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  Problems that can be solved by dynamic programming 
    are typically optimization problems.

  Optimization problems:  Construct  a set or a sequence of 
    of  elements ,  . .

Optimization Problems

y

•

•

{ } . ,   that satisfies a given constraint
    and optimizes a given objective function.

  The closest pair problem is an optimization problem.

  The convex hull problem is an optimization problem.

ky

•

•
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{ }1 2 3

  Consider the closest pair problem: 
    Given a set of  points,  , , , , , find a
    closest pair in .

  Let ( , ) denote the problem of finding a closest pair 

    

Problems and Subproblems

nn A p p p p
A

P i j

•

•

= 

{ }1in , , , ,  where 1 .

  We have a class of similar problems, indexed by ( , ).

  The original problem is (1, ).

ij i i jA p p p i j n

i j

P n

+ ≤

•

= ≤ ≤

•


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( )  1

1 1 2

  Problem: construct an optimal solution , , .
  There are several options for , say, ,  ,  . . . ,  . 
  Each option  leads to a subproblem :  given

Dynamic Programming: basic ideas

k

d

j j

x x
x op op op

op P•

…•

•

( )

( ){ }

1

1

2

1 2

 ,

    find an optimal solution , ,  ,  .

  The best of these optimal solutions, i.e.,

           Best of , ,  ,  :1  

    is an optimal solution to the original problem.
 

j

j kj

j j kj

j

x op

x x

x op x x j d

x op

=

= … ≤

=

•

≤

•

…

 DP works only if the  is a problem similar to the 
    original problem.

jP
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  Apply the same reasoning to each subproblem,
    sub-subproblem, sub-sub-subproblem, and so on.
  Have a tree of the original problem (root) and subproblems.  
  Dyna

Dynamic Programming: basic ideas
•

•
• mic programming works when these subproblems
    have many duplicates, are of the same type, and we can
    describe them using, typically, one or two parameters.
  The tree of problem/subproblems (whic• h is of exponential

    size) now condensed to a smaller, polynomial-size graph. 
  Now solve the subproblems from the "leaves".•
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( )1

1 1 2

1.  View the problem as constructing an opt. seq. , , .
2.  There are several options for , say, ,  ,  . . . ,  . 
     Each option  leads to a subpro

Design a Dynamic Programming Algorithm

k

d

j

x x
x op op op

op

…

blem.
3.  Denote each problem/subproblem by a small number of
     parameters, the fewer the better.  E.g., ( , ), 1 .
4.  Define the objective function to be optimized using these
     parameter(s)

P i j i j n≤ ≤ ≤

.  E.g., ( , )  the optimal value of ( , ).
5.  Formulate a recurrence relation.
6.  Determine the boundary condition and the goal.
7.  Implement the algorithm.

f i j P i j=
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Problem:  Let ( , ) be a directed acyclic graph (DAG).
    Let  be represented by a matrix:

 length of edge ( ,  ) if ( ,  )
           ( ,  )  0 if 

 otherwise
    Find a

 

 h r

 

s o

Shortest Path
G V E

G
i j i j E

d i j i j

=

∈

•


= =
 ∞

test path from a given node  to a given node .u v
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( )
( )

( )

1

1

1

      Here we want to find a s

 1.  

equen

View the p

ce of node

roblem as constructi

s , ,  

     

ng 

 such that , , , ,  is a shorte

an opt. seq.

st path from  to

 , , .

 

Dynamic Programming Solution

k

k

k

x x

x x

u x x v u v

…

…

…

1 2

1

1 2.  There are several options for , say, ,  ,  . . . ,  . 
      Each option  leads to a 

.

      Options for  are the nodes  which have an edge fro
s

m .
      The su

 
ubproblem.

bprobl
 
 e 

d

j

x

x op op op
op

x u

 m corresponding to option  is: 
       Find a shortest path from  to     .

x
x v
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3.  Denote each problem/subproblem by a small number
     of parameters, the fewer the better.
4.  Define the objective function to be optimized using th

    

ese
  

  Th
   param

ese two 
ete

ste
r(s).

 ps are 

{ }
5.  Formulate a recur

usually done simultan

rence relat

eously.
      Let ( ) denote the shortest distance from  to .

      ( ) min ( ,  ) ( ) : ( ,  y) ,  if  
  

io

    and out-degree( ) 0

.

 

.

n

f x x v

f x d x y f y x E x v
x

= + ∈ ≠

≠


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6.  Determine the boundary condition.

7.  What's th

 

 

0 if 
      ( )  

if  and out-degree( ) 0 

      Our goal is to compute ( ).
      Once we know how to compute ( ),

e go
 

al (objective)

   

?

x v
f x

x v x

f u
f u

=
=  ∞ ≠ =



 it will be easy
          to construct a shortest path from  to .
       I.e., we compute the shortest distance from  to ,
         and then construct a path having that

8. 

 

 Implement th

 dista

 

nce.

e

u v
u v

algorithm.
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 ( )
   //computing ( )//
   global [1.. ,  1.. ]
    

function

if
elseif

 then return (0)
    out-degree( ) 0 then return ( )

    return min ( ,  

(versio

)

sh

( ) : (

n 1)

ortest

shorteste ,els

Computing ( )    
x

f x
d n n

x v
x

d x y y x

f u

=
= ∞

+{ }( ) y)

  Initial call: shortest( )
  Question:  What's the worst-case running time?

E

u•
•

∈
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 shortest( )
   //computing ( )//
   global [1.. ,  1.. ],  [1.. ],  [1.. ]
   [ ] 1    
          [ ] 0
         out-degree( ) 0

function

 then
 if then
elseif the

 

(versio

n

n

if

 

 2

[

)

 

Computing ( )    
x

f x
d n n F n Next n

F x
x v F x

x F

f u

= −
= ←

=

{ }

]
         
             [ ] min ( ,  ) shortest( ) : ( ,  y)
             [ ] the node  that yielded

else

retu
 the min 

   r ]n( [ )

x

F x d x y y x E
Next x y
F x

←∞

← + ∈

←

12



 shortest-path( , )
   // find a shortest path from  to  //
   global [1.. ,  1.. ],  [1.. ],  [1.. ]
   initialize [ ] 0
   initialize [1.. ] 1
   shorte

proced

st( )  //shor

ur

t

e

Main Program  
u v

u v
d n n F n Next n

Next v
F n

SD u

←
←−

←

{ }

est distance from  to // 
   if    then  //print the shortest path//
        
        while 0 do write( );  [ ]

u v
SD
k u

k k k Next k

< ∞
←

≠ ←
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( )
( ) ( )

Number of calls to shortest:  

    Is it  or ? 

How much time is spent on shortest( ) for any ?
    The first call:  (1)  time to find 's outgoing edges

  

 

    Subseque
 
 n

  

Time Complexity  

O E

E E

x x
O x

Θ

+

•

Ω

•







( )
( )2

t calls:  (1) per call    

The over-all worst-case running time of the algorithm is
    (1)  time to find all nodes' outgoing edges

    If the graph is represend by an adjacency ma

 

 trix:  

 

  

O

O E O

O V

⋅ +

•





( )   If the graph is represend by adjacency lists:   O V E+
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Forward vs Backward approach  
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1 2

1

1 2

Problem:  Given  matrices , ,  . . . , ,  where  is
    of dimensions , we want to compute the product
      in a least expensive order, assuming
   

  

Matrix-chain Multiplication  

n i

i i

n

n M M M M
d d

M M M
− ×

× ×

•

×
 that the cost for multiplying an  matrix by a  matrix

    is .

Example:  want to compute , where 
     is 10 2,   is 2 5,   is 5 10.
      Cost of computing ( )  is 100 500 6

 

00
 

 

   

a b b c
abc

A B C
A B C

A B C

× ×

× ×
× × ×

× + =

•

×

  Cost of computing ( ) is 200 100 300A B C× × + =
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( )1 1

1

2

1

We want to determine an optimal , , , where  
     means which two matrices to multiply first,
     means which two matrices to multiply next, and
     me

 

a s

 

n

Dynamic Programming Solution  

n

n

x x
x
x
x

−

−

• …

( ) ( )

1 1

1

1 1

 which two matrices to multiply lastly.

Consider .   (Why not ?) 

There are 1 choices for :
      ,  where 1

  

  

 

1.

A general problem/subproblem is to multiply   

n

n

k k n

i

x x

n x
M M M M k n

M M

−

−

+

•

•

•

−

× × × × × ≤ ≤ −

× ×

 

 ,
    which can be naturally denoted by ( , ).

j

P i j
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{ }1  

  

  

Let ( ,  ) denote the minimum cost for computing
     .

Recurrence relation: 

    ( ,  ) min ( ,  ) ( 1,  )

                     

Dynamic Programming Solution  

i j

i k ji k j

Cost i j
M M

Cost i j Cost i k Cost k j d d d−≤ <

× ×

= +

•

+

•

+



                                            for 1 . 

Boundary condition:  ( ,  ) 0 for 1 .

Goa

 

l:  (1 )

 

 ,   

i j n

Cost i i i n

Cost n

≤

•

<

= ≤•

≤

≤
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 MinCost( ,  )
   [0.. ],  [1.. ,  1.. ],  [1.. ,  1.. ]
   //initially, [ ,  ]

function
 glo

0 if , and [ ,  ] 1 if //
    [ ,  ] 0 
       

bal

i the
 

f n

(recursive version)Algorithm     
i j

d n Cost n n Cut n n
Cost i j i j Cost i j i j

Cost i j
← = ← − ≠

<

{

}
  

 [ ,  ] min  MinCost( ,  )  MinCost( 1,  )

                                                        [ 1] [ ] [ ] 
        [ ,  ] the index  that gave the minimum in the last
         

i k j
Cost i j i k k j

d i d k d j
Cut i j k

≤ <
← + +

+ − ⋅ ⋅

←

( )
                  state

retur
ment

   Cost[n , ]i j
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procedure MinCost
global [0.. ],  [1.. ,  1.. ],  [1.. ,  1.. ]
initialize [ ,  ] 0 for 1
for 1 to l do
for 1 to  do
        [ ,  ] min  

(non-recuAlgorit rsive versiohm  n)

i k j

d n Cost n n Cut n n
Cost i i i n

i n
j i n

Cost oi C sj
≤ <

← ≤ ≤
← −
← +

← {

}

( ,  )  ( 1,  )

                                                        [ 1] [ ] [ ] 
        [ ,  ] the index  that gave the minimum in the last
                           statement

i k k j

d i d k d j
Cut i j k

t Cost+ +

+ − ⋅ ⋅

←



( )

1

function ( ,  )
// Return the product  //
global [1.. ,  1.. ],  ,  . . . ,
if  then retu

MatrixProduct

Matr

rn( )
else

[ ,  ]
return ixProd ( ,  )  ( 1,uct MatrixProdu )t  c

Computing j

i

i

i j

n

i j
M M

Cut n n M M
i j M

k Cut i j

M

i k

M

k j

×

×

×

=

←

× +

×





3Time complexity:  ( )nΘ
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1 2

1 2

Problem:  Typeset a sequence of words  , ,  . . . ,
    into a paragraph with minimum cost (penalty).  
     Words:    , ,  . . . , .
     :         length of .
      :          

  

Paragraphing

n

n

i i

w w w

w w w
w w
L

•

  length of each line.
       :            ideal width of space between two words.
      :            minimum required space between words.
      :            actual width of space between words
       

b

b
ε
′

1

               if the line is right justified. 
Assume that  for a ll  .i iw w L iε ++ + ≤•
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( ) ( )

( )

1If words , ,  . . .,  are typeset as a line, where ,

    the value of  for that line is  | |

    and the penalty is defined as:

if 
          ( ,  

  

)
if 

i i j

j
kk i

w w w j n

b b L w j i

b b j i b
Cost i j

b
ε
ε

+

=

• ≠

′ ′ = − −

′ ′ − ⋅ − ≥
=  ′∞ <

•


∑

( )

1

Right justification is not needed for the last line.  So the
    width of space for setting , ,  . . .,  when  is
    min( ,  ),  and the penalty is

if 
          ( ,  ) 0 if 

  

i i jw w w j n
b b

b b j i b b
Cost i j b

ε

+ =

′

′ ′− ⋅ − ≤ <
= ≤  

if 
b

b ε


 ′
 ′∞ <
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( )
( )

1 2

1 2

Problem:  Given two sequences
                    ,  ,  ,  

                    ,  ,  ,  
    find a longest common subsequence of  and .

To solve it by

  

 dy  nam

Longest Common Subsequence

n

n

A a a a

B b b b
A B

= …

=

•

•

…

( )1 2

1

ic programming, we view the problem
    as finding an optimal sequence ,  ,  ,   and ask:
    what choices are there for ?   (Or what choices are there
    for ?)

k

k

x x x
x

x

…
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( )

( )

1

1 1 2

2

1

So, the choices for  are ,  ,  ,  .  
Let ( , ) denote the length of a longest common 

View ,  ,   as a subsequence

(not effic

subseq

 

 of .

ien

   
  

   of  ,  ,  ,  

 

)

 

tApproach 1    

n

i i i n

x a a a
L i j

A a a

x x

a

A

+

•

•

…

…

…

=

•

( )

( ){ }

1

   
( , )

 and ,  ,  ,  .

  Let ( , ) be the index of the first character in  that
    is equal to , or 1 if no such character.  

1 max 1,  ( , ) 1
  Recurrence:   ( , )

0 if th

j j j n

j

k

i k n
k j n

B b b b

k j B
a n

L k k j
L i j ϕ

ϕ

ϕ

+

≤ ≤
≤

= …

+

+ + +

•

• =

( ) ( ) ( )3 3 3

e set for the max is empty 
  Boundary condition:  ( 1, ) ( , 1) 0,  1 , 1.

  Running time:  

L n j L i n i j n

n O n n






+ = + = ≤

Θ +

•

•

≤ +

= Θ
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( )1 2 , where 
    indicates whether or not to inc

Vie
lude .

The choices for each  are 0 and 1.   
Let ( , ) denote the length of a

(not effic

 

w ,  ,   a

ient

  

  
  

s a sequence of 0/1

)

l

Approach 2    

i

i

i

x
a

x

L i

x

x
j

•

•

…

•

( ) ( )

( )
( )

( )
( ) ( )

1 1

2 3

ongest common subseq

    of  ,  ,  ,   and ,  ,  ,  .

  Recurrence:   

1 1,  ( , ) 1
max if ( , )

         ( , ) 1,  

1,  otherwise

  Running time:  

i i i n j j j nA a a a B b b b

L i i j
i j n

L i j L i j

L i j

n O n

ϕ
ϕ

+ += … = …

 + + + ≤ 
= + 
 +

Θ +

•

•
26
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procedure Compute-Array-L 
global [1.. 1,  1.. 1],  [1.. ,  1.. ]
initialize [ ,  1] 0,  [ 1,  ] 0 for 1 , 1
compute [1.. ,  1.. ]   
for  to l do
for  to 1 do
      

Algorithm (non-recursive) 

L n n n n
L i n L n j i j n

n n
i n
j n

ϕ

ϕ

+ +
+ ← + ← ≤ ≤ +

←
←

{ }
if ( , )  then

             [ ,  ] max 1 [ 1,  ( , ) 1],  [ 1, ]   
      else   
             [ ,  ] [ 1,  ] 

i j n
L i j L i i j L i j

L i j L i j

ϕ
ϕ

≤

← + + + +

← +
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procedure Longest( , )
//print the longest common subsequence//
//assume [1.. 1,  1.. 1] has been computed//
global [1.. 1,  1.. 1]    
      if [ ,  ] [ 1,  ] then
           

Algorithm  (recursive)
i j

L n n
L n n

L i j L i j

+ +
+ +
= +

( )

( )

  Longest 1,    
      else   
             Print ( )
             Longest 1,  ( , ) 1

Initial call: Longest(1,1)

i

i j

a
i i jϕ

+

+ +



( )
1

1 1 1 1

1 1 1

1 2

1

, where
      indicates whether to 
       include    (if ) 
       exclude

View ,  ,   as a sequ

  or exclude   (if ) 
Let ( , ) denote 

ence of decis

the le

i  

  

o

 
 

s

n

n

Approach 3

x
a b a b

x

b
L i j

x

a b a

…

•
≠

•

= =



( ) ( )
( )
( ) ( ){ }

1 1

gth of a longest common subseq

    of  ,  ,  ,   and ,  ,  ,  .

1 1,  1                      if  
  Recurrence: ( , )

max 1,  ,  ,  1   if 

  Boundary:   ( , ) 0

i i i n j j j n

i j

i j

A a a a B b b b

L i j a b
L i j

L i j L i j a b

L i j

+ += … = …

+ + + == •
+

•

+ ≠
=

( )2

,  if 1 or 1

  Running time:  

i n j n

n

= + = +

Θ•
29



Problem: Let ( , ) be a weighted directed graph. For
    every pair of nodes ,  , find a shortest path from  to .

DP approach:
      ,  ,  we are looking for an opti

  

   

All-Pair Shortest Paths
G V E

u v u v

u v V

•

∀
•

∈

( )1 2

1

1

mal sequence 
        ,  ,  ...,  . 
      What choices are there for ?
      To answer this, we need to know the meaning of . 

kx x x
x

x




30



{ }

1

1

  

  

  

 

:  the next node.   

What choices are there for ?

How to describe a subproblem?

What about ( , ) min ( ,  ) ( , ) : ( ,  ) ?

Let ( , ) denote the length of a shortest path f

 

  

Approach 1

k

x

x

L i j d i z L z j i z E

L i j

= + ∈

•

•

•

•

•

{ }1

rom
     to  with at most  intermediate nodes. 

( , ) min ( ,  ) ( , ) : ( ,  ) .  k k

i j

L i j d i z L z j i z E

k

−+ ∈• =

31



1

1

:  going through node 1 or not?
What choices are there for ?
Taking the backward approach, we ask whether to

    go through node  or not.
Let ( ,

  
  

 ) be the length of a shortest

  

  

Approach 2

k

x
x

n
D i j

•
•
•

•

{ }
{ }1 1 1

0

 path from  
    to  with intermediate nodes 1,  2, . . . ,  . 

Then,  ( ,  ) min ( ,  ),  ( ,  ) ( ,  ) .

 weight of edge ( ,  ) if ( ,  )
( ,  )  0 if            

 ot

  

  
herwise

k k k k

i
j k

D i j D i j D i k D k j

i j i j E
D i j i j

− − −

∈

= +

∈
= =
 ∞

•

•  (1)

32



0

1 1 1

initialize [1.. ,  1.. ] by Eq. (1)
for 1 to  do
    for 1 to  do
        for 1 to  do
             if [ ,  ] [ ,  ] [ ,  ] then
                    [

Straightforward implementation

k k k

k

D n n
k n

i n
j n

D i k D k j D i j
D i

− − −

←
←
←

+ <
1 1

1

,  ] [ ,  ] [ ,  ]
                    [ ,  ] 1
             else [ ,  ] [ ,  ]
                    [ ,  ] 0

k k

k

k k

k

j D i k D k j
P i j
D i j D i j
P i j

− −

−

← +

←

←

←
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0

Procedure ( , , )
//shortest path from  to  w/o going thru 1,  ,   //
  global [1.. ,  1.. ], [1.. ,  1.. ],  0 .
  if  0 then 
        if  then print 
        elseif ( , )  

Print paths

k k

Path k i j
i j k n

D n n P n n k n
k

i j i
D i j

+ …

≤ ≤
=
=

< ∞ then print ,
        else print "no path"
  elseif  [ ,  ] 1 then
        ( 1,  ,  ),  ( 1,  ,  )
  else
        ( 1,  ,  )

k

i j

P i j
Path k i k Path k k j

Path k i j

=
− −

−
34



Procedure ( , )
//shortest path from  to  //
  global [1.. ,  1.. ], [1.. ,  1.. ],  0 .

the largest  such that [ ,  ] 1
  let   

0 if no such 
  if  0 then 
        

Print paths

k k

k

ShortestPath i j
i j

D n n P n n k n

k P i j
k

k
k

≤ ≤

 =
′ ← 


′ =

0

if  then print 
        elseif ( , )  then print ,
        else print "no path"
  else  
        ( 1,  ,  ),   ( 1,  ,  )

i j i
D i j i j

ShortestPath k i k ShortestPath k k j

=

< ∞

′ ′ ′ ′− −
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1

1

   If  and :

     We need [ ,  ] only for computing [ ,  ].

     Once [ ,  ] is computed, we don't need to keep 

     [ ,  ].

   If 

[1.. ,  1.. ],  [1.. ,  1.. ]Eliminate the  in 

k k

k

k

k k

i k j k

D i j D i j

D i j

D i j

i k

D n n P n nk

−

−

• ≠ ≠

• = 1 or :    [ ,  ] [ ,  ].

   What does [ ,  ] indicate?

   Only need to know the largest  such that [ ,  ] 1.
 

k k

k

k

j k D i j D i j

P i j

k P i j

−= =

•

• =
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initialize [1.. ,  1.. ] by Eq. (1)
initialize [1.. ,  1.. ] 0 
for 1 to  do
    for 1 to  do
        for 1 to  do
             if [ ,  ] [ ,  ] [ ,  ] then
                    

Floyd's Algorithm
D n n
P n n

k n
i n

j n
D i k D k j D i j

←
←
←
←

+ <
[ ,  ] [ ,  ] [ ,  ]

                    [ ,  ]
D i j D i k D k j
P i j k

← +
←
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( )1 2

Problem:  Given a sequence of integers
                    ,  ,  ,  
    find

 

 a longest nondecreasing subseque

 

nce of .

Longest Nondecreasing Subsequence

nA a a a
A

=

•

…

38



{ }1 2

Given a positive integer  and a multiset of positive
    integers ,  ,  . . . ,  ,  determine if there is a
    subset  such that ( ) ,  where ( ) 
    denotes the sum of 

  

in

Sum of Subset

n

M
A a a a

B A Sum B M Sum B
=

⊆ =

•

tegers in .

This problem is NP-h d  ar .

B

•
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There are  jobs to be processed, and two machines  and 
 are available.  If job  is processed on machine  then  

units of time are needed.  If it is processed on mac

Job Scheduling on Two Machines

i

n A
B i A a

hine  
then  units of processing time are needed.  Because of the
peculiarities of the jobs and the machines, it is possible that

 for some  while  for some other .  Schedule
the jobs to mi

i

i i j j

B
b

a b i a b j> <

nimize the completion time.  (If jobs in  are
processed by machine  and the rest by machine , the

completion time is defined to be max ,  .)

Assume 1 , 3 for all .

i i
i J i J

i i

J
A B

a b

a b i
∈ ∉

 
 
 

≤ ≤

∑ ∑
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