Dynamic Programming

Reading: CLRS Chapter 15 & Section 25.2

CSE 6331: Algorithms
Steve Lal

Optimization Problems

Problems that can be solved by dynamic programming
are typically optimization problems.

Optimization problems: Construct a set or a sequence of
of elements {y,, ..., y,} thatsatisfies a given constraint

and optimizes a given objective function.
The closest pair problem Is an optimization problem.

The convex hull problem is an optimization problem.

Problems and Subproblems

Consider the closest pair problem:
Given a set of n points, A={p,, p,, P,..., P, }, find a
closest pair in A.

Let P(1, J) denote the problem of finding a closest pair

in A, ={p;, Py P |, Where 1<i< j<n,

We have a class of similar problems, indexed by (i, J).

The original problem is P(1,n).

Dynamic Programming: basic ideas

Problem: construct an optimal solution (x, ..., X,).

There are several options for x,, say, op,, op,, ..., Op,.
Each option op; leads to a subproblem P;: given x, =op;,

find an optimal solution (X, =0p;, X,;, ..., X,).
The best of these optimal solutions, 1.e.,
Best of {(x1 = 0D}, Xy <o X)11] sd}

IS an optimal solution to the original problem.
DP works only if the P, Is a problem similar to the

original problem.

Dynamic Programming: basic ideas

Apply the same reasoning to each subproblem,
sub-subproblem, sub-sub-subproblem, and so on.

Have a tree of the original problem (root) and subproblems.
Dynamic programming works when these subproblems
have many duplicates, are of the same type, and we can
describe them using, typically, one or two parameters.

The tree of problem/subproblems (which is of exponential
size) now condensed to a smaller, polynomial-size graph.
Now solve the subproblems from the "leaves".

Design a Dynamic Programming Algorithm

1. View the problem as constructing an opt. seq. (x1 X,)

2. There are several options for x, say, op,, op,, ..., Op,.
Each option op; leads to a subproblem.

3. Denote each problem/subproblem by a small number of
parameters, the fewer the better. E.g., P(i, J),1<1<)<n.

4. Define the objective function to be optimized using these
parameter(s). E.g., f (i, j) = the optimal value of P(i, J).

5. Formulate a recurrence relation.

6. Determine the boundary condition and the goal.

7. Implement the algorithm.

Shortest Path

e Problem: Let G =(V,E) be a directed acyclic graph (DAG).
Let G be represented by a matrix:

(length of edge (i, j) if (i, j)eE

d(@, j)=4 0 ifi=]

0 otherwise

\

Find a shortest path from a given node u to a given node v.

Dynamic Programming Solution

1. View the problem as constructing an opt. seq. (X;,..., X,).
Here we want to find a sequence of nodes (x,...,,)

such that (u,x,,...,%,,V) is a shortest path from u to v.

2. There are several options for x,, say, op,, 0p,, ..., Op,.
Each option op; leads to a subproblem.
- Options for x, are the nodes x which have an edge from u.

 The subproblem corresponding to option X Is:
Find a shortest path from x to v.

3. Denote each problem/subproblem by a small number
of parameters, the fewer the better.
4. Define the objective function to be optimized using these
parameter(s).
 These two steps are usually done simultaneously.
o Let f (x) denote the shortest distance from x to v.

5. Formulate a recurrence relation.
f(x)=min{d(x, y)+ f(y):(x, y) e E}, if x=v
and out-degree(x) = O.

6. Determine the boundary condition.

f(x):{ 0 ifx=v

oo If X #Vv and out-degree(x) =0

7. What's the goal (objective)?
 Our goal Is to compute f (u).

« Once we know how to compute f (u), it will be easy
to construct a shortest path from u to v.

- |.e., we compute the shortest distance from u to v,
and then construct a path having that distance.

8. Implement the algorithm.

Computing f (u) (version 1)

function shortest(x)
{lcomputing f (x)//
global d[1..n, 1..n]
If X =V then return (0)
elseif out-degree(x) =0 then return (o)

else return (min{d(x, y)+shortest(y):(x, y) e E})
Initial call: shortest(u)
Question: What's the worst-case running time?

Computing f (u) (version 2)

function shortest(x)
[/computing f (x)//
global d[1..n, 1..n], F[1..n], Next[1..n]
If F[x]=-1 then
If x=v then F[x]« 0
elseif out-degree(x) =0 then F[x] « o
else
F[x] <« min{d(x, y)+shortest(y):(x, y) € E}
Next[x] «<— the node y that yielded the min
return(F[x])

Main Program

procedure shortest-path(u, v)
// find a shortest path fromu to v //
global d[1..n, 1..n], F[1..n], Next[1..n]
Initialize Next[v] <0
Initialize F[1..n] « -1
SD <« shortest(u) //shortest distance from u to v//
If SD <o then //print the shortest path//
K<« U

while k =0 do {write(k); k < Next[k]!

Time

Complexity

Number of calls to shortest: O(|E|)
e Is itQ(\ED or@(\E\)?

How much time Is spent on shortest(x) for any x?
- The first call: O(1) + time to find Xx's outgoing edges
 Subsequent calls: O(1) per call

The over-all worst-case running time of the algorithm is

. o(
. Ift
. Ift

E\)-O(l) + time to find all nodes' outgoing edges

ne graph Is represend by an adjacency matrix: O(MZ)

e graph is represend by adjacency lists: O(V|+|E|)

Forward vs Backward approach

15

Matrix-chain Multiplication

Problem: Given n matrices M;,M,, ... ,M_, where M. Is
of dimensions d._, xd., we want to compute the product
M, xM, x---x M_ In a least expensive order, assuming

that the cost for multiplying an a x b matrix by a b x ¢ matrix
IS abc.

Example: want to compute Ax B xC, where
Ai1s10x2, Bis2x5, Cis5x10.

« Cost of computing (Ax B) xC is 100+ 500 = 600
« Cost of computing Ax (B xC) is 200+100 = 300

Dynamic Programming Solution

We want to determine an optimal (x,,..

X, means which two matrices to multip
X, means which two matrices to multip
X._, means which two matrices to multi

Consider x._,. (Why not x,?)

There are n—1 choices for x__,:

., X,), where
y first,
y next, and

oly lastly.

(M, x--x M)x(M,,;x---x M), wherel<k <n-1.

A general problem/subproblem is to multiply M, x---x M

j ’

which can be naturally denoted by P(i,).

Dynamic Programming Solution

et Cost(i, J) denote the minimum cost for computing
M. x.--x I\/Ij.

Recurrence relation:
Cost(i, j) = min {Cost(i, k) + Cost(k +1, j) +d, ,d,d,}|

I <k<j
forl<i< j<n.
Boundary condition: Cost(i, 1)=0 for 1<i<n.

Goal: Cost(1, n)

Algorithm (recursive version)

function MinCost(i, j)
global d[0..n], Cost[1..n, 1..n], Cut[1..n, 1..n]
/linitially, Costl[i, j]« 0 ifi= j, and Cost[i, j]« -1ifi= j/
If Cost[i, j] <0 then
Cost[i, j] < min { MinCost(i, k) + MinCost(k +1, j)

I < k<]
+d[i—1]-d[k]-d[]] }
Cut[l, j] « the index k that gave the minimum in the last
statement
return (Costl[i, j])

Algorithm (non-recursive version)

procedure MinCost
global d[0..n], Cost[1..n, 1..n], Cut[1..n, 1..n]
Initialize Cost|i, 1]« 0for1<i<n
fori<—n-1toldo
forj<«1+1tondo

Cost[i, j]« .T&D,{ Cost(i, k) + Cost(k +1, j)

+ d[i—1]-d[k]-d[j] }
Cutl[i, J] « the index k that gave the minimum in the last
statement

Computing M, x---xM,

function MatrixProduct(i, J)

/I Return the product M; x---x M //
global Cut[l..n, 1..n], M, ... M
If 1 = J then return(M.)

else

kK < Cut(i, j]

return (MatrixProduct(i, k) x MatrixProduct(k +1, j))

n

Time complexity: ®(n®)

21

Paragraphing

Problem: Typeset a sequence of words w,,w,, ... ,W,
Into a paragraph with minimum cost (penalty).
Words: w,W,, ... ,W,.
w|: length of w..
L: length of each line.
b : Ideal width of space between two words.
£ minimum required space between words.
b': actual width of space between words
If the line is right justified.

<L foralll.

Assume that |w;|+ & +|w,,;

If words w;,w,_,, ...,w; are typeset as a line, where j = n,
the value of b’ for that line is b’ =(L- "I [} /(j~i)

and the penalty Is defined as:

b'—Db|-(j—1) Ifb' >
Cost(i, jy = | P11 b=
o0 Ifb' <¢
Right justification is not needed for the last line. So the
width of space for setting w;,w,,;, ...,w; whenj=n1s

min(b, b"), and the penalty is

o' =b|-(j—i) ife<b <b
Cost(i, J) =<0 Ifb<b

o0 Ifb' <¢

Longest Common Subsequence

Problem: Given two sequences
A=(a, a,, ..., a,)
B=(b, b,, ..., b))

find a longest common subsequence of A and B.

To solve it by dynamic programming, we view the problem
as finding an optimal sequence (xl,) xk) and ask:
what choices are there for x,? (Or what choices are there
forx, ?)

Approach 1 (not efficient)

View (X, X,, ...) as a subsequence of A
So, the choices for x, are a,, a,, ..., a

n n

Let L(i, J) denote the length of a longest common subseq
of A=(a, a.,, ..., &) and B, =(b;, by, ..., b,).
Let o(k, J) be the index of the first character in B; that
IS equal to a,, or n+1 if no such character.

1+ max {L(k+1, p(k, j)+1)!

I<k<n

Recurrence: L(I, J) =<9 ok j)=n
0 1f the set for the max Is empty
Boundary condition: L(n+1, j)=L(I,n+1) =0, 1<1, J<n+1.

Running time: ©(n®)+0(n°)=0(n%)

Approach 2 (not efficient)

View (X, X,, ...) as a sequence of 0/1, where x;
Indicates whether or not to include a..
The choices for each x. are 0 and 1.

Let L(i, J) denote the length of a longest common subseq
of A=(a, a,, ..., a,) and B, =(b;, b,,,, ..., b,).
Recurrence:

1+ L(i+1 o, j)+1
I max- _(| p(i, J)+1) if o(i, j)<n
L(3i, j) =+ L(i+1 j)
L(i+1) otherwise

Running time: ©(n*)+0(n?)

Algorithm (non-recursive)

procedure Compute-Array-L
global L[1..n+1, 1..n+1], ¢[1..n, 1..n]
Initialize L[i, n+1] <« 0, L[n+1, J]« 0 forl<i, j<n+1
compute ¢[1..n, 1..n]
fori<—ntoldo
forj<—ntoldo
If o(1, J) <n then
L1, J] < max{1+ L[i+1, (i, j)+1], L[i+1, j]}
else
L[, j]] < L[i+1, |]

Algorithm (recursive)

procedure Longest(l, j)

//print the longest common subsequence//
/fassume L[1..n+1, 1..n+1] has been computed//
global L[1..n+1, 1..n+1]

if L[i, j1=L[i+1, j] then
Longest(i+1, j)

else
Print (a,)
Longest(i+1, (i, j)+1)

Initial call: Longest(1,1)

Approach 3

View (X, X,, ...) as a sequence of decisions, where

X, Indicates whether to

« Includea, =b, (ifa =b)

. exclude a, or exclude b, (ifa, #Db,)

Let L(i, J) denote the length of a longest common subseq

of A=(a, a,, ... a,) andB; =(b;, b,,,, ..., b,).
1+ L(i+1, j+1) ifa, =b,

J

max{L(i+1 j), L(i, j+1)} ifa #b,

J

Recurrence: L(i, J) =+

Boundary: L(i,J)=0, ifi=n+lorj=n+1
Running time: ©(n?)

All-Pair Shortest Paths

Problem: Let G(V, E) be a weighted directed graph. For
every pair of nodes u, v, find a shortest path from u to v.

DP approach:

« YU, veV, we are looking for an optimal sequence
(X) Xy, woes X,).

« What choices are there for x, ?

- To answer this, we need to know the meaning of x.

Approach 1
X, : the next node.
What choices are there for x, ?

How to describe a subproblem?

Approach 2

X, . going through node 1 or not?
What choices are there for x, ?

Taking the backward approach, we ask whether to
go through node n or not.

Let D“(i, j) be the length of a shortest path from i
to j with intermediate nodes {1, 2, ..., k}.

Then, D¥(i, j)=min{D"*(i, j), D**(i, k) + D**(k, j)}.

" weight of edge (i, j) if (i, j))eE
D°(i, j)=1 O ifi= | (1)
| © otherwise

Straightforward implementation

initialize D°[1..n, 1..n] by Eq. (1)
fork «~1tondo
fori<1tondo
forj«<1tondo

if D*'[i, k]+ D*'[k, j1< D*™[i, j] then
DX[i, j1«< D*'[i, k]+ D" [k, j]
P[i, j]1<1

else D*[i, j1« D*'[i, jI
P[i, j]«< O

Print paths

Procedure Path(k,1, |)

//shortest path from 1 to j w/o going thruk +1, ..., n//
global D*[1..n, 1..n],P*[1..n, 1..n], 0<k <n.
If k=0 then

If 1= then print i
elseif D°(i, j) < oo then print i, j
else print "no path"
elseif P*[i, j]=1then
Path(k -1, 1, k), Path(k -1, k, j)
else
Path(k -1, 1, })

Print paths

Procedure ShortestPath(i
//shortest path from i1 to |

1)

Il

global D*[1..n, 1..n],P*[L..n, 1..n], 0<k <n.

letk' <<
0 1f no such k

If k'=0 then
If 1= then print i
elseif D°(i, j) < o th
else print "no path"
else
ShortestPath(k"—1,

'the largest k such that P*[i, j]=1

en print i, |

1, k"), ShortestPath(

k'—1

K’ J)

Eliminate the k in DX[1..n, 1..n], P¥[1..n, 1..n]

e Ifizkandj=Kk:
We need D*'[i, j] only for computing D [i, j].

Once D"[i, j]is computed, we don't need to keep

D, j].
o Ifi=korj=k: D[, j]= D", jI.
e What does P“[i, j] indicate?

e Only need to know the largest k such that P*[i, j]=1.

Floyd's Algorithm

Initialize D[1..n, 1..n] by Eq. (1)

Initialize P[1..n, 1.n] <« 0

fork «<~1tondo

fori<1tondo
forj«<1tondo
If D[, k]+ D[k, j]< D[i, j] then

D[i, j] < D[i, k]+ D[k, j]
P[i, j] <k

Longest Nondecreasing Subsequence

Problem: Given a sequence of integers

A=(a, a,, ..., a,)
find a longest nondecreasing subsequence of A.

Sum of Subset

Given a positive integer M and a multiset of positive
integers A={a,, a,, ..., a,}, determine if there is a
subset B — A such that Sum(B) = M, where Sum(B)
denotes the sum of integers in B.

This problem is NP-hard.

Job Scheduling on Two Machines

There are n jobs to be processed, and two machines A and
B are available. If job 1 is processed on machine A then a.
units of time are needed. If it Is processed on machine B
then b, units of processing time are needed. Because of the
peculiarities of the jobs and the machines, it is possible that
a, > b, for some I while a;, <b; for some other . Schedule

the jobs to minimize the completion time. (If jobs in J are
processed by machine A and the rest by machine B, the

completion time is defined to be max{Zai, Zbi}.)

ied izJ

Assume l<a. b <3foralll.

	Dynamic Programming�Reading: CLRS Chapter 15 & Section 25.2�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40

