Greedy Algorithms

CSE 6331

Reading: Sections 16.1, 16.2, 16.3, Chapter 23.

1 Introduction

Optimization Problem:
Construct a sequence or a set of elements {xy,...,z;} that satisfies
given constraints and optimizes a given objective function.

The Greedy Method

fori < 1to k do
select an element for z; that “looks” best at the moment

Remarks

e The greedy method does not necessarily yield an optimum solu-
tion.

e Once you design a greedy algorithm, you typically need to do
one of the following:

1. Prove that your algorithm always generates optimal solu-
tions (if that is the case).

2. Prove that your algorithm always generates near-optimal
solutions (especially if the problem is NP-hard).

3. Show by simulation that your algorithm generates good
solutions.

e A partial solution is said to be feasible (or promising) if it is
contained in an optimum solution. (An optimum solution is of
course feasible.)

e A choice z; is said to be correct if the resulting (partial) solution
{z1,...,x;} is feasible.

e If every choice made by the greedy algorithm is correct, then
the final solution will be optimum.

2 Activity Selection Problem

Problem: Given n intervals (s;, f;), where 1 < i < n, select a maxi-

mum number of mutually disjoint intervals.
Greedy Algorithm:

Greedy-Activity-Selector
Sort the intervals such that f; < fo < ... < f,
A+
f+ —o0
fori< 1ton
if f < s, then
include 7 in A
J < fi

return A

Proof of Optimality

Theorem 1 The solution generated by Greedy-Activity-Selector is opti-
mum.

Proof. Let A = (z1,...,x;) be the solution generated by the greedy
algorithm, where z; < x5 < - -+ < x;. It suffices to show the following
two claims.

(1) A is feasible.

(2) No more interval can be added to A without violating the “mu-
tually disjoint” property.

Claim (2) is obvious, and we will prove claim (1) by showing that
for any i, 0 < i < k, the (partial) solution A; = (x4, ...,x;) is feasible.
(4, is feasible if it is the prefix of an optimum solution.)

Induction Base: A, = () is obviously feasible.

Induction Hypothesis: Assume A; is feasible, where 0 < i < k.

Induction Step: We need to show that A; ; is feasible. By the
induction hypothesis, A; is a prefix of some optimum solution, say

B = (5171, e Ty Yit 1y - - - 7ym)
o If ;.1 =vy;,1, then A, is a prefix of B, and so feasible.
o If Tit1 7£ Yit+15 then fxiJrl < fyi+1, i.e.,

finish time of interval x;,; < finish time of interval v, ;.

Substituting z;,; for y;.; in B yields an optimum solution that
contains A; ;. So, A, is feasible.

Q.E.D.

3 Huffman Codes

Problem: Given a set of n characters, C, with each character ¢ €
C' associated with a frequency f(c), we want to find a binary code,
code(c), for each character ¢ € C, such that

1. no code is a prefix of some other code, and

2. Y .ec f(e) - |code(c)| is minimum, where |code(c)| denotes the
length of code(c).

(That is, given n nodes with each node associated with a frequency,
use these n nodes as leaves and construct a binary tree 7" such that
> f(z)-depth(x) is minimum, where = ranges over all leaves of 7" and
depth(z) means the depth of x in 7. Note that such a tree must be
full, every non-leaf node having two children.)

Greedy Algorithm:

Regard C as a forest with |C| single-node trees
repeat

merge two trees with least frequencies
until it becomes a single tree

Implementation:

Huffman(C)
n <« |C|
initialize a priority queue, (), to contain the n elements in C
fori< 1ton—1do
z + Get-A-New-Node()
left[z] < = < Delete-Min(Q)
right[z] < y < Delete-Min(Q)
flz] & flal + fly]
insert z to ()
return)

Time Complexity: O(nlogn).

Proof of Correctness:

The algorithm can be rewritten as:

Huffman(C)
if |C|=1 then return a single-node tree;
let = and y be the two characters in C' with least frequencies;
let C"=CU{z} — {x,y}, where 2 ¢ C and f(z) = f(x) + f(y);
T" < Huffman(C’);
T «+ T" with two children x, y added to z;
return(7).

Lemma 1 If 1" is optimal for C’, then T is optimal for C.
Proof. Assume 7" is optimal for C". First observe that
Cost(T) = Cost(T") + f(x) + f(y).

To show T" optimal, we let « be any optimal binary tree for C, and
show Cost(T') < Cost(a).

Claim: We can modify « so that = and y are children of the same
node, without increasing its cost.

Let 8 be the resulting tree, which has the same cost as a. Let
z denote the common parent of = and y. Let 3’ be the tree that is
obtained from [by removing = and y from the tree. /' is a binary tree
for C’". We have the relation

Cost(B) = Cost(f') + f(x) + f(y)-
Since 7" is optimal for C’,
Cost(T") < Cost(f)

which implies
Cost(T) < Cost(f) = Cost(a).

Q.E.D.

Theorem 2 The Huffman algorithm produces an optimal prefix code.

Proof. By induction on |C/|.

IB.: If |C] = 1, it is trivial.

LH.: Suppose that the Huffman code is optimal whenever |C| <
n — 1.

I.S.: Now suppose that |C'| = n. Let and y be the two charac-
ters with least frequencies in C'. Let C’ be the alphabet that is ob-
tained from C' by replacing + and y with a new character z, with
f(z) = f(x) + f(y). |C'| = n — 1. By the induction hypothesis, the
Huffman algorithm produces an optimal prefix code for C’. Let 7" be
the binary tree representing the Huffman code for C’. The binary tree
representing the Huffman code for C is simply the the tree 7" with
two nodes = and y added to it as children of z. By Lemma 1, the
Huffman code is optimal. Q.E.D.

4 Minimum Spanning Trees

Problem: Given a connected weighted graph G = (V, F), find a span-
ning tree of minimum cost.

Assume V = {1,2,... n}.

4.1 Prim’s Algorithm

function Prim(G = (V, E))

E' 0

V'« {1}

for i+ 1ton—1do
find an edge (u,v) of minimum cost such that w € V' and v ¢ V'
E' + E' U{(u,v)}
V'« V'U{v}

return(7 = (V', E'))

Implementation:

e The given graph is represented by a two-dimensional array cost[1..n, 1..n].

e To represent VV/, we use an array called nearest[1..n], defined as
below:
0 ifi eV’

nearest|i| = . — ” C g
] { the node in V' that is “nearest” to i, ifi ¢ V"’

e Initialization of nearest:
nearest(1) = 0;
nearest(i) = 1 for i # 1.

e To implement “find an edge (u,v) of minimum cost such that
ueV' andov ¢ V'

MmN <— 00
for i+ 1tondo
if nearest(i) # 0 and cost(i, nearest(i)) < min then
min <— cost(i, nearest(i))
()

u < nearest(i)

e To implement “V’ «<— V' U {v}”, we update nearest as follows:

nearest(v) < 0
fori < 1tondo
if nearest(i) # 0 and cost(i,v) < cost(i, nearest(i)) then

nearest(i) < v

Complexity: O(n?)

Alternative Implementations:

Let the given graph be represented by an array of adjacency lists
Adj[1..n).

To represent V' — V', we use a min-priority queue (). Each node
v € @ has two attributes: key[v] and w[v], where 7[v] has the

same meaning as nearest[v] and key[v] = weight(v, m[v]).

Initialization of @): let () contain all nodes in V' — {1} with
key[v] = weight(1,v)
w[v] = 1.

To implement “find an edge (u,v) of minimum cost such that
ue V' andv ¢ V'™

v < Delete-Min(Q)

u < 7[v]

To implement “V’ < V" U {v}”, we update () as follows:

for i € Adj[v] do
if i € Q and weight(i,v) < keyli] then
7[i] + v
decrease key[i] to weight(i,v) //need to update the heap//

Complexity:

Implement () as a binary min-heap: O(E'log V') (worst-case run-
ning time).

Implement) as a Fibonacci heap: O(F + V'logV') (amortized
running time).

10

Correctness Proof:

A set of edges is said to be promising if it can be expanded to a min-
imum cost spanning tree. (The notion of “promising” is the same as
that of “feasible”.)

Lemma 2 Ifa tree T is promising and e = (u, v) is an edge of minimum

cost such that u is in T' and v is not, then T'U {(u, v)} is promising.

Proof. Let 7"

min

be a minimum spanning tree of G such that 7" C T

min*

We need to show T'U {e} is contained in a minimum spanning tree.

o IfecT

min?

then there is nothing to prove—7" U {e} is obviously
contained in a minimum spanning tree.

o Ife ¢ T . , we want to modify T/,
Tmin. Since e ¢ T, {e} UT.
contains e and another edge ¢’ that has one node in 7" and the

i t0 Thnin such that T U {e} C
., contains a cycle. The cycle
other node not in 7. Since e has the minimum cost (among
all edges that have one end in 7" and the other end not in 7',
cost(e) < cost(e’). Replacing ¢/ € T! . by e will result in a span-
ning tree 7T}, that contains 7'U{e}, and cost(Tinin) < cost(T) ;).
Therefore, T, is a minimum spanning tree, and 7' U {e} is
promising.

Q.E.D.

Theorem 3 The tree generated by Prim’s algorithm has minimum cost.

Proof. Let T;, =) and T} (1 < ¢ < n—1) be the tree as of the end of the
ith iteration. Tj is promising. By Lemma 1 and induction, 73, ...,7},_

are all promising. So, 7,,_; is a minimum cost spanning tree. Q.E.D.

11

4.2 Kruskal’s Algorithm

Sort edges by increasing cost
T <+ ()
Let G’ = (V,T), which is a forest
repeat
(u,v) < next edge of the sorted list
if v and v are on different trees of the forest then
T+ TU{(u,v)}
until 7" has n — 1 edges

Analysis: If we use an array E[l..e] to represent the graph and use
the union-find data structure to represent the forest 7', then the time
complexity of Kruskal Algorithm is O(elogn), where e is the number
of edges in the graph.

12

4.3 The union-find data structure

There are N objects numbered 1,2,..., N.

Initial situation: {1}, {2},...,{N}.

We expect to perform a sequence of find and union operations.
Data structure: use an integer array A[l..N] to represent the sets.

procedure init(A)
for i<+ 1to N do Afi] < 0

procedure find(z)
14T
while A[i] > 0 do i < Al
return(7)

procedure union(a, b)

case
Ala] < Ap): Al < a //—Ala] > —A[b]//
Ala) > A[b): Ala] « b //—Ala] < —A[b]//

Ala] = A[b): Ala] < b, A[b] « A[p] — 1

Theorem 4 After an arbitrary sequence of union operations starting
from the the initial situation, a tree containing k nodes will have a height
at most |log k|.

13

5 Single Source Shortest Path

e Problem: Given an undirected, connected, weighted graph G(V, F)
and a node s € V, find a shortest path between s and z for each
x € V. (Assume positive weights.)

e Assume V = {1,2,...,n}.
e Let d(z) denote the shortest distance between s and .

e Theorem: Suppose s € V/ C V. Suppose d(u) is known for
every node u € V’. Define

f(u,v) = d(u) + length(u,v) foru e V'andv e V - V".
g

If f(@,v) is minimum among all f(u,v),u € V' ;v € V —V’, then
f(u,0) = d(v).

o If d(vy) < d(ve) < d(vs) < -+ < d(vy,), we will compute shortest
paths for nodes v, in the order of vy, vo, v3, ..., v,.

e The resulting paths form a spanning tree.

e We will construct such a tree using an algorithm similar to Prim’s.

14

Dijkstra’s Algorithm(G = (V, E), s)

Dis] <0

Parent[s] < 0

V' {s}

for i< 1ton—1do
find an edge (u,v) such thatu € V', v ¢ V'

and D[u] + lengthlu, v] is minimum;

D[v] <= D[u] + length[u, v];
Parent[v] < u;
V' V'u{v};

endfor

Data Structures:
e The given graph: length[l..n,1..n].

e Shortest distances: D|1..n], where D[i] = the shortest distance
between s and :. Initially, D[s] = 0.

e Shortest paths: Parent[1..n]. Initially, Parent[s| = 0.
e nearest[l..n|, where
0 ifieV’
nearest(i] =4 the node « in V' that

minimizes D|x] + length[z,i], ifi¢ V'

Complexity: O(n?)

15

