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From Micciancio's paper 



( )  Enc Dec

  We described an ideal-based encryption scheme . 

  Recall  Samp ,  and mod .

  The scheme is correct for circuit  

Why ideal lattices 
   --- as opposed to just ideals or lattices?
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  Our goal is to have  for deep enough
    circuits ,  including the decryption circuit . 
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  To instantiate the (abstract) ideal-based encryption scheme 
    using ideal lattices, we will do the following.

  Choose a polynomial  ( ) with integer coefficien

Instantiate the ideal-based scheme
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Samp

ts and 
    let ring [ ] ( ) .

  Choose an element ,  ideal , the rotation basis.

  Plaintext space : a subset of ( ),  centered parallelepiped.
  Samp: choose a range  for Samp.
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Ideal Lattices 
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( )

   the ring of all polynomials with integer coefficients.

  a monic polynomial of degree  in [ ]
      Monic means the leading coefficien
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ose ( ) to be irreducible.

  the ideal generated by ( ).

      ( ) ( ) [ ] ( ) ( ) :

( ) :  

( ) ( ) mod

( ) [ ] .

  iff ( ) ( ) is divisible by ( ).

  [ ] is divided into classes (cosets
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( )

  
       [ ] ( ( ))  denotes the set of those classes (cosets).
       Each class has exactly one polynomial of degree 1. 
       Thus, [ ] ( )  may also be 

[ ] ( ( )

defined as the set of all 
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       [ ] ( )  is a commutative ring with identity.
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  If        ( )  and

              ( ) ,  then

    ( ) ( ) ( ) ( ) ( ).

 
       The group [ ] ( ( )) 
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( )

  Since [ ] ( ( )) , we do not distinguish between 
    ring elements in  and lattice points/vectors in .

  Any ideal in  corresponds to a lattice in .
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  Ideal 1 .    1 .   Rotation basis ,  ,  ,  .

    Ideal lattice .

  Ideal 2 2 all polynomials in  with  coefficients .

    Rotation basis: 2 ,  2 ,  ,  2 .
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  [ ] :  the ring of polynomials with rational coefficients.

  [ ] ( ( )) : .
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   exists if  ( ) is irreducible.
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  Hermite nornal form (HNF): 
  a basis which is skiny, skew, and will be used as a .

   fundamental parallelepiped:    // ,  ,  //

       ( ) : 1 2,  1 2
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Instantiating the ideal-based 
scheme using ideal lattices  
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From Micciancio's paper 



( )

  To instantiate the (abstract) ideal-based encryption scheme 
    using (ideal) lattices, we will do the following.

  Choose a polynomial  ( ) and let ring [ ] ( ) .

  Choose a vector ,  l

Recall: 
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Samp

et ideal , let the rotation basis.

  Plaintext space : a subset of ( ).
  Samp: choose a range  for Samp.

  Choose an ideal  and a good basis .

    Let HNF( ).
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  Starting from : ( ),  how does  expand with
     addition and multiplication?

   for all ,  (triangle inequality).
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  By induction, if input vectors are in ( ),  then after 
    levels of -fan-in addition and/or 2-fan-in multiplication,

    the result is in ( ) ( ) . 
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Dec Enc  Roughly: the ratio  must be subexponential.

  Recall: the security of the abstract scheme relies on the
    hardness of ICP.  
  In the setting of ideal lattices (where 

Security constraints
r r•
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 is chosen to be 
    shorter than  and : mod ), ICP becomes: Decide
    whether  is within a small distance ( ) of lattice , 
    or is uniformly random modulo .
  This is a decision ver
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sion of BDDP, which is not surprising
    since the abstract scheme is a variant of GGH and the
    security of GGH relies on the hardness of BDDP.
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Enc Enc 1

  Roughly: the ratio  must be sub-exponential.

  If  is too small, say ( ) 2 , BDDP can be
   solved using, for example, the LLL algorithm.

  No algorithm is known to solve BDDP if 
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Mult

  Goal: Set ( ) so that [ ] ( ( ))  has a small ( ).

  To this end, we only have to choose ( ) such that ( ) and
    ( ) have small norms, due to the following theorem. 
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( )( ) Mult

  Theorem:  If  ( ) ( ) where ( ) has degree
    at most ( 1) ,  2,  then, for [ ] ( ( )),

                    ( ) 2 1 2 ( 1) .
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  Recall: the decryption equation:  mod mod . 

  We want ( ) ( ).  
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    Let 4 ( ).  Suppose ( ),
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  By the theorem, we may generate  and  as follows:
      Randomly generate a vector  within distance  of . 

      Let  be the rotation basis of .
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  Ring:  [ ] ( ) ,  ( ) 1,  .

  Ideal:  2 2 .   2 ,  ,  2 .   2 2 .

  Plaintext space: (a subset of) ( ,  ,  ) : {0, 1} .
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  An improvement over previous work.

  Boneh-Goh-Nissim (2005):  
      quadratic formulas with any number of monomials.
      plaintext space: log  bits for security prameter .

  Ge

How good is it? 

λ λ
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ntry (2009):  
      polynomials of degree log .
      plaintext space: larger.

Not bootstrappable t e !  y
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sk sk 1  Decryption mod  involves adding

     vectors.
  Adding  -bit numbers in 0,1  requires a constant fan-in 

    boolean circuit of depth (log
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3-for-2: convert 3 numbers to 2 numbers with the same sum;
       this can be done with a circuit of constant depth, say depth .
     It takes a circuit of depth log  to convert  numbers 

       t

c
c n n≈

o 2 numbers with the same sum.
     It needs depth (log ) to add the final two numbers. 
  The proposed scheme permits circuits of depth (log ).

k
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Dec Dec Tweak: Narrow the permitted circuits from ( ) to ( 2).

 Purpose: To ensure that the ciphertexts vectors are closer to the
   lattice  than they stri

Tweak 1 to simplify the decryption circuit
r r
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ctly need to be, so that  is
   needed to ensure the correctness of decryption.
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   If  is a valid ciphertext after tweak 1, 
   i.e., 2,  then each coefficient of )  is
   within 1 4  of an integer.

 With Tweak 1, we can reduce the precision to  
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(log ) bits,

emm

a

:

   

a

Jr

O n

ψ

ψ ψ−

•

•

< ( ⋅B

( ) ( )Dec Mult Enc

nd cut the the circuit depth of adding  numbers to   
   (log loglog ) (log ).

 The new maximum de
loglog 2 log

pth of permitted circuits is 
    almost the same as the
    original 

lo ,
de

g

n
n n n

r rγ

Ω

⋅

+ = Ω

−

•

pth, which can be as large as (log ).

 Unfortunately, the constant hidden in (log ) is 1, while
   that in (lo So, still not g ) 1. bootstrappab l e.

O n

n
O n

Ω >
<

•

37 



( )
( ) ( )  

 

sk sk 1 sk

sk 1

 Tweak: Modify  from 

   ) mod   mod

   for some vector .

 Purpose: To reduce the secret key 

Decrypt
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,
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Tweak 2, optional, more technical, less essential
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     If Tweak 2 is used,  and  is some rotation matrix,
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 the computation of decryption into three steps: 
      Step 1:  Generate  vectors  with sum .  
      Step 2:  From the  vectors , generate  vectors

        ,  ,  ,   with 

integer

su

i J

i

n n

n
n

ψ

+

⋅x B
x

y y y







( )sk1

m  

      Step 3:  Compute mod .
i

J i Iπ ψ← − ⋅

 .∑
∑

x

B y B

39 



  As a somewhat homomorphic scheme, Gentry's scheme
    provides a large plaintext space, 

  However, in order to make the scheme bootstrappable, 
    Gentry

mod ( ).

has to limit  th

Plaintext space

I IR P=
•

•

B B

{ }e plaintext space to 0,1 mod .

mod -circuits.  For bootstrapping,
 the decryption circuit must be composed of mo

   evaluates 
    

  Ordinary boolean operations 

d -gates.

can be esaily emulated 

I

I

I

•

•

B

B
B

Evaluate

mod  operations.
with

    IB
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 Split the computation of decryption into three steps: 
      Step 1:  Generate  vectors  with .  
      Step 2:  From the  vectors , generate i  vectors
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nteger
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      Step 3:  Compute mod .
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Squashing the Decryption Circuit 
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  A technique to lower the complexity of the decryption circuit,
    so as to make the encryption scheme bootstrapable. 

  Basic idea is to split the decryption algorithm into two phases:
    

Squashing
•

•
 computationally intensive,  secret-key independent,

       by the encrypter. 
     computationally lightweight, secret-key dependent,
       by the decrypter :  

  Properties:  Does not reduce the evalua•





tion capacity (i.e., the 
    set of permitted circuits remains the same), but may potentially
    weakens security.
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  :  the original encryption scheme.
  :  to be constructed from usin
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  Decrypt( , ) :   decrypts  making use of  and .

    It is desired that Decrypt( , ) works whenever 
    Decrypt ( , ) does.

  Add( , , ) :   ( , ) extracted from ( , )
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  Let  be the encryption scheme with Tweak 2.  Let  be

    the secret key, which is an element of the fractional ideal .   
    Recall the decryption equation:
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  Let mod ,  .  //uniformly generate a set of //
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ExpandCT( , ) :        //recall  ( , )//
      Compute :  mod  for .

      The expanded ciphertext is : ,  .
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      Recall  
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      Thus, mod .
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