
Dynamic Programming
Reading: CLRS Chapter 15 & Section 25.2

CSE 6331: Algorithms
Steve Lai

1

 Problems that can be solved by dynamic programming
 are typically optimization problems.

 Optimization problems: Construct a set or a sequence of
 of elements , . .

Optimization Problems

y

•

•

{ } . , that satisfies a given constraint
 and optimizes a given objective function.

 The closest pair problem is an optimization problem.

 The convex hull problem is an optimization problem.

ky

•

•

2

{ }1 2 3

 Consider the closest pair problem:
 Given a set of points, , , , , , find a
 closest pair in .

 Let (,) denote the problem of finding a closest pair

Problems and Subproblems

nn A p p p p
A

P i j

•

•

= 

{ }1in , , , , where 1 .

 We have a class of similar problems, indexed by (,).

 The original problem is (1,).

ij i i jA p p p i j n

i j

P n

+ ≤

•

= ≤ ≤

•



3

() 1

1 1 2

 Problem: construct an optimal solution , , .
 There are several options for , say, , , . . . , .
 Each option leads to a subproblem : given

Dynamic Programming: basic ideas

k

d

j j

x x
x op op op

op P•

…•

•

()

(){ }

1

1

2

1 2

 ,

 find an optimal solution , , , .

 The best of these optimal solutions, i.e.,

 Best of , , , :1

 is an optimal solution to the original problem.

j

j kj

j j kj

j

x op

x x

x op x x j d

x op

=

= … ≤

=

•

≤

•

…

 DP works only if the is a problem similar to the
 original problem.

jP

4

 Apply the same reasoning to each subproblem,
 sub-subproblem, sub-sub-subproblem, and so on.
 Have a tree of the original problem (root) and subproblems.
 Dyna

Dynamic Programming: basic ideas
•

•
• mic programming works when these subproblems
 have many duplicates, are of the same type, and we can
 describe them using, typically, one or two parameters.
 The tree of problem/subproblems (whic• h is of exponential

 size) now condensed to a smaller, polynomial-size graph.
 Now solve the subproblems from the "leaves".•

5

()1

1 1 2

1. View the problem as constructing an opt. seq. , , .
2. There are several options for , say, , , . . . , .
 Each option leads to a subpro

Design a Dynamic Programming Algorithm

k

d

j

x x
x op op op

op

…

blem.
3. Denote each problem/subproblem by a small number of
 parameters, the fewer the better. E.g., (,), 1 .
4. Define the objective function to be optimized using these
 parameter(s)

P i j i j n≤ ≤ ≤

. E.g., (,) the optimal value of (,).
5. Formulate a recurrence relation.
6. Determine the boundary condition and the goal.
7. Implement the algorithm.

f i j P i j=

6

Problem: Let (,) be a directed acyclic graph (DAG).
 Let be represented by a matrix:

 length of edge (,) if (,)
 (,) 0 if

 otherwise
 Find a

 h r

s o

Shortest Path
G V E

G
i j i j E

d i j i j

=

∈

•


= =
 ∞

test path from a given node to a given node .u v

7

()
()

()

1

1

1

 Here we want to find a s

 1.

equen

View the p

ce of node

roblem as constructi

s , ,

ng

 such that , , , , is a shorte

an opt. seq.

st path from to

 , , .

Dynamic Programming Solution

k

k

k

x x

x x

u x x v u v

…

…

…

1 2

1

1 2. There are several options for , say, , , . . . , .
 Each option leads to a

.

 Options for are the nodes which have an edge fro
s

m .
 The su

ubproblem.

bprobl

 e

d

j

x

x op op op
op

x u

 m corresponding to option is:
 Find a shortest path from to .

x
x v

8

3. Denote each problem/subproblem by a small number
 of parameters, the fewer the better.
4. Define the objective function to be optimized using th

ese

 Th
 param

ese two
ete

ste
r(s).

 ps are 

{ }
5. Formulate a recur

usually done simultan

rence relat

eously.
 Let () denote the shortest distance from to .

 () min (,) () : (, y) , if

io

 and out-degree() 0

.

.

n

f x x v

f x d x y f y x E x v
x

= + ∈ ≠

≠



9

6. Determine the boundary condition.

7. What's th

0 if
 ()

if and out-degree() 0

 Our goal is to compute ().
 Once we know how to compute (),

e go

al (objective)

?

x v
f x

x v x

f u
f u

=
=  ∞ ≠ =



 it will be easy
 to construct a shortest path from to .
 I.e., we compute the shortest distance from to ,
 and then construct a path having that

8.

 Implement th

 dista

nce.

e

u v
u v

algorithm.

10

 ()
 //computing ()//
 global [1.. , 1..]

function

if
elseif

 then return (0)
 out-degree() 0 then return ()

 return min (,

(versio

)

sh

() : (

n 1)

ortest

shorteste ,els

Computing ()
x

f x
d n n

x v
x

d x y y x

f u

=
= ∞

+{ }() y)

 Initial call: shortest()
 Question: What's the worst-case running time?

E

u•
•

∈

11

 shortest()
 //computing ()//
 global [1.. , 1..], [1..], [1..]
 [] 1
 [] 0
 out-degree() 0

function

 then
 if then
elseif the

(versio

n

n

if

 2

[

)

Computing ()
x

f x
d n n F n Next n

F x
x v F x

x F

f u

= −
= ←

=

{ }

]

 [] min (,) shortest() : (, y)
 [] the node that yielded

else

retu
 the min

 r]n([)

x

F x d x y y x E
Next x y
F x

←∞

← + ∈

←

12

 shortest-path(,)
 // find a shortest path from to //
 global [1.. , 1..], [1..], [1..]
 initialize [] 0
 initialize [1..] 1
 shorte

proced

st() //shor

ur

t

e

Main Program
u v

u v
d n n F n Next n

Next v
F n

SD u

←
←−

←

{ }

est distance from to //
 if then //print the shortest path//

 while 0 do write(); []

u v
SD
k u

k k k Next k

< ∞
←

≠ ←

13

()
() ()

Number of calls to shortest:

 Is it or ?

How much time is spent on shortest() for any ?
 The first call: (1) time to find 's outgoing edges

 Subseque

 n

Time Complexity

O E

E E

x x
O x

Θ

+

•

Ω

•







()
()2

t calls: (1) per call

The over-all worst-case running time of the algorithm is
 (1) time to find all nodes' outgoing edges

 If the graph is represend by an adjacency ma

 trix:

O

O E O

O V

⋅ +

•





() If the graph is represend by adjacency lists: O V E+

14

Forward vs Backward approach

15

1 2

1

1 2

Problem: Given matrices , , . . . , , where is
 of dimensions , we want to compute the product
 in a least expensive order, assuming

Matrix-chain Multiplication

n i

i i

n

n M M M M
d d

M M M
− ×

× ×

•

×
 that the cost for multiplying an matrix by a matrix

 is .

Example: want to compute , where
 is 10 2, is 2 5, is 5 10.
 Cost of computing () is 100 500 6

00

a b b c
abc

A B C
A B C

A B C

× ×

× ×
× × ×

× + =

•

×

 Cost of computing () is 200 100 300A B C× × + =

16

()1 1

1

2

1

We want to determine an optimal , , , where
 means which two matrices to multiply first,
 means which two matrices to multiply next, and
 me

a s

n

Dynamic Programming Solution

n

n

x x
x
x
x

−

−

• …

() ()

1 1

1

1 1

 which two matrices to multiply lastly.

Consider . (Why not ?)

There are 1 choices for :
 , where 1

1.

A general problem/subproblem is to multiply

n

n

k k n

i

x x

n x
M M M M k n

M M

−

−

+

•

•

•

−

× × × × × ≤ ≤ −

× ×

 

 ,
 which can be naturally denoted by (,).

j

P i j
17

{ }1

Let (,) denote the minimum cost for computing
 .

Recurrence relation:

 (,) min (,) (1,)

Dynamic Programming Solution

i j

i k ji k j

Cost i j
M M

Cost i j Cost i k Cost k j d d d−≤ <

× ×

= +

•

+

•

+



 for 1 .

Boundary condition: (,) 0 for 1 .

Goa

l: (1)

 ,

i j n

Cost i i i n

Cost n

≤

•

<

= ≤•

≤

≤

18

 MinCost(,)
 [0..], [1.. , 1..], [1.. , 1..]
 //initially, [,]

function
 glo

0 if , and [,] 1 if //
 [,] 0

bal

i the

f n

(recursive version)Algorithm
i j

d n Cost n n Cut n n
Cost i j i j Cost i j i j

Cost i j
← = ← − ≠

<

{

}

 [,] min MinCost(,) MinCost(1,)

 [1] [] []
 [,] the index that gave the minimum in the last

i k j
Cost i j i k k j

d i d k d j
Cut i j k

≤ <
← + +

+ − ⋅ ⋅

←

()
 state

retur
ment

 Cost[n ,]i j

19

20

procedure MinCost
global [0..], [1.. , 1..], [1.. , 1..]
initialize [,] 0 for 1
for 1 to l do
for 1 to do
 [,] min

(non-recuAlgorit rsive versiohm n)

i k j

d n Cost n n Cut n n
Cost i i i n

i n
j i n

Cost oi C sj
≤ <

← ≤ ≤
← −
← +

← {

}

(,) (1,)

 [1] [] []
 [,] the index that gave the minimum in the last
 statement

i k k j

d i d k d j
Cut i j k

t Cost+ +

+ − ⋅ ⋅

←

()

1

function (,)
// Return the product //
global [1.. , 1..], , . . . ,
if then retu

MatrixProduct

Matr

rn()
else

[,]
return ixProd (,) (1,uct MatrixProdu)t c

Computing j

i

i

i j

n

i j
M M

Cut n n M M
i j M

k Cut i j

M

i k

M

k j

×

×

×

=

←

× +

×





3Time complexity: ()nΘ

21

1 2

1 2

Problem: Typeset a sequence of words , , . . . ,
 into a paragraph with minimum cost (penalty).
 Words: , , . . . , .
 : length of .
 :

Paragraphing

n

n

i i

w w w

w w w
w w
L

•

 length of each line.
 : ideal width of space between two words.
 : minimum required space between words.
 : actual width of space between words

b

b
ε
′

1

 if the line is right justified.
Assume that for a ll .i iw w L iε ++ + ≤•

22

() ()

()

1If words , , . . ., are typeset as a line, where ,

 the value of for that line is | |

 and the penalty is defined as:

if
 (,

)
if

i i j

j
kk i

w w w j n

b b L w j i

b b j i b
Cost i j

b
ε
ε

+

=

• ≠

′ ′ = − −

′ ′ − ⋅ − ≥
=  ′∞ <

•


∑

()

1

Right justification is not needed for the last line. So the
 width of space for setting , , . . ., when is
 min(,), and the penalty is

if
 (,) 0 if

i i jw w w j n
b b

b b j i b b
Cost i j b

ε

+ =

′

′ ′− ⋅ − ≤ <
= ≤

if
b

b ε


 ′
 ′∞ <

23

()
()

1 2

1 2

Problem: Given two sequences
 , , ,

 , , ,
 find a longest common subsequence of and .

To solve it by

 dy nam

Longest Common Subsequence

n

n

A a a a

B b b b
A B

= …

=

•

•

…

()1 2

1

ic programming, we view the problem
 as finding an optimal sequence , , , and ask:
 what choices are there for ? (Or what choices are there
 for ?)

k

k

x x x
x

x

…

24

()

()

1

1 1 2

2

1

So, the choices for are , , , .
Let (,) denote the length of a longest common

View , , as a subsequence

(not effic

subseq

 of .

ien

 of , , ,

)

tApproach 1

n

i i i n

x a a a
L i j

A a a

x x

a

A

+

•

•

…

…

…

=

•

()

(){ }

1

(,)

 and , , , .

 Let (,) be the index of the first character in that
 is equal to , or 1 if no such character.

1 max 1, (,) 1
 Recurrence: (,)

0 if th

j j j n

j

k

i k n
k j n

B b b b

k j B
a n

L k k j
L i j ϕ

ϕ

ϕ

+

≤ ≤
≤

= …

+

+ + +

•

• =

() () ()3 3 3

e set for the max is empty
 Boundary condition: (1,) (, 1) 0, 1 , 1.

 Running time:

L n j L i n i j n

n O n n






+ = + = ≤

Θ +

•

•

≤ +

= Θ
25

()1 2 , where
 indicates whether or not to inc

Vie
lude .

The choices for each are 0 and 1.
Let (,) denote the length of a

(not effic

w , , a

ient

s a sequence of 0/1

)

l

Approach 2

i

i

i

x
a

x

L i

x

x
j

•

•

…

•

() ()

()
()

()
() ()

1 1

2 3

ongest common subseq

 of , , , and , , , .

 Recurrence:

1 1, (,) 1
max if (,)

 (,) 1,

1, otherwise

 Running time:

i i i n j j j nA a a a B b b b

L i i j
i j n

L i j L i j

L i j

n O n

ϕ
ϕ

+ += … = …

 + + + ≤ 
= + 
 +

Θ +

•

•
26

27

procedure Compute-Array-L
global [1.. 1, 1.. 1], [1.. , 1..]
initialize [, 1] 0, [1,] 0 for 1 , 1
compute [1.. , 1..]
for to l do
for to 1 do

Algorithm (non-recursive)

L n n n n
L i n L n j i j n

n n
i n
j n

ϕ

ϕ

+ +
+ ← + ← ≤ ≤ +

←
←

{ }
if (,) then

 [,] max 1 [1, (,) 1], [1,]
 else
 [,] [1,]

i j n
L i j L i i j L i j

L i j L i j

ϕ
ϕ

≤

← + + + +

← +

28

procedure Longest(,)
//print the longest common subsequence//
//assume [1.. 1, 1.. 1] has been computed//
global [1.. 1, 1.. 1]
 if [,] [1,] then

Algorithm (recursive)
i j

L n n
L n n

L i j L i j

+ +
+ +
= +

()

()

 Longest 1,
 else
 Print ()
 Longest 1, (,) 1

Initial call: Longest(1,1)

i

i j

a
i i jϕ

+

+ +

()
1

1 1 1 1

1 1 1

1 2

1

, where
 indicates whether to
 include (if)
 exclude

View , , as a sequ

 or exclude (if)
Let (,) denote

ence of decis

the le

i

o

s

n

n

Approach 3

x
a b a b

x

b
L i j

x

a b a

…

•
≠

•

= =



() ()
()
() (){ }

1 1

gth of a longest common subseq

 of , , , and , , , .

1 1, 1 if
 Recurrence: (,)

max 1, , , 1 if

 Boundary: (,) 0

i i i n j j j n

i j

i j

A a a a B b b b

L i j a b
L i j

L i j L i j a b

L i j

+ += … = …

+ + + == •
+

•

+ ≠
=

()2

, if 1 or 1

 Running time:

i n j n

n

= + = +

Θ•
29

Problem: Let (,) be a weighted directed graph. For
 every pair of nodes , , find a shortest path from to .

DP approach:
 , , we are looking for an opti

All-Pair Shortest Paths
G V E

u v u v

u v V

•

∀
•

∈

()1 2

1

1

mal sequence
 , , ..., .
 What choices are there for ?
 To answer this, we need to know the meaning of .

kx x x
x

x




30

{ }

1

1

: the next node.

What choices are there for ?

How to describe a subproblem?

What about (,) min (,) (,) : (,) ?

Let (,) denote the length of a shortest path f

Approach 1

k

x

x

L i j d i z L z j i z E

L i j

= + ∈

•

•

•

•

•

{ }1

rom
 to with at most intermediate nodes.

(,) min (,) (,) : (,) . k k

i j

L i j d i z L z j i z E

k

−+ ∈• =

31

1

1

: going through node 1 or not?
What choices are there for ?
Taking the backward approach, we ask whether to

 go through node or not.
Let (,

) be the length of a shortest

Approach 2

k

x
x

n
D i j

•
•
•

•

{ }
{ }1 1 1

0

 path from
 to with intermediate nodes 1, 2, . . . , .

Then, (,) min (,), (,) (,) .

 weight of edge (,) if (,)
(,) 0 if

 ot

herwise

k k k k

i
j k

D i j D i j D i k D k j

i j i j E
D i j i j

− − −

∈

= +

∈
= =
 ∞

•

• (1)

32

0

1 1 1

initialize [1.. , 1..] by Eq. (1)
for 1 to do
 for 1 to do
 for 1 to do
 if [,] [,] [,] then
 [

Straightforward implementation

k k k

k

D n n
k n

i n
j n

D i k D k j D i j
D i

− − −

←
←
←

+ <
1 1

1

,] [,] [,]
 [,] 1
 else [,] [,]
 [,] 0

k k

k

k k

k

j D i k D k j
P i j
D i j D i j
P i j

− −

−

← +

←

←

←

33

0

Procedure (, ,)
//shortest path from to w/o going thru 1, , //
 global [1.. , 1..], [1.. , 1..], 0 .
 if 0 then
 if then print
 elseif (,)

Print paths

k k

Path k i j
i j k n

D n n P n n k n
k

i j i
D i j

+ …

≤ ≤
=
=

< ∞ then print ,
 else print "no path"
 elseif [,] 1 then
 (1, ,), (1, ,)
 else
 (1, ,)

k

i j

P i j
Path k i k Path k k j

Path k i j

=
− −

−
34

Procedure (,)
//shortest path from to //
 global [1.. , 1..], [1.. , 1..], 0 .

the largest such that [,] 1
 let

0 if no such
 if 0 then

Print paths

k k

k

ShortestPath i j
i j

D n n P n n k n

k P i j
k

k
k

≤ ≤

 =
′ ← 


′ =

0

if then print
 elseif (,) then print ,
 else print "no path"
 else
 (1, ,), (1, ,)

i j i
D i j i j

ShortestPath k i k ShortestPath k k j

=

< ∞

′ ′ ′ ′− −
35

1

1

 If and :

 We need [,] only for computing [,].

 Once [,] is computed, we don't need to keep

 [,].

 If

[1.. , 1..], [1.. , 1..]Eliminate the in

k k

k

k

k k

i k j k

D i j D i j

D i j

D i j

i k

D n n P n nk

−

−

• ≠ ≠

• = 1 or : [,] [,].

 What does [,] indicate?

 Only need to know the largest such that [,] 1.

k k

k

k

j k D i j D i j

P i j

k P i j

−= =

•

• =

36

initialize [1.. , 1..] by Eq. (1)
initialize [1.. , 1..] 0
for 1 to do
 for 1 to do
 for 1 to do
 if [,] [,] [,] then

Floyd's Algorithm
D n n
P n n

k n
i n

j n
D i k D k j D i j

←
←
←
←

+ <
[,] [,] [,]

 [,]
D i j D i k D k j
P i j k

← +
←

37

()1 2

Problem: Given a sequence of integers
 , , ,
 find

 a longest nondecreasing subseque

nce of .

Longest Nondecreasing Subsequence

nA a a a
A

=

•

…

38

{ }1 2

Given a positive integer and a multiset of positive
 integers , , . . . , , determine if there is a
 subset such that () , where ()
 denotes the sum of

in

Sum of Subset

n

M
A a a a

B A Sum B M Sum B
=

⊆ =

•

tegers in .

This problem is NP-h d ar .

B

•

39

There are jobs to be processed, and two machines and
 are available. If job is processed on machine then

units of time are needed. If it is processed on mac

Job Scheduling on Two Machines

i

n A
B i A a

hine
then units of processing time are needed. Because of the
peculiarities of the jobs and the machines, it is possible that

 for some while for some other . Schedule
the jobs to mi

i

i i j j

B
b

a b i a b j> <

nimize the completion time. (If jobs in are
processed by machine and the rest by machine , the

completion time is defined to be max , .)

Assume 1 , 3 for all .

i i
i J i J

i i

J
A B

a b

a b i
∈ ∉

 
 
 

≤ ≤

∑ ∑

40

	Dynamic Programming�Reading: CLRS Chapter 15 & Section 25.2�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40

