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  Given an instance  of a problem, the 
    method works as follows:

     DAC( )
         is sufficiently small 
               solve it directly
     

divide-and-conquer

Divide and Conquer
x

x
x

•

function
 if then

( )

1 2

1 2

   
               divide  into smaller subinstances ,  ,  … ,  ;
                DAC( ), for 1 ;
               combine ,  ,   ,  ;
               ( )

k

i i

k

x x x x
y x i k
y y y y

y

← ≤ ≤

←

else

return

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( )

1

0

  Typically, ,  … ,   are of the same size, say .
  In that case, the time complexity of DAC, ( ),  satisfies

    a recurrence:

if  
          ( )  

Analysis of Divide-and-Conquer

kx x n b
T n

c n n
T n

kT n b

  

≤
=

•

•

+   0

0

 ( ) if  

  Where ( ) is the running time of dividing  and 
    combining 's.
  What is ?     
  What is ?   

i

f n n n

f n x
y

c
n


 >

•

•
•
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( )

( )
( )

   mergesort [ .. ]
       // Sort [ .. ]//
         

procedure

if then return           

Sort an array [1.. ]

 // base case 

  ( ) 2

mergesort [ .. ]
       

mergesort [

     /

1.. ]

/

m

Mergesort:  

A i j
A i j

i j

m i j

A i m

A m j

A n

=

← +

+

•

  

( )

( )

divide and conque

erge [ .. ],  [ 1.. ]  

  Initial call:  mergesort [

r

. ]

 

1 .

A i m A m j

A n•



+







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( ) ( )

  Let ( ) denote the running time of mergesorting an
    array of size .
  ( ) satisfies the recurrence:

if  1
      ( )  

2  2 ( ) if  1

  Solving the rec

Analysis of Mergesort
T n

n
T n

c n
T n

T n T n n n
≤=  + + Θ >      

•

•

• urrence yields:
       ( ) ( log )
  We will learn how to solve such recurrences.

T n n n= Θ
•
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( )   mergesort ,  
       // Sort [ .. ].  Initially, [ ] 

function

globa
= 0, 1 .//

        [1.. ],  
 // base case

l 
 /

[1.. ]
          if then retu ( )

  

rn   /

 

Linked-List Version of Mergesort

i j
A i j link k k n
A n link n

i j i=

•

≤ ≤

( )
( )

( )

  ( ) 2

1  mergesort ,  

    2  mergesort 1,   

 

divide 

 merge

and conquer

1,  
return  

2
)  (

m i j

ptr i m

ptr m j

ptr ptr ptr
ptr

← +  
←

← +





←





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( )

  Suppose a function ( ) satisfies the recurrence

if  1
         ( )  

3 4 if  1

    where  is a positive constant.

  Wish to obtain a function ( ) such that ( )

Solving Recurrences
T n

c n
T n

T n n n

c

g n T n g

≤
=  + > 

•

 

= Θ

•

( )( ) .

  Will solve it using various methods:  Iteration Method, 
    Recurrence Tree, Guess and Prove, and Master Method.

n

•
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[ ]
[ ]

2 3 3

Assume  is a power of 4.  Say, 4 .   Then,
( )    3 ( / 4)

    =    3 / 4  3 ( /16)

    =    3( / 4)  9 ( /16)  3 ( / 64)

    =    (3 / 4)   (3 / 4)   3 ( / 4 )

3 3    =   1    
4

Iteration Method
mn n

T n n T n
n n T n

n n n T n

n n n T n

n

=
= +

+ +

+ + +

+ + +

+ +
2 13       3

4 4 4

      (1  () ( ) 

So, ( ) ( |  a power of 4) ( ) ( ).  (Why 

)

?)

m
m

m

n

nT

n O n

T n n n T n n

−      + ⋅⋅⋅ + +      
       

Θ +

= Θ = Θ

== Θ

⇒
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  We have applied Theorem 7 to conclude ( ) ( )
    from ( ) ( |  a power of 4).

  In order to apply Theorem 7,  ( ) needs to be
    nondecreasing. 

  It will be a homework question for you t

Remark
T n n

T n n n

T n

•

=• Θ
= Θ

•

o prove that
    ( ) is indeed nondecreasing.T n
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2 2

2 2

3 3

3

1

1

3

1

1

 

 

 )

 

(1

1 of size 
  

3 of size / 4

3 of size / 4
 3 / 4

3 of si

     

3 of size /

ze / 4
 3 / 4

 

 3 / 4

 3 /
3 of si

4
z

4

e / 4

3

solving problems time needed

m m m

m m

m m

n

n

n
n

n
n

n

n

n
n

n

−

− −

−

⋅Θ

↓ ↑ ⋅

↓ ↑

↓ ↑

↓ ↑ ⋅

⋅

↓ ↑ ⋅

 
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( )

1 2

if  1
  Solve  ( )  

3 4 ( ) if  1

  First, guess ( ) ( ),  and then try to prove it.
  Sufficient to consider  4 ,  0,  1,  2,  . . .
  Need to prove:  4 (4 ) 4

Guess and Prove

m

m

m m

c n
T n

T n n n

T n n
n m

c T c

≤=  +Θ > 
•

•

 

= Θ

=

≤

• =

• ≤

0 0 0
1 2
1 1 1

1 2 1 2

0 0

1 2

0

1 2

We choose  and prove
    by induction on  
  IB:  When 0,  4 (4 ) 4  

some ,

.
  IH:  Assume  4 (4 ) 4  for some ,

 f  
for som

or  
    an e d all  .  0

 .
f

.
i  

m m m

c c
m

c c
m

m c T c

m m m

c T c c c
c

− − −

•

•

≥ =

≤ ≤= ≤ ≤

≤ ≤
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( )
2

2

1

1

2

2 2

2 2

2

1

  IS:  (4 ) =  3 (4 ) (4 )
                     3 4 4  
                     3 4 4

                      4   

for some constant 

if   

          (4 ) =  3 (4 ) (4 )
   

4

   

m m m

m m

m

m

m m m

c
T T

c c
c c

c c

T

c

T

−

−

−

+ Θ

′ ′

′ ≤

≤ +

′= +

≤

+ Θ

•

( )

1
1 1

1 1

1

1

1

1 1

12 2 1

1

2 2 1

               3 4 4
                     3 4 4

                      4   
  Let  ,   be such that 

    Then, 

 for some constant 

 if

 4   

  4
,  4,  

(
.

4
4

m m

m

m

m m

c

c c
c

c c
c c

c
c c c c cc

T
c

c
c

− ′≥ +

′= +

≥

≤

•

′

′ ≥
′ ′≤ ≤ ≤ ≤

2)  4   for all 0.mc m≤ ≥

12



0.99 2

  Definition:  ( ) is polynomially smaller than ( ), denoted
    as ( ) ( ), iff ( ) ( ( ) ), or ( ) ( ( )),
    for some  0.

  For example, 1 .

  Is 1 log ?

The Master Theorem
f n g n

f n g n f n O g n n f n n O g n

n n n n

n

ε ε

ε

−

•

•

•

= =
>



   



( )

  Or  log ?

  To answer these, ask yourself whether or not (log ).

  For convenience, write  ( ) ( ) iff  ( ) ( ) .

  Note: the notations  and  are good only for this class.

n n n

n O n

f n g n f n g n

ε =

≈ = Θ

≈

•

•

•





13



( )
( )

log log

log

If ( ) satisfies the recurrence ( ) ( / ) ( ),
then ( ) is bounded asymptotically as follows.

  If   ( ) ,  then ( ) .

  If   ( ) ,  then ( ) (

 

 

 1.

 2. ) .

The Master Theorem

b b

b

a a

a

T n T n aT n b f n
T n

f n n T n n

f n n T n f n

= +

= Θ

= Θ





( )
( )

log

log

  If   ( ) ,  then ( ) ( ) log .

 If   ( ) log ,  then ( ) ( ) log .

In case 2, it is required that ( / ) ( ) for some 1,
which is satisfied by most ( ) that we shal

3.

4

  

  . 

l e

b

b

a

a k

f n n T n f n n

f n n n T n f n n

af n b cf n c
f n

≈ = Θ

≈ = Θ

≤ <
ncounter.

In the theorem, /  should be interpreted as /  or / .n b n b n b      
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2

   ( )  =  3 ( / 4)  .

   ( )  9 ( / 3)  .

   ( )  (2 / 3)  1.

   ( )  3 ( / 4)  log .

   ( )  7 ( / 2)  ( ).

   ( )  2 ( / 2)  log .

   ( )  ( /

Examples: solve these recurrences
T n T n n

T n T n n

T n T n

T n T n n n

T n T n n

T n T n n n

T n T n

+

= +

= +

•

•

•

•

•

= +

= +

=•

Θ

• = +

3)  (2 / 3)  .T n n+ +
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2

2

l

2

2

lo

og 1

log 1

log

log 1

log 1

g 

 

)

)

 

 of size 
   

 of size 
 

   of

 

( ) ( / ) ( )

( )
/

( / )
/

(
 size 

 

of size 
 

of 

    

size

/

/

1

 /
( /

solving problems time needed

b b

b

b

b

b

n

nn

n

n

T n aT n b f n

n
f n

na
a

a
a

a
a

b
f n b

n b
f n b

n b
f n

ba n
b

− −

− −

=

↓ ↑

↓ ↑

↓ ↑

↓ ↑

+

⋅

⋅

⋅

 

log (1)b nn a ⋅Θ
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22

2

log 1

log 1

log log

2

log 1

log 1

log

 

 

 (1)

)

)

( ) ( / ) ( )

( )
/

( / )
/

(

 of size 
   

 of size 
 

of size               
 

of si

     

(

ze 
 

of size

/

/
(

/

)

 
/

1

b

b

b b

b

b

bn

n

n

n

nn n

T n aT n b f n
n

f n
n b

f n b
n b

f n b

n

a
a

a
a

a
a

a a

b
f

T n

b
n b

n

− −

−−

⋅Θ

= +

⋅

⋅

↓ ↑

↓ ↑

↓ ↑

⋅↓ ↑

 

( )
log 1

log

0

log(Note:  log log log/   )
lo

    
g

 
b

b a
b a

n

a

ai i

i
b

nn na f n b an
b

−

=

= = ⋅+= ∑
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( )
( ) ( )

( ) ( )
( )

log log

log

log 1
log

0

log

log

log

.

Then       ,

and thus  / .     Then, we have 

/   (from the previous

/

 slide)

/

Suppose  ( )

( )

     

b b

b

b
b

a a

a i

i i

n
ai i

i

i

i

b

b

b

a

a

a

i n nnf
a

a f n b

a n

b

f n b

b

n n

T n

n b

f

n

−

=

    
= = =    

     

=

+

=Θ

Θ Θ Θ

Θ

= ∑

( ) ( )
log 1

log log log

0
log log( ) 

 

 

 

b
b b b

n
a a a

i
n nn n n f n

−

=

 
  = =
 
 

Θ Θ+=Θ ∑
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( ) 2 log if 2
  Solve  ( ) 

 otherwise

  Suffices to consider only powers of 2.  Let 2 .
  Define a new function ( ) (2 ) ( ).
  The above recurrence transl

When recurrences involve roots

m

m

T n n n
T n

c

n
S m T T n

 + >= 


•


•

•

=

• = =

( )
ates to

 2 / 2 if 1
              ( ) 

 otherwise
  By Master Theorem,  ( ) ( log ).
  So,  ( ) (log log log )

S m m m
S m

c
S m m m

T n n n

 + >
= 


=
= Θ•

Θ•
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3

1

  Problem:  Compute , given  matrices  and .
  The straightforward method requires ( ) time, 

    using the formula  .

  Toward 

Strassen's Algorithm for Matrix Multiplication

n

ij ik kj
k

C AB n n A B
n

c a b
=

•

•

•

= ×

Θ

=∑

log7 2.81

2.81 3

2.521813

the end of 1960s, Strassen showed how to multiply
    matrices in ( ) ( ) time. 
  For 100,  416,869,  and 1,000,000.
  The time complexity was reduced to ( ) in 1979, 

    t

O n O n
n n n

O n

=

= ≈•

•

=

2.521801 2.376o ( ) in 1980, and to ( ) in 1986.
  In the following discussion,  is assumed to be a power of 2.

O n O n
n•
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11 12 11 12 11 12

21 22 21 22 21 22

11 12 11 12 11 12

21 22 21 22 21 22

  Write

           ,   ,   

    where each ,  ,   is a / 2  / 2 matrix.

  Then     

ij ij ij

A A B B C C
A B C

A A B B C C

A B C n n

C C A A B B
C C A A B B

     
= = =     
     

×

   
=   


•



•

 

1 1 2 2

2

3

.

  If we compute , the running time ( )

    will satisfy the  recurrence ( ) 8 ( / 2) ( )
  ( ) will be ( ),  not better than the straightforward one.
  Good for parallel p

ij i j i jC A B A B T n

T n T n n
T n n

 
 
 

= +

•
Θ

•

= + Θ

•

3

rocessing. What's the running time
    using ( ) processors?nΘ

21



2 3 1 2 5 611 12

1 2 4 7 1 2 4 521 22

1 21 22 11 22 12 11

2 11 11

3 12 21

  Strassen showed

      

    where   ( ) ( )
                 
                 
                

M M M M M MC C
M M M M M M M MC C

M A A A B B B
M A B
M A B
M

+ + + +  
=    + + − + + +   

= + − − +
=

•

=

×
×
×

4 11 21 22 12

5 21 22 12 11

6 12 21 11 22 22

7 22 11 22 12 2

2 l

1

og7

 ( ) ( )
                 ( ) ( )
                 ( )
                 ( )

   ( ) 7 ( / ( ) (2) ( ) )  

A A B B
M A A B B
M A A A A B
M A B B B B

T n T nn T nn

= − −
= + −
= − + −
= + − −

= + Θ = Θ• ⇒

×
×

×
×
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{ }
 Problem Statement:  Given a set of  points in the plane,

    ( ,  ) :  1 , find two points in  whose
    distance is smallest among all pairs.

 Straightforward met d:

 

ho

The Closest Pair Problem

i i

n
A x y i n A

•

= ≤ ≤

• 2  ( ).

 Divide and conquer:  ( l og ).

n

O n n•

Θ
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{ }

1 1

2 2

1 1 2 2

1.  Partition  into two sets:   .
2.  Find a closest pair ( ,  ) in .
3.  Find a closest pair ( ,  ) in .
4.  Let min dist( ,  ),  dist( ,  ) .
5.  Find a clo

The Divide-and-Conquer Approach
A A B C

p q B
p q C

p q p qδ

= ∪

=

3 3sest pair ( ,  ) between  and  with
     distance less than , if such a pair exists.
6.  Return th

Question :  Wh

e pair o

at would

f the three whic

 be the running 

h is cl

time? 

osest.

 
D
 
  esired:  ( 

p q B C

T

δ

•
• ) 2 ( / 2) ( )  ( ) ( log ).n T n O n T n O n n= + =⇒
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 Now let's see how to implement each step.

 Trivial:  steps 2, 3, 4 6

 

. , 

•

•
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Partition  into two sets:  .

 A natural choice is to draw a vertical line to divide
   the points into two groups.

 So, sort [1.. ] by -coordina (Do this te. 
 Then, w

o
e c

nly onc .
a

 e

 

 
)

Step 1:  A A B C

A n x

•

•

= ∪

•
n easily partition any set [ .. ] by

                [ .. ] [ .. ] [ 1.. ]
    where ( ) 2 .

A i j
A i j A i m A m j

m i j
= ∪ +

= +  
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( )

Find a closest pair between  and  with
                 distance less than , if exists.

 

Closest-Pair-Between-Two-Set

We will write 

s

a procedure

    

    which fi

[ .. ],  ,  ,  (

nds

3,  3

 

 

)

Step 5:  

A i j ptr p q

B C

δ

δ

•

( )

a closest pair between [ .. ] and [ 1.. ]
    with distance less than , if exists.

 The running time of  this procedure must be no more than

      in order for the final a

  

lgorithm to be [ .. ] lO A i j O n

A i m A m j
δ

+

•

( )og .n
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 Let the coordinates of the  points be stored in [1.. ]
   and [1.. ]. 

 For simplicity, let [ ] ( [ ],  [ ]).

 For convenience, introduce two dummy points:
    [0] ( , ) a

 

n
 

d

 

Data Structures  
n X n

Y n

A i X i Y i

A

•

• =

= −∞ −∞
•

 [ 1] ( , )

 We will use these two points to indicate "no pair"
    or "no pair closer than ."

 Introduce an array Link[1.. ], initialized to all 0

 

' s.

A n

n

δ

+ =

•

•

∞ ∞

28



 Global variable:  [0.. 1]

 Sort [1.. ] such that [1] [2] [ ].
   That is, sort the given  points by -coord

Pro

inate.

 Call  with appropriate parameters.cedure Cl

 

osest-Pa r

 

i 

Main Program  
A n

A n X X X n
n x

+

≤ ≤ ⋅ ⋅ ⋅

•

≤•

•

29



( )  //Version 1// 

  {*returns a closest pair ( ,  ) in [ .. ]*}
  If  0 :  ( ,  ) (0,  1);
  If  1:  ( ,  ) ( ,  );
  If  1:  ( ) 2

       Closest-Pa

Procedure Closest-Pair [ .. ],  ( ,  )  
p q A i j

j i p q n
j i p q i j
j i m i j

A i j p q

− = ← +
− = ←

− > ← +

•

•  

•

( )
( )

{ }

1 1

2 2

1 1 2 2

ir [ .. ],  ( ,  )

       Closest-Pair [ 1.. ],  ( ,  )
       mergesort [ .. ] by -coordinate into a linked list 
      min dist( , ),  dist( , )

      Closest-Pair-Between-Two-Sets [ .. ],  

A i m p q

A m j p q
ptr A i j y

p q p q

A i j

δ

+

←

←

( )3 3

1 1 2 2 3 3

,  ,  ( ,  )
      ( ,  ) closest of the three ( ,  ),  ( ,  ),  ( ,  )

ptr p q
p q p q p q p q

δ
←

30



( ) Initial call:   Closest-Pair [1.. ],  ( ,  ) .

 Assume Closest-Pair-Between-Two-Sets needs ( ) time. 

 Let ( ) denote the wo

of ve

rst-case running time of 
   Closest-Pair [1

rsion 1

 

 

 

Time Complexity 

A n p q

n

T n
A

•

•

•

Θ

( )

( )2

 

 

.. ],  ( ,  ) .

 Then,  ( ) 2 ( / 2) ( log ).

 So,  ( ) log .

 Not as good as desi . red

n p q

T n T n n n

T n n n

•

•

•

= +Θ

= Θ

31



 Suppose we use Mergesort to sort 
    

[ .. ] :
 Sort [ ..

 

 

 

] by -coordin

 

    

 Rewrite the procedure as versio

ate into

n 2.

We on

 a linked

ly 

 list 

How to reduce the time complexity to ( log )?
A i j

ptr A i j y

O n n

←
•

•

• have to sort the base cases and perform "merge."

 Here we take a free ride on Closest-Pair for dividing.

 That is, we combine Mergesort with Closest-P r

 

ai .

•

•

32



( )

( )1 1

 If  0 :  ( ,  ) (0,  1);
 If  1:  ( ,  ) ( ,  );
 If 

 

Closest-Pair [ 1..

 1:  ( ) 2

       

 

Clos

     

est-Pair [ .. ],  ( ,  

 //Version 

 

 

)

2

 

/

 

/Procedure Closest-Pair [ .. ],  ( ,  )  
j i p q n
j i p q

A

i j
j i m i j

A m j

i m p q

A i j p q
− = ← +
− = ←

− >

+

← +  

•
•

•

( )
( )
( )

( )
( )

2 2],  ( ,  )

2 Mergesort [ 1..      mergesort [ .. j]
Merge 1,  2

 (the rest is the

1 Mergesor

 same as in v

]

 

t

 

[

 ersion 1  

.. ]
 

)

A i
ptr ptr

ptr A

p q

ptr A m
tr

i
j

m

p
←


+

←

←







33



( )
mergesort [ .. ] find a cloby  and

  if  0 :  ( ,  ) (0,  1

 //final version//

  {*   sest
);  

  if  1:  ( ,  ) ( ,  

 pair ( ,  ) in 

);

[

  

*}
 

.. ]
 

  

Procedure Closest-Pair [ .. ],  ( ,  ),  
A i j py

j i p q n ptr i
j i p q i

q A i

j

j

A i j p q ptr

• − = ← +
− = ←•

←

{ }
{ }

                         if [ ] [ ] then ;  [ ]

                                                 else ;  [ ]  

  if  1:  ( ) 2

                         Closest-P

 

air [ .

 

.

Y i Y j ptr i Link i j

ptr j Link j i

j i m i j

A i

≤ ← ←

← ←

− > ← +  •

( )
( )
( )

1 1

2 2

],  ( ,  ),  1

                         Closest-Pair [ 1.. ],  ( ,  ),  2

              
                   

    
    

  
 (the rest is the same as in version 1)

     Merge 1,  2
 

m p q ptr

A m j p q ptr

ptr ptr ptr

+

←
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( ) Initial call:   Closest-Pair [1.. ],  ( ,  ),  .

 Assume Closest-Pair-Between-Two-Sets needs ( ) ti

 

 

 

me. 

 Let ( ) denote the worst-case running time

of the final version

 of 
   Cl

Time Complexity 

A n p q pqr

n

T n•

Θ

•

•

( )

( )

( )3 3

osest-Pair [1.. ],  ( ,  ),  .

 Then,  ( ) 2 ( / 2) ( ).

 So,  ( ) log .

 Now, it remains to write the procedure 
    Closest-Pair-Between-Two-Sets [ .. ],  ,  ,  (

 

 
,  )

 

A n p q pqr

T n T n n

T n n n

A i j ptr p qδ

= + Θ

= Θ

•

•

•
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( ) Input: [ .. ],  ,  
 Output:  a closest pair ( ,  ) between [ .. ] and  

    [ 1.. ] with distance < , where ( ) / 2 .
    If there is no such a pa

 

ir, r

 

e

Closest-Pair-Between-Two-Sets

A i j ptr
p q B A i m

C A m j m i j

δ

δ
=

= + = + 

•



•

( )
turn the dummy pair (0,  1).

 Time complexity :  [ .. ] .  

 For each point  , we will compute dist( , ) for (1)
   points .   Similarly for  each point .

 Recall that [ .. ] 

des 

 

ired

has 

n
O A i j

b B b c O
c C c C

A i j
∈

•

•

+

∈

•

∈

 been sorted by .  We will follow the
   sorted linked list and look at each point.

y
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0

1 2 0

 : vertical line passing through the point [ ].
  and : vertical lines to the left and right of  by .
We observe t

 
 

hat:
     We only need to consider thos  
  

e 

Closest-Pair-Between-Two-Sets
L A m
L L L δ

•
•
•
 1 2points between  and .

     For each point  in [ .. ], we only need to consider the
        points in [ 1.. ] that are inside the square of .
     There are  t

 

 at most hree such points.
     

L L
k A i m

A m j δ δ+ ×






0 2

 And  are  the most recently visited three points
        of [ 1.. ] lying between  and .
     Similar argument for each point

they

  in [ 1.. ].

among

 
A m j L L

k A m j
+

+
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38

L1 L0 L2

k

δ

δ

For k, only need to consider the
points in the square less the
right and bottom edges

Red points are apart 
by at least δ

Blue points are apart 
by at least δ



3 3

// Find the closest pair between [ .. ] and [   1.. ] 
   with dist < .  If ther

Closest-Pair-Between-T

e exists no such a pai

wo-Sets( [ .. ],  ,  ,  

r, then return
   t

( ,  

he dummy pai

)

0 1

)

r ( ,  

A i j ptr p
A i m A m

q
j

n

δ

δ
+

+

3 3

1 2 3 0 1

1 2 3 0 2

). //
 [0.. 1],   [0.. 1],  [1.. ]

   ( ,  )  (0,  1)
    , ,   0   //most recently visited 3 points btwn , //
    , ,   1   //such 

   glob

points be

a

tween , //
     

l

 (

X n Y n Link n

p q n
b b b L L
c c c n L L
m i j

+ +

← +

←

← +

← + ) 2
        k ptr

  
←
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1 2

0

//follow the linked list until end//
// consider only b

   
   

           if    then   
              

twn ,  //
//point  is

while  0  do
 1.  

 to the left of  
if  [ ] [ ]  

   co

  

mpute 

the

 
//

n
k

L
k

L
k

d

X
m

X
L

k m δ
≠

− <

≤

3 3

3 2

0

2 1 1

min{dist( ,  ) :  1 3};
                 if   then update  and ( ,  );
                 ;  

//point  is to the
  ;    ;

           else   
                 comp

 right of  //
ute min{

ik c i
d p q

b b b b
k

b k

d
L

δ δ
← ≤ ≤

<
← ← ←

←

3 3

3 2 2 1 1

dist( ,  b ) :  1 3};
                 if   then update  and ( ,  );
                 ;    ;   

2.  [ ]
 

  
;

ik i
d p q

c c c c c k
k Link k

δ δ

←

≤ ≤
<

← ← ←
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{ }1 2 3

  Problem Statement:  Given a set of  points in the plane,
                  say, ,  , ,  , ,    
   we want to find the convex hull of .
  The convex hull of , denoted by ( ),  

Convex Hull

n

n
A p p p p

A
A CH A

•

•

= 

is the smallest
    convex polygon that encloses all points of .

  Observation: segment  is an edge of ( ) if all

    other points of  are on the same side of  (or on ).

  Straightf

i j

i j i j

A

p p CH A

A p p p p

•

•



2orward method:  ( ).
  Divide and conquer: ( log ).

  

n
O n n

Ω
•
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0.  Assume all -coordinates are different, and no three 
     points are colinear.  (Will be removed later.)
1.  Let  be sorted by -coordinate.
2.  If 3, solve the 

Divide-and-Conquer for Convex Hull
x

A x
A ≤ problem directly. Otherwise, apply

     divide-and-conquer as follows.
3.  Break up  into .
4.  Find the convex hull of .
5.  Find the convex hull of .
6.  Combine the two convex hulls by finding t

A A B C
B
C

= ∪

he upper and
     lower bridges to connect the two convex hulls.
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  The upper bridge between ( ) and ( ) is the

    the edge ,  where ( ) and ( ),  such that

      all other vertices in ( ) and ( ) are below ,  or
      the

Upper and Lower Bridges
CH B CH C

vw v CH B w CH C

CH B CH C vw

∈

•

∈







 two neighbors of  in ( ) and the two neighbors

        of  in ( ) are below ,  or
      the counterclockwise-neighbor of  in ( ) and the

        clockwise-neighbor of  in ( ) are below 

v CH B

w CH C vw
v CH B

w CH C





if  and  are chosen as in the next sli
,  

        
  Lower bridge

d
:

e
 simil .

.
ar

v
w

w
v

•


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   the rightmost point in ( );
      the leftmost point in ( ).
   Loop

          if counterclockwise-neighbor( ) lies above line  then
                countercloc

Finding the upper bridge
v CH B
w CH C

v vw
v

←
• ←

←

•


kwise-neighbor( )

          else if clockwise-neighbor( ) lies above  then
                clockwise neighbor( )
          else  exit from the loop

    is the upper bridge.

v

w vw
w w

vw

←

•


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  What data structure will you use to represent 
    a convex hull?
  Using your data structure, how much time will it take

    to find the upper and lower bridges?
  

Data Structure and Time Complexity
•

•

• What is the over all running time of the algorithm?

  We assumed:
   (1) no two points in  share the same -coordinate
   (2) no three points in  are colinear
  Now let's remove these assumptions.

A x
A

•

•
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( ) ( ) ( )

( )

1 1 1 2 2 2 3 3 3

1 2 3

1 1

2 2

3 3

  Three points:  , ,  , ,  , .

  , ,  in that order is counterclockwise if 

1
                       1   0

1

  Clockwise if the determinant is neg

Orientation of three points

p x y p x y p x y

p p p

x y
x y
x y

•

>

•

•

ative.

  Colinear if the determinant is zero.•
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