Dynamic Programming

Reading: CLRS Chapter 15 & Section 25.2

CSE 6331: Algorithms Steve Lai

Optimization Problems

- Problems that can be solved by dynamic programming are typically optimization problems.
- Optimization problems: Construct a set or a sequence of of elements {y₁, ..., y_k} that satisfies a given constraint and optimizes a given objective function.
- The closest pair problem is an optimization problem.
- The convex hull problem is an optimization problem.

Problems and Subproblems

- Consider the closest pair problem:
 Given a set of *n* points, A = {p₁, p₂, p₃,..., p_n}, find a closest pair in A.
- Let P(i, j) denote the problem of finding a closest pair in $A_{ij} = \{p_i, p_{i+1}, \dots, p_j\}$, where $1 \le i \le j \le n$.
- We have a class of similar problems, indexed by (i, j).
- The original problem is P(1,n).

Dynamic Programming: basic ideas

- Problem: construct an optimal solution $(x_1, ..., x_k)$.
- There are several options for x_1 , say, op_1 , op_2 , ..., op_d .
- Each option op_j leads to a subproblem P_j : given $x_1 = op_j$, find an optimal solution $(x_1 = op_j, x_{2j}, ..., x_{kj})$.
- The best of these optimal solutions, i.e., Best of $\{(x_1 = op_j, x_{2j}, ..., x_{kj}): 1 \le j \le d\}$

is an optimal solution to the original problem.

• DP works only if the P_j is a problem similar to the original problem.

Dynamic Programming: basic ideas

- Apply the same reasoning to each subproblem, sub-subproblem, sub-subproblem, and so on.
- Have a tree of the original problem (root) and subproblems.
- Dynamic programming works when these subproblems have many duplicates, are of the same type, and we can describe them using, typically, one or two parameters.
- The tree of problem/subproblems (which is of exponential size) now condensed to a smaller, polynomial-size graph.
- Now solve the subproblems from the "leaves".

Design a Dynamic Programming Algorithm

- 1. View the problem as constructing an opt. seq. $(x_1, ..., x_k)$.
- 2. There are several options for x₁, say, op₁, op₂, ..., op_d.
 Each option op_i leads to a subproblem.
- 3. Denote each problem/subproblem by a small number of parameters, the fewer the better. E.g., $P(i, j), 1 \le i \le j \le n$.
- 4. Define the objective function to be optimized using these parameter(s). E.g., f(i, j) = the optimal value of P(i, j).
- 5. Formulate a recurrence relation.
- 6. Determine the boundary condition and the goal.
- 7. Implement the algorithm.

Shortest Path

Problem: Let G = (V, E) be a directed acyclic graph (DAG).
 Let G be represented by a matrix:

$$d(i, j) = \begin{cases} \text{length of edge } (i, j) & \text{if } (i, j) \in E \\ 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$

Find a shortest path from a given node *u* to a given node *v*.

Dynamic Programming Solution

- 1. View the problem as constructing an opt. seq. $(x_1, ..., x_k)$. Here we want to find a sequence of nodes $(x_1, ..., x_k)$ such that $(u, x_1, ..., x_k, v)$ is a shortest path from u to v.
- 2. There are several options for x₁, say, op₁, op₂, ..., op_d.
 Each option op_i leads to a subproblem.
 - Options for x_1 are the nodes x which have an edge from u.
 - The subproblem corresponding to option *x* is: Find a shortest path from *x* to *v*.

- 3. Denote each problem/subproblem by a small number of parameters, the fewer the better.
- Define the objective function to be optimized using these parameter(s).
 - These two steps are usually done simultaneously.
 - Let f(x) denote the shortest distance from x to v.
- 5. Formulate a recurrence relation.

 $f(x) = \min \{ d(x, y) + f(y) : (x, y) \in E \}, \text{ if } x \neq v$ and out-degree(x) \neq 0. 6. Determine the boundary condition.

$$f(x) = \begin{cases} 0 & \text{if } x = v \\ \infty & \text{if } x \neq v \text{ and out-degree}(x) = 0 \end{cases}$$

- 7. What's the goal (objective)?
 - Our goal is to compute f(u).
 - Once we know how to compute *f*(*u*), it will be easy to construct a shortest path from *u* to *v*.
 - I.e., we compute the shortest distance from *u* to *v*, and then construct a path having that distance.
- 8. Implement the algorithm.

Computing f(u) (version 1)

function shortest(x)

//computing f(x)//

global *d*[1..*n*, 1..*n*]

if x = v then return (0)

elseif out-degree(x) = 0 then return (∞)

else return $\left(\min\left\{d(x, y) + \text{shortest}(y) : (x, y) \in E\right\}\right)$

- Initial call: shortest(*u*)
- Question: What's the worst-case running time?

Computing f(u) (version 2) function shortest(*x*) //computing f(x)//global d[1..n, 1..n], F[1..n], Next[1..n]if F[x] = -1 then if x = v then $F[x] \leftarrow 0$ elseif out-degree(x) = 0 then $F[x] \leftarrow \infty$ else $F[x] \leftarrow \min \{ d(x, y) + \operatorname{shortest}(y) : (x, y) \in E \}$

 $F[x] \leftarrow \min\{a(x, y) + \text{shortest}(y): (x, y) \in E\}$ $Next[x] \leftarrow \text{the node } y \text{ that yielded the min}$ return(F[x])

Main Program

procedure shortest-path(u, v)

// find a shortest path from u to v // global *d*[1..*n*, 1..*n*], *F*[1..*n*], *Next*[1..*n*] initialize $Next[v] \leftarrow 0$ initialize $F[1..n] \leftarrow -1$ $SD \leftarrow \text{shortest}(u) //\text{shortest} \text{ distance from } u \text{ to } v //$ if $SD < \infty$ then //print the shortest path// $k \leftarrow u$ while $k \neq 0$ do {write(k); $k \leftarrow Next[k]$ }

Time Complexity

- Number of calls to shortest: O(|E|)
 - Is it $\Omega(|E|)$ or $\Theta(|E|)$?
- How much time is spent on shortest(*x*) for any *x*?
 - The first call: O(1) + time to find x's outgoing edges
 - Subsequent calls: O(1) per call
- The over-all worst-case running time of the algorithm is
 - $O(|E|) \cdot O(1) + \text{ time to find all nodes' outgoing edges}$
 - If the graph is represend by an adjacency matrix: $O(|V|^2)$
 - If the graph is represend by adjacency lists: O(|V| + |E|)

Forward vs Backward approach

Matrix-chain Multiplication

- Problem: Given *n* matrices M₁, M₂, ..., M_n, where M_i is of dimensions d_{i-1} × d_i, we want to compute the product M₁ × M₂ ×···× M_n in a least expensive order, assuming that the cost for multiplying an a × b matrix by a b × c matrix is *abc*.
- Example: want to compute $A \times B \times C$, where *A* is 10×2, *B* is 2×5, *C* is 5×10.
 - Cost of computing $(A \times B) \times C$ is 100 + 500 = 600
 - Cost of computing $A \times (B \times C)$ is 200 + 100 = 300

Dynamic Programming Solution

- We want to determine an optimal (x₁,..., x_{n-1}), where
 x₁ means which two matrices to multiply first,
 x₂ means which two matrices to multiply next, and
 x_{n-1} means which two matrices to multiply lastly.
- Consider x_{n-1} . (Why not x_1 ?)
- There are n-1 choices for x_{n-1} : $(M_1 \times \cdots \times M_k) \times (M_{k+1} \times \cdots \times M_n)$, where $1 \le k \le n-1$.
- A general problem/subproblem is to multiply $M_i \times \cdots \times M_j$, which can be naturally denoted by P(i, j).

Dynamic Programming Solution

- Let Cost(i, j) denote the minimum cost for computing $M_i \times \cdots \times M_j$.
- Recurrence relation:

$$Cost(i, j) = \min_{i \le k < j} \left\{ Cost(i, k) + Cost(k+1, j) + d_{i-1}d_kd_j \right\}$$

for $1 \le i < j \le n$.

- Boundary condition: Cost(i, i) = 0 for $1 \le i \le n$.
- Goal: *Cost*(1, *n*)

Algorithm (recursive version)

function MinCost(i, j)

global d[0..n], Cost[1..n, 1..n], Cut[1..n, 1..n]

//initially, $Cost[i, j] \leftarrow 0$ if i = j, and $Cost[i, j] \leftarrow -1$ if $i \neq j//$ if Cost[i, j] < 0 then

 $Cost[i, j] \leftarrow \min_{i \le k < j} \{ MinCost(i, k) + MinCost(k+1, j) \\ + d[i-1] \cdot d[k] \cdot d[j] \}$

 $Cut[i, j] \leftarrow$ the index k that gave the minimum in the last statement

return (Cost[i, j])

Algorithm (non-recursive version)

procedure MinCost global d[0..n], Cost[1..n, 1..n], Cut[1..n, 1..n]initialize $Cost[i, i] \leftarrow 0$ for $1 \le i \le n$ for $i \leftarrow n-1$ to 1 do for $j \leftarrow i + 1$ to *n* do $Cost[i, j] \leftarrow \min_{i \leq k < i} \{ Cost(i, k) + Cost(k+1, j) \}$ $+ d[i-1] \cdot d[k] \cdot d[j]$ $Cut[i, j] \leftarrow$ the index k that gave the minimum in the last

statement

Computing $M_i \times \cdots \times M_j$

function MatrixProduct(*i*, *j*) // Return the product $M_i \times \cdots \times M_j$ // global $Cut[1..n, 1..n], M_1, \ldots, M_n$ if i = j then return(M_i) else $k \leftarrow Cut[i, j]$

return (MatrixProduct(i, k) × MatrixProduct(k + 1, j))

Time complexity: $\Theta(n^3)$

Paragraphing

• Problem: Typeset a sequence of words w_1, w_2, \ldots, w_n into a paragraph with minimum cost (penalty).

Words: W_1, W_2, \ldots, W_n .

- $|w_i|$: length of w_i .
- *L*: length of each line.
- *b* : ideal width of space between two words.
- ε : minimum required space between words.
- b': actual width of space between words

if the line is right justified.

• Assume that $|w_i| + \varepsilon + |w_{i+1}| \le L$ for all *i*.

• If words $w_i, w_{i+1}, \ldots, w_j$ are typeset as a line, where $j \neq n$, the value of b' for that line is $b' = \left(L - \sum_{k=i}^{j} |w_k|\right) / (j-i)$ and the penalty is defined as:

$$Cost(i, j) = \begin{cases} |b'-b| \cdot (j-i) & \text{if } b' \ge \varepsilon \\ \infty & \text{if } b' < \varepsilon \end{cases}$$

Right justification is not needed for the last line. So the width of space for setting w_i, w_{i+1}, ..., w_j when j = n is min(b, b'), and the penalty is

$$Cost(i, j) = \begin{cases} |b'-b| \cdot (j-i) & \text{if } \varepsilon \le b' < b \\ 0 & \text{if } b \le b' \\ \infty & \text{if } b' < \varepsilon \end{cases}$$

Longest Common Subsequence

• Problem: Given two sequences

$$A = (a_1, a_2, ..., a_n)$$
$$B = (b_1, b_2, ..., b_n)$$

find a longest common subsequence of A and B.

To solve it by dynamic programming, we view the problem as finding an optimal sequence (x₁, x₂, ..., x_k) and ask: what choices are there for x₁? (Or what choices are there for x_k?)

Approach 1 (not efficient)

- View $(x_1, x_2, ...)$ as a subsequence of *A*.
- So, the choices for x_1 are a_1, a_2, \ldots, a_n .
- Let L(i, j) denote the length of a longest common subseq of A_i = (a_i, a_{i+1}, ..., a_n) and B_j = (b_j, b_{j+1}, ..., b_n).
 Let φ(k, j) be the index of the first character in B_j that is equal to a_k, or n+1 if no such character.

• Recurrence: $L(i, j) = \begin{cases} 1 + \max_{\substack{i \le k \le n \\ \varphi(k, j) \le n}} \left\{ L(k+1, \varphi(k, j)+1) \right\} \\ 0 \text{ if the set for the max is empty} \end{cases}$

• Boundary condition: $L(n+1, j) = L(i, n+1) = 0, 1 \le i, j \le n+1.$

• Running time: $\Theta(n^3) + O(n^3) = \Theta(n^3)$

Approach 2 (not efficient)

- View $(x_1, x_2, ...)$ as a sequence of 0/1, where x_i indicates whether or not to include a_i .
- The choices for each x_i are 0 and 1.
- Let L(i, j) denote the length of a longest common subseq of $A_i = (a_i, a_{i+1}, ..., a_n)$ and $B_j = (b_j, b_{j+1}, ..., b_n)$.
- Recurrence:

$$L(i, j) = \begin{cases} \max \begin{cases} 1 + L(i+1, \varphi(i, j) + 1) \\ L(i+1, j) \end{cases} & \text{if } \varphi(i, j) \le n \\ L(i+1, j) & \text{otherwise} \end{cases}$$

• Running time: $\Theta(n^2) + O(n^3)$

Algorithm (non-recursive)

```
procedure Compute-Array-L
global L[1..n+1, 1..n+1], \varphi[1..n, 1..n]
initialize L[i, n+1] \leftarrow 0, L[n+1, j] \leftarrow 0 for 1 \le i, j \le n+1
compute \varphi[1..n, 1..n]
for i \leftarrow n to 1 do
for i \leftarrow n to 1 do
    if \varphi(i, j) \leq n then
          L[i, j] \leftarrow \max \{1 + L[i+1, \varphi(i, j)+1], L[i+1, j]\}
     else
```

 $L[i, j] \leftarrow L[i+1, j]$

Algorithm (recursive)

procedure Longest(i, j)//print the longest common subsequence// //assume L[1..n+1, 1..n+1] has been computed// global *L*[1..*n*+1, 1..*n*+1] if L[i, j] = L[i+1, j] then Longest(i+1, j)else Print (a_i) Longest $(i+1, \varphi(i, j)+1)$

Initial call: Longest(1,1)

Approach 3

• View $(x_1, x_2, ...)$ as a sequence of decisions, where

 x_1 indicates whether to

- include $a_1 = b_1$ (if $a_1 = b_1$)
- exclude a_1 or exclude b_1 (if $a_1 \neq b_1$)
- Let L(i, j) denote the length of a longest common subseq

of
$$A_i = (a_i, a_{i+1}, ..., a_n)$$
 and $B_j = (b_j, b_{j+1}, ..., b_n)$.
Recurrence: $L(i, j) = \begin{cases} 1 + L(i+1, j+1) & \text{if } a_i = b_j \\ \max \{L(i+1, j), L(i, j+1)\} & \text{if } a_i \neq b_j \end{cases}$

- Boundary: L(i, j) = 0, if i = n + 1 or j = n + 1
- Running time: $\Theta(n^2)$

All-Pair Shortest Paths

- Problem: Let *G*(*V*, *E*) be a weighted directed graph. For every pair of nodes *u*, *v*, find a shortest path from *u* to *v*.
- DP approach:
 - $\forall u, v \in V$, we are looking for an optimal sequence $(x_1, x_2, ..., x_k)$.
 - What choices are there for x_1 ?
 - To answer this, we need to know the meaning of x_1 .

Approach 1

- x_1 : the next node.
- What choices are there for x_1 ?
- How to describe a subproblem?

Approach 2

- x_1 : going through node 1 or not?
- What choices are there for x_1 ?
- Taking the backward approach, we ask whether to go through node *n* or not.
- Let $D^k(i, j)$ be the length of a shortest path from *i* to *j* with intermediate nodes $\in \{1, 2, ..., k\}$.
- Then, $D^{k}(i, j) = \min \{ D^{k-1}(i, j), D^{k-1}(i, k) + D^{k-1}(k, j) \}.$

•
$$D^{0}(i, j) = \begin{cases} \text{weight of edge } (i, j) & \text{if } (i, j) \in E \\ 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$
 (1)

Straightforward implementation

initialize $D^0[1..n, 1..n]$ by Eq. (1) for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do if $D^{k-1}[i, k] + D^{k-1}[k, j] < D^{k-1}[i, j]$ then $D^{k}[i, i] \leftarrow D^{k-1}[i, k] + D^{k-1}[k, j]$ $P^{k}[i, j] \leftarrow 1$ else $D^{k}[i, j] \leftarrow D^{k-1}[i, j]$ $P^{k}[i, j] \leftarrow 0$

Print paths

Procedure Path(k, i, j)//shortest path from *i* to *j* w/o going thru $k + 1, \ldots, n$ // global $D^{k}[1..n, 1..n], P^{k}[1..n, 1..n], 0 \le k \le n$. if k = 0 then if i = j then print i elseif $D^0(i, j) < \infty$ then print *i*, *j* else print "no path" elseif $P^{k}[i, j] = 1$ then Path(k-1, i, k), Path(k-1, k, j)else

Path(k-1, i, j)

Print paths

Procedure *ShortestPath*(*i*, *j*) //shortest path from *i* to j // global $D^{k}[1..n, 1..n], P^{k}[1..n, 1..n], 0 \le k \le n$. let $k' \leftarrow \begin{cases} \text{the largest } k \text{ such that } P^k[i, j] = 1 \\ 0 \text{ if no such } k \end{cases}$ if k' = 0 then if i = j then print i elseif $D^0(i, j) < \infty$ then print *i*, *j* else print "no path" else

ShortestPath(k'-1, i, k'), ShortestPath(k'-1, k', j)

Eliminate the *k* in $D^{k}[1..n, 1..n]$, $P^{k}[1..n, 1..n]$

• If $i \neq k$ and $j \neq k$:

We need $D^{k-1}[i, j]$ only for computing $D^{k}[i, j]$. Once $D^{k}[i, j]$ is computed, we don't need to keep $D^{k-1}[i, j]$.

- If i = k or j = k: $D^{k}[i, j] = D^{k-1}[i, j]$.
- What does $P^{k}[i, j]$ indicate?
- Only need to know the largest k such that $P^{k}[i, j] = 1$.

Floyd's Algorithm

initialize D[1..n, 1..n] by Eq. (1) initialize $P[1..n, 1..n] \leftarrow 0$ for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do if D[i, k] + D[k, j] < D[i, j] then $D[i, j] \leftarrow D[i, k] + D[k, j]$ $P[i, j] \leftarrow k$

Longest Nondecreasing Subsequence

• Problem: Given a sequence of integers

$$A = (a_1, a_2, \ldots, a_n)$$

find a longest nondecreasing subsequence of A.

Sum of Subset

- Given a positive integer *M* and a multiset of positive integers $A = \{a_1, a_2, \dots, a_n\}$, determine if there is a subset $B \subseteq A$ such that Sum(B) = M, where Sum(B) denotes the sum of integers in *B*.
- This problem is NP-hard.

Job Scheduling on Two Machines

There are *n* jobs to be processed, and two machines *A* and B are available. If job i is processed on machine A then a_i units of time are needed. If it is processed on machine Bthen b_i units of processing time are needed. Because of the peculiarities of the jobs and the machines, it is possible that $a_i > b_i$ for some *i* while $a_i < b_i$ for some other *j*. Schedule the jobs to minimize the completion time. (If jobs in J are processed by machine A and the rest by machine B, the

completion time is defined to be max

$$\mathbf{x}\left\{\sum_{i\in J}a_i, \sum_{i\notin J}b_i\right\}.)$$

Assume $1 \le a_i, b_i \le 3$ for all *i*.