## Dynamic Programming

## Reading: CLRS Chapter 15 \& Section 25.2

## CSE 6331: Algorithms Steve Lai

## Optimization Problems

- Problems that can be solved by dynamic programming are typically optimization problems.
- Optimization problems: Construct a set or a sequence of of elements $\left\{y_{1}, \ldots, y_{k}\right\}$ that satisfies a given constraint and optimizes a given objective function.
- The closest pair problem is an optimization problem.
- The convex hull problem is an optimization problem.


## Problems and Subproblems

- Consider the closest pair problem:

Given a set of $n$ points, $A=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right\}$, find a closest pair in $A$.

- Let $P(i, j)$ denote the problem of finding a closest pair in $A_{i j}=\left\{p_{i}, p_{i+1}, \ldots, p_{j}\right\}$, where $1 \leq i \leq j \leq n$.
- We have a class of similar problems, indexed by $(i, j)$.
- The original problem is $P(1, n)$.


## Dynamic Programming: basic ideas

- Problem: construct an optimal solution $\left(x_{1}, \ldots, x_{k}\right)$.
- There are several options for $x_{1}$, say, $o p_{1}, o p_{2}, \ldots, o p_{d}$.
- Each option $o p_{j}$ leads to a subproblem $P_{j}$ : given $x_{1}=o p_{j}$, find an optimal solution $\left(x_{1}=o p_{j}, x_{2 j}, \ldots, x_{k j}\right)$.
- The best of these optimal solutions, i.e.,

$$
\text { Best of }\left\{\left(x_{1}=o p_{j}, x_{2 j}, \ldots, x_{k j}\right): 1 \leq j \leq d\right\}
$$

is an optimal solution to the original problem.

- DP works only if the $P_{j}$ is a problem similar to the original problem.


## Dynamic Programming: basic ideas

- Apply the same reasoning to each subproblem, sub-subproblem, sub-sub-subproblem, and so on.
- Have a tree of the original problem (root) and subproblems.
- Dynamic programming works when these subproblems have many duplicates, are of the same type, and we can describe them using, typically, one or two parameters.
- The tree of problem/subproblems (which is of exponential size) now condensed to a smaller, polynomial-size graph.
- Now solve the subproblems from the "leaves".


## Design a Dynamic Programming Algorithm

1. View the problem as constructing an opt. seq. $\left(x_{1}, \ldots, x_{k}\right)$.
2. There are several options for $x_{1}$, say, $o p_{1}, o p_{2}, \ldots, o p_{d}$. Each option $o p_{j}$ leads to a subproblem.
3. Denote each problem/subproblem by a small number of parameters, the fewer the better. E.g., $P(i, j), 1 \leq i \leq j \leq n$.
4. Define the objective function to be optimized using these parameter(s). E.g., $f(i, j)=$ the optimal value of $P(i, j)$.
5. Formulate a recurrence relation.
6. Determine the boundary condition and the goal.
7. Implement the algorithm.

## Shortest Path

- Problem: Let $G=(V, E)$ be a directed acyclic graph (DAG). Let $G$ be represented by a matrix:

$$
d(i, j)= \begin{cases}\text { length of edge }(i, j) & \text { if }(i, j) \in E \\ 0 & \text { if } i=j \\ \infty & \text { otherwise }\end{cases}
$$

Find a shortest path from a given node $u$ to a given node $v$.

## Dynamic Programming Solution

1. View the problem as constructing an opt. seq. $\left(x_{1}, \ldots, x_{k}\right)$.

Here we want to find a sequence of nodes $\left(x_{1}, \ldots, x_{k}\right)$ such that $\left(u, x_{1}, \ldots, x_{k}, v\right)$ is a shortest path from $u$ to $v$.
2. There are several options for $x_{1}$, say, $o p_{1}, o p_{2}, \ldots, o p_{d}$. Each option $o p_{j}$ leads to a subproblem.

- Options for $x_{1}$ are the nodes $x$ which have an edge from $u$.
- The subproblem corresponding to option $x$ is:

Find a shortest path from $x$ to $v$.
3. Denote each problem/subproblem by a small number of parameters, the fewer the better.
4. Define the objective function to be optimized using these parameter(s).

- These two steps are usually done simultaneously.
- Let $f(x)$ denote the shortest distance from $x$ to $v$.

5. Formulate a recurrence relation.

$$
\begin{aligned}
& f(x)=\min \{d(x, y)+f(y):(x, y) \in E\} \text {, if } x \neq v \\
& \text { and out-degree }(x) \neq 0 .
\end{aligned}
$$

6. Determine the boundary condition.

$$
f(x)= \begin{cases}0 & \text { if } x=v \\ \infty & \text { if } x \neq v \text { and out-degree }(x)=0\end{cases}
$$

7. What's the goal (objective)?

- Our goal is to compute $f(u)$.
- Once we know how to compute $f(u)$, it will be easy to construct a shortest path from $u$ to $v$.
- I.e., we compute the shortest distance from $u$ to $v$, and then construct a path having that distance.

8. Implement the algorithm.

## Computing $f(u) \quad$ (version 1)

function shortest( $x$ )
//computing $f(x) / /$
global d[1..n, 1..n]
if $x=v$ then return (0)
elseif out-degree $(x)=0$ then return $(\infty)$
else return $(\min \{d(x, y)+\operatorname{shortest}(y):(x, y) \in E\})$

- Initial call: shortest( $u$ )
- Question: What's the worst-case running time?


## Computing $f(u) \quad$ (version 2)

function shortest $(x)$
//computing $f(x) / /$
global d[1..n, 1..n], $F[1 . . n]$, Next[1..n]
if $F[x]=-1$ then
if $x=v$ then $F[x] \leftarrow 0$
elseif out-degree $(x)=0$ then $F[x] \leftarrow \infty$
else

$$
\begin{aligned}
& F[x] \leftarrow \min \{d(x, y)+\operatorname{shortest}(y):(x, y) \in E\} \\
& N e x t[x] \leftarrow \text { the node } y \text { that yielded the min }
\end{aligned}
$$ $\operatorname{return}(F[x])$

## Main Program

procedure shortest-path $(u, v)$
// find a shortest path from $u$ to $v / /$
global $d[1 . . n, 1 . . n], F[1 . . n]$, Next[1..n] initialize Next $[v] \leftarrow 0$ initialize $F[1 . . n] \leftarrow-1$
$S D \leftarrow \operatorname{shortest}(u) / /$ shortest distance from $u$ to $v / /$
if $S D<\infty$ then //print the shortest path//
$k \leftarrow u$
while $k \neq 0$ do $\{\operatorname{write}(k) ; k \leftarrow \operatorname{Next}[k]\}$

## Time Complexity

- Number of calls to shortest: $O(|E|)$
- Is it $\Omega(|E|)$ or $\Theta(|E|)$ ?
- How much time is spent on shortest( $(x)$ for any $x$ ?
- The first call: $O(1)+$ time to find $x$ 's outgoing edges
- Subsequent calls: $O(1)$ per call
- The over-all worst-case running time of the algorithm is
- $O(|E|) \cdot O(1)+$ time to find all nodes' outgoing edges
- If the graph is represend by an adjacency matrix: $O\left(|V|^{2}\right)$
- If the graph is represend by adjacency lists: $O(|V|+|E|)$


## Forward vs Backward approach

## Matrix-chain Multiplication

- Problem: Given $n$ matrices $M_{1}, M_{2}, \ldots, M_{n}$, where $M_{i}$ is of dimensions $d_{i-1} \times d_{i}$, we want to compute the product $M_{1} \times M_{2} \times \cdots \times M_{n}$ in a least expensive order, assuming that the cost for multiplying an $a \times b$ matrix by a $b \times c$ matrix is $a b c$.
- Example: want to compute $A \times B \times C$, where $A$ is $10 \times 2, B$ is $2 \times 5, C$ is $5 \times 10$.
- Cost of computing $(A \times B) \times C$ is $100+500=600$
- Cost of computing $A \times(B \times C)$ is $200+100=300$


## Dynamic Programming Solution

- We want to determine an optimal $\left(x_{1}, \ldots, x_{n-1}\right)$, where $x_{1}$ means which two matrices to multiply first, $x_{2}$ means which two matrices to multiply next, and $x_{n-1}$ means which two matrices to multiply lastly.
- Consider $x_{n-1}$. (Why not $x_{1}$ ?)
- There are $n-1$ choices for $X_{n-1}$ : $\left(M_{1} \times \cdots \times M_{k}\right) \times\left(M_{k+1} \times \cdots \times M_{n}\right)$, where $1 \leq k \leq n-1$.
- A general problem/subproblem is to multiply $M_{i} \times \cdots \times M_{j}$, which can be naturally denoted by $P(i, j)$.


## Dynamic Programming Solution

- Let $\operatorname{Cost}(i, j)$ denote the minimum cost for computing $M_{i} \times \cdots \times M_{j}$.
- Recurrence relation:

$$
\begin{array}{r}
\operatorname{Cost}(i, j)=\min _{i \leq k<j}\left\{\operatorname{Cost}(i, k)+\operatorname{Cost}(k+1, j)+d_{i-1} d_{k} d_{j}\right\} \\
\text { for } 1 \leq i<j \leq n .
\end{array}
$$

- Boundary condition: $\operatorname{Cost}(i, i)=0$ for $1 \leq i \leq n$.
- Goal: $\operatorname{Cost}(1, n)$


## Algorithm (recursive version)

function $\operatorname{MinCost}(i, j)$
global d[0..n], Cost[1..n, 1..n], Cut[1..n, 1..n]
$/ /$ initially, $\operatorname{Cost}[i, j] \leftarrow 0$ if $i=j$, and $\operatorname{Cost}[i, j] \leftarrow-1$ if $i \neq j / /$ if $\operatorname{Cost}[i, j]<0$ then
$\operatorname{Cost}[i, j] \leftarrow \min _{i \leq k<j}\{\operatorname{MinCost}(i, k)+\operatorname{MinCost}(k+1, j)$

$$
+d[i-1] \cdot d[k] \cdot d[j]\}
$$

$\operatorname{Cut}[i, j] \leftarrow$ the index $k$ that gave the minimum in the last statement return $(\operatorname{Cost}[i, j])$

## Algorithm (non-recursive version)

procedure MinCost
global d[0..n], Cost[1..n, 1..n], Cut[1..n, 1..n]
initialize $\operatorname{Cost}[i, i] \leftarrow 0$ for $1 \leq i \leq n$
for $i \leftarrow n-1$ to l do
for $j \leftarrow i+1$ to $n$ do

$$
\begin{aligned}
\operatorname{Cost}[i, j] \leftarrow \min _{i \leq k<j}\{\operatorname{Cost}(i, k) & +\operatorname{Cost}(k+1, j) \\
& +d[i-1] \cdot d[k] \cdot d[j]\}
\end{aligned}
$$

$\operatorname{Cut}[i, j] \leftarrow$ the index $k$ that gave the minimum in the last statement

## Computing $M_{i} \times \cdots \times M_{j}$

function MatrixProduct $(i, j)$
// Return the product $M_{i} \times \cdots \times M_{j} / /$
global Cut[1..n, 1..n], $M_{1}, \ldots, M_{n}$
if $i=j$ then return $\left(M_{i}\right)$
else
$k \leftarrow C u t[i, j]$
return $(\operatorname{MatrixProduct}(i, k) \times \operatorname{MatrixProduct}(k+1, j))$

Time complexity: $\Theta\left(n^{3}\right)$

## Paragraphing

- Problem: Typeset a sequence of words $w_{1}, w_{2}, \ldots, w_{n}$ into a paragraph with minimum cost (penalty).
Words: $\quad w_{1}, w_{2}, \ldots, w_{n}$.
$\left|w_{i}\right|: \quad$ length of $w_{i}$.
$L$ : length of each line.
$b$ : $\quad$ ideal width of space between two words.
$\varepsilon: \quad$ minimum required space between words.
$b^{\prime}: \quad$ actual width of space between words if the line is right justified.
- Assume that $\left|w_{i}\right|+\varepsilon+\left|w_{i+1}\right| \leq L$ for all $i$.
- If words $w_{i}, w_{i+1}, \ldots, w_{j}$ are typeset as a line, where $j \neq n$, the value of $b^{\prime}$ for that line is $b^{\prime}=\left(L-\sum_{k=i}^{j}\left|w_{k}\right|\right) /(j-i)$ and the penalty is defined as:

$$
\operatorname{Cost}(i, j)= \begin{cases}\left|b^{\prime}-b\right| \cdot(j-i) & \text { if } b^{\prime} \geq \varepsilon \\ \infty & \text { if } b^{\prime}<\varepsilon\end{cases}
$$

- Right justification is not needed for the last line. So the width of space for setting $w_{i}, w_{i+1}, \ldots, w_{j}$ when $j=n$ is $\min \left(b, b^{\prime}\right)$, and the penalty is

$$
\operatorname{Cost}(i, j)= \begin{cases}\left|b^{\prime}-b\right| \cdot(j-i) & \text { if } \varepsilon \leq b^{\prime}<b \\ 0 & \text { if } b \leq b^{\prime} \\ \infty & \text { if } b^{\prime}<\varepsilon\end{cases}
$$

## Longest Common Subsequence

- Problem: Given two sequences

$$
\begin{aligned}
& A=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)
\end{aligned}
$$

find a longest common subsequence of $A$ and $B$.

- To solve it by dynamic programming, we view the problem as finding an optimal sequence $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and ask: what choices are there for $x_{1}$ ? (Or what choices are there for $x_{k}$ ?)


## Approach 1 (not efficient)

- View $\left(x_{1}, x_{2}, \ldots\right)$ as a subsequence of $A$.
- So, the choices for $x_{1}$ are $a_{1}, a_{2}, \ldots, a_{n}$.
- Let $L(i, j)$ denote the length of a longest common subseq of $A_{i}=\left(a_{i}, a_{i+1}, \ldots, a_{n}\right)$ and $B_{j}=\left(b_{j}, b_{j+1}, \ldots, b_{n}\right)$.
- Let $\varphi(k, j)$ be the index of the first character in $B_{j}$ that is equal to $a_{k}$, or $n+1$ if no such character.
- Recurrence: $L(i, j)=\left\{\begin{array}{l}1+\max _{\substack{i \leq k n n \\ \varphi(k, j \leq n}}\{L(k+1, \varphi(k, j)+1)\} \\ 0 \text { if the set for the max is empty }\end{array}\right.$
- Boundary condition: $L(n+1, j)=L(i, n+1)=0,1 \leq i, j \leq n+1$.
- Running time: $\Theta\left(n^{3}\right)+O\left(n^{3}\right)=\Theta\left(n^{3}\right)$


## Approach 2 (not efficient)

- View $\left(x_{1}, x_{2}, \ldots\right)$ as a sequence of $0 / 1$, where $x_{i}$ indicates whether or not to include $a_{i}$.
- The choices for each $x_{i}$ are 0 and 1 .
- Let $L(i, j)$ denote the length of a longest common subseq of $A_{i}=\left(a_{i}, a_{i+1}, \ldots, a_{n}\right)$ and $B_{j}=\left(b_{j}, b_{j+1}, \ldots, b_{n}\right)$.
- Recurrence:

$$
L(i, j)= \begin{cases}\max \begin{cases}1+L(i+1, \varphi(i, j)+1) \\ L(i+1, j) & \text { if } \varphi(i, j) \leq n \\ L(i+1, j) & \text { otherwise }\end{cases} \end{cases}
$$

- Running time: $\Theta\left(n^{2}\right)+O\left(n^{3}\right)$


## Algorithm (non-recursive)

procedure Compute-Array-L
global $L[1 . . n+1,1 . . n+1], \varphi[1 . . n, 1 . . n]$
initialize $L[i, n+1] \leftarrow 0, L[n+1, j] \leftarrow 0$ for $1 \leq i, j \leq n+1$
compute $\varphi$ [1..n, 1..n]
for $i \leftarrow n$ tol do
for $j \leftarrow n$ to 1 do
if $\varphi(i, j) \leq n$ then

$$
L[i, j] \leftarrow \max \{1+L[i+1, \varphi(i, j)+1], L[i+1, j]\}
$$

else

$$
L[i, j] \leftarrow L[i+1, j]
$$

## Algorithm (recursive)

procedure Longest( $(i, j)$
//print the longest common subsequence//
//assume $L[1 . . n+1,1 . . n+1]$ has been computed//
global $L[1 . . n+1,1 . . n+1]$
if $L[i, j]=L[i+1, j]$ then
Longest $(i+1, j)$
else
Print $\left(a_{i}\right)$
Longest $(i+1, \varphi(i, j)+1)$

Initial call: Longest(1,1)

## Approach 3

- View $\left(x_{1}, x_{2}, \ldots\right)$ as a sequence of decisions, where $x_{1}$ indicates whether to
- include $a_{1}=b_{1} \quad$ (if $a_{1}=b_{1}$ )
- exclude $a_{1}$ or exclude $b_{1}$ (if $a_{1} \neq b_{1}$ )
- Let $L(i, j)$ denote the length of a longest common subseq of $A_{i}=\left(a_{i}, a_{i+1}, \ldots, a_{n}\right)$ and $B_{j}=\left(b_{j}, b_{j+1}, \ldots, b_{n}\right)$.
- Recurrence: $L(i, j)= \begin{cases}1+L(i+1, j+1) & \text { if } a_{i}=b_{j} \\ \max \{L(i+1, j), L(i, j+1)\} & \text { if } a_{i} \neq b_{j}\end{cases}$
- Boundary: $L(i, j)=0$, if $i=n+1$ or $j=n+1$
- Running time: $\Theta\left(n^{2}\right)$


## All-Pair Shortest Paths

- Problem: Let $G(V, E)$ be a weighted directed graph. For every pair of nodes $u, v$, find a shortest path from $u$ to $v$.
- DP approach:
- $\forall u, v \in V$, we are looking for an optimal sequence $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$.
- What choices are there for $x_{1}$ ?
- To answer this, we need to know the meaning of $x_{1}$.


## Approach 1

- $x_{1}$ : the next node.
- What choices are there for $x_{1}$ ?
- How to describe a subproblem?


## Approach 2

- $x_{1}$ : going through node 1 or not?
- What choices are there for $x_{1}$ ?
- Taking the backward approach, we ask whether to go through node $n$ or not.
- Let $D^{k}(i, j)$ be the length of a shortest path from $i$ to $j$ with intermediate nodes $\in\{1,2, \ldots, k\}$.
- Then, $D^{k}(i, j)=\min \left\{D^{k-1}(i, j), D^{k-1}(i, k)+D^{k-1}(k, j)\right\}$.
- $D^{0}(i, j)= \begin{cases}\text { weight of edge }(i, j) & \text { if }(i, j) \in E \\ 0 & \text { if } i=j \\ \infty & \text { otherwise }\end{cases}$


## Straightforward implementation

initialize $D^{0}[1 . . n, 1 . . n]$ by Eq. (1)
for $k \leftarrow 1$ to $n$ do

## for $i \leftarrow 1$ to $n$ do

$$
\text { for } j \leftarrow 1 \text { to } n \text { do }
$$

$$
\begin{aligned}
& \text { if } \begin{array}{l}
D^{k-1}[i, k]+D^{k-1}[k, j]<D^{k-1}[i, j] \text { then } \\
\qquad \begin{array}{l}
D^{k}[i, j]
\end{array} D^{k-1}[i, k]+D^{k-1}[k, j] \\
P^{k}[i, j]
\end{array} \leftarrow 1
\end{aligned}
$$

$$
\text { else } D^{k}[i, j] \leftarrow D^{k-1}[i, j]
$$

$$
P^{k}[i, j] \leftarrow 0
$$

## Print paths

Procedure Path ( $k, i, j$ )
//shortest path from $i$ to $j$ w/o going thru $k+1, \ldots, n / /$
global $D^{k}[1 . . n, 1 . . n], P^{k}[1 . . n, 1 . . n], 0 \leq k \leq n$.
if $k=0$ then
if $i=j$ then print $i$
elseif $D^{0}(i, j)<\infty$ then print $i, j$
else print "no path"
elseif $P^{k}[i, j]=1$ then
$\operatorname{Path}(k-1, i, k), \operatorname{Path}(k-1, k, j)$
else

$$
\operatorname{Path}(k-1, i, j)
$$

## Print paths

Procedure ShortestPath(i, j)
//shortest path from $i$ to $j / /$
global $D^{k}[1 . . n, 1 . . n], P^{k}[1 . . n, 1 . . n], 0 \leq k \leq n$.
let $k^{\prime} \leftarrow\left\{\begin{array}{l}\text { the largest } k \text { such that } P^{k}[i, j]=1 \\ 0 \text { if no such } k\end{array}\right.$
if $k^{\prime}=0$ then
if $i=j$ then print $i$
elseif $D^{0}(i, j)<\infty$ then print $i, j$
else print "no path"
else
ShortestPath( $\left.k^{\prime}-1, i, k^{\prime}\right)$, ShortestPath $\left(k^{\prime}-1, k^{\prime}, j\right)$

Eliminate the $k$ in $D^{k}[1 . . n, 1 . . n], P^{k}[1 . . n, 1 . . n]$

- If $i \neq k$ and $j \neq k$ :

We need $D^{k-1}[i, j]$ only for computing $D^{k}[i, j]$.
Once $D^{k}[i, j]$ is computed, we don't need to keep
$D^{k-1}[i, j]$.

- If $i=k$ or $j=k: D^{k}[i, j]=D^{k-1}[i, j]$.
- What does $P^{k}[i, j]$ indicate?
- Only need to know the largest $k$ such that $P^{k}[i, j]=1$.


## Floyd's Algorithm

initialize $D[1 . . n, 1 . . n]$ by Eq. (1)
initialize $P[1 . . n, 1 . . n] \leftarrow 0$
for $k \leftarrow 1$ to $n$ do

$$
\text { for } i \leftarrow 1 \text { to } n \text { do }
$$

$$
\begin{aligned}
& \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \quad \text { if } D[i, k]+D[k, j]<D[i, j] \text { then }
\end{aligned}
$$

$$
D[i, j] \leftarrow D[i, k]+D[k, j]
$$

$$
P[i, j] \leftarrow k
$$

## Longest Nondecreasing Subsequence

- Problem: Given a sequence of integers

$$
A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

find a longest nondecreasing subsequence of $A$.

## Sum of Subset

- Given a positive integer $M$ and a multiset of positive integers $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, determine if there is a subset $B \subseteq A$ such that $\operatorname{Sum}(B)=M$, where $\operatorname{Sum}(B)$ denotes the sum of integers in $B$.
- This problem is NP-hard.


## Job Scheduling on Two Machines

There are $n$ jobs to be processed, and two machines $A$ and $B$ are available. If job $i$ is processed on machine $A$ then $a_{i}$ units of time are needed. If it is processed on machine $B$ then $b_{i}$ units of processing time are needed. Because of the peculiarities of the jobs and the machines, it is possible that $a_{i}>b_{i}$ for some $i$ while $a_{j}<b_{j}$ for some other $j$. Schedule the jobs to minimize the completion time. (If jobs in $J$ are processed by machine $A$ and the rest by machine $B$, the completion time is defined to be $\max \left\{\sum_{i \in J} a_{i}, \sum_{i \notin J} b_{i}\right\}$.)
Assume $1 \leq a_{i}, b_{i} \leq 3$ for all $i$.

