Gentry's ideal-lattice based encryption scheme

Gentry’s STOC’09 paper - Part III

From Micciancio's paper

Why ideal lattices

--- as opposed to just ideals or lattices?

- We described an ideal-based encryption scheme Σ.
- Recall $X_{\text {Enc }} \triangleq \operatorname{Samp}\left(\mathbf{B}_{I}, P\right)$ and $X_{\text {Dec }} \triangleq R \bmod \mathbf{B}_{J}^{\text {sk }}$.
- The scheme is correct for circuit C if

$$
\forall x_{1}, \ldots, x_{t} \in X_{\mathrm{Enc}}, g(C)\left(x_{1}, \ldots, x_{t}\right) \in X_{\mathrm{Dec}} .
$$

- For Σ to be correct as an ordinary encryption scheme, we require: $\quad X_{\text {Enc }} \subseteq X_{\text {Dec }}$.
- For Σ to be additively and multiplicatively homomorphic, we require: $\quad X_{\text {Enc }}+X_{\text {Enc }} \subseteq X_{\text {Dec }}$ and $X_{\text {Enc }} \times X_{\text {Enc }} \subseteq X_{\text {Dec }}{ }_{3}$
- Our goal is to have $g(C)\left(X_{\text {Enc }}\right) \subseteq X_{\text {Dec }}$ for deep enough circuits C, including the decryption circuit D_{Σ}.
- So, we want to analyze, for example, how

$$
\left(\left(X_{\text {Enc }}+X_{\text {Enc }}\right) \times\left(X_{\text {Enc }}+X_{\text {Enc }}\right)\right) \times X_{\text {Enc }} \times X_{\text {Enc }} \cdots
$$

expand, and how to ensure

$$
\left(\left(X_{\text {Enc }}+X_{\text {Enc }}\right) \times\left(X_{\text {Enc }}+X_{\text {Enc }}\right)\right) \times X_{\text {Enc }} \times X_{\text {Enc }} \cdots \subseteq X_{\text {Dec }} .
$$

- Connecting ideals with lattices makes such analysis possible, because, with $R=\mathbb{Z}[x] /(f(x)) \cong \mathbb{Z}^{n}, X_{\text {Enc }}$ and $X_{\text {Dec }}$ become subsets of \mathbb{Z}^{n} and we can analyze them geometrically.

Instantiate the ideal-based scheme

- To instantiate the (abstract) ideal-based encryption scheme using ideal lattices, we will do the following.
- Choose a polynomial $f(x)$ with integer coefficients and let ring $R=\mathbb{Z}[x] /(f(x))$.
- Choose an element $\mathbf{s} \in R$, ideal $I=(\mathbf{s}), \mathbf{B}_{I}=$ the rotation basis.
- Plaintext space M : a subset of $C\left(\mathbf{B}_{I}\right)$, centered parallelepiped.
- Samp: choose a range $\ell_{\text {Samp }}$ for Samp.
- Choose an ideal J and a good basis $\mathbf{B}_{J}^{\text {sk }}$.

Let $\mathbf{B}_{J}^{\text {pk }}=\operatorname{HNF}\left(\mathbf{B}_{J}^{s k}\right)$.

Ideal Lattices

$\mathbb{Z}[x] /(f(x))$: a polynomial ring

- $\mathbb{Z}[x]$: the ring of all polynomials with integer coefficients.
- $f(x)$: a monic polynomial of degree n in $\mathbb{Z}[x]$
- Monic means the leading coefficient is 1
- Often choose $f(x)$ to be irreducible.
- $(f(x))$: the ideal generated by $f(x)$.
- $(f(x))=f(x) \cdot \mathbb{Z}[x]=\{f(x) \cdot g(x): g(x) \in \mathbb{Z}[x]\}$.
- $g(x) \equiv h(x) \bmod f(x)$ iff $g(x)-h(x)$ is divisible by $f(x)$.
- $\mathbb{Z}[x]$ is divided into classes (cosets) such that $g(x)$ and $h(x)$ are in the same class (coset) iff $g(x) \equiv h(x) \bmod f(x)$.
- $\mathbb{Z}[x] /(f(x))$:
- $\mathbb{Z}[x] /(f(x))$ denotes the set of those classes (cosets).
- Each class has exactly one polynomial of degree $\leq n-1$.
- Thus, $\mathbb{Z}[x] /(f(x))$ may also be defined as the set of all polynomials of degree $\leq n-1$, i.e.,

$$
\mathbb{Z}[x] /(f(x))=\left\{a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}: a_{i} \in \mathbb{Z}\right\} .
$$

- Addition and multiplication in $\mathbb{Z}[x] /(f(x))$ are like regular polynomial addition and multiplication except that the result is reduced modulo $f(x)$.
- $\mathbb{Z}[x] /(f(x))$ is a commutative ring with identity.
- If $a(x)=a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ and

$$
b(x)=b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0} \text {, then }
$$

$$
a(x)+b(x)=\left(a_{n-1}+b_{n-1}\right) x^{n-1}+\cdots+\left(a_{1}+b_{1}\right) x+\left(a_{0}+b_{0}\right)
$$

- $\mathbb{Z}[\mathrm{x}] /(f(x)) \cong \mathbb{Z}^{n}$ as an additive group.
- The group $\mathbb{Z}[x] /(f(x))$ is isomorphic to the lattice \mathbb{Z}^{n}.
- $a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \leftrightarrow\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$.
- Define multiplication in \mathbb{Z}^{n} by way of multiplication in $\mathbb{Z}[x] /(f(x))$, and then we have multiplication in \mathbb{Z}^{n}.
- Each ideal in $\mathbb{Z}[x] /(f(x))$ defines a sublattice in \mathbb{Z}^{n}.
- Lattices corresponding to ideals are ideal lattices.

Rotation basis for principal ideal (v)

- Since $R=\mathbb{Z}[x] /(f(x)) \cong \mathbb{Z}^{n}$, we do not distinguish between ring elements in R and lattice points/vectors in \mathbb{Z}^{n}.
- Any ideal in R corresponds to a lattice in \mathbb{Z}^{n}.
- In particular, the ideal (\mathbf{v}) generated by $\mathbf{0} \neq \mathbf{v} \in R$ defines a lattice with basis $\mathbf{B}=\left[\mathbf{v}_{0}, \ldots, \mathbf{v}_{n-1}\right]$, where

$$
\mathbf{v}_{i}=\mathbf{v} \times x^{i} \bmod f(x) .
$$

- This basis is called the rotation basis for the ideal lattice (\mathbf{v}).
- Not every ideal has a rotation basis.

Examples

- $\operatorname{Ideal}(1)=R . \quad 1=\mathbf{e}_{1} . \quad$ Rotation basis $=\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{v}_{n}\right]$. Ideal lattice $=\mathbb{Z}^{n}$.
- Ideal $(2)=2 \times R=$ \{all polynomials in R with even coefficients $\}$. Rotation basis: $\left[2 \mathbf{e}_{1}, 2 \mathbf{e}_{2}, \ldots, 2 \mathbf{v}_{n}\right]$.
Corresponding lattice, $2 \mathbb{Z}^{n}=\left\{\begin{array}{l}\text { all lattice points in } \mathbb{Z}^{n} \\ \text { with even coordinates }\end{array}\right\}$.
- Q: Find the rotation basis of $(2+x)$ or $\left(2 \mathbf{e}_{1}+\mathbf{e}_{2}\right)$.
$\mathbb{Q}[x] /(f(x))$ and fractional ideals
- $\mathbb{Q}[x]$: the ring of polynomials with rational coefficients.
- $\mathbb{Q}[x] /(f(x))=\left\{a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}: a_{i} \in \mathbb{Q}\right\}$.
- If I is an ideal in $R=\mathbb{Z}[x] /(f(x))$, define I^{-1} as

$$
I^{-1} \triangleq\{\mathbf{v} \in \mathbb{Q}[x] /(f(x)): \mathbf{v} \times I \subseteq R\} \supseteq R .
$$

- I^{-1} is a fractional ideal. It behaves like an ideal of R except that it is not necessarily contained in R.
- $I I^{-1} \subseteq R . \quad I$ is said to be invertible if $I I^{-1}=R$.
- All invertible (fractional) ideals form a group with R as the identity.
$\mathbb{Q}[\mathrm{x}] /(f(x))$ and fractional ideals
- If $I=(\mathbf{v})$, then $I^{-1}=\left(\mathbf{v}^{-1}\right)$ is generated by $\mathbf{v}^{-1} \in \mathbb{Q}[x] /(f(x))$.
- \mathbf{v}^{-1} exists if $f(x)$ is irreducible.
- I^{-1} defines a lattice in \mathbb{R}^{n}, not necessarily in \mathbb{Z}^{n}.
- We have $(\operatorname{det} I) \cdot\left(\operatorname{det} I^{-1}\right)=1$.
- Recall: $\operatorname{det} I=\left|\operatorname{det} \mathbf{B}_{I}\right|=\operatorname{det}\left(L\left(\mathbf{B}_{I}\right)\right)=\operatorname{vol}\left(P\left(\mathbf{B}_{I}\right)\right)$, the volumn of the fundamental parallelepiped of the lattice defined by I.
- $\operatorname{det} I=$ the index $[R: I] \triangleq$ the number of elements in R / I.

Review

- Hermite nornal form (HNF):
- a basis which is skiny, skew, and will be used as a $p k$.
- Centered fundamental parallelepiped: $/ / \mathbf{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right] / /$

$$
P(\mathbf{B}) \triangleq\left\{\sum_{i=1}^{n} x_{i} \mathbf{b}_{i}: x_{i} \in[-1 / 2,1 / 2)\right\} .
$$

- $\mathbf{t} \bmod \mathbf{B} \triangleq$ the unique $\mathbf{t}^{\prime} \in P(\mathbf{B})$ with $\mathbf{t}-\mathbf{t}^{\prime} \in L(\mathbf{B})$.
- $\mathbf{t} \bmod \mathbf{B}$ can be efficiently computed as $\mathbf{t}-\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{t}\right\rceil$.
- $\lfloor x\rceil \triangleq x$ rounded to the nearest integer.
- $\|\mathbf{B}\| \triangleq \max \left\{\left\|\mathbf{b}_{i}\right\|: \mathbf{b}_{i} \in \mathbf{B}\right\}$.

Instantiating the ideal-based scheme using ideal lattices

From Micciancio's paper

Recall:

- To instantiate the (abstract) ideal-based encryption scheme using (ideal) lattices, we will do the following.
- Choose a polynomial $f(x)$ and let ring $R=\mathbb{Z}[x] /(f(x))$.
- Choose a vector \mathbf{s}, let ideal $I=(\mathbf{s})$, let $\mathbf{B}_{I}=$ the rotation basis.
- Plaintext space M : a subset of $P\left(\mathbf{B}_{I}\right)$.
- Samp: choose a range $\ell_{\text {Samp }}$ for Samp.
- Choose an ideal J and a good basis $\mathbf{B}_{J}^{\text {sk }}$. Let $\mathbf{B}_{J}^{p k}=\operatorname{HNF}\left(\mathbf{B}_{J}^{\text {sk }}\right)$.
- Our goal is to have $g(C)\left(X_{\text {Enc }}\right) \subseteq X_{\text {Dec }}$ for deep enough circuits C, including the decryption circuit D_{Σ}.

Balls: $B\left(r_{\text {Enc }}\right)$ and $B\left(r_{\text {Dec }}\right)$

- $X_{\text {Enc }} \triangleq \operatorname{Samp}\left(\mathbf{B}_{I}, M\right)$.
$X_{\text {Dec }} \triangleq R \bmod \mathbf{B}_{J}^{s k}=P\left(\mathbf{B}_{J}^{\text {sk }}\right)$.
- Define: $r_{\text {Enc }} \triangleq$ the smallest radius s.t. $X_{\text {Enc }} \subseteq B\left(r_{\text {Enc }}\right)$,

$$
r_{\text {Dec }} \triangleq \text { the largest radius s.t. } B\left(r_{\text {Dec }}\right) \subseteq X_{\text {Dec }} \text {. }
$$

- Theorem (a sufficient condition for permitted circuits):

A $\bmod \mathbf{B}_{I}$-circuit C (including the identity circuit) with $t \geq 1$ inputs is a permitted circuit for the schecme if:

$$
\forall x_{1}, \ldots, x_{t} \in B\left(r_{\text {Enc }}\right), g(C)\left(x_{1}, \ldots, x_{t}\right) \in B\left(r_{\text {Dec }}\right) .
$$

Expansion of vectors with operations

- Starting from $B:=B\left(r_{\text {Enc }}\right)$, how does B expand with addition and multiplication?
- $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$ for all $\mathbf{u}, \mathbf{v} \in R$ (triangle inequality).
- $\|\mathbf{u} \times \mathbf{v}\| \leq \gamma_{\text {Mult }}\|\mathbf{u}\| \cdot\|\mathbf{v}\|$ for all $\mathbf{u}, \mathbf{v} \in R$, where $\gamma_{\text {Mult }}$ is a factor dependent on R. Let $m=\gamma_{\text {Mult }}$.
- If input vectors are in $B(r)$, then after a m-fan-in addition or a 2-fan-in multiplication, the output vector is in $B\left(m r^{2}\right)$.
- By induction, if input vectors are in $B\left(r_{\text {Enc }}\right)$, then after k levels of m-fan-in addition and/or 2-fan-in multiplication, the result is in $B\left(m^{2^{k}-1} r_{\mathrm{Enc}}^{2^{k^{k}}}\right) \subseteq B\left(\left(m r_{\mathrm{Enc}}\right)^{2^{k}}\right)$.
- We will have $\left(m r_{\text {Enc }}\right)^{2^{k}} \leq r_{\text {Dec }}$ if $k \leq \log \log r_{\text {Dec }}-\log \log m r_{\text {Enc }}$.
- Theorem: The proposed scheme Σ correctly evaluates circuits of depth up to $\log \log r_{\text {Dec }}-\log \log \left(\gamma_{\text {Mult }} \cdot r_{\text {Enc }}\right)$.
- To maximize the depth of permitted circuits, we will attempt to minimize $r_{\text {Enc }}$ and $\gamma_{\text {Mult }}$ and maximize $r_{\text {Dec }}$ subject to security constraints.

Security constraints

- Roughly: the ratio $r_{\text {Dec }} / r_{\text {Enc }}$ must be \leq subexponential.
- Recall: the security of the abstract scheme relies on the hardness of ICP.
- In the setting of ideal lattices (where $\boldsymbol{\pi}^{\prime}$ is chosen to be shorter than $r_{\text {Enc }}$ and $\mathbf{t}:=\bmod \mathbf{B}_{J}^{p k}$), ICP becomes: Decide whether \mathbf{t} is within a small distance $\left(r_{\text {Enc }}\right)$ of lattice J, or is uniformly random modulo J.
- This is a decision version of BDDP, which is not surprising since the abstract scheme is a variant of GGH and the security of GGH relies on the hardness of BDDP.
- Roughly: the ratio $r_{\text {Dec }} / r_{\text {Enc }}$ must be \leq sub-exponential.
- If $r_{\text {Enc }}$ is too small, say $r_{\text {Enc }} \leq \lambda_{1}(J) / 2^{n}$, BDDP can be solved using, for example, the LLL algorithm.
- No algorithm is known to solve BDDP if $r_{\text {Enc }} \geq \lambda_{1}(J) / 2^{n^{c}}$, $c<1$.
- On the other hand, by definition, we have $r_{\text {Dec }} \leq \lambda_{1}(J)$.
- Thus, for BDDP to be hard, we require

$$
r_{\text {Dec }} / r_{\text {Enc }} \leq 2^{n^{c}}, \quad c<1 / / \text { sub-exponential// }
$$

- If we choose $r_{\text {Dec }}=2^{n^{q_{1}}}, \gamma_{\text {Mult }} \cdot r_{\text {Enc }}=2^{n^{c_{2}}}$, then the scheme can handle circuits of depth up to $\left(c_{1}-c_{2}\right) \log n$.

Minimizing $\gamma_{\text {Mult }}(R)$

- Goal: Set $f(x)$ so that $R=\mathbb{Z}[x] /(f(x))$ has a small $\gamma_{\text {Mult }}(R)$.
- To this end, we only have to choose $f(x)$ such that $f(x)$ and $g(x)$ have small norms, due to the following theorem.
- Theorem: If $f(x)$ is a monic polynomial of degree n then

$$
\gamma_{\text {Mult }}(R) \leq \sqrt{2 n} \cdot(1+2 n \cdot\|f\| \cdot\|g\|)
$$

where $g(x)=F(x)^{-1} \bmod x^{n-1} / /$ inverse in $\mathbb{Q}[x] /\left(x^{n-1}\right) / /$
$F(x)=x^{n} f(1 / x) \quad / /$ reversing the coefficients of $f(x) / /$
$\|p\|=\sqrt{\sum a_{i}^{2}}$ for $p(x)=a_{n} x^{n}+\cdots+a_{0} / /$ polynomial norm//

- Theorem: If $f(x)=x^{n}-h(x)$ where $h(x)$ has degree at most $n-(n-1) / k, k \geq 2$, then, for $R=\mathbb{Z}[x] /(f(x))$,

$$
\gamma_{\text {Mult }}(R) \leq \sqrt{2 n} \cdot\left(1+2 n(\sqrt{(k-1) n}\|f\|)^{k}\right) .
$$

- Theorem: Let $f(x)=x^{n} \pm 1$ and $R=\mathbb{Z}[x] /(f(x))$. Then,

$$
\gamma_{\text {Mult }}(R) \leq \sqrt{n} .
$$

- There are non-fatal attacks on hard problems over this ring.

Minimizing $r_{\text {Enc }}$

- Let $R=\mathbb{Z}[x] /(f(x))$ with $f(x)=x^{n}-1$ and so $\gamma_{\text {Mult }}(R) \leq \sqrt{n}$.
- Let $\mathbf{s} \in R$, and $I=(\mathbf{s})$ the ideal generated by \mathbf{s}, $\mathbf{B}_{I}=\left(\mathbf{s}_{0}, \ldots, \mathbf{s}_{n-1}\right)$ the rotation basis of $\mathbf{s},\left\|\mathbf{B}_{I}\right\|=\max \left\{\left\|\mathbf{s}_{i}\right\|\right\}$, $L\left(\mathbf{B}_{I}\right)$ the lattice generated by \mathbf{B}_{I},
$P\left(\mathbf{B}_{I}\right)$ the centered fundamental parallelepiped,
$M \subseteq P\left(\mathbf{B}_{I}\right)$ the message space, $\mathbf{x} \in M$ a message,
$\operatorname{Samp}\left(\mathbf{B}_{I}, \mathbf{x}\right):=\mathbf{x}+\operatorname{Samp}_{1}(R) \times \mathbf{s}$.
- We want $\operatorname{Samp}\left(\mathbf{B}_{I}, M\right) \triangleq X_{\text {Enc }} \subseteq B\left(r_{\text {Enc }}\right)$.
- Let $\ell_{\text {Samp }_{1}}$ be an upper bound on $\|\mathbf{r}\|, \mathbf{r} \leftarrow \operatorname{Samp}_{1}(R)$.
- Theorem: $r_{\text {Enc }} \leq n \cdot\left\|\mathbf{B}_{I}\right\|+\sqrt{n} \cdot \ell_{\text {Samp }_{1}} \cdot\left\|\mathbf{B}_{I}\right\|$.

Proof : $r_{\text {Enc }}=\max \left\{\|\mathbf{x}+\mathbf{r} \times \mathbf{s}\|: \mathbf{x} \in M, \mathbf{r} \leftarrow \operatorname{Samp}_{1}(R)\right\}$.
Since $\mathbf{x} \in M \subseteq P\left(\mathbf{B}_{I}\right) \Rightarrow\|\mathbf{x}\| \leq\left\|\sum_{i=0}^{n-1} \mathbf{s}_{i} / 2\right\| \leq n \cdot\left\|\mathbf{B}_{I}\right\|$

$$
\Rightarrow\|\mathbf{x}+\mathbf{r} \times \mathbf{s}\| \leq\|\mathbf{x}\|+\|\mathbf{r} \times \mathbf{s}\| \leq n \cdot\left\|\mathbf{B}_{I}\right\|+\sqrt{n} \cdot \ell_{\text {Samp }_{1}} \cdot\left\|\mathbf{B}_{I}\right\| .
$$

- May choose $\mathbf{s}=2 \mathbf{e}_{1}$ to make $\left\|\mathbf{B}_{I}\right\|$ small. Q: why not $\mathbf{s}=\mathbf{e}_{1}$?
- The size of $\ell_{\text {Samp }_{1}}$ is a security. It needs to be large enough to make $\mathbf{t} \leftarrow \operatorname{Samp}_{1}(R) \bmod \mathbf{B}_{J}^{p k}$ in ICP sufficiently random.
- May set $\ell_{\text {Samp }_{1}}=n$ and let Samp ${ }_{1}$ sample uniformly in $\mathbb{Z}^{n} \cap B(n)$.
- With this setting, $r_{\text {Enc }} \leq 2 n+2 n^{1.5}$.

Maximizing $r_{\text {Dec }}$

- Recall: the decryption equation: $\pi \leftarrow\left(\psi \bmod \mathbf{B}_{J}^{\text {sk }}\right) \bmod \mathbf{B}_{I}$.
- We want $B\left(r_{\text {Dec }}\right) \subseteq X_{\text {Dec }} \triangleq P\left(\mathbf{B}_{J}^{s k}\right)$.
- To have a large $r_{\text {Dec }}$, the shape of $P\left(\mathbf{B}_{J}^{\text {sk }}\right)$ is important. We want it to be "fat" (i.e. containing a large ball).
- The "fattest" parallelepiped is that associated with basis $t \cdot \mathbf{E}=\left(t \cdot \mathbf{e}_{1}, \ldots, t \cdot \mathbf{e}_{n}\right)$, containing a ball of radius t.
- So, we will choose our $\mathbf{B}_{J}^{s k}$ to be "close" to $t \cdot \mathbf{E}$.

Q: why not simply letting $\mathbf{B}_{J}^{s k}=\left(t \cdot \mathbf{e}_{1}, \ldots, t \cdot \mathbf{e}_{n}\right)$?

Theorem: Let $t \geq 4 n \cdot s \cdot \gamma_{\text {Mult }}(R)$. Suppose $\mathbf{v}_{1} \in t \cdot \mathbf{e}_{1}+B(s)$, i.e., within distance s of $t \cdot \mathbf{e}_{1}$. Let $\mathbf{B}_{J}^{s k}$ be the rotation basis of \mathbf{v}_{1}. Then, $P\left(\mathbf{B}_{J}^{\text {sk }}\right)$ circumscribes a ball of radius at least $t / 4$.
Proof: We have $\mathbf{B}_{J}^{s k}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$, with $\mathbf{v}_{i}=\mathbf{v}_{1} \times x^{i-1}$.
The difference $\mathbf{z}_{j}=\mathbf{v}_{j}-t \cdot \mathbf{e}_{j}$ has length
$\left\|\mathbf{z}_{j}\right\|=\left\|\mathbf{v}_{j}-t \cdot \mathbf{e}_{j}\right\|=\left\|\left(\mathbf{v}_{1}-t \cdot \mathbf{e}_{1}\right) \times x^{j-1}\right\| \leq s \cdot \gamma_{\text {Mult }}(R)$.
For every point a on the surface of $P\left(\mathbf{B}_{J}^{s k}\right)$, we have
$\mathbf{a}= \pm \frac{1}{2} \cdot \mathbf{v}_{i}+\sum_{j \neq i} a_{j} \mathbf{v}_{j}$ for some i and $\left|a_{j}\right| \leq 1 / 2$.
We will show $\|\mathbf{a}\| \geq t / 4$, from which the theorem will follow.
$\mathbf{a}= \pm \frac{1}{2} \cdot \mathbf{v}_{i}+\sum_{j \neq i} a_{j} \mathbf{v}_{j}, \quad\left|a_{j}\right| \leq 1 / 2$.
$\|\mathbf{a}\| \geq\left|\left\langle\mathbf{a}, \mathbf{e}_{i}\right\rangle\right| \geq\left|\frac{1}{2} \cdot\left\langle\mathbf{v}_{i}, \mathbf{e}_{i}\right\rangle+\sum_{j \neq i} a_{j}\left\langle\mathbf{v}_{j}, \mathbf{e}_{i}\right\rangle\right|$
$=\left|\frac{1}{2} \cdot t+\frac{1}{2} \cdot\left\langle\mathbf{z}_{i}, \mathbf{e}_{i}\right\rangle+\sum_{j \neq i} a_{j}\left\langle\mathbf{z}_{j}, \mathbf{e}_{i}\right\rangle\right|$
$\geq t / 2-\left|n\left\langle\mathbf{z}_{j}, \mathbf{e}_{i}\right\rangle\right| \geq t / 2-n\left\|\mathbf{z}_{j}\right\| \geq t / 2-n \cdot s \cdot \gamma_{\text {Mut }}(R)$
$\geq t / 2-t / 4 \geq t / 4$, where we have used
$\left\langle\mathbf{v}_{i}, \mathbf{e}_{i}\right\rangle=\left\langle\mathbf{z}_{i}+t \cdot \mathbf{e}_{i}, \mathbf{e}_{i}\right\rangle=t+\left\langle\mathbf{z}_{i}, \mathbf{e}_{i}\right\rangle$
$\left\langle\mathbf{v}_{j}, \mathbf{e}_{i}\right\rangle=\left\langle\mathbf{z}_{j}+t \cdot \mathbf{e}_{j}, \mathbf{e}_{i}\right\rangle=\left\langle\mathbf{z}_{j}, \mathbf{e}_{i}\right\rangle$

Generating $\mathbf{B}_{J}^{\text {sk }}$ and $\mathbf{B}_{J}^{\mathrm{pk}}$

- By the theorem, we may generate $\mathbf{B}_{J}^{s k}$ and $\mathbf{B}_{J}^{p k}$ as follows:
- Randomly generate a vector \mathbf{v} within distance s of $t \cdot \mathbf{e}_{1}$.
- Let $\mathbf{B}_{J}^{s k}$ be the rotation basis of \mathbf{v}.
- Let $\mathbf{B}_{J}^{p k}$ be the HNF of $\mathbf{B}_{J}^{s k}$.
- We have to choose $s, t, \ell_{\text {Samp }}$ to ensure that $r_{\text {Dec }} / r_{\text {Enc }}$ is sub-exponential.

An example instantiation of the abstract scheme

- Ring: $R=\mathbb{Z}[x] /(f(x)), f(x)=x^{n}-1, \gamma_{\text {Mult }} \leq \sqrt{n}$.
- Ideal: $I=(2)=2 \mathbb{Z}^{n} . \mathbf{B}_{I}=\left(2 \mathbf{e}_{1}, \ldots, 2 \mathbf{e}_{n}\right) . \quad r_{\text {Enc }} \leq 2 n+2 n^{3 / 2}$.
- Plaintext space: (a subset of) $\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in\{0,-1\}\right\}$.
- Samp $_{1}$: samples uniformly in $\mathbb{Z}^{n} \cap \mathcal{B}(n)$.
- $\operatorname{Samp}\left(\mathbf{B}_{I}, \boldsymbol{\pi}\right): \boldsymbol{\pi}+2 \mathbf{r}$ with $\mathbf{r} \leftarrow \operatorname{Samp}_{1}$.
- Ideal: J

How good is it?

- An improvement over previous work.
- Boneh-Goh-Nissim (2005):
- quadratic formulas with any number of monomials.
- plaintext space: $\log \lambda$ bits for security prameter λ.
- Gentry (2009):
- polynomials of degree $\log n$.
- plaintext space: larger.
- Not bootstrappable yet!

Why not bootstrappable?

- Decryption $\left.\left(\psi-\mathbf{B}_{J}^{\text {sk }} \cdot L\left(\mathbf{B}_{J}^{\text {sk }}\right)^{-1} \cdot \psi\right\rceil\right) \bmod \mathbf{B}_{I}$ involves adding n vectors.
- Adding $n k$-bit numbers in $[0,1)$ requires a constant fan-in boolean circuit of depth $\Omega(\log n+\log k)$:
- 3 -for-2: convert 3 numbers to 2 numbers with the same sum; this can be done with a circuit of constant depth, say depth c.
- It takes a circuit of depth $\approx c \log _{3 / 2} n$ to convert n numbers to 2 numbers with the same sum.
- It needs depth Ω ($\log k$) to add the final two numbers.
- The proposed scheme permits circuits of depth $O(\log n)$.

Tweak 1 to simplify the decryption circuit

- Tweak: Narrow the permitted circuits from $\mathcal{B}\left(r_{\text {Dec }}\right)$ ot $\mathcal{B}\left(r_{\text {Dec }} / 2\right)$.
- Purpose: To ensure that the ciphertexts vectors are closer to the lattice J than they strictly need to be, so that less precision is needed to ensure the correctness of decryption.
- Allowing the coefficients of $\left(\mathbf{B}_{J}^{\text {sk }}\right)^{-1} \cdot \psi$ to be very close to half-integrs (i.e., ψ very close to the sphere of $\left.B\left(r_{\text {Dec }}\right)\right)$ would require high precision (large k) to ensure correct rounding.
- Lemma: If ψ is a valid ciphertext after tweak 1 , i.e., $\|\psi\|<r_{\text {Dec }} / 2$, then each coefficient of $\left(\mathbf{B}_{J}^{\text {sk }}\right)^{-1} \cdot \psi$ is within $1 / 4$ of an integer.
- With Tweak 1, we can reduce the precision to $O(\log n)$ bits, and cut the the circuit depth of adding n numbers to $\Omega(\log n+\log \log n)=\Omega(\log n)$.
- The new maximum depth of permitted circuits is $\log \log \left(r_{\text {Dec }} / 2\right)-\log \log \left(\gamma_{\text {Mult }} \cdot r_{\text {Enc }}\right)$, almost the same as the original depth, which can be as large as $O(\log n)$.
- Unfortunately, the constant hidden in $\Omega(\log n)$ is >1, while that in $O(\log n)<1$. So, still not bootstrappable.

Tweak 2, optional, more technical, less essential

- Tweak: Modify Decrypt $(s k, \psi)$ from
$\left(\psi-\mathbf{B}_{J}^{\text {sk }} \cdot\left\lfloor\left(\mathbf{B}_{J}^{\mathrm{sk}}\right)^{-1} \cdot \psi\right\rceil\right) \bmod \mathbf{B}_{I} \Rightarrow\left(\psi-\left\lfloor\mathbf{v}_{J}^{\mathrm{sk}} \times \psi\right\rceil\right) \bmod \mathbf{B}_{I}$ for some vector $\mathbf{v}_{J}^{\text {sk }} \in J^{-1}$.
- Purpose: To reduce the secret key size (as well as public key size in bootstrapping) and per-gate computation in decryption (from matrix-vector mult to ring mult).
- To use this tweak, we will need to replace

$$
B\left(r_{\mathrm{Dec}}\right) \Rightarrow B\left(2 \cdot r_{\mathrm{Dec}} /\left(n^{1.5} \gamma_{\text {Mult }}{ }^{2}\left\|\mathbf{B}_{I}\right\|\right)\right)
$$

Decryption complexity of the tweaked scheme

- Decrypt $(s k, \psi): \pi \leftarrow\left(\psi-\left\lfloor\mathbf{v}_{J}^{\text {sk }} \times \psi\right\rceil\right) \bmod \mathbf{B}_{I}$
- If Tweak 2 is used, $\mathbf{B}_{J}^{\text {sk1 }}=\mathbf{I}$ and $\mathbf{B}_{J}^{\text {sk2 }}$ is some rotation matrix, otherwise, $\mathbf{B}_{J}^{\text {sk1 }}=\mathbf{B}_{J}^{\text {sk }}$ and $\mathbf{B}_{J}^{\text {sk2 }}=\left(\mathbf{B}_{J}^{\text {sk }}\right)^{-1}$.
- Split the computation of decryption into three steps:
- Step 1: Generate n vectors \mathbf{x}_{i} with $\operatorname{sum} \mathbf{B}_{J}^{\text {sk2 }} \cdot \psi$.
- Step 2: From the n vectors \mathbf{x}_{i}, generate integer vectors

$$
\left.\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}, \mathbf{y}_{n+1} \text { with sum } L \sum \mathbf{x}_{i}\right\rceil \text {. }
$$

- Step 3: Compute $\pi \leftarrow\left(\psi-\mathbf{B}_{J}^{\text {sk1 }} \cdot \sum \mathbf{y}_{i}\right) \bmod \mathbf{B}_{I}$.

Plaintext space

- As a somewhat homomorphic scheme, Gentry's scheme provides a large plaintext space, $R \bmod \mathbf{B}_{I}=P\left(\mathbf{B}_{I}\right)$.
- However, in order to make the scheme bootstrappable, Gentry has to limit the plaintext space to $\{0,1\} \bmod \mathbf{B}_{I}$.
- Evaluate evaluates $\bmod \mathbf{B}_{I}$-circuits. For bootstrapping, the decryption circuit must be composed of $\bmod \mathbf{B}_{I}$-gates.
- Ordinary boolean operations can be esaily emulated with $\bmod \mathbf{B}_{I}$ operations.

Decryption complexity of the tweaked scheme

- $\operatorname{Decrypt}(s k, \psi): \pi \leftarrow\left(\psi-\mathbf{B}_{J}^{\text {sk } 1} \cdot\left\lfloor\mathbf{B}_{J}^{\text {sk } 2} \cdot \psi\right\rceil\right) \bmod \mathbf{B}_{I}$
- If Tweak 2 is used, $\mathbf{B}_{J}^{\mathrm{sk} 1}=\mathbf{I}$ and $\mathbf{B}_{J}^{\mathrm{sk} 2}$ is some rotation matrix, otherwise, $\mathbf{B}_{J}^{\text {sk1 }}=\mathbf{B}_{J}^{\mathrm{sk}}$ and $\mathbf{B}_{J}^{\text {sk } 2}=\left(\mathbf{B}_{J}^{\mathrm{sk}}\right)^{-1}$.
- Split the computation of decryption into three steps:
- Step 1: Generate n vectors \mathbf{x}_{i} with $\sum \mathbf{x}_{i}=\mathbf{B}_{J}^{\text {sk2 }} \cdot \psi$.
- Step 2: From the n vectors \mathbf{x}_{i}, generate integer vectors

$$
\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}, \mathbf{y}_{n+1} \text { with } \sum \mathbf{y}_{i}=\left\lfloor\sum \mathbf{x}_{i}\right\rceil \text {. }
$$

- Step 3: Compute $\pi \leftarrow\left(\psi-\mathbf{B}_{J}^{\mathrm{sk1}} \cdot \sum \mathbf{y}_{i}\right) \bmod \mathbf{B}_{I}$.

Squashing the Decryption Circuit

Squashing

- A technique to lower the complexity of the decryption circuit, so as to make the encryption scheme bootstrapable.
- Basic idea is to split the decryption algorithm into two phases:
- computationally intensive, secret-key independent, by the encrypter.
- computationally lightweight, secret-key dependent, by the decrypter :
- Properties: Does not reduce the evaluation capacity (i.e., the set of permitted circuits remains the same), but may potentially weakens security.

Squashing: generic version

- \mathcal{E}^{*} : the original encryption scheme.
- \mathcal{E} : to be constructed from \mathcal{E}^{*} using two algorithms, SplitKey and ExpandCT.
- $\operatorname{KeyGen}(\lambda):\left(p k^{*}, s k^{*}\right) \leftarrow \operatorname{KeyGen}^{*}(\lambda)$

$$
(p k, s k) \leftarrow \operatorname{SplitKey}\left(p k^{*}, s k^{*}\right)
$$

where $s k$ is the (new) secret key and $p k:=\left(p k^{*}, \tau\right)$.

- $\operatorname{Encrypt}(p k, \pi): \psi^{*} \leftarrow \operatorname{Encrypt}{ }^{*}\left(p k^{*}, \pi\right)$ $x \leftarrow \operatorname{ExpandCT}\left(p k, \psi^{*}\right) / / h e a v y$ use of $\tau / /$ $\psi \leftarrow\left(\psi^{*}, x\right)$
- Decrypt $(s k, \psi)$: decrypts ψ^{*} making use of $s k^{*}$ and x. It is desired that $\operatorname{Decrypt}(s k, \psi)$ works whenever Decrypt* ${ }^{*}\left(s k^{*}, \psi^{*}\right)$ does.
- $\operatorname{Add}\left(p k, \psi_{1}, \psi_{2}\right):\left(\psi_{1}^{*}, \psi_{2}^{*}\right) \leftarrow$ extracted from $\left(\psi_{1}, \psi_{2}\right)$

$$
\begin{aligned}
& \psi^{*} \leftarrow \operatorname{Add}^{*}\left(p k^{*}, \psi_{1}^{*}, \psi_{2}^{*}\right) \\
& x \leftarrow \operatorname{ExpandCT}\left(p k, \psi^{*}\right) \\
& \psi \leftarrow\left(\psi^{*}, x\right)
\end{aligned}
$$

- $\operatorname{Mult}\left(p k, \psi_{1}, \psi_{2}\right)$: similar.

Squash: concrete scheme

- Let \boldsymbol{E}^{*} be the encryption scheme with Tweak 2. Let $\mathbf{v}_{J}^{s k^{*}}$ be the secret key, which is an element of the fractional ideal J^{-1}.
Recall the decryption equation:

$$
\pi:=\left(\psi^{*}-\left\lfloor\mathbf{v}_{J}^{s k^{*}} \times \psi^{*}\right\rceil\right) \bmod \mathbf{B}_{I}
$$

- Let $\mathbf{t}_{i} \in_{u} J^{-1} \bmod \mathbf{B}_{I}, i \in U$. //uniformly generate a set of $\mathbf{t}_{i} / /$
- Let $S \subset U$ be a sparse subset s.t. $\sum_{i \in S} \mathbf{t}_{i}=\mathbf{v}_{J}^{s k^{*}} \bmod \mathbf{B}_{I}$
- $\operatorname{SplitKey}\left(p k^{*}, s k^{*}\right)$:

$$
\tau:=\left\{\mathbf{t}_{i}\right\}_{i \in U} \cdot \quad p k:=\left(p k^{*}, \tau\right) . \quad \text { sk }:=S \text { (encoding of } S \text {). } 46
$$

- ExpandCT $\left(p k, \psi^{*}\right)$: //recall $p k=\left(p k^{*}, \tau\right) / /$
- Compute $\mathbf{c}_{i}:=\mathbf{t}_{i} \times \psi^{*} \bmod \mathbf{B}_{I}$ for $i \in U$.
- The expanded ciphertext is $\psi:=\left(\psi^{*},\left\{\mathbf{c}_{i}\right\}_{i \in U}\right)$.
- $\operatorname{Decrypt}(p k, \psi)$:
- Recall $\pi:=\left(\psi^{*}-\left\lfloor\mathbf{v}_{J}^{s k^{*}} \times \psi^{*}\right\rceil\right) \bmod \mathbf{B}_{I}$
- Recall $\mathbf{v}_{J}^{k^{*}} \equiv \sum_{i \in S} \mathbf{t}_{i} \bmod \mathbf{B}_{I}$.
- Thus, $\mathbf{v}_{J}^{s k^{*}} \times \psi^{*} \equiv \sum_{i \in S} \mathbf{t}_{i} \times \psi^{*} \equiv \sum_{i \in S} \mathbf{c}_{i} \bmod \mathbf{B}_{I}$.
- Thus, $\pi:=\left(\psi-\left\lfloor\sum_{i \in S} \mathbf{c}_{i}\right\rceil\right) \bmod \mathbf{B}_{I}$.

