
Mathematical Foundation

CSE 6331 Algorithms
Steve Lai

 Analysis of algorithm: to predict the running time
 required by an algorithm.
 Elementary operations:

 arithmetic & boolean operations: +, , ×, /, mod, div,

Complexity of Algorithms

− −

•

•

and, or
 comparison: if , if , etc.
 branching: go to
 assignment:
 and so on

a b a b

a b

− < =
−
− ←
−

2

 The of an algorithm is the number of
 elementary operations required for the algorithm.
 It depends on the size of the input and the data

 themselves.
 Th

running time

worst-case time co p ee m l

•

•

• of an algorithm is
 a function of the input size :
 () = the worst case running time over

xity

asymp

 a

to

ll i

tic

nstances
 of size .
 The worst-case time complexity is the worst

 case time

n
T n

n
•

complexity expressed in , , or .
 asymptotThe word is often omiic tted.

O Ω Θ
•

3

Note: Unless otherwise stated, all functions considered
 in this class are assumed to be nonnegative.
 Conventional Definition () (()) : We say or

 () (()) if th re e e

O-Notation

f n O g n
f n is O g n

• =

0 0

xist constants and
 such that () () for all .
 More Abstract Definition:

() : () (()) in the
 (()) ,

 conventional meaning

positive

 i.e.,

c
n f n cg n n n

f n f n O g n
O g n

≤ ≥

=

•

=

 ((the)) set of in the all functio

 convent
ns

ional meaning.
that are O g n

4

2 2

2 2

2 2

2 2

 These expressions all mean the same thing:
 4 3 ()
 4 3 is ()
 4 3 ()
 4 3 is in ().
 Sometimes (()) is used to mean some function

 in

n n O n
n n O n
n n O n
n n O n

O g n

+ =

+

+ ∈

+

•

•

2

the set (()) which we don't care to specify.
 Example: we may write:

 Let () = 3 (log) .

O g n

f n n O n+

•

5

1 1 2 2

1 2 1 2

1 2 1 2

1 2 1 2

If () (()) and () (()), then
 1. () () (() ())
 2. () () (max((), ()))
 3. () · () (() · ())

 There exP iroof. st

Theorem 1
f n O g n f n O g n

f n f n O g n g n
f n f n O g n g n
f n f n O g n g n

= =
+ = +
+ =

=

1 2

1 1 1 2 2 2

1 2 1 1 2 2

1 2 1 2

positive constants , such that
() () and () () for sufficiently large .

Thus, () + () () + ()
 (+) (() + ())

c c
f n c g n f n c g n n

f n f n c g n c g n
c c g n g n

≤ ≤
≤
≤

1 2 1 2 2(+) max((), ()).
By definition, 1 and 2 hold. 3 can be proved similarly.

c c g n g n≤

6

0

0

 Conventional Definition: We say
 if there exist constants and such that
 () () for all .

 Or define

positive

 (()) as a set:

 (()

() (

)

)

()

-Notation

c n
f n cg n n n

g

f n

n

g

g n

n

≥ ≥

Ω

Ω

•

Ω

• =

Ω

1 1 2 2

1 2 1 2

1 2

() : () (()) in the

 conventional meaning

 Theorem 2: If () (()) and () (()), then
 1. () () (() ())
 2. () () (ma

f n f n g n

f n g n f n g n
f n f n g n g n
f n f n

= Ω
=

= Ω = Ω
+ = Ω +
+

•

= Ω

1 2

1 2 1 2

x((), ()))
 3. () · () (() · ())

g n g n
f n f n g n g n= Ω

7

1 2 0

1 2 0

positi
 Conventional Definition: We say if

 there exist constants , , and such that
 (

() (())

() (
) () () for all . That is,

 ()) () (())

v

 a

e

-Notation

c c n
c g

f n g n

f n g
n f n c g n n n

n f n O g n≡

= Θ

= Θ

≤

=

≥

•

≤

Θ

[]

1 1 2 2

1 2 1 2

1 2

.

 In terms of sets:

 Theorem 3: If () (()) and () (()), then
 1. (

(()

) () (() ())
 2.

nd () (())

)

 ()

 (()) (

 ()

())

f n g n f n g n
f n f n g n g n

g n O g n g

f n g n

n

f n f n

= Θ = Θ
+

Θ

= Θ +

•

•

Ω

+

Ω

=

=

∩

Θ

=

1 2

1 2 1 2

(max((), ()))
 3. () · () (() · ())

g n g n
f n f n g n g n= Θ

8

 Definition of

() () (()) iff lim = 0.
()

 Definition of

() () (()) iff lim = .
()

-Notation, -Notation

n

n

o

f nf n o g n
g n

f nf n g n
g n

o

ω

ω

ω

→∞

→∞

=

•

•

= ∞

9

 Transitive property: If () (()) and () (()),

 then () (()).

 The transitive property also holds for and .

 () (()) () (()).

Some Properties of Asymptotic Notation
f n O g n g n O h n

f n O h n

f n O g n g n f n

= =

=

Ω Θ

= ⇔ = Ω

•

•

•

 See the textbook for many others.•

10

0 0

0 0

 Definition: We say that iff

 there are positive constants , , such that

 (,) (,) for all

(,) = ((,

 and .

))

 A

Asymptotic Notation with Multiple Parameters

c m n

f

f m n cg m n m m n

m n O g m

n

n

≤

•

≥

•

≥

gain, we can define ((,)) as a set.

 ((,)) and ((,)) can be similarly defined.

O g m n

g m n g m nΩ Θ•

11

0

0

 Let () be a predicate. We write
 iff there exist positive constants , such that () ()
 for all for which () is true.

()

Can

(() | ()

si

)

m

Conditional Asymptotic Notation
P n

c n T n c
T n O f n P n

f n
n n P n

•

≥

=
≤

•

2

2

ilarly define and

 Example: Suppose for 0,

4 2 if is even
 ()

3 if is odd

 Then, () (|

(() | ()) (() |

is eve

(

n

)

)

).f n P n

n

n n n
T n

n n

T n

n P n

n n

fΩ

≥

 +
=

= Θ

•

Θ

12

2

 A function () is iff () is asymptotically
 nondecreasing and (2) (()).

 Thus, a smooth function does not grow very fast.

 Example: log , log , are all smoot

Smooth Functions
f n f n

f n O f n

n n n n

=
•

•

•

smooth

h.

 What about 2 ?n•

13

Theorem 4.

 Proof.

 If () is smooth, then () (())
 for any fixed positive integer .

By induction on .
 For 1, 2, obviouInduction base:

Induction hypot
sly () (()).

h

f n f bn O f n
b

b
b f bn O f n

=

=

•

=

()

() ()()
() ()1 1 2

 Assume (1) (()),
 where 2.
 Need to show . We have:

 2(1) (1)

esis:

 Induction

 (i.e., () 2(1) (1) (

() (())

() (())

)
 for so

 s p

e

e

t

m

: f bn O f n

f bn O f n

f b n O f n
b

f b n O f b n

f bn f b n c f b n c c f n

− =

>

≤ − = − ⊆

≤ − ≤ −

=

≤

1 2constants , and sufficiently large).
 The theorem is proved.

c c n

14

 where
 2 is a constant, () is asymptotically nondecreasing
 and () is smooth,

If () (() | a power of),

then () (()).

Theorem 5.

 Proof.

From the given conditions, we know:

T n O f n n b

T n O f
b T n

nf n
≥

=

• =

1

2
1

 1. () is asymptotically nondecreasing.
 2. () () for sufficiently large and a power of .
 3. () () for sufficiently large .
 For any , there is a such that .

k k

T n
T n c f n n b
f bn c f n n

n k b n b +

≤
≤

≤ <

1 1
1 1 2 1 2 () () (

 When is sufficiently large, we have

 Be definition, () (
) () (

(
).

)).

k k kT n T b c f b c c f b
n

T n O f n
c c f n+ +≤ ≤ ≤

=
≤

15

16

11
1 221 1 () () (() ()) .k kk f b c fT n T b c c c c f nb++ ≤≤ ≤ ≤

 1 k kb n b +

1c

 If () (() | a power of), where
 2 is a constant, () is asymptotically nondecreasing
 and () is smooth, then

Theorem 6.

Theorem 7.

 () (()).

 If () (() | a power of)

T n f n n b
b T n

f n T n f n

T n f n n b

= Ω

=

•
≥

•

= Ω

Θ , where
 2 is a constant, () is asymptotically nondecreasing
 and () is smooth, then () (()).

 In order to show () (log), we only
 have to establish () (log

Application.
|

b T n
f n T n f n

T n O n n
T n O n n n

≥
= Θ

=
≤

•
 a power of 2),

 provided that () is asymptotically nondecreasi

n .

g

T n

17

2
2

 = the floor of .

 = the ceiling of .
 log log . (Or lg)
 1 2 · · · (1) 2 ().
 For constants > 0, 1 2 3 · · ·

Some Notations, Functions, Formulas

k k

x x

x x
n n n

n n n n
k n

=

+ + + = + = Θ

+ +• +

•

•

•

+

•

1

1 1
2

2

2

 ().
1 1 If 1, then 1 · · · .

1 1
 If 1, then () 1 · · · ().
 If 1, then () 1 · · · (1).

k k

n n
n

n n

n

n
a aa a a a

a a
a f n a a a a
a f n a a a

+

+ +

= Θ

− −
≠ + + + + = =

− −
> = + + + +

•

•

•

= Θ

< = + + + + = Θ

18

 Suppose function is increasing or decreasing.
() increasing

 () () ()
() dereasing

 So, if is increasing and ()

Approximating summations by integration

nn n

m m
i m

n

m

f
f n f

f x dx f i f x dx
f m f

f f x dx f

=

•

•

•

≤ ≤ +

= Ω

∑∫ ∫

∫ ()

()
()

()
() ()

() , then

 () ()

 Similarly, if is decreasing and () () , then

 () ()

1 1 Example: ln ln lg lg

n n

m
i m

n

m
n n

m
i m

n n

m
i m

n

f i f x dx

f f x dx f m

f i f x dx

dx n m n m
i x

=

=

=

= Θ

= Ω

= Θ

 = Θ = Θ − = Θ −

•

•

∑ ∫

∫

∑ ∫

∑ ∫
19

()

 BinarySearch(, , ,)
 if then return(0)
 () 2

 [] : return()
 [] : return BinarySearch(, , 1,)

 []

Analysis of Algorithm: Example
A x i j

i j
m i j

A m x m
A m x A x m j

A m

>

← +

=

< +

Procedure

case

() : return BinarySearch(, , , 1)

x A x i m> −

end

20

Let () denote the worst-case running time.
() satisfies the recurrence:

 () .
2

Solving the recurrence yields:
 () (log)

Analysis of Binary Search
T n

T n

nT n T c

T n n

 = +

= Θ

21

 Find gcd(,) for integers , 0, not both zero.

 Theorem: If 0, gcd(,) .
 If 0, gcd(,) gcd(, mod)

 function Euclid(,)
 0

if

Euclid's Algorithm
a b a b

b a b a
b a b b a b

a b
b

≥

•

=

=

•
>

•

= =

()
 return()

 return Euclid(, mod)

 The running time is proportional to the number of
 recurs

the

ive calls.

n
 else

a
b a b

•

22

0 0 0 0 0

1 1 1 1 1

2 2 2

1 2

0 0 0 2 4

mod
mod

Observe that .
W.l.o.g., assume . The values , , ,

 decrease by at least one half

Analysis of Euclid's Algorithm

n n

k k k

a b c a b
a b c a b
a b c

a b

a b c
a b a a a

− −

=
=

= =
≥

•
•

0

 with each recursive call.
Reason: If : mod , then 2.
So, there are most O(log) rec

ursive c ls. al

c a b c a
a•

= <•

23

24

() () ()

() ()

20 1 2 log

2 2
2

2

2

2 , 2 , 2 , , 2

log log2 log2 2

0 0

2
log 4

2 2 2

2

Solution to Q4 of example analysis

ni

n n k nk

k k

n

i

n

=

= =

 = = = Θ

 = Θ = Θ

∑

∑ ∑

	Mathematical Foundation
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

