Mathematical Foundation

CSE 6331 Algorithms

Steve Lai

Complexity of Algorithms

- Analysis of algorithm: to predict the running time required by an algorithm.
- Elementary operations:
- arithmetic \& boolean operations: +, -, ×, /, mod, div, and, or
- comparison: if $a<b$, if $a=b$, etc.
- branching: go to
- assignment: $a \leftarrow b$
- and so on
- The running time of an algorithm is the number of elementary operations required for the algorithm.
- It depends on the size of the input and the data themselves.
- The worst-case time complexity of an algorithm is a function of the input size n :
$T(n)=$ the worst case running time over all instances of size n.
- The worst-case asymptotic time complexity is the worst case time complexity expressed in O, Ω, or Θ.
- The word asymptotic is often omitted.

O-Notation

Note: Unless otherwise stated, all functions considered in this class are assumed to be nonnegative.

- Conventional Definition: We say $f(n)=O(g(n))$ or $f(n)$ is $O(g(n))$ if there exist positive constants c and n_{0} such that $f(n) \leq c g(n)$ for all $n \geq n_{0}$.
- More Abstract Definition:
i.e., the set of all functions that are $O(g(n))$ in the conventional meaning.
- These expressions all mean the same thing:
- $4 n^{2}+3 n=O\left(n^{2}\right)$
- $4 n^{2}+3 n$ is $O\left(n^{2}\right)$
- $4 n^{2}+3 n \in O\left(n^{2}\right)$
- $4 n^{2}+3 n$ is in $O\left(n^{2}\right)$.
- Sometimes $O(g(n))$ is used to mean some function in the set $O(g(n))$ which we don't care to specify.
- Example: we may write:

$$
\text { Let } f(n)=3 n^{2}+O(\log n)
$$

Theorem 1

If $f_{1}(n)=O\left(g_{1}(n)\right)$ and $f_{2}(n)=O\left(g_{2}(n)\right)$, then

1. $f_{1}(n)+f_{2}(n)=O\left(g_{1}(n)+g_{2}(n)\right)$
2. $f_{1}(n)+f_{2}(n)=O\left(\max \left(g_{1}(n), g_{2}(n)\right)\right)$
3. $f_{1}(n) \cdot f_{2}(n)=O\left(g_{1}(n) \cdot g_{2}(n)\right)$

Proof. There exist positive constants c_{1}, c_{2} such that $f_{1}(n) \leq c_{1} g_{1}(n)$ and $f_{2}(n) \leq c_{2} g_{2}(n)$ for sufficiently large n.
Thus, $f_{1}(n)+f_{2}(n) \leq c_{1} g_{1}(n)+c_{2} g_{2}(n)$

$$
\begin{aligned}
& \leq\left(c_{1}+c_{2}\right)\left(g_{1}(n)+g_{2}(n)\right) \\
& \leq 2\left(c_{1}+c_{2}\right) \max \left(g_{1}(n), g_{2}(n)\right) .
\end{aligned}
$$

By definition, 1 and 2 hold. 3 can be proved similarly.

Ω-Notation

- Conventional Definition: We say $f(n)=\Omega(g(n))$
if there exist positive constants c and n_{0} such that
$f(n) \geq c g(n)$ for all $n \geq n_{0}$.
- Or define $\Omega(g(n))$ as a set:

$$
\Omega(g(n))=\left\{\begin{array}{r}
f(n): f(n)=\Omega(g(n)) \text { in the } \\
\text { conventional meaning }
\end{array}\right\}
$$

- Theorem 2: If $f_{1}(n)=\Omega\left(g_{1}(n)\right)$ and $f_{2}(n)=\Omega\left(g_{2}(n)\right)$, then

1. $f_{1}(n)+f_{2}(n)=\Omega\left(g_{1}(n)+g_{2}(n)\right)$
2. $f_{1}(n)+f_{2}(n)=\Omega\left(\max \left(g_{1}(n), g_{2}(n)\right)\right)$
3. $f_{1}(n) \cdot f_{2}(n)=\Omega\left(g_{1}(n) \cdot g_{2}(n)\right)$

Θ-Notation

- Conventional Definition: We say $f(n)=\Theta(g(n))$ if there exist positive constants c_{1}, c_{2}, and n_{0} such that $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $n \geq n_{0}$. That is, $f(n)=\Theta(g(n)) \equiv[f(n)=O(g(n))$ and $f(n)=\Omega(g(n))]$.
- In terms of sets: $\Theta(g(n))=O(g(n)) \cap \Omega(g(n))$
- Theorem 3: If $f_{1}(n)=\Theta\left(g_{1}(n)\right)$ and $f_{2}(n)=\Theta\left(g_{2}(n)\right)$, then

1. $f_{1}(n)+f_{2}(n)=\Theta\left(g_{1}(n)+g_{2}(n)\right)$
2. $f_{1}(n)+f_{2}(n)=\Theta\left(\max \left(g_{1}(n), g_{2}(n)\right)\right)$
3. $f_{1}(n) \cdot f_{2}(n)=\Theta\left(g_{1}(n) \cdot g_{2}(n)\right)$

o-Notation, ω-Notation

- Definition of o

$$
f(n)=o(g(n)) \text { iff } \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 .
$$

- Definition of ω

$$
f(n)=\omega(g(n)) \text { iff } \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty .
$$

Some Properties of Asymptotic Notation

- Transitive property: If $f(n)=O(g(n))$ and $g(n)=O(h(n))$, then $f(n)=O(h(n))$.
- The transitive property also holds for Ω and Θ.
- $f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n))$.
- See the textbook for many others.

Asymptotic Notation with Multiple Parameters

- Definition: We say that $f(m, n)=O(g(m, n))$ iff there are positive constants c, m_{0}, n_{0} such that $f(m, n) \leq c g(m, n)$ for all $m \geq m_{0}$ and $n \geq n_{0}$.
- Again, we can define $O(g(m, n))$ as a set.
- $\Omega(g(m, n))$ and $\Theta(g(m, n))$ can be similarly defined.

Conditional Asymptotic Notation

- Let $P(n)$ be a predicate. We write $T(n)=O(f(n) \mid P(n))$
iff there exist positive constants c, n_{0} such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$ for which $P(n)$ is true.
- Can similarly define $\Omega(f(n) \mid P(n))$ and $\Theta(f(n) \mid P(n))$.
- Example: Suppose for $n \geq 0$,

$$
T(n)= \begin{cases}4 n^{2}+2 n & \text { if } n \text { is even } \\ 3 n & \text { if } n \text { is odd }\end{cases}
$$

Then, $\quad T(n)=\Theta\left(n^{2} \mid n\right.$ is even $)$

Smooth Functions

- A function $f(n)$ is smooth $\operatorname{iff} f(n)$ is asymptotically nondecreasing and $f(2 n)=O(f(n))$.
- Thus, a smooth function does not grow very fast.
- Example: $\log n, n \log n, n^{2}$ are all smooth.
- What about 2^{n} ?
- Theorem 4. If $f(n)$ is smooth, then $f(b n)=O(f(n))$ for any fixed positive integer b.

Proof. By induction on b.
Induction base: For $b=1$, 2, obviously $f(b n)=O(f(n))$.
Induction hypothesis: Assume $f((b-1) n)=O(f(n))$, where $b>2$.
Induction step: Need to show $f(b n)=O(f(n))$. We have:
$f(b n) \leq f(2(b-1) n)=O(f((b-1) n)) \subseteq O(f(n))$
(i.e., $f(b n) \leq f(2(b-1) n) \leq c_{1} f((b-1) n) \leq c_{1} c_{2} f(n)$
for some constants c_{1}, c_{2} and sufficiently large n).
The theorem is proved.

- Theorem 5. If $T(n)=O(f(n) \mid n$ a power of b), where $b \geq 2$ is a constant, $T(n)$ is asymptotically nondecreasing and $f(n)$ is smooth, then $T(n)=O(f(n))$.

Proof. From the given conditions, we know:

1. $T(n)$ is asymptotically nondecreasing.
2. $T(n) \leq c_{1} f(n)$ for n sufficiently large and a power of b.
3. $f(b n) \leq c_{2} f(n)$ for sufficiently large n.

For any n, there is a k such that $b^{k} \leq n<b^{k+1}$.
When n is sufficiently large, we have

$$
T(n) \leq T\left(b^{k+1}\right) \leq c_{1} f\left(b^{k+1}\right) \leq c_{1} c_{2} f\left(b^{k}\right) \leq c_{1} c_{2} f(n) .
$$

Be definition, $T(n)=O(f(n))$.

$T(n) \leq T\left(b^{k+1}\right) \leq c_{1} f\left(b^{k+1}\right) \leq c_{1} c_{2} f\left(b^{k}\right) \leq c_{1} c_{2} f(n)$.

- Theorem 6. If $T(n)=\Omega(f(n) \mid n$ a power of $b)$, where $b \geq 2$ is a constant, $T(n)$ is asymptotically nondecreasing and $f(n)$ is smooth, then $T(n)=\Omega(f(n))$.
- Theorem 7. If $T(n)=\Theta(f(n) \mid n$ a power of $b)$, where $b \geq 2$ is a constant, $T(n)$ is asymptotically nondecreasing and $f(n)$ is smooth, then $T(n)=\Theta(f(n))$.
- Application. In order to show $T(n)=O(n \log n)$, we only have to establish $T(n) \leq O(n \log n \mid n$ a power of 2$)$, provided that $T(n)$ is asymptotically nondecreasing.

Some Notations, Functions, Formulas

- $\lfloor x\rfloor=$ the floor of x.
- $\lceil x\rceil=$ the ceiling of x.
- $\log n=\log _{2} n$. (Or $\left.\lg n\right)$
- $1+2+\cdots+n=n(n+1) / 2=\Theta\left(n^{2}\right)$.
- For constants $k>0,1+2^{k}+3^{k}+\cdots+n^{k}=\Theta\left(n^{k+1}\right)$.
- If $a \neq 1$, then $1+a+a^{2}+\cdots+a^{n}=\frac{1-a^{n+1}}{1-a}=\frac{a^{n+1}-1}{a-1}$.
- If $a>1$, then $f(n)=1+a+a^{2}+\cdots+a^{n}=\Theta\left(a^{n}\right)$.
- If $a<1$, then $f(n)=1+a+a^{2}+\cdots+a^{n}=\Theta(1)$.
- Suppose function f is increasing or decreasing.
- $\int_{m}^{n} f(x) d x \leq \sum_{i=m}^{n} f(i) \leq \int_{m}^{n} f(x) d x+ \begin{cases}f(n) & f \text { increasing } \\ f(m) & f \text { dereasing }\end{cases}$
- So, if f is increasing and $\int_{m}^{n} f(x) d x=\Omega(f(n))$, then

$$
\sum_{i=m}^{n} f(i)=\Theta\left(\int_{m}^{n} f(x) d x\right)
$$

- Similarly, if f is decreasing and $\int_{m}^{n} f(x) d x=\Omega(f(m))$, then $\sum_{i=m}^{n} f(i)=\Theta\left(\int_{m}^{n} f(x) d x\right)$
- Example: $\sum_{i=m}^{n} \frac{1}{i}=\Theta\left(\int_{m}^{n} \frac{1}{X} d x\right)=\Theta(\ln n-\ln m)=\Theta(\lg n-\lg m)$

Analysis of Algorithm: Example

Procedure BinarySearch(A, x, i, j)
if $i>j$ then return(0)
$m \leftarrow\lfloor(i+j) / 2\rfloor$
case
$A[m]=x: \operatorname{return}(m)$
$A[m]<x:$ return $(\operatorname{BinarySearch}(A, x, m+1, j))$
$A[m]>x$ return(BinarySearch(A, $x, i, m-1)$)
end

Analysis of Binary Search

Let $T(n)$ denote the worst-case running time.
$T(n)$ satisfies the recurrence:

$$
T(n)=T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+c .
$$

Solving the recurrence yields:

$$
T(n)=\Theta(\log n)
$$

Euclid's Algorithm

- Find $\operatorname{gcd}(a, b)$ for integers $a, b \geq 0$, not both zero.
- Theorem: If $b=0, \operatorname{gcd}(a, b)=a$.

$$
\text { If } b>0, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)
$$

- function $\operatorname{Euclid}(a, b)$

$$
\begin{aligned}
& \text { if } b=0 \\
& \text { then return }(a) \\
& \text { else return }(\operatorname{Euclid}(b, a \bmod b))
\end{aligned}
$$

- The running time is proportional to the number of recursive calls.

Analysis of Euclid's Algorithm

$$
\begin{array}{lll}
a_{0} & b_{0} & c_{0}=a_{0} \bmod b_{0} \\
a_{1} & b_{1} & c_{1}=a_{1} \bmod b_{1} \\
a_{2} & b_{2} & c_{2} \\
\vdots & \vdots & \vdots \\
a_{n} & b_{n} &
\end{array}
$$

- Observe that $a_{k}=b_{k-1}=c_{k-2}$.
- W.l.o.g., assume $a_{0} \geq b_{0}$. The values $a_{0}, a_{2}, a_{4}, \ldots$ decrease by at least one half with each recursive call.
- Reason: If $c:=a \bmod b$, then $c<a / 2$.
- So, there are most $\mathrm{O}\left(\log a_{0}\right)$ recursive calls.

Solution to Q4 of example analysis

$$
\begin{aligned}
& \sum_{i=2^{0}, 2^{1}, 2^{2}, \ldots, 2^{\log n^{2}}} i^{2} \\
= & \sum_{k=0}^{\log n^{2}}\left(2^{k}\right)^{2}=\sum_{k=0}^{\log n^{2}}\left(2^{2}\right)^{k}=\Theta\left(\left(2^{2}\right)^{\log n^{2}}\right) \\
= & \Theta\left(\left(2^{\log n^{2}}\right)^{2}\right)=\Theta\left(n^{4}\right)
\end{aligned}
$$

