Efficient Fully Homomorphic Encryption from (Standard) LWE

Brakerski and Vaikuntanathan, FOCS 2011

Main contributions

- A scheme based on the standard learning with errors (LWE)
- standard LWE as opposed to ring-LWE
- Security relies on (worst-case, classical) hardness of standard, well studied problems on arbitrary lattices.
- Gentry: based on (worst-case, quantum) hardness of relatively untested ideal lattices problems.
- No squashing, thereby removing the (average-case) sparse subset-sum assumption, which is a very strong assumption.

Learning with errors (LWE) problem

- A vector $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ satisfies a polynomial number of equations with errors: $\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle \approx b_{i}$, or more precisely, $b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}$ where $\mathbf{a}_{i} \in_{\mathrm{ur}} \mathbb{Z}_{q}^{n}$ and e_{i} is a samll random error, $1 \leq i \leq \operatorname{poly}(n)$. LWE: Given $\left\{\mathbf{a}_{i}, b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right\}_{i=1}^{\text {poly(n) }}$, find \mathbf{s}.
- Decision LWE: distinguish between the two distributions

$$
\left\{\mathbf{a}_{i},\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right\}_{i=1}^{\operatorname{poly}(n)} \quad \text { and } \quad\left\{\mathbf{a}_{i}, u_{i}\right\}_{i=1}^{\operatorname{poly}(n)}
$$

where $\mathbf{a}_{i} \in_{\mathrm{ur}} \mathbb{Z}_{q}^{n}, u_{i} \in_{\mathrm{ur}} \mathbb{Z}_{q}$, and the noise/error $e_{i} \in \mathbb{Z}_{q}$,
sampled according to some distribution, is much smaller than q.

- Worst-case SVP \leq average-case DLWE

Secret-key encryption based on LWE

- Since $\{\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e\}$ is almost uniformly random, so is $\{\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+2 e\}$, provided q is odd. $\left(2^{-1} \bmod q\right.$ exists; thus, as e ranges over $\mathbb{Z}_{q}, 2 e$ also ranges over \mathbb{Z}_{q}.)
- To encrypt a bit $\mu \in\{0,1\}$ using secret key $\mathbf{s} \in \mathbb{Z}_{q}^{n}$, we choose a random $\mathbf{a} \in \mathbb{Z}_{q}^{n}$ and a noise $e \ll q$ and encrypt μ as

$$
c:=(\mathbf{a}, w=\langle\mathbf{a}, \mathbf{s}\rangle+2 e+\mu) \quad \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}
$$

- To decrypt $c=(\mathbf{a}, w)$, we compute

$$
x:=\underbrace{\underbrace{(w-\langle\mathbf{a}, \mathbf{s}\rangle) \bmod q}_{=2 e+\mu, \text { since } e \ll q} \bmod 2}_{=\mu \bmod 2=\mu}
$$

Convert it to a public-key encryption scheme

- Use \mathbf{s} as the secret key and use a sequence $\left\{\mathbf{a}_{i}, b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+2 e_{i}\right\}_{i=1}^{m}$ as the public key.
- To encrypt a bit $\mu \in\{0,1\}$ using public key $\left\{\mathbf{a}_{i}, b_{i}\right\}_{i=1}^{m}$, we choose a random vector $\left(r_{1}, \ldots, r_{m}\right) \in\{0,1\}^{m}$ and encrypt μ as

$$
c:=\left(\sum r_{i} \mathbf{a}_{i}, \sum r_{i} b_{i}+\mu\right)=(\mathbf{a}, w=\langle\mathbf{a}, \mathbf{s}\rangle+2 e+\mu)
$$

where $\mathbf{a}=\sum r_{i} \mathbf{a}_{i}$ and $e=\sum r_{i} e_{i}$.

- Note: m must be much smaller than q to ensure $e \ll q$.

Is it additively homomorphic?

- Given ciphertexts of m and m^{\prime}, //plaintexts: $m, m^{\prime} \in\{0,1\} / /$

$$
\begin{aligned}
& c_{m}=(\mathbf{a}, w)=(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+2 e+m) \\
& c_{m^{\prime}}=\left(\mathbf{a}^{\prime}, w^{\prime}\right)=\left(\mathbf{a}^{\prime},\left\langle\mathbf{a}^{\prime}, \mathbf{s}\right\rangle+2 e^{\prime}+m^{\prime}\right)
\end{aligned}
$$

can we compute a ciphertext $c_{m+m^{\prime}}$ of $m+m^{\prime}$?

- Adding up c_{m} and $c_{m^{\prime}}$ yields

$$
c_{m}+c_{m^{\prime}}=\left(\mathbf{a}+\mathbf{a}^{\prime}, w+w^{\prime}\right)=\left(\mathbf{a}+\mathbf{a}^{\prime},\left\langle\mathbf{a}+\mathbf{a}^{\prime}, \mathbf{s}\right\rangle+2\left(e+e^{\prime}\right)+m+m^{\prime}\right)
$$

- It is a ciphertext of $m+m^{\prime}$. So, simply let $c_{m+m^{\prime}}:=c_{m}+c_{m^{\prime}}$.
- The scheme is additively homomorphic.

Is it multiplicatively homomorphic?

- Given ciphertexts of m and m^{\prime},

$$
\begin{array}{ll}
c_{m}=(\mathbf{a}, w)=(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+2 e+m) & \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \\
c_{m^{\prime}}=\left(\mathbf{a}^{\prime}, w^{\prime}\right)=\left(\mathbf{a}^{\prime},\left\langle\mathbf{a}^{\prime}, \mathbf{s}\right\rangle+2 e^{\prime}+m^{\prime}\right) & \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}
\end{array}
$$

we wish to compute a ciphertext $c_{m m^{\prime}}$ of $m \cdot m^{\prime}$.

- Cannot simply multiply c_{m} and $c_{m^{\prime}}$. Why?
- Ciphertexts (a,w), ($\left.\mathbf{a}^{\prime}, w^{\prime}\right)$ give "approximations" of m, m^{\prime} :

$$
\begin{aligned}
m & \approx w-\langle\mathbf{a}, \mathbf{s}\rangle=w-\sum \mathbf{a}[i] \cdot \mathbf{s}[i] \text { where } \mathbf{a}=(\mathbf{a}[1], \ldots, \mathbf{a}[n]) \\
m^{\prime} & \approx w^{\prime}-\left\langle\mathbf{a}^{\prime}, \mathbf{s}\right\rangle=w^{\prime}-\sum \mathbf{a}^{\prime}[i] \cdot \mathbf{s}[i]
\end{aligned}
$$

- Our goal is to obtain $m \cdot m^{\prime} \approx \bar{w}-\langle\overline{\mathbf{a}}, \mathbf{s}\rangle$ for some $(\overline{\mathbf{a}}, \bar{w})$.

Re-linearization

- $m \cdot m^{\prime} \approx\left(w-\sum \mathbf{a}[i] \cdot \boldsymbol{s}[i]\right) \cdot\left(w^{\prime}-\sum \mathbf{a}^{\prime}[i] \cdot \boldsymbol{s}[i]\right)$

$$
\begin{aligned}
& =h_{0}+\sum_{i=1}^{n} h_{i} \cdot \mathbf{s}[i]+\sum_{1 \leq i \leq j \leq n} h_{i, j} \cdot \underbrace{s[i] \cdot \mathbf{s}[j]}_{\text {quadratic }} \\
& =\sum_{0 \leq i \leq j \leq n} h_{i, j} \cdot \underbrace{s[i] \cdot \mathbf{s}[j] \quad \text { //here we let } \mathbf{s}[0]=1 / /}_{\text {quadratic }}
\end{aligned}
$$

- To linearize the quadratic terms, take another key $\mathbf{t} \in \mathbb{Z}_{q}^{n}$ and encode/approximate $\mathbf{s}[i] \cdot \mathbf{s}[j]$ as:
$\mathbf{s}[i] \cdot \mathbf{s}[j] \approx b_{i, j}-\left\langle\mathbf{a}_{i, j}, \mathbf{t}\right\rangle \quad / / b_{i, j}=\left\langle\mathbf{a}_{i, j}, \mathbf{t}\right\rangle+2 e_{i, j}+\mathbf{s}[i] \cdot \mathbf{s}[j] / /$
- Now, substitude this into the above equation of $m \cdot m^{\prime}$.
- $m \cdot m^{\prime} \approx \sum_{0 \leq i \leq j \leq n} h_{i, j} \cdot \underbrace{\mathbf{s}[i] \cdot \mathbf{s}[j]}_{\text {quadratic }}$

$$
\begin{aligned}
& \approx \sum h_{i, j} \cdot\left(b_{i, j}-\left\langle\mathbf{a}_{i, j}, \mathbf{t}\right\rangle\right) \\
& =\left(\sum h_{i, j} \cdot b_{i, j}\right)-\left\langle\sum h_{i, j} \mathbf{a}_{i, j}, \mathbf{t}\right\rangle \\
=\bar{w} & -\langle\overline{\mathbf{a}}, \mathbf{t}\rangle
\end{aligned}
$$

- Let $c_{m \cdot m^{\prime}}:=(\overline{\mathbf{a}}, \bar{w})$; we have a ciphertext of $m \cdot m^{\prime}$ under key \mathbf{t}. Thus, from the ciphertexts of m, m^{\prime} under key \mathbf{s}, we can compute a ciphertext of $m \cdot m^{\prime}$ under another key \mathbf{t}.
- In the above re-linearization argument, we had
$m \cdot m^{\prime} \approx \sum h_{i, j} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j]$

$$
\approx \sum h_{i, j} \cdot\left(b_{i, j}-\left\langle\mathbf{a}_{i, j}, \mathbf{t}\right\rangle\right)
$$

where " \approx " means "differs by a small $2 e \ll q$."

- Unfortunately, the last \approx does not necessarily hold, for even though $\mathbf{s}[i] \cdot \boldsymbol{s}[j] \approx b_{i, j}-\left\langle\mathbf{a}_{i, j}, \mathbf{t}\right\rangle$, it may happen that

$$
h_{i, j} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j] \approx h_{i, j} \cdot\left(b_{i, j}-\left\langle\mathbf{a}_{i, j}, \mathbf{t}\right\rangle\right)
$$

unless $h_{i, j}$ is extremely small.

- In binary, $h_{i, j}=\sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, j, \tau} \cdot 2^{\tau}$, where $h_{i, j, \tau} \in\{0,1\}$.
- Thus, $m \cdot m^{\prime} \approx \sum_{0 \leq i \leq j \leq n} h_{i, j} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j]$

$$
\begin{aligned}
& \approx \sum_{0 \leq i \leq j \leq n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, j, \tau} \cdot \underbrace{2^{\tau} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j]}_{\approx b_{i, j, \tau}-\left\langle\left\langle\mathbf{a}_{i, j, \tau}, \mathbf{t}\right\rangle\right.} \\
& \approx \sum_{0 \leq i \leq j \leq n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, j, \tau}\left(b_{i, j, \tau}-\left\langle\mathbf{a}_{i, j, \tau}, \mathbf{t}\right\rangle\right)
\end{aligned}
$$

- In the above, by $\underbrace{2^{\tau} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j]}_{\approx b_{i, t, \tau}-\left\langle\mathbf{a}_{i, j, v}, \mathbf{t}\right\rangle}$, we meant to obtain
$\left(\mathbf{a}_{i, j, \tau}, b_{i, j, \tau}\right) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$ and $e_{i, j, \tau} \ll q$ such that

$$
\begin{aligned}
b_{i, j, \tau}=\left\langle\mathbf{a}_{i, j, \tau}, \mathbf{t}\right\rangle & +2 e_{i, j, \tau}+2^{\tau} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j] \\
& \Rightarrow 2^{\tau} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j] \approx b_{i, j, \tau}-\left\langle\mathbf{a}_{i, j, \tau}, \mathbf{t}\right\rangle
\end{aligned}
$$

Summary: multiplicative homomorphism

- Given ciphertexts of m and m^{\prime} under key s,

$$
\begin{array}{ll}
c_{m}=(\mathbf{a}, w) & \Rightarrow \quad m \approx w-\langle\mathbf{a}, \mathbf{s}\rangle \\
c_{m^{\prime}}=\left(\mathbf{a}^{\prime}, w^{\prime}\right) & \Rightarrow \quad m^{\prime} \approx w^{\prime}-\left\langle\mathbf{a}^{\prime}, \mathbf{s}\right\rangle
\end{array}
$$

we wish to compute a ciphertext $c_{m m^{\prime}}$ of $m \cdot m^{\prime}$.

- We obtained $m \cdot m^{\prime} \approx \sum_{0 \leq i \leq j \leq n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, j, \tau}\left(b_{i, t, \tau}-\left\langle\mathbf{a}_{i, j, \tau}, \mathbf{t}\right\rangle\right)$

$$
=\underbrace{\sum_{0 \leq i \leq j \leq n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, j, \tau} \cdot b_{i, t, \tau}}_{w_{n m^{\prime}}}-\langle\underbrace{\sum_{0 \leq i \leq j \leq n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, j, \tau} \cdot \mathbf{a}_{i, j, \tau}}_{\mathbf{a}_{m n^{\prime}}}, \mathbf{t}\rangle
$$

- This suggests: $c_{m m^{\prime}}=\left(\mathbf{a}_{m m^{\prime}}, w_{m m^{\prime}}\right)$ under another key \mathbf{t}.

It is somewhat homomorphic

Use a sequence of keys: $\mathbf{s}_{0}, \mathbf{s}_{1}, \ldots$
$\left.\begin{array}{l}\mathbf{s}_{0} \\ c_{m_{1}} \\ C_{m_{2}}\end{array}\right\} \rightarrow \otimes \rightarrow C_{m_{1} m_{2}} \mathbf{s}_{1} \mathbf{s}_{2} \quad$ which key?

- We will use a sequence of keys $\mathbf{s}_{0}, \mathbf{s}_{1}, \ldots, \mathbf{s}_{L}$.
- Key $\mathbf{s}_{\ell-1}$ is "encrypted" under key \mathbf{s}_{ℓ} in the sense that

$$
\underbrace{2^{\tau} \cdot \mathbf{s}_{\ell-1}[i] \cdot \mathbf{s}_{\ell-1}[j]}_{\approx b_{\ell, i, k, \tau}-\left\langle\mathbf{a}_{\ell, i, t, \tau}, \mathbf{s}_{\ell}\right\rangle}
$$

where $\mathbf{a}_{\ell, i, j, \tau} \in \mathbb{Z}_{q}^{n}, \quad e_{\ell, i, j, \tau} \ll q$, and

$$
b_{\ell, i, j, \tau}=\left\langle\mathbf{a}_{\ell, i, j, \tau}, \mathbf{s}_{\ell}\right\rangle+2 e_{\ell, i, j, \tau}+2^{\tau} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j] .
$$

- In key generation, we will generate $\mathbf{s}_{0}, \mathbf{s}_{1}, \ldots$ and $\mathbf{a}_{\ell, i, j, \tau}, e_{\ell, i, j, \tau}$, and compute $b_{\ell, i, j, \tau}$.

The scheme allows L levels of multiplications

- The error in the ciphertext grows with each multiplication (and addition, but the latter is relatively small).
- Analysis shows that the scheme allows up to $L=\varepsilon \log n$ levels of multiplications for any arbitrary constant $\varepsilon<1$.
- This corresponds to degree $D=n^{\varepsilon}$ polynomials.
- Beyond that, the error may become too large (close to q) and detroy the ciphertext.
- Use bootstrapping to refresh the ciphertext!

Is it bootstrappable?

- The scheme is somewhat homomorphic, capable of evaluating polynomials of degree $\leq D=n^{\varepsilon}<n$. $(\varepsilon<1$.)
- For bootstrapping, the scheme must be able to evaluate the decryption circuit homomorphically.
- Ciphertext: $(\mathbf{a}, w) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$.
- Decryption: $w-\langle\mathbf{a}, \mathbf{s}\rangle \bmod q \bmod 2$, which is equivalent to evaluating a polynomial of degree $\geq \max (n, \log q)>D$.
- The decryption complexity is too big for bootstrapping!
- All prior SHE schemes encounter the same problem: short of evaluating the decryption circuit.
- Gentry, followed by all others, handled the situation by resorting to squashing, which required a very strong sparse subset-sum assumption.
- This paper proposes a non-squashing technique to make the decryption circuit evaluable, thereby removing the undesired sparse subset-sum assumption.
- The proposed technique, called dimension-modulus reduction, is to reduce the dimension n and modulus q of the ciphertext, making max $(n, \log q)$ smaller.

Dimension-modulus reduction

- Basic idea: given a ciphertext with parameter $(n, \log q)$, convert it to a ciphertext with parameter $(k, \log p)$ which are much smaller than $(n, \log q)$.
- Convert $(\mathbf{a}, w) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \Rightarrow\left(\mathbf{a}^{\prime}, w^{\prime}\right) \in \mathbb{Z}_{p}^{k} \times \mathbb{Z}_{p}$.
- Typically, $k=$ security parameter, $p=\operatorname{poly}(k)$,

$$
n=k^{c} \text { with } c>1 \text {, and } q=2^{n^{\varepsilon}} .
$$

- Suppose it can evaluate polys of degree $D=n^{\varepsilon}=k^{c-\varepsilon}$.
- Choose c to be large enough so that this is sufficient to evaluate the $(k, \log p)$ decryption circuit.

Dimension reduction $(n \rightarrow k)$

- Given a ciphertext $(\mathbf{a}, w=\langle\mathbf{a}, \mathbf{s}\rangle+2 e+\mu) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$ under a secret key $\mathbf{s} \in \mathbb{Z}_{q}^{n}$, we want to convert it to a ciphertext $\left(\mathbf{a}^{\prime}, w^{\prime}=\left\langle\mathbf{a}^{\prime}, \mathbf{t}\right\rangle+2 e^{\prime}+\mu\right) \in \mathbb{Z}_{q}^{k} \times \mathbb{Z}_{q}$ under a key $\mathbf{t} \in \mathbb{Z}_{q}^{k}$.
- The technique is similar to that of re-linearization:
- We have $\mu \approx w-\langle\mathbf{a}, \mathbf{s}\rangle=\sum_{0 \leq i \leq n} \sum_{\tau=0}^{\lfloor\log \rfloor} h_{i, \tau} \cdot 2^{\tau} \cdot \mathbf{s}[i] . \quad / / \mathbf{s}[0]=1 / /$
- Encode $2^{\tau} \cdot \mathbf{s}[i] \approx b_{i, \tau}-\left\langle\mathbf{a}_{i, \tau}, \mathbf{t}\right\rangle$. //Note: $\mathbf{a}_{i, \tau}, \mathbf{t} \in \mathbb{Z}_{q}^{k} / /$
- Then, $\mu \approx \sum_{0 \leq i \leq n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, \tau}\left(b_{i, \tau}-\left\langle\mathbf{a}_{i, \tau}, \mathbf{t}\right\rangle\right)=w^{\prime}-\left\langle\mathbf{a}^{\prime}, \mathbf{t}\right\rangle$.
- New ciphertext: $\left(\mathbf{a}^{\prime}, w^{\prime}\right) \in \mathbb{Z}_{q}^{k} \times \mathbb{Z}_{q}$.

Dimension-modulus reduction: $(n, q) \rightarrow(k, p)$

- Want to convert a ciphertext $(\mathbf{a}, w) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$ under key
$\mathbf{s} \in \mathbb{Z}_{q}^{n}$ to a ciphertext $(\hat{\mathbf{a}}, \hat{w}) \in \mathbb{Z}_{p}^{k} \times \mathbb{Z}_{p}$ under key $\mathbf{t} \in \mathbb{Z}_{p}^{k}$.
- We have $\mu \approx w-\langle\mathbf{a}, \mathbf{s}\rangle=\sum_{0 \leq i \leq n} \sum_{\tau=0}^{\lfloor\log \rfloor} h_{i, \tau} \cdot 2^{\tau} \cdot \mathbf{s}[i] \bmod q$.
- Rather than encoding $2^{\tau} \cdot s[i] \in \mathbb{Z}_{q}$ as in the last slide,
we encode $\left\lfloor\frac{p}{q} \cdot 2^{\tau} \cdot \boldsymbol{s}[i]\right\rceil \in \mathbb{Z}_{p}$ under key $\mathbf{t} \in \mathbb{Z}_{p}^{k}$.
- This is to scale down $2^{\tau} \cdot s[i]$ from \mathbb{Z}_{q} to \mathbb{Z}_{p}.
- To encode $\left\lfloor p / q \cdot 2^{\tau} \cdot \mathbf{s}[i]\right\rceil \in \mathbb{Z}_{p}$ under key $\mathbf{t} \in \mathbb{Z}_{p}^{k}$:
- Randomly choose $\mathbf{a}_{i, \tau} \in \mathbb{Z}_{p}^{k}$ and $e_{i, \tau} \ll p$, and let

$$
b_{i, \tau}=\left\langle\mathbf{a}_{i, \tau}, \mathbf{t}\right\rangle+e+\left\lfloor p / q \cdot\left(2^{\tau} \cdot \mathbf{s}[i]\right)\right\rceil \bmod p
$$

- This gives $2^{\tau} \cdot \mathbf{s}[i] \approx \frac{q}{p} \cdot\left(b_{i, \tau}-\left\langle\mathbf{a}_{i, \tau}, \mathbf{t}\right\rangle\right) \bmod p$
- Thus, $\mu \approx \sum_{0 \leq i \leq n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, \tau} \cdot 2^{\tau} \cdot \mathrm{s}[i] \bmod q$ (from last slide)

$$
\approx \sum_{0 \leq i \leq n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, \tau}\left(\frac{q}{p} \cdot\left(b_{i, \tau}-\left\langle\mathbf{a}_{i, \tau}, \mathbf{t}\right\rangle\right)\right) \bmod p \underbrace{\bmod q}_{\text {not nezded }}
$$

$$
\begin{aligned}
\mu & \approx \sum_{0 \leq i \leq n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, \tau}\left(\frac{q}{p} \cdot\left(b_{i, \tau}-\left\langle\mathbf{a}_{i, \tau}, \mathbf{t}\right\rangle\right)\right) \bmod p \\
& =w^{\prime}-\left\langle\mathbf{a}^{\prime}, \mathbf{t}\right\rangle
\end{aligned}
$$

- This suggests:

$$
\begin{aligned}
w^{\prime} & =\sum_{0 \leq i \leq n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, \tau}\left(\frac{q}{p} \cdot\left(b_{i, \tau}\right)\right) \bmod p \quad \in \mathbb{Z}_{p} \\
\mathbf{a}^{\prime} & =\sum_{0 \leq i \leq n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, \tau}\left(\frac{q}{p} \cdot\left(\mathbf{a}_{i, \tau}\right)\right) \bmod p \quad \in \mathbb{Z}_{p}^{k}
\end{aligned}
$$

The New FHE Scheme

based on the idea of re-linearization and dimension-modulus reduction without squashing

Parameters

- Security parameter κ.
- Dimensions n and k.
- Odd moduli q and p.
- Noise distributions χ over \mathbb{Z}_{q} and $\hat{\chi}$ over \mathbb{Z}_{p}.
- Long: n, q, χ. Short: $k, p, \hat{\chi}$.
- L : maximum depth of circuits that can be evaluated.
- m : used in key generation.
- Example: $k=\kappa, n=k^{4}, q \approx 2^{\sqrt{n}}, p=\left(n^{2} \log q\right) \cdot \operatorname{poly}(k)$, $m=O(n \log q), L=1 / 3 \cdot \log n, \chi$ is n-bounded, and $\hat{\chi}$ is k-bounded.

Bounded distributions

- A distribution ensemble $\left\{\chi_{\kappa}\right\}_{\kappa \in \mathbb{N}}$, over the integers, is called B-bounded if

$$
\operatorname{Pr}\left[|x|>B: x \leftarrow_{\mathrm{R}} \chi_{\kappa}\right] \leq 2^{-\tilde{\Omega}(\kappa)}
$$

(The probability that $|x|>B$ is negligible.)

- Recall that our χ and $\hat{\chi}$ will be n - and k-bounded, respectively.

Key generation SH.Keygen(1*)

- Generate $L+1$ keys $\mathbf{s}_{0}, \mathbf{s}_{1}, \ldots, \mathbf{s}_{L} \leftarrow_{\mathrm{R}} \mathbb{Z}_{q}^{n}$.
- For $1 \leq \ell \leq L, 0 \leq i \leq j \leq n, 0 \leq \tau \leq\lfloor\log q\rfloor$,
- $\mathbf{a}_{\ell, i, j, \tau} \leftarrow_{\mathrm{R}} \mathbb{Z}_{q}^{n}$ and $e_{\ell, i, j, \tau} \leftarrow_{\mathrm{R}} \chi$
- $b_{\ell, i, j, \tau}:=\left\langle\mathbf{a}_{\ell, i, j, \tau}, \mathbf{s}_{\ell}\right\rangle+2 e_{\ell, i, j, \tau}+2^{\tau} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j]$
- $\psi_{\ell, i, j, \tau}:=\left(\mathbf{a}_{\ell, i, j, \tau}, b_{\ell, i, j, \tau}\right)$.
- $\mathbf{A} \leftarrow_{\mathrm{R}} \mathbb{Z}_{q}^{m \times n}, \mathbf{e} \leftarrow_{\mathrm{R}} \chi^{m}, \mathbf{b}:=\mathbf{A s} \mathbf{s}_{0}+2 \mathbf{e}$.

Output of key generation:

- Secret key $s k=\mathbf{s}_{L}$.
- Public key $p k=(\mathbf{A}, \mathbf{b})$.
- Evaluation key evk $=\boldsymbol{\Psi}=\left\{\psi_{\ell, i, j, \tau}\right\}=\left\{\left(\mathbf{a}_{\ell, i, j, \tau}, b_{\ell, i, j, \tau}\right)\right\}$.

embedded in

Encryption SH.Enc ${ }_{p k}(\mu)$

- Recall $p k=(\mathbf{A}, \mathbf{b})$.
- To encrypt a message $\mu \in\{0,1\}$:
- Sample a vector of m bits, $\mathbf{r} \leftarrow_{R}\{0,1\}^{m}$.
- $\mathbf{v}:=\mathbf{A}^{T} \mathbf{r}$.
- $w:=\mathbf{b}^{T} \mathbf{r}+\mu$.
- Ciphertext $c:=((\mathbf{v}, w), 0)$.
- 0 here indicates level 0 or fresh ciphertext.
- In general, ciphertexts are of the form $((\mathbf{v}, w), \ell)$.

Decryption SH.Dec ${ }_{s k}(c)$

- Recall $s k=\mathbf{s}_{L}$.
- To decrypt a ciphertext $c=:((\mathbf{v}, w), L)$:
- $\mu:=\left(w-\left\langle\mathbf{v}, \mathbf{s}_{L}\right\rangle\right) \bmod q \bmod 2$.
- Note: the ciphertext is an output of SH.Eval.

Homomorphic evaluation $\operatorname{SH.Eval}_{e v k}\left(f, c_{1}, \ldots, c_{t}\right)$

- Boolean function $f:\{0,1\}^{t} \rightarrow\{0,1\}$:
- represented by a circuit with layers of "+" and " \times " gates;
- each layer is either all "+" gates or all " \times " gates;
- there are exactly L layers of " \times " gates;
- "×" gate: fan-in 2; " + " gate: arbitrary fan-in.
- Note: Any boolean circuit can be converted to this form for some L.
- Evaluate the circuit layer by layer and gate by gate.

Evaluation of addition gates SH.Eval ${ }_{\text {evk }}$ (mult, c_{1}, \ldots, c_{t})

- Input: c_{1}, \ldots, c_{t}, where $c_{i}=\left(\left(\mathbf{v}_{i}, w_{i}\right), \ell\right)$.
- Output: $c_{\text {add }}=\left(\left(\mathbf{v}_{\text {add }}, w_{\text {add }}\right), \ell\right)$ where
- $\mathbf{v}_{\text {add }}:=\sum \mathbf{v}_{i}$
- $w_{\text {add }}:=\sum w_{i}$

SH.Eval $_{\text {evk }}$ (mult, c, c^{\prime})

- Input: $c=((\mathbf{v}, w), \ell), c^{\prime}=\left(\left(\mathbf{v}^{\prime}, w^{\prime}\right), \ell\right)$.
- Output: $c_{\text {mult }}=\left(\left(\mathbf{v}_{\text {mult }}, w_{\text {mult }}\right), \ell+1\right)$ where
- $\mathbf{v}_{\text {mult }}:=\sum_{\substack{0 \leq i \leq j \leq n \\ 0 \leq \tau \leq\lfloor\log q\rfloor}} h_{i, j, \tau} \cdot \mathbf{a}_{\ell+1, i, j, \tau}$
- $w_{\mathrm{add}}:=\sum_{\substack{0 \leq i \leq j \leq n \\ 0 \leq \leq \leq\lfloor\log q\rfloor}} h_{i, j, \tau} \cdot b_{\ell+1, i, j, \tau}$
- In the above, recall:
- evk $=\left\{\psi_{\ell, i, j, \tau}\right\}=\left\{\left(\mathbf{a}_{\ell, i, j, \tau}, b_{\ell, i, j, \tau}\right)\right\}$.
- $h_{i, j}=\sum_{\tau=0}^{\lfloor\log q} h_{i, j, \tau} \cdot 2^{\tau}$ (in binary).
- $h_{i, j}$ are the coefficients of $\Phi_{(\mathbf{v}, w),\left(\mathbf{v}^{\prime}, w^{\prime}\right)}(\mathbf{x})$ and can be computed from ($\mathbf{v}, w),\left(\mathbf{v}^{\prime}, w^{\prime}\right)$, where

$$
\begin{aligned}
& \Phi_{(\mathbf{v}, w),\left(\mathbf{v}^{\prime}, w^{\prime}\right)}(\mathbf{x}) \\
& =\left(w-\sum \mathbf{v}[i] \cdot \mathbf{x}[i]\right) \cdot\left(w^{\prime}-\sum \mathbf{v}^{\prime}[i] \cdot \mathbf{x}[i]\right) \\
& =\sum_{0 \leq i \leq j \leq n} h_{i, j} \cdot \mathbf{x}[i] \cdot \mathbf{x}[j]
\end{aligned}
$$

Make the SH scheme bootstrappable

$$
\begin{array}{rllllll}
\mathbf{s}_{0} & \mathbf{s}_{1} & \cdots & \mathbf{s}_{L-1} & \mathbf{s}_{L} & \hat{\mathbf{s}} \\
\overline{\mathbf{s}_{0}} & \overline{\mathbf{s}_{1}} & \cdots & \overline{\mathbf{s}_{L-1}} & \overline{\mathbf{s}_{L}} & & \\
& & & & \underbrace{}_{\approx \cdot \hat{b_{i, \tau}}-\left\langle\hat{\mathrm{a}}_{i, t}, \hat{\mathrm{~s}}\right\rangle} & & \\
& & & & & & \\
& & & 2^{\tau} \cdot \mathbf{s}_{L}[i]
\end{array}
$$

Key generation BTS.Keygen(1^)

- Run SH.Keygen $\left(1^{\kappa}\right)$ to obtain the secret key \mathbf{s}_{L}, public key (A, b), and evaluation key $\boldsymbol{\Psi}$.
- Generate a short secret key $\hat{\mathbf{s}} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{k}$, and for $0 \leq i \leq n$, $0 \leq \tau \leq\lfloor\log q\rfloor$, compute
- $\hat{\mathbf{a}}_{i, \tau} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{k}$ and $\hat{e}_{i, \tau} \leftarrow_{\mathrm{R}} \hat{\chi}$
- $\hat{b}_{i, \tau}:=\left\langle\hat{\mathbf{a}}_{i, \tau}, \hat{\mathbf{s}}\right\rangle+\hat{e}_{i, \tau}+\left\lfloor\frac{p}{q} \cdot\left(2^{\tau} \cdot \mathbf{s}_{L}[i]\right)\right\rceil \bmod p$
- $\hat{\psi}_{i, \tau}:=\left(\hat{\mathbf{a}}_{i, \tau}, b_{i, \tau}\right) . \quad$ Let $\boldsymbol{\Psi}=\left\{\hat{\psi}_{i, \tau}\right\}$.
- Output of key generation:
- Secret key: $s k=\hat{\mathbf{s}}$.
- Public key: $p k=(\mathbf{A}, \mathbf{b})$.
- Evaluation key: $e v k=(\boldsymbol{\Psi}, \hat{\Psi})$.

Encryption BTS.Enc ${ }_{p k}(\mu)$

- Same as SH.Enc ${ }_{p k}(\mu)$.

Decryption BTS.Enc ${ }_{s k}(\hat{c})$

- To decrypt ciphertext $\hat{c}=(\hat{\mathbf{v}}, \hat{w}) \in \mathbb{Z}_{p}^{k} \times \mathbb{Z}_{p}$, compute $\mu^{*}:=(\hat{w}-\langle\hat{\mathbf{v}}, \hat{\mathbf{s}}\rangle) \bmod p \bmod 2$.
- It's correct if $\hat{w}-\langle\hat{\mathbf{v}}, \hat{\mathbf{s}}\rangle=\mu+2 \hat{e} \bmod p$ and \hat{e} is small.

Evaluation BTS.Eval ${ }_{e v k}\left(f, c_{1}, \ldots, c_{t}\right)$

- Run SH.Eval ${ }_{\Psi}$ to obtain a ciphertext $c_{f} \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \times\{L\}$:

$$
c_{f}=((\mathbf{v}, w), L) \leftarrow \operatorname{SH}^{2} \cdot \operatorname{Eval}_{\Psi}\left(f, c_{1}, \ldots, c_{t}\right)
$$

- Reduce the dimension and modulus of c_{f} to k, p.

The new ciphertext is $\hat{c}=(\hat{\mathbf{v}}, \hat{w})$, where

$$
\begin{aligned}
& \hat{w}=2 \cdot \sum_{i=0}^{n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, \tau} \cdot \hat{b}_{i, \tau} \bmod p \quad \in \mathbb{Z}_{p} \\
& \hat{\mathbf{v}}=2 \cdot \sum_{i=0}^{n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, \tau} \cdot \hat{\mathbf{a}}_{i, \tau} \bmod p \quad \in \mathbb{Z}_{p}^{k}
\end{aligned}
$$

- Theorem. If the ciphertext $c_{f}=((\mathbf{v}, w), L)$ satisfies

$$
w-\left\langle\mathbf{v}, \mathbf{s}_{L}\right\rangle=\mu+2 e \bmod q,
$$

then the reduced ciphertext $c=(\hat{\mathbf{v}}, \hat{w})$ satisfies

$$
\hat{w}-\langle\hat{\mathbf{v}}, \hat{\mathbf{s}}\rangle=\mu+2 \hat{e} \bmod p
$$

where $\hat{e} \approx \frac{p}{q} \cdot e$ (an appropriately scaled version of e).

- Recall decryption: $\mu^{*}:=(\hat{w}-\langle\hat{\mathbf{v}}, \hat{\mathbf{s}}\rangle) \bmod p \bmod 2$.

Remark

- The coefficients $h_{i, \tau}$ are obtained as follows.
- Let $\phi(\mathbf{x})=\phi_{\mathbf{v}, w}(\mathbf{x}) \triangleq \frac{p}{q} \cdot(\frac{q+1}{2} \cdot \underbrace{(w-\langle\mathbf{v}, \mathbf{x}\rangle)}_{\bmod q}) \bmod p$.
- Let $h_{0}, \ldots, h_{n} \in \mathbb{Z}_{q}$ s.t. $\phi(\mathbf{x})=\sum_{i=0}^{n} h_{i} \cdot\left(\frac{p}{q} \cdot \mathbf{x}[i]\right) \bmod p$

$$
=\sum_{i=0}^{n} \sum_{\tau=0}^{\lfloor\log q\rfloor} h_{i, \tau} \cdot\left(\frac{p}{q} \cdot 2^{\tau} \cdot \mathbf{x}[i]\right) \bmod p
$$

- The h_{i} 's in slide 21 are coefficients of $w-\langle\mathbf{v}, \mathbf{x}\rangle \bmod q$.

Security

- Theorem (informal). If (average-case) DLWE $_{n, q, \chi}$ and DLWE $_{k, p, \hat{\chi}}$ are both (t, ε)-hard, then the BTS scheme is $\left(t-\operatorname{poly}(\kappa), 2(L+1)\left(2^{-\kappa}+\varepsilon\right)\right)$-sematically secure.
- (t, ε)-hard: any adversary with running time t may have advantage at most ε.
- Worst-case SVP \leq average-case DLWE \leq BTS.

