Efficient Fully Homomorphic Encryption from (Standard) LWE

Brakerski and Vaikuntanathan, FOCS 2011

Main contributions

- A scheme based on the standard learning with errors (LWE)
 - standard LWE as opposed to ring-LWE
- Security relies on (worst-case, classical) hardness of standard, well studied problems on arbitrary lattices.
 - Gentry: based on (worst-case, quantum) hardness of relatively untested ideal lattices problems.
- No squashing, thereby removing the (average-case) sparse subset-sum assumption, which is a very strong assumption.

Learning with errors (LWE) problem

- A vector $\mathbf{s} \in \mathbb{Z}_q^n$ satisfies a polynomial number of equations with errors: $\langle \mathbf{a}_i, \mathbf{s} \rangle \approx b_i$, or more precisely, $b_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i$ where $\mathbf{a}_i \in_{\mathrm{ur}} \mathbb{Z}_q^n$ and e_i is a samll random error, $1 \le i \le \mathrm{poly}(n)$. LWE: Given $\{\mathbf{a}_i, b_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i\}_{i=1}^{\mathrm{poly}(n)}$, find \mathbf{s} .
- Decision LWE: distinguish between the two distributions $\{\mathbf{a}_i, \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i\}_{i=1}^{\operatorname{poly}(n)}$ and $\{\mathbf{a}_i, u_i\}_{i=1}^{\operatorname{poly}(n)}$ where $\mathbf{a}_i \in_{\operatorname{ur}} \mathbb{Z}_q^n$, $u_i \in_{\operatorname{ur}} \mathbb{Z}_q$, and the noise/error $e_i \in \mathbb{Z}_q$, sampled according to some distribution, is much smaller than q.
- Worst-case SVP ≤ average-case DLWE

Secret-key encryption based on LWE

- Since {a, ⟨a,s⟩+e} is almost uniformly random, so is {a, ⟨a,s⟩+2e}, provided q is odd. (2⁻¹ mod q exists; thus, as e ranges over Z_q, 2e also ranges over Z_q.)
- To encrypt a bit $\mu \in \{0,1\}$ using secret key $\mathbf{s} \in \mathbb{Z}_q^n$, we choose a random $\mathbf{a} \in \mathbb{Z}_q^n$ and a noise $e \ll q$ and encrypt μ as $c := (\mathbf{a}, w = \langle \mathbf{a}, \mathbf{s} \rangle + 2e + \mu) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$
- To decrypt $c = (\mathbf{a}, w)$, we compute $x := (w - \langle \mathbf{a}, \mathbf{s} \rangle) \mod q \mod 2$

$$\underbrace{= 2e + \mu, \text{ since } e \ll q}_{= \mu \mod 2 = \mu}$$

Convert it to a public-key encryption scheme

- Use **s** as the secret key and use a sequence $\{\mathbf{a}_i, b_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + 2e_i \}_{i=1}^m$ as the public key.
- To encrypt a bit $\mu \in \{0,1\}$ using public key $\{\mathbf{a}_i, b_i\}_{i=1}^m$, we choose a random vector $(r_1, \ldots, r_m) \in \{0, 1\}^m$ and encrypt μ as $c := \left(\sum r_i \mathbf{a}_i, \sum r_i b_i + \mu\right) = \left(\mathbf{a}, w = \langle \mathbf{a}, \mathbf{s} \rangle + 2e + \mu\right)$ where $\mathbf{a} = \sum r_i \mathbf{a}_i$ and $e = \sum r_i e_i$.
- Note: *m* must be much smaller than *q* to ensure $e \ll q$.

Is it additively homomorphic?

• Given ciphertexts of *m* and *m'*, //plaintexts: *m*, $m' \in \{0,1\}//$

$$c_{m} = (\mathbf{a}, w) = (\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + 2e + m)$$
$$c_{m'} = (\mathbf{a}', w') = (\mathbf{a}', \langle \mathbf{a}', \mathbf{s} \rangle + 2e' + m')$$

can we compute a ciphertext $c_{m+m'}$ of m+m'?

- Adding up c_m and $c_{m'}$ yields $c_m + c_{m'} = (\mathbf{a} + \mathbf{a}', w + w') = (\mathbf{a} + \mathbf{a}', \langle \mathbf{a} + \mathbf{a}', \mathbf{s} \rangle + 2(e + e') + m + m')$
- It is a ciphertext of m + m'. So, simply let $c_{m+m'} := c_m + c_{m'}$.
- The scheme is additively homomorphic.

Is it multiplicatively homomorphic?

• Given ciphertexts of m and m',

$$c_{m} = (\mathbf{a}, w) = (\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + 2e + m) \qquad \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$$
$$c_{m'} = (\mathbf{a}', w') = (\mathbf{a}', \langle \mathbf{a}', \mathbf{s} \rangle + 2e' + m') \qquad \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$$

we wish to compute a ciphertext $c_{mm'}$ of $m \cdot m'$.

- Cannot simply multiply c_m and $c_{m'}$. Why?
- Ciphertexts (\mathbf{a}, w) , (\mathbf{a}', w') give "approximations" of m, m':

$$m \approx w - \langle \mathbf{a}, \mathbf{s} \rangle = w - \sum \mathbf{a}[i] \cdot \mathbf{s}[i] \text{ where } \mathbf{a} = (\mathbf{a}[1], \dots, \mathbf{a}[n])$$
$$m' \approx w' - \langle \mathbf{a}', \mathbf{s} \rangle = w' - \sum \mathbf{a}'[i] \cdot \mathbf{s}[i]$$

• Our goal is to obtain $m \cdot m' \approx \overline{w} - \langle \overline{\mathbf{a}}, \mathbf{s} \rangle$ for some $(\overline{\mathbf{a}}, \overline{w})$. 7

Re-linearization

•
$$m \cdot m' \approx \left(w - \sum \mathbf{a}[i] \cdot \mathbf{s}[i] \right) \cdot \left(w' - \sum \mathbf{a}'[i] \cdot \mathbf{s}[i] \right)$$

$$= h_0 + \sum_{i=1}^n h_i \cdot \mathbf{s}[i] + \sum_{1 \le i \le j \le n} h_{i,j} \cdot \underbrace{\mathbf{s}[i] \cdot \mathbf{s}[j]}_{\text{quadratic}}$$

$$= \sum_{0 \le i \le j \le n} h_{i,j} \cdot \underbrace{\mathbf{s}[i] \cdot \mathbf{s}[j]}_{\text{quadratic}} \quad //\text{here we let } \mathbf{s}[0] = 1//$$

• To linearize the quadratic terms, take another key $\mathbf{t} \in \mathbb{Z}_q^n$ and encode/approximate $\mathbf{s}[i] \cdot \mathbf{s}[j]$ as:

$$\mathbf{s}[i] \cdot \mathbf{s}[j] \approx b_{i,j} - \langle \mathbf{a}_{i,j}, \mathbf{t} \rangle //b_{i,j} = \langle \mathbf{a}_{i,j}, \mathbf{t} \rangle + 2e_{i,j} + \mathbf{s}[i] \cdot \mathbf{s}[j] //$$

• Now, substitude this into the above equation of $m \cdot m'$. 8

•
$$m \cdot m' \approx \sum_{0 \le i \le j \le n} h_{i,j} \cdot \underbrace{\mathbf{s}[i] \cdot \mathbf{s}[j]}_{\text{quadratic}}$$

 $\approx \sum h_{i,j} \cdot \left(b_{i,j} - \langle \mathbf{a}_{i,j}, \mathbf{t} \rangle \right)$
 $= \left(\sum h_{i,j} \cdot b_{i,j} \right) - \left\langle \sum h_{i,j} \mathbf{a}_{i,j}, \mathbf{t} \right\rangle$
 $= \overline{w} - \left\langle \overline{\mathbf{a}}, \mathbf{t} \right\rangle$

 Let c_{m·m'} := (ā, w); we have a ciphertext of m ⋅ m' under key t. Thus, from the ciphertexts of m, m' under key s, we can compute a ciphertext of m ⋅ m' under another key t. • In the above re-linearization argument, we had

$$m \cdot m' \approx \sum h_{i,j} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j]$$

$$\approx \sum h_{i,j} \cdot \left(\mathbf{b}_{i,j} - \left\langle \mathbf{a}_{i,j}, \mathbf{t} \right\rangle \right)$$

where " \approx " means "differs by a small $2e \ll q$."

• Unfortunately, the last \approx does not necessarily hold, for even though $\mathbf{s}[i] \cdot \mathbf{s}[j] \approx b_{i,j} - \langle \mathbf{a}_{i,j}, \mathbf{t} \rangle$, it may happen that

$$h_{i,j} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j] \not\approx h_{i,j} \cdot \left(b_{i,j} - \langle \mathbf{a}_{i,j}, \mathbf{t} \rangle\right)$$

unless $h_{i,j}$ is extremely small.

• In binary,
$$h_{i,j} = \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,j,\tau} \cdot 2^{\tau}$$
, where $h_{i,j,\tau} \in \{0,1\}$.
• Thus, $m \cdot m' \approx \sum_{0 \le i \le j \le n} h_{i,j} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j]$

$$\approx \sum_{0 \le i \le j \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} \frac{h_{i,j,\tau}}{\sum_{\tau=0}^{\tau} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j]} \approx \underbrace{b_{i,j,\tau}}_{\mathbf{z} \leftarrow \mathbf{b}_{i,j,\tau}} \frac{\mathbf{a}_{i,j,\tau}}{\mathbf{x}}$$

$$\approx \sum_{0 \le i \le j \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,j,\tau} \left(b_{i,j,\tau} - \left\langle \mathbf{a}_{i,j,\tau}, \mathbf{t} \right\rangle \right)$$

• In the above, by $2^{\tau} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j]$, we meant to obtain $\approx b_{i,i,\tau} - \langle \mathbf{a}_{i,j,\tau}, \mathbf{t} \rangle$ $\left(\mathbf{a}_{i,j,\tau}, b_{i,j,\tau}\right) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$ and $e_{i,j,\tau} \ll q$ such that $b_{i,i,\tau} = \langle \mathbf{a}_{i,j,\tau}, \mathbf{t} \rangle + 2e_{i,j,\tau} + 2^{\tau} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j]$

$$\Rightarrow 2^{\tau} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j] \approx b_{i,j,\tau} - \langle \mathbf{a}_{i,j,\tau}, \mathbf{t} \rangle.$$

Summary: multiplicative homomorphism

• Given ciphertexts of *m* and *m'* under key s,

$$c_{m} = (\mathbf{a}, w) \implies m \approx w - \langle \mathbf{a}, \mathbf{s} \rangle$$
$$c_{m'} = (\mathbf{a}', w') \implies m' \approx w' - \langle \mathbf{a}', \mathbf{s} \rangle$$

we wish to compute a ciphertext $c_{mm'}$ of $m \cdot m'$.

• We obtained
$$m \cdot m' \approx \sum_{0 \le i \le j \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,j,\tau} \left(b_{i,t,\tau} - \langle \mathbf{a}_{i,j,\tau}, \mathbf{t} \rangle \right)$$

$$= \underbrace{\sum_{0 \le i \le j \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,j,\tau} \cdot b_{i,t,\tau}}_{W_{mm'}} - \left\langle \sum_{0 \le i \le j \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,j,\tau} \cdot \mathbf{a}_{i,j,\tau}, \mathbf{t} \right\rangle$$

• This suggests: $c_{mm'} = (\mathbf{a}_{mm'}, w_{mm'})$ under another key **t**.

It is somewhat homomorphic

• Use a sequence of keys: $\mathbf{s}_0, \mathbf{s}_1, \ldots$

- We will use a sequence of keys $\mathbf{s}_0, \mathbf{s}_1, \dots, \mathbf{s}_L$.
- Key $\mathbf{s}_{\ell-1}$ is "encrypted" under key \mathbf{s}_{ℓ} in the sense that

$$\underbrace{2^{\tau} \cdot \mathbf{s}_{\ell-1}[i] \cdot \mathbf{s}_{\ell-1}[j]}_{\approx b_{\ell,i,t,\tau} - \langle \mathbf{a}_{\ell,i,t,\tau}, \mathbf{s}_{\ell} \rangle}$$

where
$$\mathbf{a}_{\ell,i,j,\tau} \in \mathbb{Z}_q^n$$
, $e_{\ell,i,j,\tau} \ll q$, and
 $b_{\ell,i,j,\tau} = \langle \mathbf{a}_{\ell,i,j,\tau}, \mathbf{s}_{\ell} \rangle + 2e_{\ell,i,j,\tau} + 2^{\tau} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j].$

• In key generation, we will generate $\mathbf{s}_0, \mathbf{s}_1, \dots$ and $\mathbf{a}_{\ell,i,j,\tau}, e_{\ell,i,j,\tau}$, and compute $b_{\ell,i,j,\tau}$.

The scheme allows L levels of multiplications

- The error in the ciphertext grows with each multiplication (and addition, but the latter is relatively small).
- Analysis shows that the scheme allows up to $L = \varepsilon \log n$ levels of multiplications for any arbitrary constant $\varepsilon < 1$.
 - This corresponds to degree $D = n^{\varepsilon}$ polynomials.
- Beyond that, the error may become too large (close to q) and detroy the ciphertext.
- Use **bootstrapping** to refresh the ciphertext!

Is it bootstrappable?

- The scheme is somewhat homomorphic, capable of evaluating polynomials of degree $\leq D = n^{\varepsilon} < n$. ($\varepsilon < 1$.)
- For bootstrapping, the scheme must be able to evaluate the decryption circuit homomorphically.
- Ciphertext: $(\mathbf{a}, w) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$.
- Decryption: $w \langle \mathbf{a}, \mathbf{s} \rangle \mod q \mod 2$, which is equivalent to evaluating a polynomial of degree $\geq \max(n, \log q) > D$.
- The decryption complexity is too big for bootstrapping!

- All prior SHE schemes encounter the same problem: short of evaluating the decryption circuit.
- Gentry, followed by all others, handled the situation by resorting to squashing, which required a very strong sparse subset-sum assumption.
- This paper proposes a non-squashing technique to make the decryption circuit evaluable, thereby removing the undesired sparse subset-sum assumption.
- The proposed technique, called dimension-modulus reduction, is to reduce the dimension n and modulus q of the ciphertext, making max (n, log q) smaller.

Dimension-modulus reduction

- Basic idea: given a ciphertext with parameter (n, log q), convert it to a ciphertext with parameter (k, log p) which are much smaller than (n, log q).
 - Convert $(\mathbf{a}, w) \in \mathbb{Z}_q^n \times \mathbb{Z}_q \implies (\mathbf{a}', w') \in \mathbb{Z}_p^k \times \mathbb{Z}_p.$
- Typically, k = security parameter, p = poly(k), $n = k^c$ with c > 1, and $q = 2^{n^c}$.
- Suppose it can evaluate polys of degree $D = n^{\varepsilon} = k^{c-\varepsilon}$.
- Choose c to be large enough so that this is sufficient to evaluate the (k, log p) decryption circuit.

Dimension reduction $(n \rightarrow k)$ (q remains the same)

- Given a ciphertext $(\mathbf{a}, w = \langle \mathbf{a}, \mathbf{s} \rangle + 2e + \mu) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ under a secret key $\mathbf{s} \in \mathbb{Z}_q^n$, we want to convert it to a ciphertext $(\mathbf{a}', w' = \langle \mathbf{a}', \mathbf{t} \rangle + 2e' + \mu) \in \mathbb{Z}_q^k \times \mathbb{Z}_q$ under a key $\mathbf{t} \in \mathbb{Z}_q^k$.
- The technique is similar to that of re-linearization:

• We have
$$\mu \approx w - \langle \mathbf{a}, \mathbf{s} \rangle = \sum_{0 \le i \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,\tau} \cdot 2^{\tau} \cdot \mathbf{s}[i].$$
 //s[0] = 1//
• Encode $2^{\tau} \cdot \mathbf{s}[i] \approx b_{i,\tau} - \langle \mathbf{a}_{i,\tau}, \mathbf{t} \rangle.$ //Note: $\mathbf{a}_{i,\tau}, \mathbf{t} \in \mathbb{Z}_q^k$ //

• Then,
$$\mu \approx \sum_{0 \le i \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,\tau} \left(b_{i,\tau} - \langle \mathbf{a}_{i,\tau}, \mathbf{t} \rangle \right) = w' - \langle \mathbf{a}', \mathbf{t} \rangle.$$

• New ciphertext: $(\mathbf{a}', w') \in \mathbb{Z}_q^k \times \mathbb{Z}_q$.

Dimension-modulus reduction: $(n,q) \rightarrow (k,p)$

• Want to convert a ciphertext $(\mathbf{a}, w) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ under key

 $\mathbf{s} \in \mathbb{Z}_q^n$ to a ciphertext $(\hat{\mathbf{a}}, \hat{w}) \in \mathbb{Z}_p^k \times \mathbb{Z}_p$ under key $\mathbf{t} \in \mathbb{Z}_p^k$.

• We have
$$\mu \approx w - \langle \mathbf{a}, \mathbf{s} \rangle = \sum_{0 \le i \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,\tau} \cdot 2^{\tau} \cdot \mathbf{s}[i] \mod q.$$

• Rather than encoding $2^{\tau} \cdot \mathbf{s}[i] \in \mathbb{Z}_q$ as in the last slide,

we encode
$$\left\lfloor \frac{p}{q} \cdot 2^{\tau} \cdot \mathbf{s}[i] \right\rceil \in \mathbb{Z}_p$$
 under key $\mathbf{t} \in \mathbb{Z}_p^k$.

• This is to scale down $2^{\tau} \cdot \mathbf{s}[i]$ from \mathbb{Z}_q to \mathbb{Z}_p .

- To encode $\lfloor p/q \cdot 2^{\tau} \cdot \mathbf{s}[i] \rceil \in \mathbb{Z}_p$ under key $\mathbf{t} \in \mathbb{Z}_p^k$:
 - Randomly choose $\mathbf{a}_{i,\tau} \in \mathbb{Z}_p^k$ and $e_{i,\tau} \ll p$, and let

$$b_{i,\tau} = \langle \mathbf{a}_{i,\tau}, \mathbf{t} \rangle + e + \lfloor p/q \cdot (2^{\tau} \cdot \mathbf{s}[i]) \rceil \mod p$$

• This gives
$$2^{\tau} \cdot \mathbf{s}[i] \approx \frac{q}{p} \cdot \left(b_{i,\tau} - \langle \mathbf{a}_{i,\tau}, \mathbf{t} \rangle \right) \mod p$$

• Thus, $\mu \approx \sum_{0 \le i \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,\tau} \cdot 2^{\tau} \cdot \mathbf{s}[i] \mod q$ (from last slide)

$$\approx \sum_{0 \le i \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,\tau} \left(\frac{q}{p} \cdot \left(b_{i,\tau} - \left\langle \mathbf{a}_{i,\tau}, \mathbf{t} \right\rangle \right) \right) \mod p \quad \underbrace{\text{mod } q}_{\text{not n} \ge d \text{ed}}$$

•
$$\mu \approx \sum_{0 \le i \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,\tau} \left(\frac{q}{p} \cdot \left(b_{i,\tau} - \langle \mathbf{a}_{i,\tau}, \mathbf{t} \rangle \right) \right) \mod p$$

= $w' - \langle \mathbf{a}', \mathbf{t} \rangle$

• This suggests:

$$w' = \sum_{0 \le i \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,\tau} \left(\frac{q}{p} \cdot \left(b_{i,\tau} \right) \right) \mod p \quad \in \mathbb{Z}_p$$
$$\mathbf{a}' = \sum_{0 \le i \le n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,\tau} \left(\frac{q}{p} \cdot \left(\mathbf{a}_{i,\tau} \right) \right) \mod p \quad \in \mathbb{Z}_p^k$$

The New FHE Scheme

based on the idea of re-linearization and dimension-modulus reduction without squashing

Parameters

- Security parameter *k*.
- Dimensions *n* and *k*.
- Odd moduli q and p.
- Noise distributions χ over \mathbb{Z}_q and $\hat{\chi}$ over \mathbb{Z}_p .
- Long: n, q, χ . Short: $k, p, \hat{\chi}$.
- *L*: maximum depth of circuits that can be evaluated.
- *m*: used in key generation.
- Example: $k = \kappa$, $n = k^4$, $q \approx 2^{\sqrt{n}}$, $p = (n^2 \log q) \cdot \operatorname{poly}(k)$, $m = O(n \log q)$, $L = 1/3 \cdot \log n$, χ is *n*-bounded, and $\hat{\chi}$ is *k*-bounded.

Bounded distributions

A distribution ensemble {χ_κ}_{κ∈ℕ}, over the integers, is called *B*-bounded if

$$\Pr[|x| > B : x \leftarrow_{\mathbb{R}} \chi_{\kappa}] \leq 2^{-\tilde{\Omega}(\kappa)}.$$

(The probability that |x| > B is negligible.)

• Recall that our χ and $\hat{\chi}$ will be *n*- and *k*-bounded, respectively.

Key generation SH.Keygen (1^{κ})

- Generate L+1 keys $\mathbf{s}_0, \mathbf{s}_1, \dots, \mathbf{s}_L \leftarrow_{\mathsf{R}} \mathbb{Z}_q^n$.
- For $1 \le \ell \le L$, $0 \le i \le j \le n$, $0 \le \tau \le \lfloor \log q \rfloor$,
 - $\mathbf{a}_{\ell,i,j,\tau} \leftarrow_{\mathbf{R}} \mathbb{Z}_q^n$ and $e_{\ell,i,j,\tau} \leftarrow_{\mathbf{R}} \chi$
 - $b_{\ell,i,j,\tau} := \langle \mathbf{a}_{\ell,i,j,\tau}, \mathbf{s}_{\ell} \rangle + 2e_{\ell,i,j,\tau} + 2^{\tau} \cdot \mathbf{s}[i] \cdot \mathbf{s}[j]$

•
$$\psi_{\ell,i,j,\tau} := (\mathbf{a}_{\ell,i,j,\tau}, b_{\ell,i,j,\tau}).$$

•
$$\mathbf{A} \leftarrow_{\mathbf{R}} \mathbb{Z}_q^{m \times n}$$
, $\mathbf{e} \leftarrow_{\mathbf{R}} \chi^m$, $\mathbf{b} := \mathbf{A}\mathbf{s}_0 + 2\mathbf{e}$.

- Output of key generation:
 - Secret key $sk = \mathbf{s}_L$.
 - Public key $pk = (\mathbf{A}, \mathbf{b})$.
 - Evaluation key $evk = \Psi = \{ \Psi_{\ell,i,j,\tau} \} = \{ (\mathbf{a}_{\ell,i,j,\tau}, b_{\ell,i,j,\tau}) \}.$

Encryption SH.Enc_{*pk*}(μ)

• Recall
$$pk = (\mathbf{A}, \mathbf{b})$$
.

- To encrypt a message $\mu \in \{0,1\}$:
 - Sample a vector of *m* bits, $\mathbf{r} \leftarrow_{\mathbb{R}} \{0,1\}^m$.
 - $\mathbf{v} := \mathbf{A}^T \mathbf{r}$.
 - $w := \mathbf{b}^T \mathbf{r} + \mu$.
 - Ciphertext $c := ((\mathbf{v}, w), 0).$
- 0 here indicates level 0 or fresh ciphertext.
- In general, ciphertexts are of the form $((\mathbf{v}, w), \ell)$.

Decryption SH.Dec_{*sk*}(c)

- Recall $sk = \mathbf{s}_L$.
- To decrypt a ciphertext $c =: ((\mathbf{v}, w), L):$

•
$$\mu := (w - \langle \mathbf{v}, \mathbf{s}_L \rangle) \mod q \mod 2.$$

• Note: the ciphertext is an output of SH.Eval.

Homomorphic evaluation SH.Eval_{evk}($f, c_1, ..., c_t$)

- Boolean function $f: \{0,1\}^t \rightarrow \{0,1\}$:
 - represented by a circuit with layers of "+" and "×" gates;
 - each layer is either all "+" gates or all "×" gates;
 - there are exactly *L* layers of " \times " gates;
 - "×" gate: fan-in 2; "+" gate: arbitrary fan-in.
- Note: Any boolean circuit can be converted to this form for some *L*.
- Evaluate the circuit layer by layer and gate by gate.

Evaluation of addition gates SH.Eval_{*evk*}(mult, c_1 , ..., c_t)

- Input: $c_1, ..., c_t$, where $c_i = ((\mathbf{v}_i, w_i), \ell)$.
- Output: $c_{add} = ((\mathbf{v}_{add}, w_{add}), \ell)$ where

•
$$\mathbf{v}_{add} := \sum \mathbf{v}_i$$

•
$$W_{add} := \sum W_i$$

SH.Eval_{*evk*}(mult, *c*, *c*')

• Input:
$$c = ((\mathbf{v}, w), \ell), c' = ((\mathbf{v}', w'), \ell).$$

• Output:
$$c_{\text{mult}} = ((\mathbf{v}_{\text{mult}}, w_{\text{mult}}), \ell + 1)$$
 where

•
$$\mathbf{v}_{\text{mult}} := \sum_{\substack{0 \le i \le j \le n \\ 0 \le \tau \le \lfloor \log q \rfloor}} h_{i,j,\tau} \cdot \mathbf{a}_{\ell+1,i,j,\tau}$$

•
$$w_{\text{add}} := \sum_{\substack{0 \le i \le j \le n \\ 0 \le \tau \le \lfloor \log q \rfloor}} h_{i,j,\tau} \cdot b_{\ell+1,i,j,\tau}$$

• In the above, recall:

•
$$evk = \{\psi_{\ell,i,j,\tau}\} = \{(\mathbf{a}_{\ell,i,j,\tau}, b_{\ell,i,j,\tau})\}.$$

•
$$h_{i,j} = \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,j,\tau} \cdot 2^{\tau}$$
 (in binary).

• $h_{i,j}$ are the coefficients of $\Phi_{(\mathbf{v}, w), (\mathbf{v}', w')}(\mathbf{x})$ and can be

computed from (\mathbf{v}, w) , (\mathbf{v}', w') , where

$$\Phi_{(\mathbf{v}, w), (\mathbf{v}', w')}(\mathbf{x})$$

$$= \left(w - \sum \mathbf{v}[i] \cdot \mathbf{x}[i] \right) \cdot \left(w' - \sum \mathbf{v}'[i] \cdot \mathbf{x}[i] \right)$$

$$= \sum_{0 \le i \le j \le n} h_{i,j} \cdot \mathbf{x}[i] \cdot \mathbf{x}[j]$$

Make the SH scheme bootstrappable

 $\mathbf{s}_{0} \quad \mathbf{s}_{1} \quad \cdots \quad \mathbf{s}_{L-1} \quad \mathbf{s}_{L} \quad \mathbf{\hat{s}}$ $\overline{\mathbf{s}_{0}} \quad \overline{\mathbf{s}_{1}} \quad \cdots \quad \overline{\mathbf{s}_{L-1}} \quad \overline{\mathbf{s}_{L}} \quad \longleftarrow \quad \text{encrypted as}$ $\frac{p}{q} \cdot 2^{\tau} \cdot \mathbf{s}_{L}[i]$ $\underbrace{q}_{\approx \cdot \hat{b}_{i,\tau} - \langle \hat{\mathbf{a}}_{i,\tau}, \hat{\mathbf{s}} \rangle}$

Key generation BTS.Keygen (1^{κ})

- Run SH.Keygen (1^{κ}) to obtain the secret key \mathbf{s}_L , public key (\mathbf{A}, \mathbf{b}) , and evaluation key Ψ .
- Generate a short secret key $\hat{\mathbf{s}} \leftarrow_{\mathbb{R}} \mathbb{Z}_p^k$, and for $0 \le i \le n$, $0 \le \tau \le \lfloor \log q \rfloor$, compute

•
$$\hat{\mathbf{a}}_{i,\tau} \leftarrow_{\mathbf{R}} \mathbb{Z}_p^k$$
 and $\hat{e}_{i,\tau} \leftarrow_{\mathbf{R}} \hat{\chi}$

•
$$\hat{b}_{i,\tau} := \langle \hat{\mathbf{a}}_{i,\tau}, \hat{\mathbf{s}} \rangle + \hat{e}_{i,\tau} + \lfloor \frac{p}{q} \cdot (2^{\tau} \cdot \mathbf{s}_{L}[i]) \rceil \mod p$$

• $\hat{\psi}_{i,\tau} := (\hat{\mathbf{a}}_{i,\tau}, b_{i,\tau}).$ Let $\Psi = \{\hat{\psi}_{i,\tau}\}.$

- Output of key generation:
 - Secret key: $sk = \hat{s}$.

• Public key:
$$pk = (\mathbf{A}, \mathbf{b})$$
.

• Evaluation key:
$$evk = (\Psi, \hat{\Psi})$$
.

Encryption BTS.Enc_{*pk*}(μ)

• Same as SH.Enc_{*pk*}(μ).

Decryption BTS.Enc_{sk}(\hat{c})

- To decrypt ciphertext $\hat{c} = (\hat{\mathbf{v}}, \hat{w}) \in \mathbb{Z}_p^k \times \mathbb{Z}_p$, compute $\mu^* := (\hat{w} \langle \hat{\mathbf{v}}, \hat{\mathbf{s}} \rangle) \mod p \mod 2.$
- It's correct if $\hat{w} \langle \hat{\mathbf{v}}, \hat{\mathbf{s}} \rangle = \mu + 2\hat{e} \mod p$ and \hat{e} is small.

Evaluation BTS.Eval_{evk}($f, c_1, ..., c_t$)

- Run SH.Eval_{Ψ} to obtain a ciphertext $c_f \in \mathbb{Z}_q^n \times \mathbb{Z}_q \times \{L\}$: $c_f = ((\mathbf{v}, w), L) \leftarrow \text{SH.Eval}_{\Psi}(f, c_1, ..., c_t)$
- Reduce the dimension and modulus of c_f to k, p. The new ciphertext is $\hat{c} = (\hat{\mathbf{v}}, \hat{w})$, where

$$\hat{w} = 2 \cdot \sum_{i=0}^{n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,\tau} \cdot \hat{b}_{i,\tau} \mod p \qquad \in \mathbb{Z}_p$$

$$\hat{\mathbf{v}} = 2 \cdot \sum_{i=0}^{n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,\tau} \cdot \hat{\mathbf{a}}_{i,\tau} \mod p \qquad \in \mathbb{Z}_p^k$$

• Theorem. If the ciphertext $c_f = ((\mathbf{v}, w), L)$ satisfies

$$w - \langle \mathbf{v}, \mathbf{s}_L \rangle = \mu + 2e \mod q,$$

then the reduced ciphertext $c = (\hat{\mathbf{v}}, \hat{w})$ satisfies

$$\hat{w} - \langle \hat{\mathbf{v}}, \hat{\mathbf{s}} \rangle = \mu + 2\hat{e} \mod p$$

where $\hat{e} \approx \frac{p}{q} \cdot e$ (an appropriately scaled version of *e*).

• Recall decryption: $\mu^* := (\hat{w} - \langle \hat{v}, \hat{s} \rangle) \mod p \mod 2.$

Remark

• The coefficients $h_{i,\tau}$ are obtained as follows.

• Let
$$\phi(\mathbf{x}) = \phi_{\mathbf{v},w}(\mathbf{x}) \triangleq \frac{p}{q} \cdot \left(\frac{q+1}{2} \cdot \underbrace{(w - \langle \mathbf{v}, \mathbf{x} \rangle)}_{\text{mod } q}\right) \mod p.$$

• Let
$$h_0, \ldots, h_n \in \mathbb{Z}_q$$
 s.t. $\phi(\mathbf{x}) = \sum_{i=0}^n h_i \cdot \left(\frac{p}{q} \cdot \mathbf{x}[i]\right) \mod p$

$$= \sum_{i=0}^{n} \sum_{\tau=0}^{\lfloor \log q \rfloor} h_{i,\tau} \cdot \left(\frac{p}{q} \cdot 2^{\tau} \cdot \mathbf{x}[i] \right) \bmod p$$

• The h_i 's in slide 21 are coefficients of $w - \langle \mathbf{v}, \mathbf{x} \rangle \mod q$.

Security

- Theorem (informal). If (average-case) $DLWE_{n,q,\chi}$ and $DLWE_{k,p,\hat{\chi}}$ are both (t,ε) -hard, then the BTS scheme is $(t \text{poly}(\kappa), 2(L+1)(2^{-\kappa} + \varepsilon))$ -sematically secure.
- (*t*, ε)-hard: any adversary with running time *t* may have advantage at most ε.

• Worst-case SVP \leq average-case DLWE \leq BTS.