
Divide-and-Conquer
Reading: CLRS Sections 2.3, 4.1, 4.2, 4.3, 28.2, 33.4.

CSE 6331 Algorithms
Steve Lai

 Given an instance of a problem, the
 method works as follows:

 DAC()
 is sufficiently small
 solve it directly

divide-and-conquer

Divide and Conquer
x

x
x

•

function
 if then

()

1 2

1 2

 divide into smaller subinstances , , … , ;
 DAC(), for 1 ;
 combine , , , ;
 ()

k

i i

k

x x x x
y x i k
y y y y

y

← ≤ ≤

←

else

return


2

()

1

0

 Typically, , … , are of the same size, say .
 In that case, the time complexity of DAC, (), satisfies

 a recurrence:

if
 ()

Analysis of Divide-and-Conquer

kx x n b
T n

c n n
T n

kT n b

  

≤
=

•

•

+   0

0

 () if

 Where () is the running time of dividing and
 combining 's.
 What is ?
 What is ?

i

f n n n

f n x
y

c
n


 >

•

•
•

3

()

()
()

 mergesort [..]
 // Sort [..]//

procedure

if then return

Sort an array [1..]

 // base case

 () 2

mergesort [..]

mergesort [

 /

1..]

/

m

Mergesort:

A i j
A i j

i j

m i j

A i m

A m j

A n

=

← +

+

•

  

()

()

divide and conque

erge [..], [1..]

 Initial call: mergesort [

r

.]

1 .

A i m A m j

A n•



+








4

() ()

 Let () denote the running time of mergesorting an
 array of size .
 () satisfies the recurrence:

if 1
 ()

2 2 () if 1

 Solving the rec

Analysis of Mergesort
T n

n
T n

c n
T n

T n T n n n
≤=  + + Θ >      

•

•

• urrence yields:
 () (log)
 We will learn how to solve such recurrences.

T n n n= Θ
•

5

() mergesort ,
 // Sort [..]. Initially, []

function

globa
= 0, 1 .//

 [1..],
 // base case

l
 /

[1..]
 if then retu ()

rn /

Linked-List Version of Mergesort

i j
A i j link k k n
A n link n

i j i=

•

≤ ≤

()
()

()

 () 2

1 mergesort ,

 2 mergesort 1,

divide

 merge

and conquer

1,
return

2
) (

m i j

ptr i m

ptr m j

ptr ptr ptr
ptr

← +  
←

← +





←






6

()

 Suppose a function () satisfies the recurrence

if 1
 ()

3 4 if 1

 where is a positive constant.

 Wish to obtain a function () such that ()

Solving Recurrences
T n

c n
T n

T n n n

c

g n T n g

≤
=  + > 

•

 

= Θ

•

()() .

 Will solve it using various methods: Iteration Method,
 Recurrence Tree, Guess and Prove, and Master Method.

n

•

7

[]
[]

2 3 3

Assume is a power of 4. Say, 4 . Then,
() 3 (/ 4)

 = 3 / 4 3 (/16)

 = 3(/ 4) 9 (/16) 3 (/ 64)

 = (3 / 4) (3 / 4) 3 (/ 4)

3 3 = 1
4

Iteration Method
mn n

T n n T n
n n T n

n n n T n

n n n T n

n

=
= +

+ +

+ + +

+ + +

+ +
2 13 3

4 4 4

 (1 () ()

So, () (| a power of 4) () (). (Why

)

?)

m
m

m

n

nT

n O n

T n n n T n n

−      + ⋅⋅⋅ + +      
       

Θ +

= Θ = Θ

== Θ

⇒

8

 We have applied Theorem 7 to conclude () ()
 from () (| a power of 4).

 In order to apply Theorem 7, () needs to be
 nondecreasing.

 It will be a homework question for you t

Remark
T n n

T n n n

T n

•

=• Θ
= Θ

•

o prove that
 () is indeed nondecreasing.T n

9

2 2

2 2

3 3

3

1

1

3

1

1

)

(1

1 of size

3 of size / 4

3 of size / 4
 3 / 4

3 of si

3 of size /

ze / 4
 3 / 4

 3 / 4

 3 /
3 of si

4
z

4

e / 4

3

solving problems time needed

m m m

m m

m m

n

n

n
n

n
n

n

n

n
n

n

−

− −

−

⋅Θ

↓ ↑ ⋅

↓ ↑

↓ ↑

↓ ↑ ⋅

⋅

↓ ↑ ⋅

 

10

Recurrence Tree

()

1 2

if 1
 Solve ()

3 4 () if 1

 First, guess () (), and then try to prove it.
 Sufficient to consider 4 , 0, 1, 2, . . .
 Need to prove: 4 (4) 4

Guess and Prove

m

m

m m

c n
T n

T n n n

T n n
n m

c T c

≤=  +Θ > 
•

•

 

= Θ

=

≤

• =

• ≤

0 0 0
1 2
1 1 1

1 2 1 2

0 0

1 2

0

1 2

We choose and prove
 by induction on
 IB: When 0, 4 (4) 4

some ,

.
 IH: Assume 4 (4) 4 for some ,

 f
for som

or
 an e d all . 0

 .
f

.
i

m m m

c c
m

c c
m

m c T c

m m m

c T c c c
c

− − −

•

•

≥ =

≤ ≤= ≤ ≤

≤ ≤

11

()
2

2

1

1

2

2 2

2 2

2

1

 IS: (4) = 3 (4) (4)
 3 4 4
 3 4 4

 4

for some constant

if

 (4) = 3 (4) (4)

4

m m m

m m

m

m

m m m

c
T T

c c
c c

c c

T

c

T

−

−

−

+ Θ

′ ′

′ ≤

≤ +

′= +

≤

+ Θ

•

()

1
1 1

1 1

1

1

1

1 1

12 2 1

1

2 2 1

 3 4 4
 3 4 4

 4
 Let , be such that

 Then,

 for some constant

 if

 4

 4
, 4,

(
.

4
4

m m

m

m

m m

c

c c
c

c c
c c

c
c c c c cc

T
c

c
c

− ′≥ +

′= +

≥

≤

•

′

′ ≥
′ ′≤ ≤ ≤ ≤

2) 4 for all 0.mc m≤ ≥

12

0.99 2

 Definition: () is polynomially smaller than (), denoted
 as () (), iff () (()), or () (()),
 for some 0.

 For example, 1 .

 Is 1 log ?

The Master Theorem
f n g n

f n g n f n O g n n f n n O g n

n n n n

n

ε ε

ε

−

•

•

•

= =
>



   



()

 Or log ?

 To answer these, ask yourself whether or not (log).

 For convenience, write () () iff () () .

 Note: the notations and are good only for this class.

n n n

n O n

f n g n f n g n

ε =

≈ = Θ

≈

•

•

•





13

()
()

log log

log

If () satisfies the recurrence () (/) (),
then () is bounded asymptotically as follows.

 If () , then () .

 If () , then () (

 1.

 2.) .

The Master Theorem

b b

b

a a

a

T n T n aT n b f n
T n

f n n T n n

f n n T n f n

= +

= Θ

= Θ





()
()

log

log

 If () , then () () log .

 If () log , then () () log .

In case 2, it is required that (/) () for some 1,
which is satisfied by most () that we shal

3.

4

 .

l e

b

b

a

a k

f n n T n f n n

f n n n T n f n n

af n b cf n c
f n

≈ = Θ

≈ = Θ

≤ <
ncounter.

In the theorem, / should be interpreted as / or / .n b n b n b      
14

2

 () = 3 (/ 4) .

 () 9 (/ 3) .

 () (2 / 3) 1.

 () 3 (/ 4) log .

 () 7 (/ 2) ().

 () 2 (/ 2) log .

 () (/

Examples: solve these recurrences
T n T n n

T n T n n

T n T n

T n T n n n

T n T n n

T n T n n n

T n T n

+

= +

= +

•

•

•

•

•

= +

= +

=•

Θ

• = +

3) (2 / 3) .T n n+ +

15

2

2

l

2

2

lo

og 1

log 1

log

log 1

log 1

g

)

)

 of size

 of size

 of

() (/) ()

()
/

(/)
/

(
 size

of size

of

size

/

/

1

 /
(/

solving problems time needed

b b

b

b

b

b

n

nn

n

n

T n aT n b f n

n
f n

na
a

a
a

a
a

b
f n b

n b
f n b

n b
f n

ba n
b

− −

− −

=

↓ ↑

↓ ↑

↓ ↑

↓ ↑

+

⋅

⋅

⋅

 

log (1)b nn a ⋅Θ
16

22

2

log 1

log 1

log log

2

log 1

log 1

log

 (1)

)

)

() (/) ()

()
/

(/)
/

(

 of size

 of size

of size

of si

(

ze

of size

/

/
(

/

)

/

1

b

b

b b

b

b

bn

n

n

n

nn n

T n aT n b f n
n

f n
n b

f n b
n b

f n b

n

a
a

a
a

a
a

a a

b
f

T n

b
n b

n

− −

−−

⋅Θ

= +

⋅

⋅

↓ ↑

↓ ↑

↓ ↑

⋅↓ ↑

 

()
log 1

log

0

log(Note: log log log/)
lo

g

b

b a
b a

n

a

ai i

i
b

nn na f n b an
b

−

=

= = ⋅+= ∑
17

()
() ()

() ()
()

log log

log

log 1
log

0

log

log

log

.

Then ,

and thus / . Then, we have

/ (from the previous

/

 slide)

/

Suppose ()

()

b b

b

b
b

a a

a i

i i

n
ai i

i

i

i

b

b

b

a

a

a

i n nnf
a

a f n b

a n

b

f n b

b

n n

T n

n b

f

n

−

=

    
= = =    

     

=

+

=Θ

Θ Θ Θ

Θ

= ∑

() ()
log 1

log log log

0
log log()

b
b b b

n
a a a

i
n nn n n f n

−

=

 
  = =
 
 

Θ Θ+=Θ ∑

18

() 2 log if 2
 Solve ()

 otherwise

 Suffices to consider only powers of 2. Let 2 .
 Define a new function () (2) ().
 The above recurrence transl

When recurrences involve roots

m

m

T n n n
T n

c

n
S m T T n

 + >= 


•


•

•

=

• = =

()
ates to

 2 / 2 if 1
 ()

 otherwise
 By Master Theorem, () (log).
 So, () (log log log)

S m m m
S m

c
S m m m

T n n n

 + >
= 


=
= Θ•

Θ•

19

3

1

 Problem: Compute , given matrices and .
 The straightforward method requires () time,

 using the formula .

 Toward

Strassen's Algorithm for Matrix Multiplication

n

ij ik kj
k

C AB n n A B
n

c a b
=

•

•

•

= ×

Θ

=∑

log7 2.81

2.81 3

2.521813

the end of 1960s, Strassen showed how to multiply
 matrices in () () time.
 For 100, 416,869, and 1,000,000.
 The time complexity was reduced to () in 1979,

 t

O n O n
n n n

O n

=

= ≈•

•

=

2.521801 2.376o () in 1980, and to () in 1986.
 In the following discussion, is assumed to be a power of 2.

O n O n
n•

20

11 12 11 12 11 12

21 22 21 22 21 22

11 12 11 12 11 12

21 22 21 22 21 22

 Write

 , ,

 where each , , is a / 2 / 2 matrix.

 Then

ij ij ij

A A B B C C
A B C

A A B B C C

A B C n n

C C A A B B
C C A A B B

     
= = =     
     

×

   
=   


•



•

 

1 1 2 2

2

3

.

 If we compute , the running time ()

 will satisfy the recurrence () 8 (/ 2) ()
 () will be (), not better than the straightforward one.
 Good for parallel p

ij i j i jC A B A B T n

T n T n n
T n n

 
 
 

= +

•
Θ

•

= + Θ

•

3

rocessing. What's the running time
 using () processors?nΘ

21

2 3 1 2 5 611 12

1 2 4 7 1 2 4 521 22

1 21 22 11 22 12 11

2 11 11

3 12 21

 Strassen showed

 where () ()

M M M M M MC C
M M M M M M M MC C

M A A A B B B
M A B
M A B
M

+ + + +  
=    + + − + + +   

= + − − +
=

•

=

×
×
×

4 11 21 22 12

5 21 22 12 11

6 12 21 11 22 22

7 22 11 22 12 2

2 l

1

og7

 () ()
 () ()
 ()
 ()

 () 7 (/ () (2) ())

A A B B
M A A B B
M A A A A B
M A B B B B

T n T nn T nn

= − −
= + −
= − + −
= + − −

= + Θ = Θ• ⇒

×
×

×
×

22

{ }
 Problem Statement: Given a set of points in the plane,

 (,) : 1 , find two points in whose
 distance is smallest among all pairs.

 Straightforward met d:

ho

The Closest Pair Problem

i i

n
A x y i n A

•

= ≤ ≤

• 2 ().

 Divide and conquer: (l og).

n

O n n•

Θ

23

{ }

1 1

2 2

1 1 2 2

1. Partition into two sets: .
2. Find a closest pair (,) in .
3. Find a closest pair (,) in .
4. Let min dist(,), dist(,) .
5. Find a clo

The Divide-and-Conquer Approach
A A B C

p q B
p q C

p q p qδ

= ∪

=

3 3sest pair (,) between and with
 distance less than , if such a pair exists.
6. Return th

Question : Wh

e pair o

at would

f the three whic

 be the running

h is cl

time?

osest.

D

 esired: (

p q B C

T

δ

•
•) 2 (/ 2) () () (log).n T n O n T n O n n= + =⇒

24

 Now let's see how to implement each step.

 Trivial: steps 2, 3, 4 6

. ,

•

•

25

Partition into two sets: .

 A natural choice is to draw a vertical line to divide
 the points into two groups.

 So, sort [1..] by -coordina (Do this te.
 Then, w

o
e c

nly onc .
a

 e

)

Step 1: A A B C

A n x

•

•

= ∪

•
n easily partition any set [..] by

 [..] [..] [1..]
 where () 2 .

A i j
A i j A i m A m j

m i j
= ∪ +

= +  

26

()

Find a closest pair between and with
 distance less than , if exists.

Closest-Pair-Between-Two-Set

We will write

s

a procedure

 which fi

[..], , , (

nds

3, 3

)

Step 5:

A i j ptr p q

B C

δ

δ

•

()

a closest pair between [..] and [1..]
 with distance less than , if exists.

 The running time of this procedure must be no more than

 in order for the final a

lgorithm to be [..] lO A i j O n

A i m A m j
δ

+

•

()og .n

27

 Let the coordinates of the points be stored in [1..]
 and [1..].

 For simplicity, let [] ([], []).

 For convenience, introduce two dummy points:
 [0] (,) a

n

d

Data Structures
n X n

Y n

A i X i Y i

A

•

• =

= −∞ −∞
•

 [1] (,)

 We will use these two points to indicate "no pair"
 or "no pair closer than ."

 Introduce an array Link[1..], initialized to all 0

' s.

A n

n

δ

+ =

•

•

∞ ∞

28

 Global variable: [0.. 1]

 Sort [1..] such that [1] [2] [].
 That is, sort the given points by -coord

Pro

inate.

 Call with appropriate parameters.cedure Cl

osest-Pa r

i

Main Program
A n

A n X X X n
n x

+

≤ ≤ ⋅ ⋅ ⋅

•

≤•

•

29

() //Version 1//

 {*returns a closest pair (,) in [..]*}
 If 0 : (,) (0, 1);
 If 1: (,) (,);
 If 1: () 2

 Closest-Pa

Procedure Closest-Pair [..], (,)
p q A i j

j i p q n
j i p q i j
j i m i j

A i j p q

− = ← +
− = ←

− > ← +

•

•  

•

()
()

{ }

1 1

2 2

1 1 2 2

ir [..], (,)

 Closest-Pair [1..], (,)
 mergesort [..] by -coordinate into a linked list
 min dist(,), dist(,)

 Closest-Pair-Between-Two-Sets [..],

A i m p q

A m j p q
ptr A i j y

p q p q

A i j

δ

+

←

←

()3 3

1 1 2 2 3 3

, , (,)
 (,) closest of the three (,), (,), (,)

ptr p q
p q p q p q p q

δ
←

30

() Initial call: Closest-Pair [1..], (,) .

 Assume Closest-Pair-Between-Two-Sets needs () time.

 Let () denote the wo

of ve

rst-case running time of
 Closest-Pair [1

rsion 1

Time Complexity

A n p q

n

T n
A

•

•

•

Θ

()

()2

..], (,) .

 Then, () 2 (/ 2) (log).

 So, () log .

 Not as good as desi . red

n p q

T n T n n n

T n n n

•

•

•

= +Θ

= Θ

31

 Suppose we use Mergesort to sort

[..] :
 Sort [..

] by -coordin

 Rewrite the procedure as versio

ate into

n 2.

We on

 a linked

ly

 list

How to reduce the time complexity to (log)?
A i j

ptr A i j y

O n n

←
•

•

• have to sort the base cases and perform "merge."

 Here we take a free ride on Closest-Pair for dividing.

 That is, we combine Mergesort with Closest-P r

ai .

•

•

32

()

()1 1

 If 0 : (,) (0, 1);
 If 1: (,) (,);
 If

Closest-Pair [1..

 1: () 2

Clos

est-Pair [..], (,

 //Version

)

2

/

/Procedure Closest-Pair [..], (,)
j i p q n
j i p q

A

i j
j i m i j

A m j

i m p q

A i j p q
− = ← +
− = ←

− >

+

← +  

•
•

•

()
()
()

()
()

2 2], (,)

2 Mergesort [1.. mergesort [.. j]
Merge 1, 2

 (the rest is the

1 Mergesor

 same as in v

]

t

[

 ersion 1

..]

)

A i
ptr ptr

ptr A

p q

ptr A m
tr

i
j

m

p
←


+

←

←







33

()
mergesort [..] find a cloby and

 if 0 : (,) (0, 1

 //final version//

 {* sest
);

 if 1: (,) (,

 pair (,) in

);

[

*}

..]

Procedure Closest-Pair [..], (,),
A i j py

j i p q n ptr i
j i p q i

q A i

j

j

A i j p q ptr

• − = ← +
− = ←•

←

{ }
{ }

 if [] [] then ; []

 else ; []

 if 1: () 2

 Closest-P

air [.

.

Y i Y j ptr i Link i j

ptr j Link j i

j i m i j

A i

≤ ← ←

← ←

− > ← +  •

()
()
()

1 1

2 2

], (,), 1

 Closest-Pair [1..], (,), 2

 (the rest is the same as in version 1)

 Merge 1, 2

m p q ptr

A m j p q ptr

ptr ptr ptr

+

←

34

() Initial call: Closest-Pair [1..], (,), .

 Assume Closest-Pair-Between-Two-Sets needs () ti

me.

 Let () denote the worst-case running time

of the final version

 of
 Cl

Time Complexity

A n p q pqr

n

T n•

Θ

•

•

()

()

()3 3

osest-Pair [1..], (,), .

 Then, () 2 (/ 2) ().

 So, () log .

 Now, it remains to write the procedure
 Closest-Pair-Between-Two-Sets [..], , , (

,)

A n p q pqr

T n T n n

T n n n

A i j ptr p qδ

= + Θ

= Θ

•

•

•

35

() Input: [..], ,
 Output: a closest pair (,) between [..] and

 [1..] with distance < , where () / 2 .
 If there is no such a pa

ir, r

e

Closest-Pair-Between-Two-Sets

A i j ptr
p q B A i m

C A m j m i j

δ

δ
=

= + = + 

•



•

()
turn the dummy pair (0, 1).

 Time complexity : [..] .

 For each point , we will compute dist(,) for (1)
 points . Similarly for each point .

 Recall that [..]

des

ired

has

n
O A i j

b B b c O
c C c C

A i j
∈

•

•

+

∈

•

∈

 been sorted by . We will follow the
 sorted linked list and look at each point.

y

36

0

1 2 0

 : vertical line passing through the point [].
 and : vertical lines to the left and right of by .
We observe t

hat:
 We only need to consider thos

e

Closest-Pair-Between-Two-Sets
L A m
L L L δ

•
•
•
 1 2points between and .

 For each point in [..], we only need to consider the
 points in [1..] that are inside the square of .
 There are t

 at most hree such points.

L L
k A i m

A m j δ δ+ ×






0 2

 And are the most recently visited three points
 of [1..] lying between and .
 Similar argument for each point

they

 in [1..].

among

A m j L L

k A m j
+

+

37

38

L1 L0 L2

k

δ

δ

For k, only need to consider the
points in the square less the
right and bottom edges

Red points are apart
by at least δ

Blue points are apart
by at least δ

3 3

// Find the closest pair between [..] and [1..]
 with dist < . If ther

Closest-Pair-Between-T

e exists no such a pai

wo-Sets([..], , ,

r, then return
 t

(,

he dummy pai

)

0 1

)

r (,

A i j ptr p
A i m A m

q
j

n

δ

δ
+

+

3 3

1 2 3 0 1

1 2 3 0 2

). //
 [0.. 1], [0.. 1], [1..]

 (,) (0, 1)
 , , 0 //most recently visited 3 points btwn , //
 , , 1 //such

 glob

points be

a

tween , //

l

 (

X n Y n Link n

p q n
b b b L L
c c c n L L
m i j

+ +

← +

←

← +

← +) 2
 k ptr

  
←

39

1 2

0

//follow the linked list until end//
// consider only b

 if then

twn , //
//point is

while 0 do
 1.

 to the left of
if [] []

 co

mpute

the

//

n
k

L
k

L
k

d

X
m

X
L

k m δ
≠

− <

≤

3 3

3 2

0

2 1 1

min{dist(,) : 1 3};
 if then update and (,);
 ;

//point is to the
 ; ;

 else
 comp

 right of //
ute min{

ik c i
d p q

b b b b
k

b k

d
L

δ δ
← ≤ ≤

<
← ← ←

←

3 3

3 2 2 1 1

dist(, b) : 1 3};
 if then update and (,);
 ; ;

2. []

;

ik i
d p q

c c c c c k
k Link k

δ δ

←

≤ ≤
<

← ← ←

40

{ }1 2 3

 Problem Statement: Given a set of points in the plane,
 say, , , , , ,
 we want to find the convex hull of .
 The convex hull of , denoted by (),

Convex Hull

n

n
A p p p p

A
A CH A

•

•

= 

is the smallest
 convex polygon that encloses all points of .

 Observation: segment is an edge of () if all

 other points of are on the same side of (or on).

 Straightf

i j

i j i j

A

p p CH A

A p p p p

•

•



2orward method: ().
 Divide and conquer: (log).

n
O n n

Ω
•

41

0. Assume all -coordinates are different, and no three
 points are colinear. (Will be removed later.)
1. Let be sorted by -coordinate.
2. If 3, solve the

Divide-and-Conquer for Convex Hull
x

A x
A ≤ problem directly. Otherwise, apply

 divide-and-conquer as follows.
3. Break up into .
4. Find the convex hull of .
5. Find the convex hull of .
6. Combine the two convex hulls by finding t

A A B C
B
C

= ∪

he upper and
 lower bridges to connect the two convex hulls.

42

 The upper bridge between () and () is the

 the edge , where () and (), such that

 all other vertices in () and () are below , or
 the

Upper and Lower Bridges
CH B CH C

vw v CH B w CH C

CH B CH C vw

∈

•

∈







 two neighbors of in () and the two neighbors

 of in () are below , or
 the counterclockwise-neighbor of in () and the

 clockwise-neighbor of in () are below

v CH B

w CH C vw
v CH B

w CH C





if and are chosen as in the next sli
,

 Lower bridge

d
:

e
 simil .

.
ar

v
w

w
v

•



43

 the rightmost point in ();
 the leftmost point in ().
 Loop

 if counterclockwise-neighbor() lies above line then
 countercloc

Finding the upper bridge
v CH B
w CH C

v vw
v

←
• ←

←

•


kwise-neighbor()

 else if clockwise-neighbor() lies above then
 clockwise neighbor()
 else exit from the loop

 is the upper bridge.

v

w vw
w w

vw

←

•



44

 What data structure will you use to represent
 a convex hull?
 Using your data structure, how much time will it take

 to find the upper and lower bridges?

Data Structure and Time Complexity
•

•

• What is the over all running time of the algorithm?

 We assumed:
 (1) no two points in share the same -coordinate
 (2) no three points in are colinear
 Now let's remove these assumptions.

A x
A

•

•

45

() () ()

()

1 1 1 2 2 2 3 3 3

1 2 3

1 1

2 2

3 3

 Three points: , , , , , .

 , , in that order is counterclockwise if

1
 1 0

1

 Clockwise if the determinant is neg

Orientation of three points

p x y p x y p x y

p p p

x y
x y
x y

•

>

•

•

ative.

 Colinear if the determinant is zero.•

46

	Divide-and-Conquer�Reading: CLRS Sections 2.3, 4.1, 4.2, 4.3, 28.2, 33.4.�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46

