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 A scheme based on the standard learning with errors (LWE)
     standard LWE as opposed to ring-LWE

 Security relies on (worst-case, classical) hardness of standard,
    well stu

 

d
 

i

Main contributions
•

•



ed problems on arbitrary lattices.
     Gentry: based on (worst-case, quantum) hardness of 
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 A vector  satisfies a polynomial number of equations

    with errors: , or more precisely, 

    where  and  is a samll random error,
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 Since ,  ,  is almost uniformly random, so is

    ,  , , provided  is odd. (2 mod  exists; thus, 

     as  ranges over ,  2  also ranges over .)

 To e

2

n

 

 

Secret-key encryption based on LWE
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  Use  as the secret key and use a sequence ,

    as the public key.

 To encrypt a bit 0,1  using public key , , we choose
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 Given ciphertexts of  and ,   //plaintexts: ,  {0,1}// 

             , ,  , 2     
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   can we compute a ciphertext 

 

Is it additively homomorphic? 
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 The error in the ciphertext grows with each multiplication
    (and addition, but the latter is relatively small).

 Analysis shows that the scheme a
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 The scheme is somewhat homomorphic, capable of
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The New FHE Scheme 

based on the idea of re-linearization 
and dimension-modulus reduction 

without squashing 
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•

•

s s s

a

a s s s

 

   

 







( ), , , , , , , , ,     : ,  .i j i j i jbτ τ τψ = a
  


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R R 0

, , , , , , , , ,

 ,  ,  : 2 .

 Output of key generation:

      Secret key .

      Public key ,  .

      Evaluation ke
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y

m n m
q

L

i j i j i j

sk
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evk bτ τ τ

χ

ψ

×← ← = +

=

=

= =

•

=

•

A e b As e

s

A b

Ψ a
  








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encrypted as 2 [ ] [ ]
t tb

i j
τ τ

τ
−

−

−

≈

⋅ ⋅
a s

s s
  

 



0

embedded in 
: 2= +b As e
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( )

R

 Recall  ,  .

 To encrypt a message {0,1}:
      Sample a vector of  bits,  {0,1} .

      : .
      : .
      Ciphertext : ( ,  ),  0 .

 0 here indicates l

 

 

 

Encryption SH.Enc ( )

m

T

T

pk

pk

m

w
c w

µ

µ

µ

=

∈

←

=

= +

•

•

=

• A b

r
v A r

b r
v









( )

evel 0 or fresh ciphertext.

 In general, ciphertexts are of the form ( ,  ,  . )w• v 
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( )

 Recall  .

 To decrypt a ciphertext : ( ,  ),  :

       :  ,   mod  mod 2

 

 

 

.

 Note: the ciphertext is an output of SH.Eval.

Decryption SH.Dec ( )

L

L

sk

sk

c w L

w q

c

µ

=

=

•

•

=

•

−

s

v

v s
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1   

 Boolean function :{0,1} {0,1}:
      represented by a circuit with layers of "+" and " " gates;
      each layer is either all "+" gates or al

 

l " " 

Homomorphic evaluation SH.Eval ( , , , )
t

tevk

f

f c c

• →
×

×





 gates;
      there are exactly  layers of  " " gates;
      " " gate :  fan-in 2; " " gate :  arbitrary fan-in. 

 Note:  Any boolean circuit can be converted to this form for
    some .

 Evaluate 

 

 the c

L

L

•

+

•

×
×





ircuit layer by layer and gate by gate.
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( )

1

1

add add add

add

add

   

 Input:  ,  ,  ,  where ( ,  ),  .

 Output:  ( ,  ),    where 

      :

      :

 

 

Evaluation of addition gates
SH.Eval (mult, , , )

t i i i

i

i

tevk

c c c w

c w

w w

c c
=

=

•

•

=

=

∑
∑

v

v

v v

 








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( ) ( )

( )mult mult mult

mult , , 1, , ,
   0
0 log

add , , 1, , ,
   0

  

 Input:  ( ,  ),  ,  ( ,  ),  .

 Output:  ( ,  ),  1   where 

      :

      :

 

 

SH.Eval (mult, , )

i j i j
i j n

q

i j i j
i j

evk

c w c w

c w

h

w h b

c c

τ τ

τ

τ τ

+
≤ ≤ ≤

≤ ≤  

+
≤ ≤

′ ′ ′= =•
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= ⋅

•

′

∑

v v

v

v a




 







0 log

  
n
qτ

≤
≤ ≤  

∑
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, , , , , , , , ,

log
, , ,0

, ( , ), ( , )

 In the above, recall: 

      ,  . 

      2  (in binary).

       are the coefficients of ( ) and can be 

       computed from

 

i j i j i j

q
i j i j

i j w w

evk b

h h

h

τ τ τ

τ
ττ

ψ

  

=

′ ′

•

= =

= ⋅

Φ

∑
v v

a

x

  







( ) ( )
 ( , ), ( , )

,
0

 ( ,  ),  ( ,  ),  where 

       ( )

       [ ] [ ] [ ] [ ]

        [ ] [ ]

w w

i j
i j n

w w

w i i w i i

h i j

′ ′

≤ ≤ ≤

′ ′

Φ

′ ′= − ⋅ ⋅ − ⋅

= ⋅ ⋅

∑ ∑

∑

v v

v v

x

v x v x

x x

35 



0 1 1

0 1 1

ˆ

Make the SH scheme bootstrappable

L L

L L

−

−

s s s s

s ss s

s

 
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 encrypted as

  2 [ ]

i i

L

b

p i
q

τ τ

τ

⋅ −≈

⋅ ⋅

a s

s




( )

R

 Run SH.Keygen(1 ) to obtain the secret key ,
    public key ,  , and evaluation key  .

ˆ Generate a short secret key , and for  0 ,  

    0 log ,  compu

 

 

Key generation BTS.Keygen(1 )

L

k
p i n

q

κ

κ

τ

← ≤ ≤

≤ ≤   

•

•

s
A b Ψ

s 

( )

( ) { }

 

, R , R

, , ,

, , , ,

te

ˆ ˆˆ         and    

ˆ ˆ ˆ ˆ      : ,  2 [ ] mod

ˆ ˆ ˆ      : ,  .     Let .

 

k
i p i

i i i L

i i i i

e

pb e i p
q

b

τ τ

τ
τ τ τ

τ τ τ τ

χ

ψ ψ

← ←

= + + ⋅ ⋅

= =



a

a s s

a Ψ






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( )

 Output of key generation:

ˆ      Secret key:  .

      Public key:  ,  .

ˆ      Evaluation ke :

 

y   ,  .

sk

pk

evk

=

=

=

•

s

A b

Ψ Ψ






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( )

 Same as SH.Enc ( ). 

ˆ ˆ ˆ To decrypt ciphertext  ( ,  ) ,  compute

ˆˆ ˆ    : ,   mod  mod 2.

ˆˆ ˆ ˆ ˆ It's correct if  ,  2  mod  and   

 

 

Encryption BTS.Enc ( )

Decryption BTS.Enc ( )ˆ

pk

k
p p

pk

sk

c w

w p

w e p e

c

µ

µ

µ

µ

∗

= ∈ ×

= −

− =

•

+

•

•

v

v s

v s

 

is small.
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1

1

   

 Run SH.Eval  to obtain a ciphertext :

            ( ,  ),  SH.Eval ( ,  ,  ,  )

 Reduce the dimension and modulus of  to , .

    The new c

 

phe

 

i

Evaluation BTS.Eval ( , , , )
n

f q q

f t

f

tevk

c L

c w L f c c

c k p

f c c

∈• × ×
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•

Ψ
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







log
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, ,
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ˆ ˆ ˆrtext is ( ,  ), where

ˆˆ       2  mod      

ˆˆ       2  mod      
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i i p
i
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k

i i p
i

c w

w h b p
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∑ ∑
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( )

 Theorem.  If the ciphertext ( ,  ),   satisfies

              ,  2  mod ,

ˆ ˆ    then the reduced ciphertext ,   satisfies 

ˆˆ ˆ ˆ              ,  2  mod

ˆ   where  (an app o i

 

r pr a

f

L

c w L

w e q

c w

w e p

pe e
q

µ

µ

=

− = +

=

− = +

≈ ⋅

• v

v s

v

v s

( )

tely scaled version of ).

ˆˆ ˆ Recall d ecryption:  : ,   mod  mod 2.

e

w pµ∗ = −• v s
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,

,

mod

0
0

,

 The coefficients  are obtained as follows.

1     Let ( ) ( ) ( , ) mod .
2

     Let ,  ,    s.t.  ( ) [ ]  mod

           

 

  

   

 

Remark

i

w

q

n

n q i
i

i

h

p q w p
q

ph h h i p
q

ph
q

τ

τ

φ φ

φ
=

 + = ⋅ ⋅ −
 
 

 
∈ = ⋅ ⋅ 



•



= ⋅

∑

vx x v x

x x





 





 

log

0 0

2 [ ]  mod

 The 's in slide 21 are coefficients of , m d .   o

qn

i

i

i p

h w q

τ

τ

  

= =

 
⋅ ⋅

•


 

−

∑ ∑ x

v x
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( )

, ,

ˆ, ,

 Theorem (informal).  If (average-case) DLWE  and

    DLWE  are both ( , )-hard, then the BTS scheme is

    poly( ), 2( 1)(2 ) -sematically secur

 

 

e.

  ( , )-hard: any adversary w

Security

n q

k p t

t L

t

χ

χ

κ

ε

κ ε

ε

−− + +

•

• ith running time  may have 
     advantage at most .

Worst-case SVP  average-case DLWE  BTS. 
     
   

  

t
ε

• ≤ ≤
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