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  Analysis of algorithm: to predict the running time
    required by an algorithm.
  Elementary operations:

     arithmetic & boolean operations: +, , ×, /, mod, div,
         

Complexity of Algorithms
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and, or
     comparison:  if , if , etc.
     branching:  go to
     assignment: 
     and so on
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  The of an algorithm is the number of
    elementary operations required for the algorithm.
  It depends on the size of the input and the data

    themselves.
  Th

running time 

worst-case time co p ee m l

•

•

•  of an algorithm is
    a function of the input size :
    ( ) = the worst case running time over

xity

asymp

 a

to

ll i

tic

nstances
    of size .
  The worst-case  time complexity is the worst

    case time 

n
T n

n
•

complexity expressed in , , or .
  asymptotThe word  is often omiic tted.

O Ω Θ
•
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Note: Unless otherwise stated, all functions considered 
          in this class are assumed to be nonnegative.
  Conventional Definition ( ) ( ( )) : We say or

  ( )  ( ( ))  if th re e  e

O-Notation

f n O g n
f n is O g n

• =

0 0

xist  constants  and
     such that  ( )  ( )  for all .
  More Abstract Definition:

( ) :  ( ) ( ( )) in the
             ( ( ))  ,

             conventional meaning

positive

    i.e., 

c
n f n cg n n n

f n f n O g n
O g n

≤ ≥

=

•

 
=  

 
 ( (the )) set of in the all functio  

    convent
ns 

ional meaning.
that are O g n
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  These expressions all mean the same thing:
       4 3   ( )
       4 3   is  ( )
       4 3   ( )
       4 3   is in  ( ).
  Sometimes ( ( )) is used to mean some function

    in 

n n O n
n n O n
n n O n
n n O n

O g n

+ =

+

+ ∈

+

•

•
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the set ( ( )) which we don't care to specify.
  Example:  we may write: 

       Let ( ) = 3 (log )    .

O g n

f n n O n+

•
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1 1 2 2

1 2 1 2

1 2 1 2

1 2 1 2

If  ( ) ( ( ))  and   ( ) ( ( )),   then
   1.   ( )  ( )  ( ( )  ( ))
   2.   ( )  ( )  (max( ( ),  ( )))
   3.   ( ) · ( )  ( ( ) · ( ))

  There exP iroof. st 

Theorem 1
f n O g n f n O g n

f n f n O g n g n
f n f n O g n g n
f n f n O g n g n

= =
+ = +
+ =

=

1 2

1 1 1 2 2 2

1 2 1 1 2 2

1 2 1 2

positive constants ,  such that 
( ) ( ) and ( ) ( ) for sufficiently large .

Thus,   ( ) +  ( )  ( ) + ( ) 
                                   (  + ) ( ( ) + ( ))
    

c c
f n c g n f n c g n n

f n f n c g n c g n
c c g n g n

≤ ≤
≤
≤

1 2 1 2                               2(  + ) max( ( ), ( )).
By definition, 1 and 2 hold.   3 can be proved similarly.

c c g n g n≤
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  Conventional Definition: We say 
    if there exist  constants  and  such that
    ( )  ( )  for all .

  Or define

positive

 ( ( )) as a set:

             ( ( )

( ) (

 

)

)

( )  

-Notation
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1 2 1 2

1 2

( ) :  ( ) ( ( )) in the
 

             conventional meaning

  Theorem 2:  If  ( ) ( ( )) and  ( ) ( ( )),  then
    1.   ( )  ( )  ( ( )  ( ))
    2.   ( )  ( )  (ma

f n f n g n

f n g n f n g n
f n f n g n g n
f n f n

= Ω 
=  

 

= Ω = Ω
+ = Ω +
+

•

= Ω
 

1 2

1 2 1 2

x( ( ),  ( )))
    3.   ( ) · ( )  ( ( ) · ( )) 

g n g n
f n f n g n g n= Ω
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1 2 0

1 2 0

positi
  Conventional Definition: We say if

    there exist  constants , , and  such that
    (

( ) ( ( )) 

( ) (
) ( ) ( ) for all .   That is,

    ( ))  ( ) ( ( ))

v

 a

e

 

-Notation

c c n
c g

f n g n

f n g
n f n c g n n n

n f n O g n≡

= Θ

= Θ

≤

=

≥

•

≤

Θ
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. 

  In terms of sets:    

  Theorem 3:  If  ( ) ( ( )) and  ( ) ( ( )),  then
    1.   (

( ( )

)  ( )  ( ( )  ( ))
    2. 

nd ( ) ( ( ))

)

  ( )

  ( ( ))  (

  ( )  

( ))

f n g n f n g n
f n f n g n g n

g n O g n g

f n g n

n

f n f n

= Θ = Θ
+

Θ

= Θ +

•

•

Ω

+

Ω

=

=

∩

Θ

=

 

1 2

1 2 1 2

(max( ( ),  ( )))
    3.   ( ) · ( )  ( ( ) · ( )) 

g n g n
f n f n g n g n= Θ
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  Definition of   

( )            ( ) ( ( )) iff lim   = 0.
( )

  Definition of   

( )           ( ) ( ( )) iff lim   = .
( )

-Notation, -Notation

n

n

o

f nf n o g n
g n

f nf n g n
g n

o

ω

ω

ω

→∞

→∞

=

•

•

= ∞
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  Transitive property: If  ( ) ( ( )) and ( ) ( ( )),

    then ( ) ( ( )).

  The transitive property also holds for  and .

  ( ) ( ( ))  ( ) ( ( )).

Some Properties of Asymptotic Notation
f n O g n g n O h n

f n O h n

f n O g n g n f n

= =

=

Ω Θ

= ⇔ = Ω

•

•

•

  See the textbook for many others.•
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  Definition: We say that  iff 

    there are positive constants , ,  such that

    ( ,  )  ( ,  ) for all 

( ,  ) = ( ( ,

   and   .

 ))

  A

Asymptotic Notation with Multiple Parameters

c m n

f

f m n cg m n m m n

m n O g m

n

n

≤

•

≥

•

≥

 

gain, we can define ( ( ,  )) as a set.

  ( ( ,  )) and ( ( ,  )) can be similarly defined.

O g m n

g m n g m nΩ Θ•
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  Let ( ) be a predicate. We write 
    iff there exist positive constants ,   such that ( ) ( )
    for all  for which ( ) is true.

  

( )

Can 

( ( ) | ( )

si

)

m

Conditional Asymptotic Notation
P n

c n T n c
T n O f n P n

f n
n n P n

•

≥

=
≤

•

2

2

ilarly define  and 

  Example:  Suppose for 0,

4 2    if  is even 
                     ( )

3              if  is odd  

    Then,   ( ) ( |  

( ( ) | ( )) ( ( ) |

is eve

(

n

)

)

).f n P n

n

n n n
T n

n n

T n

n P n

n n

fΩ

≥

 +
= 


= Θ

•

Θ
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2

  A function ( ) is  iff ( ) is asymptotically
    nondecreasing and  (2 ) ( ( )).

  Thus, a smooth function does not grow very fast.

  Example: log ,  log ,   are all smoot

Smooth Functions
f n f n

f n O f n

n n n n

=
•

•

•

smooth

h. 

  What about 2 ?n•
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Theorem 4.

    Proof.  

    If ( ) is smooth, then ( ) ( ( ))
    for any fixed positive integer .

By induction on .   
     For 1,  2,  obviouInduction base: 

Induction hypot
sly ( ) ( ( )). 

h    

f n f bn O f n
b

b
b f bn O f n

=

=

•

=

( )

( ) ( )( )
( ) ( )1 1 2

  Assume  ( 1) ( ( )),
     where 2.
     Need to show .  We have:

     2( 1) ( 1)

esis:

 Induction

    (i.e.,  ( ) 2( 1) ( 1) (

( ) ( ( ))

( ) ( ( ))

)  
    for so

 s p

e

e

 

t

m

: f bn O f n

f bn O f n

f b n O f n
b

f b n O f b n

f bn f b n c f b n c c f n

− =

>

≤ − = − ⊆

≤ − ≤ −

=

≤

1 2constants ,   and sufficiently large ).
    The theorem is proved.

c c n
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     where
    2 is a constant, ( ) is asymptotically nondecreasing
    and ( ) is smooth,

If ( ) ( ( ) |  a power of ),

then ( ) ( ( )).

Theorem 5.

    Proof.  

 

From the given conditions, we know:

T n O f n n b

T n O f
b T n

nf n
≥

=

• =

1

2
1

    1. ( ) is asymptotically nondecreasing.
    2. ( ) ( ) for  sufficiently large and a power of .
    3. ( ) ( ) for sufficiently large .
    For any , there is a  such that .
  

k k

T n
T n c f n n b
f bn c f n n

n k b n b +

≤
≤

≤ <

1 1
1 1 2 1 2     ( )  ( )  (

  When  is sufficiently large, we have

    Be definition, ( )  (
)  ( )  (

(
).

)).

k k kT n T b c f b c c f b
n

T n O f n
c c f n+ +≤ ≤ ≤

=
≤
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1 221 1  ( )  ( )      (( ) ( )) .k kk f b c fT n T b c c c c f nb++ ≤≤ ≤ ≤

     1             k kb n b +
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    If ( ) ( ( ) |  a power of ), where
    2 is a constant, ( ) is asymptotically nondecreasing
    and ( ) is smooth, then

Theorem 6.

Theorem 7.

 ( ) ( ( )).

    If ( ) ( ( ) |  a power of )

T n f n n b
b T n

f n T n f n

T n f n n b

= Ω

=

•
≥

•

= Ω

Θ , where
    2 is a constant, ( ) is asymptotically nondecreasing
    and ( ) is smooth, then ( ) ( ( )).

    In order to show ( ) ( log ), we only
    have to establish ( ) ( log

Application.
|

b T n
f n T n f n

T n O n n
T n O n n n

≥
= Θ

=
≤

•
 a power of 2),

    provided that ( ) is asymptotically nondecreasi

   

n .

  

g

  

T n
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2
2

    =  the floor of .

    =  the ceiling of .
  log   log .   (Or lg )
  1  2  · · ·    ( 1) 2   ( ).
  For constants  > 0, 1 2 3  · · · 

Some Notations, Functions, Formulas

k k

x x

x x
n n n

n n n n
k n

  
  

=

+ + + = + = Θ

+ +• +

•

•

•

+

•

1

1 1
2

2

2

  ( ).
1 1  If 1, then 1  · · · .

1 1
  If 1, then  ( ) 1  · · · ( ).
  If 1, then  ( ) 1  · · · (1).

k k

n n
n

n n

n

n
a aa a a a

a a
a f n a a a a
a f n a a a

+

+ +

= Θ

− −
≠ + + + + = =

− −
> = + + + +

•

•

•

= Θ

< = + + + + = Θ
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  Suppose function   is increasing or decreasing.
( )  increasing

  ( ) ( ) ( )
( )  dereasing

  So, if  is increasing and  ( )

Approximating summations by integration

nn n

m m
i m

n

m

f
f n f

f x dx f i f x dx
f m f

f f x dx f

=

•

•

•


≤ ≤ + 



= Ω

∑∫ ∫

∫ ( )

( )
( )

( )
( ) ( )

( ) ,  then

     ( ) ( )

  Similarly, if  is decreasing and  ( ) ( ) ,  then

     ( ) ( )

1 1  Example: ln ln lg lg

n n

m
i m

n

m
n n

m
i m

n n

m
i m

n

f i f x dx

f f x dx f m

f i f x dx

dx n m n m
i x

=

=

=

= Θ

= Ω

= Θ

 = Θ = Θ − = Θ − 


•

•


∑ ∫

∫

∑ ∫

∑ ∫
19



( )

 BinarySearch( ,  ,  ,  )
   if    then return(0)
     ( ) 2
   
       [ ]  : return( )
       [ ]  : return BinarySearch( ,  ,  1,  )

       [ ]

Analysis of Algorithm: Example
A x i j

i j
m i j

A m x m
A m x A x m j

A m

>

← +  

=

< +

Procedure

case

( )  : return BinarySearch( ,  ,  ,  1)
   

x A x i m> −

end
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Let ( ) denote the worst-case running time. 
( ) satisfies the recurrence:

        ( ) .
2

Solving the recurrence yields:
       ( ) (log )

Analysis of Binary Search
T n

T n

nT n T c

T n n

  = +    

= Θ
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 Find gcd( , ) for integers , 0, not both zero.

 Theorem: If 0, gcd( , ) . 
                    If 0, gcd( , ) gcd( , mod )

 function Euclid( , ) 
       0  
    

 

 

 

   
  
 
if
 

Euclid's Algorithm
a b a b

b a b a
b a b b a b

a b
b

≥

•

=

=

•
>

•

= =

( )
     return( )

             return Euclid( , mod )

 The running time is proportional to the number of
    recurs

the

ive calls.    

n
 else

 

a
b a b

•
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0 0 0 0 0

1 1 1 1 1

2 2 2

1 2

0 0 0 2 4

mod
mod

            

Observe that  .
W.l.o.g., assume .  The values  ,  ,  ,   

    decrease by at least one half

  
  

Analysis of Euclid's Algorithm

n n

k k k

a b c a b
a b c a b
a b c

a b

a b c
a b a a a

− −

=
=

= =
≥

•
•

  



0

 with each recursive call. 
Reason: If :  mod  ,  then 2.
So, there are most O(log ) rec

  
ursive c ls. al 

c a b c a
a•

= <•
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( ) ( ) ( )

( ) ( )

20 1 2 log

2 2
2

2

2

2 , 2 , 2 , , 2

log log2 log2 2

0 0

2
log 4

 

    

2 2 2

2

Solution to Q4 of example analysis

ni

n n k nk

k k

n

i

n

=

= =

 = = = Θ 
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