Divide-and-Conquer

Reading: CLRS Sections 2.3, 4.1, 4.2, 4.3, 28.2, 33.4.

CSE 6331 Algorithms Steve Lai

Divide and Conquer

• Given an instance *x* of a problem, the divide-and-conquer method works as follows:

function DAC(*x*)

if *x* is sufficiently small **then** solve it directly

else

divide x into smaller subinstances $x_1, x_2, ..., x_k$; $y_i \leftarrow DAC(x_i)$, for $1 \le i \le k$; $y \leftarrow combine(y_1, y_2, ..., y_k)$; **return**(y)

Analysis of Divide-and-Conquer

- Typically, x_1, \ldots, x_k are of the same size, say $\lfloor n/b \rfloor$.
- In that case, the time complexity of DAC, *T*(*n*), satisfies a recurrence:

$$T(n) = \begin{cases} c & \text{if } n \le n_0 \\ kT(\lfloor n/b \rfloor) + f(n) & \text{if } n > n_0 \end{cases}$$

- Where f (n) is the running time of dividing x and combining y_i's.
- What is *c*?
- What is n_0 ?

Mergesort: Sort an array *A*[1..*n*]

- procedure mergesort (A[i..j])
 - // Sort A[i..j]//if i = j then return $m \leftarrow \lfloor (i+j)/2 \rfloor$ mergesort (A[i..m])mergesort (A[m+1..j])merge (A[i..m], A[m+1..j])

// base case //

divide and conquer

• Initial call: mergesort (A[1..n])

Analysis of Mergesort

- Let *T*(*n*) denote the running time of mergesorting an array of size *n*.
- *T*(*n*) satisfies the recurrence:

$$T(n) = \begin{cases} c & \text{if } n \le 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1 \end{cases}$$

- Solving the recurrence yields: $T(n) = \Theta(n \log n)$
- We will learn how to solve such recurrences.

Linked-List Version of Mergesort

• function mergesort(*i*, *j*) // Sort *A*[*i*..*j*]. Initially, $link[k] = 0, 1 \le k \le n.//$ global A[1..n], link[1..n]if i = j then return(i) // base case // $m \leftarrow |(i+j)/2|$ $ptr1 \leftarrow mergesort(i, m)$ $ptr2 \leftarrow mergesort(m+1, j)$ {divide and conquer $ptr \leftarrow merge(ptr1, ptr2)$ return(*ptr*)

Solving Recurrences

• Suppose a function T(n) satisfies the recurrence

$$T(n) = \begin{cases} c & \text{if } n \le 1\\ 3T(\lfloor n/4 \rfloor) + n & \text{if } n > 1 \end{cases}$$

where c is a positive constant.

- Wish to obtain a function g(n) such that $T(n) = \Theta(g(n))$.
- Will solve it using various methods: Iteration Method, Recurrence Tree, Guess and Prove, and Master Method.

Iteration Method

Assume *n* is a power of 4. Say,
$$n = 4^m$$
. Then,
 $T(n) = n + 3T(n/4)$
 $= n + 3[n/4 + 3T(n/16)]$
 $= n + 3(n/4) + 9[(n/16) + 3T(n/64)]$
 $= n + (3/4)n + (3/4)^2n + 3^3T(n/4^3)$
 $= n \left[1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \dots + \left(\frac{3}{4}\right)^{m-1}\right] + 3^m T\left(\frac{n}{4^m}\right)$

 $= n \Theta(1) + O(n) = \Theta(n)$

So, $T(n) = \Theta(n \mid n \text{ a power of } 4) \implies T(n) = \Theta(n)$. (Why?)

Remark

- We have applied Theorem 7 to conclude $T(n) = \Theta(n)$ from $T(n) = \Theta(n \mid n \text{ a power of } 4)$.
- In order to apply Theorem 7, *T*(*n*) needs to be nondecreasing.
- It will be a homework question for you to prove that *T*(*n*) is indeed nondecreasing.

Recurrence Tree solving problems time needed 1 of size *n* $\downarrow \uparrow$ n 3 of size n/4 $\downarrow \uparrow$ $3 \cdot n/4$ 3^2 of size $n/4^2$ $\downarrow \uparrow$ $3^2 \cdot n/4^2$ 3^3 of size $n/4^3$ $\downarrow \uparrow$ $3^3 \cdot n / 4^3$ • 3^{m-1} of size $n/4^{m-1}$ $\downarrow \uparrow$ $3^{m-1} \cdot n / 4^{m-1}$ 3^m of size $n/4^m$ $3^m \cdot \Theta(1)$

Guess and Prove

• Solve
$$T(n) = \begin{cases} c & \text{if } n \le 1 \\ 3T(\lfloor n/4 \rfloor) + \Theta(n) & \text{if } n > 1 \end{cases}$$

- First, guess $T(n) = \Theta(n)$, and then try to prove it.
- Sufficient to consider $n = 4^m$, m = 0, 1, 2, ...
- Need to prove: $c_1 4^m \le T(4^m) \le c_2 4^m$ for some c_1, c_2 and all $m \ge m_0$ for some m_0 . We choose $m_0 = 0$ and prove by induction on m.
- IB: When m = 0, $c_1 4^0 \le T(4^0) \le c_2 4^0$ if $c_1 \le c \le c_2$.
- IH: Assume $c_1 4^{m-1} \le T(4^{m-1}) \le c_2 4^{m-1}$ for some c_1, c_2 .

• IS: $T(4^m) = 3T(4^{m-1}) + \Theta(4^m)$ $\leq 3c_2 4^{m-1} + c'_2 4^m$ for some constant c'_2 $= (3c_2/4 + c_2')4^m$ $\leq c_2 4^m$ if $c'_2 \leq c_2 / 4$ $T(4^m) = 3T(4^{m-1}) + \Theta(4^m)$ $\geq 3c_1 4^{m-1} + c_1' 4^m$ for some constant c_1' $= (3c_1/4 + c_1')4^m$ $\geq c_1 4^m$ if $c_1' \geq c_1/4$ • Let c_1, c_2 be such that $c_1 \le c \le c_2, c_2' \le c_2/4, c_1/4 \le c_1'$. Then, $c_1 4^m \leq T(4^m) \leq c_2 4^m$ for all $m \geq 0$.

The Master Theorem

- Definition: f(n) is polynomially smaller than g(n), denoted as f(n) ≪ g(n), iff f(n) = O(g(n)n^{-ε}), or f(n)n^ε = O(g(n)), for some ε > 0.
- For example, $1 \ll \sqrt{n} \ll n^{0.99} \ll n \ll n^2$.
- Is $1 \ll \log n$? Or $n \ll n \log n$?
- To answer these, ask yourself whether or not $n^{\varepsilon} = O(\log n)$.
- For convenience, write $f(n) \approx g(n)$ iff $f(n) = \Theta(g(n))$.
- Note: the notations \ll and \approx are good only for this class.

The Master Theorem

If T(n) satisfies the recurrence T(n) = aT(n/b) + f(n), then T(n) is bounded asymptotically as follows.

- 1. If $f(n) \ll n^{\log_b a}$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) \gg n^{\log_b a}$, then $T(n) = \Theta(f(n))$.
- 3. If $f(n) \approx n^{\log_b a}$, then $T(n) = \Theta(f(n)\log n)$.
- 4. If $f(n) \approx n^{\log_b a} \log^k n$, then $T(n) = \Theta(f(n) \log n)$.

In case 2, it is required that $af(n / b) \le cf(n)$ for some c < 1, which is satisfied by most f(n) that we shall encounter.

In the theorem, n / b should be interpreted as $\lfloor n / b \rfloor$ or $\lceil n / b \rceil$.

Examples: solve these recurrences

- T(n) = 3T(n/4) + n.
- T(n) = 9T(n/3) + n.
- T(n) = T(2n/3) + 1.
- $T(n) = 3T(n/4) + n\log n$.
- $T(n) = 7T(n/2) + \Theta(n^2)$.
- $T(n) = 2T(n/2) + n\log n$.
- T(n) = T(n/3) + T(2n/3) + n.

T(n) = aT(n/b) + f(n)time needed solving problems 1 of size *n* $\downarrow \uparrow$ f(n)a of size n/b $\downarrow \uparrow$ $a \cdot f(n/b)$ a^2 of size n/b^2 $\downarrow \uparrow$ $a^2 \cdot f(n/b^2)$ • • $a^{\log_b n-1}$ of size $n/b^{\log_b n-1}$ $\downarrow \uparrow \qquad a^{\log_b n-1} \cdot f(n/b^{\log_b n-1})$ $a^{\log_b n} \cdot \Theta(1)$ $a^{\log_b n}$ of size $n/b^{\log_b n}$

$$T(n) = aT(n/b) + f(n)$$

$$1 \text{ of size } n$$

$$\downarrow \uparrow \qquad f(n)$$

$$a \text{ of size } n/b$$

$$\downarrow \uparrow \qquad a \cdot f(n/b)$$

$$a^{2} \text{ of size } n/b^{2}$$

$$\downarrow \uparrow \qquad a^{2} \cdot f(n/b^{2})$$

$$\vdots$$

$$a^{\log_{b} n-1} \text{ of size } n/b^{\log_{b} n-1}$$

$$\downarrow \uparrow \qquad a^{\log_{b} n-1} \cdot f(n/b^{\log_{b} n-1})$$

$$a^{\log_{b} n} \text{ of size } n/b^{\log_{b} n} \qquad \Theta(1)$$

$$T(n) = \sum_{i=0}^{\log_{b} n-1} a^{i} f(n/b^{i}) + n^{\log_{b} a} \qquad (\text{Note: } \log_{b} n = \frac{\log_{a} n}{\log_{a} b} = \log_{a} n \cdot \log_{b} a)$$

Suppose
$$f(n) = \Theta(n^{\log_b a})$$
.
Then $f(n/b^i) = \Theta((n/b^i)^{\log_b a}) = \Theta(\frac{n^{\log_b a}}{b^{\log_b a}}) = \Theta(\frac{n^{\log_b a}}{a^i})$,
and thus $a^i f(n/b^i) = \Theta(n^{\log_b a})$. Then, we have

$$T(n) = \sum_{i=0}^{\log_b n-1} a^i f(n/b^i) + n^{\log_b a} \quad \text{(from the previous slide)}$$
$$= \Theta\left(\sum_{i=0}^{\log_b n-1} n^{\log_b a} + n^{\log_b a}\right) = \Theta\left(n^{\log_b a} \log n\right) = \Theta\left(f(n)\log n\right)$$

When recurrences involve roots

• Solve
$$T(n) = \begin{cases} 2T(\sqrt{n}) + \log n & \text{if } n > 2\\ c & \text{otherwise} \end{cases}$$

- Suffices to consider only powers of 2. Let $n = 2^m$.
- Define a new function $S(m) = T(2^m) = T(n)$.
- The above recurrence translates to

$$S(m) = \begin{cases} 2S(m/2) + m & \text{if } m > 1 \\ c & \text{otherwise} \end{cases}$$

- By Master Theorem, $S(m) = \Theta(m \log m)$.
- So, $T(n) = \Theta(\log n \log \log n)$

Strassen's Algorithm for Matrix Multiplication

- Problem: Compute C = AB, given $n \times n$ matrices A and B.
- The straightforward method requires $\Theta(n^3)$ time,

using the formula
$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
.

- Toward the end of 1960s, Strassen showed how to multiply matrices in $O(n^{\log 7}) = O(n^{2.81})$ time.
- For n = 100, $n^{2.81} \approx 416,869$, and $n^3 = 1,000,000$.
- The time complexity was reduced to O(n^{2.521813}) in 1979, to O(n^{2.521801}) in 1980, and to O(n^{2.376}) in 1986.
- In the following discussion, *n* is assumed to be a power of 2.

• Write

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

where each A_{ij} , B_{ij} , C_{ij} is a $n/2 \times n/2$ matrix.

• Then
$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

- If we compute $C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j}$, the running time T(n)will satisfy the recurrence $T(n) = 8T(n/2) + \Theta(n^2)$
- T(n) will be $\Theta(n^3)$, not better than the straightforward one.
- Good for parallel processing. What's the running time using $\Theta(n^3)$ processors?

• Strassen showed

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} M_2 + M_3 & M_1 + M_2 + M_5 + M_6 \\ M_1 + M_2 + M_4 - M_7 & M_1 + M_2 + M_4 + M_5 \end{pmatrix}$$

where $M_1 = (A_{21} + A_{22} - A_{11}) \times (B_{22} - B_{12} + B_{11})$
 $M_2 = A_{11} \times B_{11}$
 $M_3 = A_{12} \times B_{21}$
 $M_4 = (A_{11} - A_{21}) \times (B_{22} - B_{12})$
 $M_5 = (A_{21} + A_{22}) \times (B_{12} - B_{11})$
 $M_6 = (A_{12} - A_{21} + A_{11} - A_{22}) \times B_{22}$
 $M_7 = A_{22} \times (B_{11} + B_{22} - B_{12} - B_{21})$

• $T(n) = 7T(n/2) + \Theta(n^2) \implies T(n) = \Theta(n^{\log 7})$

The Closest Pair Problem

- Problem Statement: Given a set of *n* points in the plane,
 A = {(x_i, y_i): 1 ≤ i ≤ n}, find two points in A whose
 distance is smallest among all pairs.
- Straightforward method: $\Theta(n^2)$.
- Divide and conquer: $O(n \log n)$.

The Divide-and-Conquer Approach

- 1. Partition *A* into two sets: $A = B \cup C$.
- 2. Find a closest pair (p_1, q_1) in *B*.
- 3. Find a closest pair (p_2, q_2) in C.
- 4. Let $\delta = \min \{ \operatorname{dist}(p_1, q_1), \operatorname{dist}(p_2, q_2) \}.$
- 5. Find a closest pair (p_3, q_3) between *B* and *C* with distance less than δ , if such a pair exists.
- 6. Return the pair of the three which is closest.
- Question : What would be the running time?
- Desired: $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$.

- Now let's see how to implement each step.
- Trivial: steps 2, 3, 4, 6.

Step 1: Partition *A* into two sets: $A = B \cup C$.

- A natural choice is to draw a vertical line to divide the points into two groups.
- So, sort *A*[1..*n*] by *x*-coordinate. (Do this only once.)
- Then, we can easily partition any set A[i..j] by $A[i..j] = A[i..m] \cup A[m+1..j]$ where m = |(i + j)/2|.

Step 5: Find a closest pair between *B* and *C* with distance less than δ , if exists.

• We will write a procedure

Closest-Pair-Between-Two-Sets ($A[i..j], ptr, \delta, (p3, q3)$)

which finds a closest pair between A[i..m] and A[m+1..j] with distance less than δ , if exists.

• The running time of this procedure must be no more than O(|A[i..j]|) in order for the final algorithm to be $O(n \log n)$.

Data Structures

- Let the coordinates of the *n* points be stored in *X*[1..*n*] and *Y*[1..*n*].
- For simplicity, let A[i] = (X[i], Y[i]).
- For convenience, introduce two dummy points: $A[0] = (-\infty, -\infty)$ and $A[n+1] = (\infty, \infty)$
- We will use these two points to indicate "no pair" or "no pair closer than δ."
- Introduce an array Link[1..*n*], initialized to all 0's.

Main Program

- Global variable: A[0..n+1]
- Sort A[1..n] such that $X[1] \le X[2] \le \dots \le X[n]$. That is, sort the given *n* points by *x*-coordinate.
- Call Procedure Closest-Pair with appropriate parameters.

Procedure Closest-Pair(A[i..j], (p, q)) //Version 1//

{*returns a closest pair (p, q) in A[i..j]*}

• If
$$j - i = 0$$
: $(p, q) \leftarrow (0, n+1)$;

- If j-i=1: $(p, q) \leftarrow (i, j)$;
- If j i > 1: $m \leftarrow \lfloor (i + j)/2 \rfloor$

Closest-Pair $(A[i..m], (p_1, q_1))$

Closest-Pair $(A[m+1..j], (p_2, q_2))$

 $ptr \leftarrow \text{mergesort } A[i..j] \text{ by } y\text{-coordinate into a linked list}$ $\delta \leftarrow \min \left\{ \text{dist}(p_1, q_1), \text{ dist}(p_2, q_2) \right\}$

Closest-Pair-Between-Two-Sets $(A[i..j], ptr, \delta, (p_3, q_3))$ $(p, q) \leftarrow$ closest of the three $(p_1, q_1), (p_2, q_2), (p_3, q_3)$

Time Complexity of version 1

- Initial call: Closest-Pair (A[1..n], (p, q)).
- Assume Closest-Pair-Between-Two-Sets needs $\Theta(n)$ time.
- Let T(n) denote the worst-case running time of Closest-Pair (A[1..n], (p, q)).
- Then, $T(n) = 2T(n/2) + \Theta(n \log n)$.
- So, $T(n) = \Theta(n \log^2 n)$.
- Not as good as desired.

How to reduce the time complexity to $O(n \log n)$?

- Suppose we use Mergesort to sort *A*[*i*..*j*]:
 ptr ← Sort *A*[*i*..*j*] by *y*-coordinate into a linked list
- Rewrite the procedure as version 2.
- We only have to sort the base cases and perform "merge."
- Here we take a free ride on Closest-Pair for dividing.
- That is, we combine Mergesort with Closest-Pair.

Procedure Closest-Pair (A[i..j], (p, q)) //Version 2//

• If
$$j - i = 0$$
: $(p, q) \leftarrow (0, n+1)$;

• If
$$j-i=1$$
: $(p, q) \leftarrow (i, j)$;

• If
$$j-i > 1$$
: $m \leftarrow \lfloor (i+j)/2 \rfloor$

Closest-Pair $(A[i..m], (p_1, q_1))$ Closest-Pair $(A[m+1..j], (p_2, q_2))$ $ptr1 \leftarrow Mergesort (A[i..m])$

 $ptr2 \leftarrow \text{Mergesort}(A[m+1..j]) \\ ptr \leftarrow \text{Merge}(ptr1, ptr2) \\ \end{cases} \text{mergesort}(A[i..j])$

(the rest is the same as in version 1)

Procedure Closest-Pair (A[i..j], (p, q), ptr) //final version// {*mergesort A[i..j] by y and find a closest pair (p, q) in A[i..j]*} • if j-i=0: $(p, q) \leftarrow (0, n+1)$; $ptr \leftarrow i$ • if j-i=1: $(p, q) \leftarrow (i, j)$; if $Y[i] \leq Y[j]$ then $\{ptr \leftarrow i; Link[i] \leftarrow j\}$ else { $ptr \leftarrow j$; $Link[j] \leftarrow i$ } • if j-i>1: $m \leftarrow |(i+j)/2|$ Closest-Pair (A[i..m], (p_1, q_1) , ptr1) Closest-Pair ($A[m+1..j], (p_2, q_2), ptr2$) $ptr \leftarrow Merge(ptr1, ptr2)$ (the rest is the same as in version 1)

Time Complexity of the final version

- Initial call: Closest-Pair(A[1..n], (p, q), pqr).
- Assume Closest-Pair-Between-Two-Sets needs $\Theta(n)$ time.
- Let T(n) denote the worst-case running time of Closest-Pair(A[1..n], (p, q), pqr).

• Then,
$$T(n) = 2T(n/2) + \Theta(n)$$
.

- So, $T(n) = \Theta(n \log n)$.
- Now, it remains to write the procedure
 Closest-Pair-Between-Two-Sets(A[i..j], ptr, δ, (p₃, q₃))

Closest-Pair-Between-Two-Sets

- Input: $(A[i..j], ptr, \delta)$
- Output: a closest pair (p, q) between B = A[i..m] and C = A[m+1..j] with distance $< \delta$, where $m = \lfloor (i+j)/2 \rfloor$. If there is no such a pair, return the dummy pair (0, n+1).
- Time complexity desired : O(|A[i..j]|).
- For each point $b \in B$, we will compute dist(b, c) for O(1)points $c \in C$. Similarly for each point $c \in C$.
- Recall that *A*[*i*..*j*] has been sorted by *y*. We will follow the sorted linked list and look at each point.

Closest-Pair-Between-Two-Sets

- L_0 : vertical line passing through the point A[m].
- L_1 and L_2 : vertical lines to the left and right of L_0 by δ .
- We observe that:
 - We only need to consider those points between L_1 and L_2 .
 - For each point k in A[i..m], we only need to consider the points in A[m+1..j] that are inside the square of $\delta \times \delta$.
 - There are at most three such points.
 - And they are among the most recently visited three points of A[m+1..j] lying between L_0 and L_2 .
 - Similar argument for each point k in A[m+1..j].

Closest-Pair-Between-Two-Sets(A[i..j], ptr, δ , (p_3, q_3)) // Find the closest pair between A[i..m] and A[m + 1..j]with dist < δ . If there exists no such a pair, then return the dummy pair (0, n+1). // global X[0..n+1], Y[0..n+1], Link[1..n]

 $(p_3, q_3) \leftarrow (0, n+1)$ $b_1, b_2, b_3 \leftarrow 0$ //most recently visited 3 points btwn $L_0, L_1//$ $c_1, c_2, c_3 \leftarrow n+1$ //such points between $L_0, L_2//$ $m \leftarrow \lfloor (i+j)/2 \rfloor$ $k \leftarrow ptr$ while $k \neq 0$ do //follow the linked list until end// 1. if $|X[k] - X[m]| < \delta$ then // consider only btwn $L_1, L_2//$ if $k \le m$ then //point k is to the left of L_0 // compute $d \leftarrow \min\{\operatorname{dist}(k, c_i): 1 \le i \le 3\};$ if $d < \delta$ then update δ and (p_3, q_3) ; $b_3 \leftarrow b_2; \quad b_2 \leftarrow b_1; \quad b_1 \leftarrow k;$ else //point k is to the right of L_0 // compute $d \leftarrow \min\{\operatorname{dist}(k, \mathbf{b}_i): 1 \le i \le 3\};$ if $d < \delta$ then update δ and (p_3, q_3) ; $c_3 \leftarrow c_2; \quad c_2 \leftarrow c_1; \quad c_1 \leftarrow k;$ 2. $k \leftarrow Link[k]$

Convex Hull

• Problem Statement: Given a set of *n* points in the plane, say, $A = \{p_1, p_2, p_3, ..., p_n\},\$

we want to find the convex hull of *A*.

- The convex hull of *A*, denoted by *CH*(*A*), is the smallest convex polygon that encloses all points of *A*.
- Observation: segment $p_i p_j$ is an edge of CH(A) if all other points of A are on the same side of $\overline{p_i p_j}$ (or on $\overleftarrow{p_i p_j}$).
- Straightforward method: $\Omega(n^2)$.
- Divide and conquer: $O(n \log n)$.

Divide-and-Conquer for Convex Hull

- 0. Assume all *x*-coordinates are different, and no three points are colinear. (Will be removed later.)
- 1. Let *A* be sorted by *x*-coordinate.
- 2. If $|A| \le 3$, solve the problem directly. Otherwise, apply divide-and-conquer as follows.
- 3. Break up *A* into $A = B \cup C$.
- 4. Find the convex hull of *B*.
- 5. Find the convex hull of *C*.
- 6. Combine the two convex hulls by finding the upper and lower bridges to connect the two convex hulls.

Upper and Lower Bridges

- The upper bridge between CH(B) and CH(C) is the the edge \overline{vw} , where $v \in CH(B)$ and $w \in CH(C)$, such that
 - all other vertices in CH(B) and CH(C) are below vw, or
 - the two neighbors of v in CH(B) and the two neighbors
 of w in CH(C) are below vw, or
 - the counterclockwise-neighbor of v in CH(B) and the clockwise-neighbor of w in CH(C) are below vw, if v and w are chosen as in the next slide.
- Lower bridge: similar.

Finding the upper bridge

- v ← the rightmost point in CH(B);
 w ← the leftmost point in CH(C).
- Loop

if counterclockwise-neighbor(v) lies above line vw then
 v ← counterclockwise-neighbor(v)
else if clockwise-neighbor(w) lies above vw then
 w ← clockwise neighbor(w)
else exit from the loop

• *vw* is the upper bridge.

Data Structure and Time Complexity

- What data structure will you use to represent a convex hull?
- Using your data structure, how much time will it take to find the upper and lower bridges?
- What is the over all running time of the algorithm?
- We assumed:

(1) no two points in *A* share the same *x*-coordinate(2) no three points in *A* are colinear

• Now let's remove these assumptions.

Orientation of three points

- Three points: $p_1(x_1, y_1), p_2(x_2, y_2), p_3(x_3, y_3).$
- (p_1, p_2, p_3) in that order is counterclockwise if

$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} > 0$$

- Clockwise if the determinant is negative.
- Colinear if the determinant is zero.