
Efficient Fully Homomorphic
Encryption from (Standard) LWE

Brakerski and Vaikuntanathan, FOCS 2011

1

 A scheme based on the standard learning with errors (LWE)
 standard LWE as opposed to ring-LWE

 Security relies on (worst-case, classical) hardness of standard,
 well stu

d

i

Main contributions
•

•



ed problems on arbitrary lattices.
 Gentry: based on (worst-case, quantum) hardness of
 rel

No squash

atively untested ideal lattices problems.

 , thereby removing the (average-case)i arn g sp•



se
 subset-sum assumption, which is a very strong assumption.

2

ur

 A vector satisfies a polynomial number of equations

 with errors: , or more precisely,

 where and is a samll random error,

, ,

Learning with errors (LWE) problem

i i i i

n
q

n
q i

i

i

b b e

e

∈

≈

•

= +

∈

a s a

s

a

s





{ }

{ } { }

poly()

1

poly() poly()

11

1 poly().

 LWE: Given , ,

 Decision LWE: distinguish between the two distributions

 , and ,

 find .

 where

,

,

i i i

i

n
i i

n n
i i iii i

b e

u

n

e

i

=

==

= +

≤

•

≤

+

a

a

a s

aa

s

s

ur ur , , and the noise/error ,

 sampled according to some distribution, is much smaller than .

Worst-case SVP average-case DL E W

n
i i iq q qu

q
e∈ ∈ ∈

• ≤

a   

3

{ }
{ } 1

 Since , , is almost uniformly random, so is

 , , , provided is odd. (2 mod exists; thus,

 as ranges over , 2 also ranges over .)

 To e

2

n

Secret-key encryption based on LWE

q q

e

q q

e e

e −

•

•

+

+

a a s

a a s

 

{ }

()
()

crypt a bit 0,1 using , we choose

 a random and a noise and encrypt as

 : , , 2

se

 To decrypt , , we compute

cret key

:

n
q

n
q

n
q q

e q

c w e

c w

x

µ

µ

µ

∈ ∈

∈

= = + + ∈ ×

• =

a

a a s

a

s 

 

 

()
 2 , since

 mod2

 , mod mod 2
e e q

w q
µ

µ µ

= +

= =

= − a s






4

{ }

{ } { }

1

1

 Use as the secret key and use a sequence ,

 as the public key.

 To encrypt a bit 0,1 using public key , , we choose

, 2

a

Convert it to a public-key encryption scheme

i
m

i i i

m
i i i

ib e

bµ

=

=

+• =

• ∈

a ss a

a

() { }

() ()
1 random vector , , 0, 1 and encrypt as

 : , , , 2

 where and .

 Note: must be much smaller than to ensure .

m
m

i i i i

i i i i

r r

c r rb w e

r e re

m q e q

µ

µ µ

∈

= + = = + +

=

•

=

∑ ∑

∑ ∑

a a a s

a a





5

() ()
() ()

 Given ciphertexts of and , //plaintexts: , {0,1}//

 , , , 2

 , , , 2

 can we compute a ciphertext

Is it additively homomorphic?

m

m

m

m m m m

c w e m

c w e m

c
′

′ ′∈

= = + +

′ ′ ′ ′ ′ ′= = + +

•

a a a s

a a a s

() ()()

 of ?

 Adding up and yields

 , , , 2

 It is a ciphertext of . So, simply let : .

 The scheme is additively homomorphic

.

m

m m

m m

m m m m

m m

c c

c c w w e e m m

m m c c c

′+

′

′

′ ′+

′+

′ ′ ′ ′ ′ ′+ = + + = + + + + + +

•

• ′+ = +

•

a a a a a a s

6

() ()
() ()

 Given ciphertexts of and ,

 , , , 2

 , , , 2

 we wis

Is it multiplicatively homomorphic?

n
m q q

n
m q q

m m

c w e m

c w e m′

′

= = + + ∈ ×

′ ′ ′ ′ ′ ′= = + + ∈

•

×

a a a s

a a a s

 

 

() ()

()

h to compute a ciphertext of .

 Cannot simply multiply and . Why?

 Ciphertexts , , , give "approximations" of , :

 , [] [] where [1], , []

mm

m m

c m m

c c

w w m m

m w w i i n

′

′

′⋅

′ ′ ′

≈ −

•

•

= − ⋅ = …∑

a a

a s a s a a a

()

 , [] []

 Our goal is to obtain for some ., ,

m w w i i

wm m w′

′ ′ ′ ′ ′≈ − = −

−• ⋅ ≈

⋅∑a s a s

aa s 7

() ()

0 ,1
1 quadratic

,

quadratic0

 [] [] [] []

 [] [] []

 [] [] //here we let [0] 1//

Re-linearization

n
i i ji

i j n

i j
i j n

m m w i i w i i

h h i h i j

h i j

=
≤ ≤ ≤

≤ ≤ ≤

′ ′ ′⋅ ≈ − ⋅ ⋅ − ⋅

= + ⋅ + ⋅ ⋅

•

= ⋅ ⋅ =

•

∑ ∑

∑ ∑

∑

a s a s

s s s

s s s





 , , , , ,

 To linearize the quadratic terms, take another key

 and encode/approximate [] [] as:

 [] [] , // , 2 + [] []//

 Now, substitude this into the abo

n
q

i j i j i j i j i j

i j

i j b b e i j

∈

⋅

⋅ ≈ − = +

•

⋅

t
s s

s s a t a t s s



ve equation of .m m′⋅ 8

()
()

()

,
0 quadratic

, , ,

, , , ,

 [] []

 ,

 ,

 ,

under key Let : , ; we have a ciphertext of .

 u

Th s

i j
i j n

i j i j i j

i j i j i j i j

m m

m m h i j

h b

h b h

w

c w m m

≤ ≤ ≤

′⋅

• ′⋅ ≈ ⋅ ⋅

≈ ⋅ −

= ⋅

•

−

= −

′= ⋅

∑

∑

∑ ∑

s s

a t

a

t

t

a t

a



, from the ciphertexts of , under key , we can
 compute a ciphertext of under another key .

m m
m m

′
′⋅

s
t

9

() ,

,

, ,

 In the above re-linearization argument, we had

 where " " means "differs by a small 2 ."

Unfortunately, the last does not ne

[] []

 s

,

ces a

i

i

j i

j

i jj

m m h

h

e q

i j

b

⋅

−

′⋅ ≈ ⋅

⋅

≈

•

•

≈

≈

∑

∑

s s

a t



()

, ,

, ,, ,

,

rily hold, for

 even though it may happen that

[] [] , ,

[] []

 unless is extremely small.

 ,i j i j

i j i j

i j i

i j

j

i j b

i

h

bh j h⋅ ⋅

⋅ ≈ −

⋅ −≈

s s a t

s s a t/

10

{ }

, , , ,

log
, , , , ,0

,
0

log

0
0

 ,

, ,

 In binary, 2 , where 0,1 .

 Thus, [] []

 2 [] []

i j i j

q
i j i j i j

i j
i j n

q
i

i
j

j n b

h h h

m m h i

ih

j

j
τ τ

τ

τ
τ ττ

τ τ

  

=

≤ ≤ ≤

  

≤ ≤
−

=
≤ ≈

= ⋅ ∈

′⋅ ≈ ⋅

•

⋅

≈ ⋅⋅ ⋅

•

∑

∑

∑ ∑
a t

s s

s s


()
log

, , , , , ,0
0

 ,q
i j i j i j

i j n
h bτ τ ττ

  

=
≤ ≤ ≤

−≈ ∑ ∑ a t

11

()
, , , ,

, , , ,

, ,

, , , ,

,

, ,

 In the above, by 2 [] [], we meant to obtain

 , and such that

 , 2 2 [] []

i t i j

n
i j i j q q i j

i j i j i j

b
i j

b e q

b e i j

τ τ

τ

τ τ τ

τ
τ τ τ

−≈

⋅ ⋅

∈ ×

= + + ⋅ ⋅

•
a t

s s

a

a t s s



  

, , , , 2 [] [] , .i j i ji j bτ
τ τ⋅ ⋅ ≈⇒ −s s a t

12

()
()

 Given ciphertexts of and under key ,
 , ,

 , ,
 we wish to compute a ciphert xt

e

Summary: multiplicative homomorphism

m

m

m m
c w m w

c w m w′

′

= ⇒ ≈ −

′ ′ ′ ′ ′= ⇒ ≈ −

• s
a a s

a a s

()

log
, , , , , ,0

0

log log
, , , , , , , ,0 0

0 0

 of .

 We obtained ,

 ,

 Th is s

mmmm

mm

q
i j i t i j

i j n

q q
i j i t i j i j

i j n i j n

w

c m m

m m h b

h b h

τ τ ττ

τ τ τ ττ τ

′′

′

  

=
≤ ≤ ≤

      

= =
≤ ≤ ≤ ≤ ≤ ≤

•

′⋅

′

•

⋅ ≈ −

= ⋅ − ⋅

∑ ∑

∑ ∑ ∑ ∑
a

a t

a t
 

()uggests: , under another key .
mmmm mmc w

′′ ′= a t
13

1

2

3

4

1 2

3

1 2 4

4

3

0 1

20 1

Use a sequence of keys: , ,
 which ke

?

y

It is somewhat homomorphic

m m m

m
m

m

m
m

m

m m
m

c
c

c
c c

c

c
c →⊗→  →⊗→

 →⊗


•

→


s s
ss s



5 6

7 8

5

6

7

8

1 4

6 7

5

5

8

8

m m

m m

m

m

m

m

m

m

m

m

m

m

m

m

c

c

c

c

c

c

c

+






→ →

 →⊗→   →⊗→ 
 →⊗→   

⊕
 

14

,i,, , ,i,, ,

0 1

1

1 1

,

 ,

, , , , ,

We will use a sequence of keys , , , .

Key is "encrypted" under key in the sense

 that

2 [] []

 where ,

t t

L

n
i j q i j

b

i j

e

τ τ

τ

τ

−

−

− −

≈

•

•

⋅ ⋅

∈

a s

s s s

s s

s s

a

  

 

 

 







, , , , , , , , ,

0 1

, , , , , , , , ,

, and

 , 2 2 [] [].

In key generation, we will generate , , and
 , , and compute .

i j i j i j

i j i j i j

q

b e i j

e b

τ

τ
τ τ τ

τ τ τ

= + + ⋅ ⋅

•

a s s s

s s
a

   

  





15

 The error in the ciphertext grows with each multiplication
 (and addition, but the latter is relatively small).

 Analysis shows that the scheme a

 llow

The scheme allows levels of multiplicationsL
•

• s up to log
 levels of multiplications for any arbitrary constant 1.
 This corresponds to degree polynomials.

 Beyond that, the error may become too large (close to)
 and det

L n

D n

q

ε

ε
ε

=

•

<

=

bootstrappin

roy the ciphertext.

 Use to refresh the cipher !g text•
16

 The scheme is somewhat homomorphic, capable of
 evaluating polynomials of degree . (1.)

 For bootstrapping, the scheme must be able to evaluate
 the decryption

Is it bootstrappable?

D n nε ε< <

•

≤ =

•

()

()

circuit homomorphically.

 Ciphertext: , .

 Decryption: , mod mod 2, which is equivalent to

 evaluating a polynomial of degree max , log .

 The decryption complexity is t

 g oo bi

n
q qw

w q

n q D

• ∈

−

≥ >

•

•

×a

a s

 

for bootstrapping!
17

 All prior SHE schemes encounter the same problem:
 short of evaluating the decryption circuit.

 Gentry, followed by all others, handled the situation by
 resorting squashingto , which re e

r

qui

•

•
d a very strong

 .

 This paper proposes a technique to make the
 decryption circuit evaluable, thereby removi

sparse subset-s

ng the undesire

um assumption

-squ
d

 sparse subse

t

n

-

ashi

sum

on n

u

g

ass

•

()

mption.

 The proposed technique, called ,
 is to reduce the dimension and modulus of the ciphertext,

dimension-modulus re

 making

duction

max ,

smallerlog .n
n q

q

•

18

()
()

()
()

 given a ciphertext with parameter , log ,

 convert it to a ciphertext with parameter , log

 which are much smaller than , log .

Basic ide

 Convert

a:

 ,

Dimension-modulus reduction

n q

k p

n q

w ∈

•

a () , .

 Typically, security parameter, poly(),

 with 1, and 2 .

 Suppose it can evaluate polys of degree .

 Choose to be l

arge enou

n k
q q p p

c n

c

w

k p k

n k c q

D n k

c

ε

ε ε−

•

•

′ ′× ∈ ×

= =

= >

•

=

= =

⇒ a   

()

gh so that this is sufficient to
 evaluate the , log decryption circuit.k p 19

()

()

 Given a ciphertext , , 2 under

 a secret

(remains the sa

 key , we want to convert it to a ciphertext

 , , 2 unde

me)

r a k

Dimension reduction ()
n
q q

n
q

k
q q

w

q

e

w e

n k

µ

µ

= + + ∈ ×

∈

′ ′ ′ ′= +

•

+ ∈ ×

→

a a s

s

a a t

 



 

log

,
0 0

, ,,

ey .

 The technique is similar to that of re-linearization:

 We hav

e , 2 []. // [0] 1//

 Encode 2 [

 //Note: ,] /, . /

k
i q

k
q

q

i
i n

i i

w h i

i b

τ
τ

τ

τ
ττ τ

µ
  

≤ ≤ =

∈

≈ − = ⋅ ⋅ =

⋅ ≈

•

∈−

∑ ∑

t

a s

a t t

s

s a

s





()
()

log

, , ,
0 0

 Then, , , .

 New ciphert

 ext: , .

q

i i i
i n

k
q q

h b w

w

τ τ τ
τ

µ
  

≤ ≤ =

′ ′≈ − = −

′ ′ ∈ ×

∑ ∑ a t a t

a  



20

() ()
()

()

log

,
0 0

 Want to convert a ciphertext , under key

ˆ ˆ to a ciphertext , under key .

 We have , 2 [] mo

 d

Dimension-modulus reduction: , ,
n
q q

n k k
q p p p

q

i
i n

w

w

w h i q

n q k p

τ
τ

τ

µ
  

≤ ≤ =

∈ ×

∈ ∈ × ∈

≈ − = ⋅ ⋅

•

•

→

∑ ∑

a

s a t

a s s

 

   

.

 Rather than encoding as in the last slide,

 we encode under key .

 This is to scale down from to .

2 []

2 []

2]

[

q

k
p p

q p

i

p i
q

i

τ

τ

τ

⋅

⋅ ⋅

∈

∈

•

⋅

∈ 

s

s

s

t



 

 

21

()

()

, ,

, ,

, ,

 To encode under key :

 Randomly choose and , and let

 , 2 [] mod

 This gives , mod

2 []

2 []

 T

k
p p

k
i p i

i i

i i

e p

b e p q i p

q b
p

q

p

p i

i

τ

τ

τ τ

τ
τ τ

τ τ

•

•

∈ ∈

∈

= + + ⋅ ⋅

≈ ⋅ −

⋅ ⋅

⋅

 

  t

a

a t s

s

as t







 

()


log

,
0 0

log

, , ,
0 0 not needed

hus, mod (from last slide)

 , mod mod

2 []
q

i
i n

q

i i i
i n

h q

qh b p q
p

iτ
τ

τ

τ τ τ
τ

µ
  

≤ ≤ =

  

≤ ≤ =

≈ ⋅

 
≈ ⋅ − 

 

⋅∑ ∑

∑ ∑

s

a t
22

()

()

()

log

, , ,
0 0

log

, ,
0 0

log

, ,
0 0

 , mod

 ,

This suggests:

 mod

 mod

q

i i i
i n

q

i i p
i n

q

i i
i n

qh b p
p

w

qw h b p
p

qh p
p

τ τ τ
τ

τ τ
τ

τ τ
τ

µ
  

≤ ≤ =

  

≤ ≤ =

  

≤ ≤ =

 
≈ ⋅ − 

 
′ ′= −

 ′ = ⋅ ∈ 
 

 ′ = ⋅ 

•

•

 

∑ ∑

∑ ∑

∑ ∑

a t

a t

a a



k
p∈

23

The New FHE Scheme

based on the idea of re-linearization
and dimension-modulus reduction

without squashing

24

 Security parameter .
 Dimensions and .
 Odd moduli and .

ˆ Noise distributions over and over .
ˆ Long: , , . Short: , , .

 : maximum depth of ci

 rcuits tha

Parameters

q p

n k
q p

n q k p
L

κ

χ χ

χ χ

•
•
•
•

•
•

 

4 2

t can be evaluated.
 : used in key generation.

 Example: , , 2 , (log) poly(),
ˆ (log), 1/3 log , is -bounded, and is

 -bounde

d.

n

m

k n k q p n q k
m O n q L n n
k

κ
χ χ

= = ≈ = ⋅
= = ⋅

•

•

25

{ }

()
R

 A distribution ensemble , over the integers,

 is called -bounded if

 Pr : 2 .

 (The probability that is negligible.)

 Recall th

 at

Bounded distributions

B

x B x

x B

κ κ

κ
κ

χ

χ

∈

−Ω> ← ≤  

>

•

•





ˆ our and will be - and -bounded,
 respectively.

n kχ χ

26

0 1 R

, , , R , , , R

, , , , , , , , ,

 Generate 1 keys , , , .

 For 1 , 0 , 0 log ,

 and

 : , 2 2 []

[

]

Key generation SH.Keygen(1)
n

L q

n
i j q i j

i j i j i j

L

L i j n q

e

b e i j

τ

κ

τ

τ
τ τ τ

τ

χ

+ ←

≤ ≤ ≤ ≤ ≤ ≤ ≤   

← ←

= + + ⋅ ⋅

•

•

s s s

a

a s s s

 

   

 







(), , , , , , , , , : , .i j i j i jbτ τ τψ = a
  



27

()

{ } (){ }

R R 0

, , , , , , , , ,

 , , : 2 .

 Output of key generation:

 Secret key .

 Public key , .

 Evaluation ke

 , .

y

m n m
q

L

i j i j i j

sk

pk

evk bτ τ τ

χ

ψ

×← ← = +

=

=

= =

•

=

•

A e b As e

s

A b

Ψ a
  









28

1

1

0 1

0 1

LL

L

−

−

s s

s s

s s

s





29

Decryption
key

Encryption
key

Evaluation
key

,i,, , ,i,, ,

1

,

1

encrypted as 2 [] []
t tb

i j
τ τ

τ
−

−

−

≈

⋅ ⋅
a s

s s
  

 



0

embedded in
: 2= +b As e

()

()

R

 Recall , .

 To encrypt a message {0,1}:
 Sample a vector of bits, {0,1} .

 : .
 : .
 Ciphertext : (,), 0 .

 0 here indicates l

Encryption SH.Enc ()

m

T

T

pk

pk

m

w
c w

µ

µ

µ

=

∈

←

=

= +

•

•

=

• A b

r
v A r

b r
v









()

evel 0 or fresh ciphertext.

 In general, ciphertexts are of the form (, , .)w• v 

30

()

()

 Recall .

 To decrypt a ciphertext : (,), :

 : , mod mod 2

.

 Note: the ciphertext is an output of SH.Eval.

Decryption SH.Dec ()

L

L

sk

sk

c w L

w q

c

µ

=

=

•

•

=

•

−

s

v

v s

31

1

 Boolean function :{0,1} {0,1}:
 represented by a circuit with layers of "+" and " " gates;
 each layer is either all "+" gates or al

l " "

Homomorphic evaluation SH.Eval (, , ,)
t

tevk

f

f c c

• →
×

×





 gates;
 there are exactly layers of " " gates;
 " " gate : fan-in 2; " " gate : arbitrary fan-in.

 Note: Any boolean circuit can be converted to this form for
 some .

 Evaluate

 the c

L

L

•

+

•

×
×





ircuit layer by layer and gate by gate.

32

()

()

1

1

add add add

add

add

 Input: , , , where (,), .

 Output: (,), where

 :

 :

Evaluation of addition gates
SH.Eval (mult, , ,)

t i i i

i

i

tevk

c c c w

c w

w w

c c
=

=

•

•

=

=

∑
∑

v

v

v v

 









33

() ()

()mult mult mult

mult , , 1, , ,
 0
0 log

add , , 1, , ,
 0

 Input: (,), , (,), .

 Output: (,), 1 where

 :

 :

SH.Eval (mult, ,)

i j i j
i j n

q

i j i j
i j

evk

c w c w

c w

h

w h b

c c

τ τ

τ

τ τ

+
≤ ≤ ≤

≤ ≤  

+
≤ ≤

′ ′ ′= =•

= +

= ⋅

= ⋅

•

′

∑

v v

v

v a




 







0 log

n
qτ

≤
≤ ≤  

∑

34

{ } (){ }

, , , , , , , , ,

log
, , ,0

, (,), (,)

 In the above, recall:

 , .

 2 (in binary).

 are the coefficients of () and can be

 computed from

i j i j i j

q
i j i j

i j w w

evk b

h h

h

τ τ τ

τ
ττ

ψ

  

=

′ ′

•

= =

= ⋅

Φ

∑
v v

a

x

  







() ()
 (,), (,)

,
0

 (,), (,), where

 ()

 [] [] [] []

 [] []

w w

i j
i j n

w w

w i i w i i

h i j

′ ′

≤ ≤ ≤

′ ′

Φ

′ ′= − ⋅ ⋅ − ⋅

= ⋅ ⋅

∑ ∑

∑

v v

v v

x

v x v x

x x

35

0 1 1

0 1 1

ˆ

Make the SH scheme bootstrappable

L L

L L

−

−

s s s s

s ss s

s



36
, ,

ˆ ˆ ˆ ,

 encrypted as

 2 []

i i

L

b

p i
q

τ τ

τ

⋅ −≈

⋅ ⋅

a s

s


()

R

 Run SH.Keygen(1) to obtain the secret key ,
 public key , , and evaluation key .

ˆ Generate a short secret key , and for 0 ,

 0 log , compu

Key generation BTS.Keygen(1)

L

k
p i n

q

κ

κ

τ

← ≤ ≤

≤ ≤   

•

•

s
A b Ψ

s 

()

() { }

, R , R

, , ,

, , , ,

te

ˆ ˆˆ and

ˆ ˆ ˆ ˆ : , 2 [] mod

ˆ ˆ ˆ : , . Let .

k
i p i

i i i L

i i i i

e

pb e i p
q

b

τ τ

τ
τ τ τ

τ τ τ τ

χ

ψ ψ

← ←

= + + ⋅ ⋅

= =



a

a s s

a Ψ







37

()

()

 Output of key generation:

ˆ Secret key: .

 Public key: , .

ˆ Evaluation ke :

y , .

sk

pk

evk

=

=

=

•

s

A b

Ψ Ψ







38

()

 Same as SH.Enc ().

ˆ ˆ ˆ To decrypt ciphertext (,) , compute

ˆˆ ˆ : , mod mod 2.

ˆˆ ˆ ˆ ˆ It's correct if , 2 mod and

Encryption BTS.Enc ()

Decryption BTS.Enc ()ˆ

pk

k
p p

pk

sk

c w

w p

w e p e

c

µ

µ

µ

µ

∗

= ∈ ×

= −

− =

•

+

•

•

v

v s

v s

 

is small.

39

{ }
()

1

1

 Run SH.Eval to obtain a ciphertext :

 (,), SH.Eval (, , ,)

 Reduce the dimension and modulus of to , .

 The new c

phe

i

Evaluation BTS.Eval (, , ,)
n

f q q

f t

f

tevk

c L

c w L f c c

c k p

f c c

∈• × ×

= ←

•

Ψ

Ψv









log

, ,
0 0

log

, ,
0 0

ˆ ˆ ˆrtext is (,), where

ˆˆ 2 mod

ˆˆ 2 mod

qn

i i p
i

qn
k

i i p
i

c w

w h b p

h p

τ τ
τ

τ τ
τ

  

= =

  

= =

=

= ⋅ ⋅ ∈

= ⋅ ⋅ ∈

∑ ∑

∑ ∑

v

v a





40

()

()

 Theorem. If the ciphertext (,), satisfies

 , 2 mod ,

ˆ ˆ then the reduced ciphertext , satisfies

ˆˆ ˆ ˆ , 2 mod

ˆ where (an app o i

r pr a

f

L

c w L

w e q

c w

w e p

pe e
q

µ

µ

=

− = +

=

− = +

≈ ⋅

• v

v s

v

v s

()

tely scaled version of).

ˆˆ ˆ Recall d ecryption: : , mod mod 2.

e

w pµ∗ = −• v s

41

,

,

mod

0
0

,

 The coefficients are obtained as follows.

1 Let () () (,) mod .
2

 Let , , s.t. () [] mod

Remark

i

w

q

n

n q i
i

i

h

p q w p
q

ph h h i p
q

ph
q

τ

τ

φ φ

φ
=

 + = ⋅ ⋅ −
 
 

 
∈ = ⋅ ⋅ 



•



= ⋅

∑

vx x v x

x x





 





log

0 0

2 [] mod

 The 's in slide 21 are coefficients of , m d . o

qn

i

i

i p

h w q

τ

τ

  

= =

 
⋅ ⋅

•


 

−

∑ ∑ x

v x
42

()

, ,

ˆ, ,

 Theorem (informal). If (average-case) DLWE and

 DLWE are both (,)-hard, then the BTS scheme is

 poly(), 2(1)(2) -sematically secur

e.

 (,)-hard: any adversary w

Security

n q

k p t

t L

t

χ

χ

κ

ε

κ ε

ε

−− + +

•

• ith running time may have
 advantage at most .

Worst-case SVP average-case DLWE BTS.

t
ε

• ≤ ≤

43

	Efficient Fully Homomorphic Encryption from (Standard) LWE
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	The New FHE Scheme
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43

