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 A scheme based on the standard learning with errors (LWE)
     standard LWE as opposed to ring-LWE

 Security relies on (worst-case, classical) hardness of standard,
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ed problems on arbitrary lattices.
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2 



ur

 A vector  satisfies a polynomial number of equations

    with errors: , or more precisely, 

    where  and  is a samll random error,
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 Since ,  ,  is almost uniformly random, so is

    ,  , , provided  is odd. (2 mod  exists; thus, 
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  Use  as the secret key and use a sequence ,

    as the public key.

 To encrypt a bit 0,1  using public key , , we choose
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 Given ciphertexts of  and ,   //plaintexts: ,  {0,1}// 
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   can we compute a ciphertext 

 

Is it additively homomorphic? 
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 To linearize the quadratic terms, take another key 
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 The error in the ciphertext grows with each multiplication
    (and addition, but the latter is relatively small).

 Analysis shows that the scheme a
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The New FHE Scheme 

based on the idea of re-linearization 
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c c
=

=

•

•

=

=

∑
∑

v

v

v v
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( ) ( )

( )mult mult mult

mult , , 1, , ,
   0
0 log

add , , 1, , ,
   0

  

 Input:  ( ,  ),  ,  ( ,  ),  .

 Output:  ( ,  ),  1   where 

      :

      :

 

 

SH.Eval (mult, , )

i j i j
i j n

q

i j i j
i j

evk

c w c w

c w

h

w h b

c c

τ τ

τ

τ τ

+
≤ ≤ ≤

≤ ≤  

+
≤ ≤

′ ′ ′= =•

= +

= ⋅

= ⋅

•

′

∑

v v

v

v a




 







0 log

  
n
qτ

≤
≤ ≤  

∑
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{ } ( ){ }

 

 

, , , , , , , , ,

log
, , ,0

, ( , ), ( , )

 In the above, recall: 

      ,  . 

      2  (in binary).

       are the coefficients of ( ) and can be 

       computed from

 

i j i j i j

q
i j i j

i j w w

evk b

h h

h

τ τ τ

τ
ττ

ψ

  

=

′ ′

•

= =

= ⋅

Φ

∑
v v

a

x

  







( ) ( )
 ( , ), ( , )

,
0

 ( ,  ),  ( ,  ),  where 

       ( )

       [ ] [ ] [ ] [ ]

        [ ] [ ]

w w

i j
i j n

w w

w i i w i i

h i j

′ ′

≤ ≤ ≤

′ ′

Φ

′ ′= − ⋅ ⋅ − ⋅

= ⋅ ⋅

∑ ∑

∑

v v

v v

x

v x v x

x x
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0 1 1

0 1 1

ˆ

Make the SH scheme bootstrappable

L L

L L

−

−

s s s s

s ss s

s
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, ,

ˆ ˆ ˆ ,  

 encrypted as

  2 [ ]

i i

L

b

p i
q

τ τ

τ

⋅ −≈

⋅ ⋅

a s

s




( )

R

 Run SH.Keygen(1 ) to obtain the secret key ,
    public key ,  , and evaluation key  .

ˆ Generate a short secret key , and for  0 ,  

    0 log ,  compu

 

 

Key generation BTS.Keygen(1 )

L

k
p i n

q

κ

κ

τ

← ≤ ≤

≤ ≤   

•

•

s
A b Ψ

s 

( )

( ) { }

 

, R , R

, , ,

, , , ,

te

ˆ ˆˆ         and    

ˆ ˆ ˆ ˆ      : ,  2 [ ] mod

ˆ ˆ ˆ      : ,  .     Let .

 

k
i p i

i i i L

i i i i

e

pb e i p
q

b

τ τ

τ
τ τ τ

τ τ τ τ

χ

ψ ψ

← ←

= + + ⋅ ⋅

= =



a

a s s

a Ψ
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( )

( )

 Output of key generation:

ˆ      Secret key:  .

      Public key:  ,  .

ˆ      Evaluation ke :

 

y   ,  .

sk

pk

evk

=

=

=

•

s

A b

Ψ Ψ
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( )

 Same as SH.Enc ( ). 

ˆ ˆ ˆ To decrypt ciphertext  ( ,  ) ,  compute

ˆˆ ˆ    : ,   mod  mod 2.

ˆˆ ˆ ˆ ˆ It's correct if  ,  2  mod  and   

 

 

Encryption BTS.Enc ( )

Decryption BTS.Enc ( )ˆ

pk

k
p p

pk

sk

c w

w p

w e p e

c

µ

µ

µ

µ

∗

= ∈ ×

= −

− =

•

+

•

•

v

v s

v s

 

is small.
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{ }
( )

1

1

   

 Run SH.Eval  to obtain a ciphertext :

            ( ,  ),  SH.Eval ( ,  ,  ,  )

 Reduce the dimension and modulus of  to , .

    The new c

 

phe

 

i

Evaluation BTS.Eval ( , , , )
n

f q q

f t

f

tevk

c L

c w L f c c

c k p

f c c

∈• × ×

= ←

•

Ψ

Ψv









log

, ,
0 0

log

, ,
0 0

ˆ ˆ ˆrtext is ( ,  ), where

ˆˆ       2  mod      

ˆˆ       2  mod      

qn

i i p
i

qn
k

i i p
i

c w

w h b p

h p

τ τ
τ

τ τ
τ

  

= =

  

= =

=

= ⋅ ⋅ ∈

= ⋅ ⋅ ∈

∑ ∑

∑ ∑

v

v a
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( )

( )

 Theorem.  If the ciphertext ( ,  ),   satisfies

              ,  2  mod ,

ˆ ˆ    then the reduced ciphertext ,   satisfies 

ˆˆ ˆ ˆ              ,  2  mod

ˆ   where  (an app o i

 

r pr a

f

L

c w L

w e q

c w

w e p

pe e
q

µ

µ

=

− = +

=

− = +

≈ ⋅

• v

v s

v

v s

( )

tely scaled version of ).

ˆˆ ˆ Recall d ecryption:  : ,   mod  mod 2.

e

w pµ∗ = −• v s
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,

,

mod

0
0

,

 The coefficients  are obtained as follows.

1     Let ( ) ( ) ( , ) mod .
2

     Let ,  ,    s.t.  ( ) [ ]  mod

           

 

  

   

 

Remark

i

w

q

n

n q i
i

i

h

p q w p
q

ph h h i p
q

ph
q

τ

τ

φ φ

φ
=

 + = ⋅ ⋅ −
 
 

 
∈ = ⋅ ⋅ 



•



= ⋅

∑

vx x v x

x x





 





 

log

0 0

2 [ ]  mod

 The 's in slide 21 are coefficients of , m d .   o

qn

i

i

i p

h w q

τ

τ

  

= =

 
⋅ ⋅

•


 

−

∑ ∑ x

v x
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( )

, ,

ˆ, ,

 Theorem (informal).  If (average-case) DLWE  and

    DLWE  are both ( , )-hard, then the BTS scheme is

    poly( ), 2( 1)(2 ) -sematically secur

 

 

e.

  ( , )-hard: any adversary w

Security

n q

k p t

t L

t

χ

χ

κ

ε

κ ε

ε

−− + +

•

• ith running time  may have 
     advantage at most .

Worst-case SVP  average-case DLWE  BTS. 
     
   

  

t
ε

• ≤ ≤

43 


	Efficient Fully Homomorphic Encryption from (Standard) LWE
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	The New FHE Scheme
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43

