\prime})
```



```
    return(T).
```

Lemma 1 If T^{\prime} is optimal for C^{\prime}, then T is optimal for C.

Proof. Assume T^{\prime} is optimal for C^{\prime}. First observe that

$$
\operatorname{Cost}(T)=\operatorname{Cost}\left(T^{\prime}\right)+f(x)+f(y)
$$

To show T optimal, we let α be any optimal binary tree for C, and show $\operatorname{Cost}(T) \leq \operatorname{Cost}(\alpha)$.

Claim: We can modify α so that x and y are children of the same node, without increasing its cost.

Let β be the resulting tree, which has the same cost as α. Let z denote the common parent of x and y. Let β^{\prime} be the tree that is obtained from β by removing x and y from the tree. β^{\prime} is a binary tree for C^{\prime}. We have the relation

$$
\operatorname{Cost}(\beta)=\operatorname{Cost}\left(\beta^{\prime}\right)+f(x)+f(y) .
$$

Since T^{\prime} is optimal for C^{\prime},

$$
\operatorname{Cost}\left(T^{\prime}\right) \leq \operatorname{Cost}\left(\beta^{\prime}\right)
$$

which implies

$$
\operatorname{Cost}(T) \leq \operatorname{Cost}(\beta)=\operatorname{Cost}(\alpha) .
$$

Q.E.D.

Theorem 2 The Huffman algorithm produces an optimal prefix code.
Proof. By induction on $|C|$.
I.B.: If $|C|=1$, it is trivial.
I.H.: Suppose that the Huffman code is optimal whenever $|C| \leq$ $n-1$.
I.S.: Now suppose that $|C|=n$. Let x and y be the two characters with least frequencies in C. Let C^{\prime} be the alphabet that is obtained from C by replacing x and y with a new character z, with $f(z)=f(x)+f(y) .\left|C^{\prime}\right|=n-1$. By the induction hypothesis, the Huffman algorithm produces an optimal prefix code for C^{\prime}. Let T^{\prime} be the binary tree representing the Huffman code for C^{\prime}. The binary tree representing the Huffman code for C is simply the the tree T^{\prime} with two nodes x and y added to it as children of z. By Lemma 1, the Huffman code is optimal.
Q.E.D.

4 Minimum Spanning Trees

Problem: Given a connected weighted graph $G=(V, E)$, find a spanning tree of minimum cost.

Assume $V=\{1,2, \ldots, n\}$.

4.1 Prim's Algorithm

```
function \(\operatorname{Prim}(G=(V, E))\)
\(E^{\prime} \leftarrow \emptyset\)
\(V^{\prime} \leftarrow\{1\}\)
for \(i \leftarrow 1\) to \(n-1\) do
    find an edge \((u, v)\) of minimum cost such that \(u \in V^{\prime}\) and \(v \notin V^{\prime}\)
    \(E^{\prime} \leftarrow E^{\prime} \cup\{(u, v)\}\)
    \(V^{\prime} \leftarrow V^{\prime} \cup\{v\}\)
\(\operatorname{return}\left(T=\left(V^{\prime}, E^{\prime}\right)\right)\)
```


Implementation:

- The given graph is represented by a two-dimensional array $\operatorname{cost}[1 . . n, 1 . . n]$.
- To represent V^{\prime}, we use an array called nearest[1..n], defined as below:

$$
\text { nearest }[i]= \begin{cases}0 & \text { if } i \in V^{\prime} \\ \text { the node in } V^{\prime} \text { that is "nearest" to } i, & \text { if } i \notin V^{\prime}\end{cases}
$$

- Initialization of nearest:
nearest $(1)=0$;
nearest $(i)=1$ for $i \neq 1$.
- To implement "find an edge (u, v) of minimum cost such that $u \in V^{\prime}$ and $v \notin V^{\prime \prime \prime}$:

```
\(\min \leftarrow \infty\)
for \(i \leftarrow 1\) to \(n\) do
    if nearest \((i) \neq 0\) and \(\operatorname{cost}(i\), nearest \((i))<\min\) then
            \(\min \leftarrow \operatorname{cost}(i\), nearest \((i))\)
            \(v \leftarrow i\)
            \(u \leftarrow\) nearest \((i)\)
```

- To implement " $V^{\prime} \leftarrow V^{\prime} \cup\{v\}$ ", we update nearest as follows:

```
nearest \((v) \leftarrow 0\)
for \(i \leftarrow 1\) to \(n\) do
    if nearest \((i) \neq 0\) and \(\operatorname{cost}(i, v)<\operatorname{cost}(i\), nearest \((i))\) then
        nearest \((i) \leftarrow v\)
```

Complexity: $O\left(n^{2}\right)$

Alternative Implementations:

- Let the given graph be represented by an array of adjacency lists Adj [1..n].
- To represent $V-V^{\prime}$, we use a min-priority queue Q. Each node $v \in Q$ has two attributes: $k e y[v]$ and $\pi[v]$, where $\pi[v]$ has the same meaning as nearest $[v]$ and $\operatorname{key}[v]=\operatorname{weight}(v, \pi[v])$.
- Initialization of Q : let Q contain all nodes in $V-\{1\}$ with
$\operatorname{key}[v]=\operatorname{weight}(1, v)$
$\pi[v]=1$.
- To implement "find an edge (u, v) of minimum cost such that $u \in V^{\prime}$ and $v \notin V^{\prime \prime \prime}$:
$v \leftarrow$ Delete-Min (Q)
$u \leftarrow \pi[v]$
- To implement " $V^{\prime} \leftarrow V^{\prime} \cup\{v\}$ ", we update Q as follows:

```
for \(i \in \operatorname{Adj}[v]\) do
    if \(i \in Q\) and weight \((i, v)<\operatorname{key}[i]\) then
            \(\pi[i] \leftarrow v\)
            decrease key[i] to weight \((i, v)\) //need to update the heap//
```


Complexity:

- Implement Q as a binary min-heap: $O(E \log V)$ (worst-case running time).
- Implement Q as a Fibonacci heap: $O(E+V \log V)$ (amortized running time).

Correctness Proof:

A set of edges is said to be promising if it can be expanded to a minimum cost spanning tree. (The notion of "promising" is the same as that of "feasible".)

Lemma 2 If a tree T is promising and $e=(u, v)$ is an edge of minimum cost such that u is in T and v is not, then $T \cup\{(u, v)\}$ is promising.

Proof. Let $T_{\min }^{\prime}$ be a minimum spanning tree of G such that $T \subseteq T_{\min }^{\prime}$. We need to show $T \cup\{e\}$ is contained in a minimum spanning tree.

- If $e \in T_{\min }^{\prime}$, then there is nothing to prove- $T \cup\{e\}$ is obviously contained in a minimum spanning tree.
- If $e \notin T_{\min }^{\prime}$, we want to modify $T_{\min }^{\prime}$ to $T_{\text {min }}$ such that $T \cup\{e\} \subseteq$ $T_{\text {min }}$. Since $e \notin T_{\text {min }}^{\prime},\{e\} \cup T_{\text {min }}^{\prime}$ contains a cycle. The cycle contains e and another edge e^{\prime} that has one node in T and the other node not in T. Since e has the minimum cost (among all edges that have one end in T and the other end not in T), $\operatorname{cost}(e) \leq \operatorname{cost}\left(e^{\prime}\right)$. Replacing $e^{\prime} \in T_{\text {min }}^{\prime}$ by e will result in a spanning tree $T_{\text {min }}$ that contains $T \cup\{e\}$, and $\operatorname{cost}\left(T_{\text {min }}\right) \leq \operatorname{cost}\left(T_{\text {min }}^{\prime}\right)$. Therefore, $T_{\min }$ is a minimum spanning tree, and $T \cup\{e\}$ is promising.

Q.E.D.

Theorem 3 The tree generated by Prim's algorithm has minimum cost.
Proof. Let $T_{0}=\emptyset$ and $T_{i}(1 \leq i \leq n-1)$ be the tree as of the end of the i th iteration. T_{0} is promising. By Lemma 1 and induction, T_{1}, \ldots, T_{n-1} are all promising. So, T_{n-1} is a minimum cost spanning tree. Q.E.D.

4.2 Kruskal's Algorithm

Sort edges by increasing cost
$T \leftarrow \emptyset$
Let $G^{\prime}=(V, T)$, which is a forest
repeat
$(u, v) \leftarrow$ next edge of the sorted list
if u and v are on different trees of the forest then
$T \leftarrow T \cup\{(u, v)\}$
until T has $n-1$ edges

Analysis: If we use an array $E[1 . . e]$ to represent the graph and use the union-find data structure to represent the forest T, then the time complexity of Kruskal Algorithm is $O(e \log n)$, where e is the number of edges in the graph.

4.3 The union-find data structure

There are N objects numbered $1,2, \ldots, N$.
Initial situation: $\{1\},\{2\}, \ldots,\{N\}$.
We expect to perform a sequence of find and union operations.
Data structure: use an integer array $A[1 . . N]$ to represent the sets.

```
procedure init \((A)\)
    for \(i \leftarrow 1\) to \(N\) do \(A[i] \leftarrow 0\)
procedure find \((x)\)
    \(i \leftarrow x\)
    while \(A[i]>0\) do \(i \leftarrow A[i]\)
    return \((i)\)
procedure union \((a, b)\)
    case
        \(A[a]<A[b]: A[b] \leftarrow a \quad / /-A[a]>-A[b] / /\)
        \(A[a]>A[b]: A[a] \leftarrow b \quad / /-A[a]<-A[b] / /\)
        \(A[a]=A[b]: A[a] \leftarrow b, A[b] \leftarrow A[b]-1\)
    end
```

Theorem 4 After an arbitrary sequence of union operations starting from the the initial situation, a tree containing k nodes will have a height at most $\lfloor\log k\rfloor$.

5 Single Source Shortest Path

- Problem: Given an undirected, connected, weighted graph $G(V, E)$ and a node $s \in V$, find a shortest path between s and x for each $x \in V$. (Assume positive weights.)
- Assume $V=\{1,2, \ldots, n\}$.
- Let $d(x)$ denote the shortest distance between s and x.
- Theorem: Suppose $s \in V^{\prime} \subseteq V$. Suppose $d(u)$ is known for every node $u \in V^{\prime}$. Define

$$
f(u, v)=d(u)+\text { length }(u, v) \text { for } u \in V^{\prime} \text { and } v \in V-V^{\prime} .
$$

If $f(\bar{u}, \bar{v})$ is minimum among all $f(u, v), u \in V^{\prime}, v \in V-V^{\prime}$, then $f(\bar{u}, \bar{v})=d(\bar{v})$.

- If $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq d\left(v_{3}\right) \leq \cdots \leq d\left(v_{n}\right)$, we will compute shortest paths for nodes v_{k} in the order of $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$.
- The resulting paths form a spanning tree.
- We will construct such a tree using an algorithm similar to Prim's.

```
Dijkstra's Algorithm \((G=(V, E), s)\)
    \(D[s] \leftarrow 0\)
    Parent \([s] \leftarrow 0\)
    \(V^{\prime} \leftarrow\{s\}\)
    for \(i \leftarrow 1\) to \(n-1\) do
        find an edge \((u, v)\) such that \(u \in V^{\prime}, v \notin V^{\prime}\)
        and \(D[u]+\) length \([u, v]\) is minimum;
        \(D[v] \leftarrow D[u]+\) length \([u, v] ;\)
        Parent \([v] \leftarrow u\);
        \(V^{\prime} \leftarrow V^{\prime} \cup\{v\} ;\)
    endfor
```


Data Structures:

- The given graph: length[1..n, 1..n].
- Shortest distances: $D[1 . . n]$, where $D[i]=$ the shortest distance between s and i. Initially, $D[s]=0$.
- Shortest paths: Parent[1..n]. Initially, Parent $[s]=0$.
- nearest $[1 . . n]$, where

$$
\text { nearest }[i]= \begin{cases}0 & \text { if } i \in V^{\prime} \\
\begin{array}{ll}
\text { the node } x \text { in } V^{\prime} \text { that } \\
\text { minimizes } D[x]+\text { length }[x, i], & \text { if } i \notin V^{\prime}
\end{array}, \$ \text {. }\end{cases}
$$

Complexity: $O\left(n^{2}\right)$

