Gentry's ideal-lattice based encryption scheme

Gentry's STOC'09 paper - Part III

From Micciancio's paper

Why ideal lattices

--- as opposed to just ideals or lattices?

- We described an ideal-based encryption scheme Σ .
- Recall $X_{\text{Enc}} \triangleq \text{Samp}(\mathbf{B}_I, P)$ and $X_{\text{Dec}} \triangleq R \mod \mathbf{B}_J^{sk}$.
- The scheme is correct for circuit *C* if

$$\forall x_1, ..., x_t \in X_{\text{Enc}}, g(C)(x_1, ..., x_t) \in X_{\text{Dec}}.$$

- For Σ to be correct as an ordinary encryption scheme, we require: $X_{\text{Enc}} \subseteq X_{\text{Dec}}$.
- For Σ to be additively and multiplicatively homomorphic, we require: $X_{\text{Enc}} + X_{\text{Enc}} \subseteq X_{\text{Dec}}$ and $X_{\text{Enc}} \times X_{\text{Enc}} \subseteq X_{\text{Dec}}$.

- Our goal is to have $g(C)(X_{Enc}) \subseteq X_{Dec}$ for deep enough circuits *C*, including the decryption circuit D_{Σ} .
- So, we want to analyze, for example, how $\left(\left(X_{\text{Enc}} + X_{\text{Enc}}\right) \times \left(X_{\text{Enc}} + X_{\text{Enc}}\right)\right) \times X_{\text{Enc}} \times X_{\text{Enc}} \cdots$ expand, and how to ensure $\left(\left(X_{\text{Enc}} + X_{\text{Enc}}\right) \times \left(X_{\text{Enc}} + X_{\text{Enc}}\right)\right) \times X_{\text{Enc}} \times X_{\text{Enc}} \cdots \subseteq X_{\text{Dec}}.$
- Connecting ideals with lattices makes such analysis possible, because, with R = Z[x]/(f(x)) ≅ Zⁿ, X_{Enc} and X_{Dec} become subsets of Zⁿ and we can analyze them geometrically.

Instantiate the ideal-based scheme

- To instantiate the (abstract) ideal-based encryption scheme using ideal lattices, we will do the following.
- Choose a polynomial f(x) with integer coefficients and let ring $R = \mathbb{Z}[x]/(f(x))$.
- Choose an element $\mathbf{s} \in R$, ideal $I = (\mathbf{s})$, \mathbf{B}_I = the rotation basis.
- Plaintext space M: a subset of $C(\mathbf{B}_I)$, centered parallelepiped.
- Samp: choose a range ℓ_{Samp} for Samp.
- Choose an ideal *J* and a good basis \mathbf{B}_{J}^{sk} . Let $\mathbf{B}_{J}^{pk} = \text{HNF}(\mathbf{B}_{J}^{sk})$.

Ideal Lattices

$\mathbb{Z}[x]/(f(x))$: a polynomial ring

- $\mathbb{Z}[x]$: the ring of all polynomials with integer coefficients.
- f(x): a monic polynomial of degree n in $\mathbb{Z}[x]$
 - Monic means the leading coefficient is 1
 - Often choose f(x) to be irreducible.
- (f(x)): the ideal generated by f(x).

•
$$(f(x)) = f(x) \cdot \mathbb{Z}[x] = \{f(x) \cdot g(x) : g(x) \in \mathbb{Z}[x]\}.$$

- $g(x) \equiv h(x) \mod f(x)$ iff g(x) h(x) is divisible by f(x).
- $\mathbb{Z}[x]$ is divided into classes (cosets) such that g(x) and h(x) are in the same class (coset) iff $g(x) \equiv h(x) \mod f(x)$.

- $\mathbb{Z}[x]/(f(x))$:
 - $\mathbb{Z}[x]/(f(x))$ denotes the set of those classes (cosets).
 - Each class has exactly one polynomial of degree $\leq n-1$.
 - Thus, $\mathbb{Z}[x]/(f(x))$ may also be defined as the set of all polynomials of degree $\leq n-1$, i.e., $\mathbb{Z}[x]/(f(x)) = \{a_{n-1}x^{n-1} + \dots + a_1x + a_0 : a_i \in \mathbb{Z}\}.$
 - Addition and multiplication in Z[x]/(f(x)) are like regular polynomial addition and multiplication except that the result is reduced modulo f(x).
 - $\mathbb{Z}[x]/(f(x))$ is a commutative ring with identity.

• If
$$a(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0$$
 and
 $b(x) = b_{n-1}x^{n-1} + \dots + b_1x + b_0$, then
 $a(x) + b(x) = (a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_1 + b_1)x + (a_0 + b_0).$

- $\mathbb{Z}[\mathbf{x}]/(f(\mathbf{x})) \cong \mathbb{Z}^n$ as an additive group.
 - The group $\mathbb{Z}[x]/(f(x))$ is isomorphic to the lattice \mathbb{Z}^n .

•
$$a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \leftrightarrow (a_0, a_1, \dots, a_{n-1}).$$

- Define multiplication in Zⁿ by way of multiplication
 in Z[x]/(f(x)), and then we have multiplication in Zⁿ.
- Each ideal in $\mathbb{Z}[\mathbf{x}]/(f(\mathbf{x}))$ defines a sublattice in \mathbb{Z}^n .
- Lattices corresponding to ideals are ideal lattices.

Rotation basis for principal ideal (v)

- Since $R = \mathbb{Z}[x]/(f(x)) \cong \mathbb{Z}^n$, we do not distinguish between ring elements in *R* and lattice points/vectors in \mathbb{Z}^n .
- Any ideal in *R* corresponds to a lattice in \mathbb{Z}^n .
- In particular, the ideal (**v**) generated by $\mathbf{0} \neq \mathbf{v} \in R$ defines a lattice with basis $\mathbf{B} = [\mathbf{v}_0, ..., \mathbf{v}_{n-1}]$, where $\mathbf{v}_i = \mathbf{v} \times x^i \mod f(x)$.
- This basis is called the rotation basis for the ideal lattice (\mathbf{v}) .
- Not every ideal has a rotation basis.

Examples

- Ideal (1) = R. $1 = \mathbf{e}_1$. Rotation basis $= [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{v}_n]$. Ideal lattice $= \mathbb{Z}^n$.
- Ideal $(2) = 2 \times R = \{ \text{all polynomials in } R \text{ with even coefficients} \}.$ Rotation basis: $[2\mathbf{e}_1, 2\mathbf{e}_2, ..., 2\mathbf{v}_n].$ Corresponding lattice, $2\mathbb{Z}^n = \{ \text{all lattice points in } \mathbb{Z}^n \}$ with even coordinates $\}.$
- Q: Find the rotation basis of (2+x) or $(2\mathbf{e}_1 + \mathbf{e}_2)$.

$\mathbb{Q}[x]/(f(x))$ and fractional ideals

• $\mathbb{Q}[x]$: the ring of polynomials with rational coefficients.

•
$$\mathbb{Q}[x]/(f(x)) = \{a_{n-1}x^{n-1} + \dots + a_1x + a_0 : a_i \in \mathbb{Q}\}.$$

- If *I* is an ideal in $R = \mathbb{Z}[x]/(f(x))$, define I^{-1} as $I^{-1} \triangleq \{ \mathbf{v} \in \mathbb{Q}[x]/(f(x)) : \mathbf{v} \times I \subseteq R \} \supseteq R.$
 - I^{-1} is a fractional ideal. It behaves like an ideal of *R* except that it is not necessarily contained in *R*.
 - $II^{-1} \subseteq R$. *I* is said to be invertible if $II^{-1} = R$.
- All invertible (fractional) ideals form a group with *R* as the identity.

$\mathbb{Q}[\mathbf{X}]/(f(x))$ and fractional ideals

- If $I = (\mathbf{v})$, then $I^{-1} = (\mathbf{v}^{-1})$ is generated by $\mathbf{v}^{-1} \in \mathbb{Q}[x]/(f(x))$.
 - \mathbf{v}^{-1} exists if f(x) is irreducible.
- I^{-1} defines a lattice in \mathbb{R}^n , not necessarily in \mathbb{Z}^n .
- We have $(\det I) \cdot (\det I^{-1}) = 1$.
- Recall: det $I = |\det \mathbf{B}_I| = \det (L(\mathbf{B}_I)) = \operatorname{vol}(P(\mathbf{B}_I))$, the volumn of the fundamental parallelepiped of the lattice defined by I.
- det I = the index $[R:I] \triangleq$ the number of elements in R/I.

Review

- Hermite nornal form (HNF):
 - a basis which is skiny, skew, and will be used as a *pk*.
- Centered fundamental parallelepiped: $//\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_n]//$ $P(\mathbf{B}) \triangleq \left\{ \sum_{i=1}^n x_i \mathbf{b}_i : x_i \in [-1/2, 1/2] \right\}.$
- $\mathbf{t} \mod \mathbf{B} \triangleq$ the unique $\mathbf{t}' \in P(\mathbf{B})$ with $\mathbf{t} \mathbf{t}' \in L(\mathbf{B})$.
- $\mathbf{t} \mod \mathbf{B}$ can be efficiently computed as $\mathbf{t} \mathbf{B} \cdot \lfloor \mathbf{B}^{-1} \cdot \mathbf{t} \rceil$.
- $\lfloor x \rceil \triangleq x$ rounded to the nearest integer.
- $\|\mathbf{B}\| \triangleq \max\{\|\mathbf{b}_i\| : \mathbf{b}_i \in \mathbf{B}\}.$

Instantiating the ideal-based scheme using ideal lattices

From Micciancio's paper

Recall:

- To instantiate the (abstract) ideal-based encryption scheme using (ideal) lattices, we will do the following.
- Choose a polynomial f(x) and let ring $R = \mathbb{Z}[x]/(f(x))$.
- Choose a vector **s**, let ideal $I = (\mathbf{s})$, let \mathbf{B}_I = the rotation basis.
- Plaintext space M: a subset of $P(\mathbf{B}_I)$.
- Samp: choose a range ℓ_{Samp} for Samp.
- Choose an ideal *J* and a good basis \mathbf{B}_{J}^{sk} . Let $\mathbf{B}_{J}^{pk} = \text{HNF}(\mathbf{B}_{J}^{sk})$.
- Our goal is to have $g(C)(X_{Enc}) \subseteq X_{Dec}$ for deep enough circuits *C*, including the decryption circuit D_{Σ} .

17

- Balls: $\mathcal{B}(\mathcal{F}_{Enc})$ and $\mathcal{B}(\mathcal{F}_{Dec})$
- $X_{\text{Enc}} \triangleq \operatorname{Samp}(\mathbf{B}_I, M).$

$$X_{\text{Dec}} \triangleq R \mod \mathbf{B}_J^{sk} = P(\mathbf{B}_J^{sk}).$$

- Define: $r_{\text{Enc}} \triangleq$ the smallest radius s.t. $X_{\text{Enc}} \subseteq \mathcal{B}(r_{\text{Enc}})$, $r_{\text{Dec}} \triangleq$ the largest radius s.t. $\mathcal{B}(r_{\text{Dec}}) \subseteq X_{\text{Dec}}$.
- Theorem (a sufficient condition for permitted circuits):

A mod \mathbf{B}_I -circuit *C* (including the identity circuit) with $t \ge 1$ inputs is a permitted circuit for the schecme if:

$$\forall x_1, \ldots, x_t \in \mathcal{B}(r_{\text{Enc}}), g(C)(x_1, \ldots, x_t) \in \mathcal{B}(r_{\text{Dec}}).$$

Expansion of vectors with operations

- Starting from $\mathcal{B} := \mathcal{B}(r_{Enc})$, how does \mathcal{B} expand with addition and multiplication?
- $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ for all $\mathbf{u}, \mathbf{v} \in R$ (triangle inequality).
- $\|\mathbf{u} \times \mathbf{v}\| \le \gamma_{\text{Mult}} \|\mathbf{u}\| \cdot \|\mathbf{v}\|$ for all $\mathbf{u}, \mathbf{v} \in R$, where γ_{Mult} is a factor dependent on *R*. Let $m = \gamma_{\text{Mult}}$.
- If input vectors are in $\mathcal{B}(r)$, then after a *m*-fan-in addition or a 2-fan-in multiplication, the output vector is in $\mathcal{B}(mr^2)$.

- By induction, if input vectors are in $\mathcal{B}(r_{Enc})$, then after k levels of *m*-fan-in addition and/or 2-fan-in multiplication, the result is in $\mathcal{B}(m^{2^k-1}r_{Enc}^{2^k}) \subseteq \mathcal{B}((mr_{Enc})^{2^k})$.
- We will have $(mr_{\text{Enc}})^{2^k} \le r_{\text{Dec}}$ if $k \le \log \log r_{\text{Dec}} \log \log mr_{\text{Enc}}$.
- Theorem: The proposed scheme Σ correctly evaluates circuits of depth up to $\log \log r_{\text{Dec}} \log \log (\gamma_{\text{Mult}} \cdot r_{\text{Enc}})$.
- To maximize the depth of permitted circuits, we will attempt to minimize r_{Enc} and γ_{Mult} and maximize r_{Dec} subject to security constraints.

Security constraints

- Roughly: the ratio $r_{\text{Dec}}/r_{\text{Enc}}$ must be \leq subexponential.
- Recall: the security of the abstract scheme relies on the hardness of ICP.
- In the setting of ideal lattices (where π' is chosen to be shorter than r_{Enc} and $\mathbf{t} := \mod \mathbf{B}_J^{pk}$), ICP becomes: Decide whether \mathbf{t} is within a small distance (r_{Enc}) of lattice J, or is uniformly random modulo J.
- This is a decision version of BDDP, which is not surprising since the abstract scheme is a variant of GGH and the security of GGH relies on the hardness of BDDP.

- Roughly: the ratio $r_{\text{Dec}}/r_{\text{Enc}}$ must be \leq sub-exponential.
- If r_{Enc} is too small, say $r_{\text{Enc}} \leq \lambda_1(J)/2^n$, BDDP can be solved using, for example, the LLL algorithm.
- No algorithm is known to solve BDDP if $r_{Enc} \ge \lambda_1(J)/2^{n^c}$, c < 1.
- On the other hand, by definition, we have $r_{\text{Dec}} \leq \lambda_1(J)$.
- Thus, for BDDP to be hard, we require

 $r_{\rm Dec}/r_{\rm Enc} \leq 2^{n^c}$, c < 1 //sub-exponential//

• If we choose $r_{\text{Dec}} = 2^{n^{c_1}}$, $\gamma_{\text{Mult}} \cdot r_{\text{Enc}} = 2^{n^{c_2}}$, then the scheme can handle circuits of depth up to $(c_1 - c_2) \log n$.

Minimizing $\gamma_{Mult}(R)$

- Goal: Set f(x) so that $R = \mathbb{Z}[x]/(f(x))$ has a small $\gamma_{\text{Mult}}(R)$.
- To this end, we only have to choose f(x) such that f(x) and g(x) have small norms, due to the following theorem.
- Theorem: If f(x) is a monic polynomial of degree *n* then $\gamma_{\text{Mult}}(R) \leq \sqrt{2n} \cdot (1 + 2n \cdot ||f|| \cdot ||g||),$ where $g(x) = F(x)^{-1} \mod x^{n-1}$ //inverse in $\mathbb{Q}[x]/(x^{n-1})//$ $F(x) = x^n f(1/x)$ //reversing the coefficients of f(x)// $||p|| = \sqrt{\sum a_i^2}$ for $p(x) = a_n x^n + \dots + a_0$ //polynomial norm//

- Theorem: If $f(x) = x^n h(x)$ where h(x) has degree at most n - (n-1)/k, $k \ge 2$, then, for $R = \mathbb{Z}[x]/(f(x))$, $\gamma_{\text{Mult}}(R) \le \sqrt{2n} \cdot \left(1 + 2n\left(\sqrt{(k-1)n} \|f\|\right)^k\right).$
- Theorem: Let $f(x) = x^n \pm 1$ and $R = \mathbb{Z}[x]/(f(x))$. Then, $\gamma_{\text{Mult}}(R) \le \sqrt{n}$.
- There are non-fatal attacks on hard problems over this ring.

Minimizing r_{Enc}

- Let $R = \mathbb{Z}[x]/(f(x))$ with $f(x) = x^n 1$ and so $\gamma_{\text{Mult}}(R) \le \sqrt{n}$.
- Let $s \in R$, and I = (s) the ideal generated by s,
 - $\mathbf{B}_{I} = (\mathbf{s}_{0}, ..., \mathbf{s}_{n-1}) \text{ the rotation basis of } \mathbf{s}, \|\mathbf{B}_{I}\| = \max\{\|\mathbf{s}_{i}\|\}, L(\mathbf{B}_{I}) \text{ the lattice generated by } \mathbf{B}_{I},$
 - $P(\mathbf{B}_{I})$ the centered fundamental parallelepiped,
 - $M \subseteq P(\mathbf{B}_I)$ the message space, $\mathbf{x} \in M$ a message, Samp $(\mathbf{B}_I, \mathbf{x}) := \mathbf{x} + \operatorname{Samp}_1(R) \times \mathbf{s}$.
- We want $\operatorname{Samp}(\mathbf{B}_I, M) \triangleq X_{\operatorname{Enc}} \subseteq \mathcal{B}(r_{\operatorname{Enc}}).$
- Let ℓ_{Samp_1} be an upper bound on $\|\mathbf{r}\|$, $\mathbf{r} \leftarrow \text{Samp}_1(R)$.

- Theorem: $r_{\text{Enc}} \leq n \cdot \|\mathbf{B}_I\| + \sqrt{n} \cdot \ell_{\text{Samp}_1} \cdot \|\mathbf{B}_I\|.$ Proof: $r_{\text{Enc}} = \max\{\|\mathbf{x} + \mathbf{r} \times \mathbf{s}\|: \mathbf{x} \in M, \mathbf{r} \leftarrow \text{Samp}_1(R)\}.$ Since $\mathbf{x} \in M \subseteq P(\mathbf{B}_I) \implies \|\mathbf{x}\| \leq \|\sum_{i=0}^{n-1} \mathbf{s}_i/2\| \leq n \cdot \|\mathbf{B}_I\|$ $\implies \|\mathbf{x} + \mathbf{r} \times \mathbf{s}\| \leq \|\mathbf{x}\| + \|\mathbf{r} \times \mathbf{s}\| \leq n \cdot \|\mathbf{B}_I\| + \sqrt{n} \cdot \ell_{\text{Samp}_1} \cdot \|\mathbf{B}_I\|.$
- May choose $\mathbf{s} = 2\mathbf{e}_1$ to make $\|\mathbf{B}_I\|$ small. Q: why not $\mathbf{s} = \mathbf{e}_1$?
- The size of ℓ_{Samp_1} is a security. It needs to be large enough to make $\mathbf{t} \leftarrow \text{Samp}_1(R) \mod \mathbf{B}_J^{pk}$ in ICP sufficiently random.
- May set $\ell_{\text{Samp}_1} = n$ and let Samp_1 sample uniformly in $\mathbb{Z}^n \cap \mathcal{B}(n)$.
- With this setting, $r_{\text{Enc}} \leq 2n + 2n^{1.5}$.

Maximizing r_{Dec}

• Recall: the decryption equation: $\pi \leftarrow (\psi \mod \mathbf{B}_J^{\mathrm{sk}}) \mod \mathbf{B}_I$.

• We want
$$\mathcal{B}(r_{\text{Dec}}) \subseteq X_{\text{Dec}} \triangleq P(\mathbf{B}_J^{sk}).$$

- To have a large \mathcal{F}_{Dec} , the shape of $P(\mathbf{B}_J^{sk})$ is important. We want it to be "fat" (i.e. containing a large ball).
- The "fattest" parallelepiped is that associated with basis $t \cdot \mathbf{E} = (t \cdot \mathbf{e}_1, \dots, t \cdot \mathbf{e}_n)$, containing a ball of radius *t*.
- So, we will choose our \mathbf{B}_{J}^{sk} to be "close" to $t \cdot \mathbf{E}$. Q: why not simply letting $\mathbf{B}_{J}^{sk} = (t \cdot \mathbf{e}_{1}, ..., t \cdot \mathbf{e}_{n})$?

• Theorem: Let $t \ge 4n \cdot s \cdot \gamma_{\text{Mult}}(R)$. Suppose $\mathbf{v}_1 \in t \cdot \mathbf{e}_1 + \mathcal{B}(s)$, i.e., within distance s of $t \cdot \mathbf{e}_1$. Let \mathbf{B}_I^{sk} be the rotation basis of \mathbf{v}_1 . Then, $P(\mathbf{B}_{I}^{sk})$ circumscribes a ball of radius at least t/4. **Proof:** We have $\mathbf{B}_{I}^{sk} = (\mathbf{v}_{1}, \ldots, \mathbf{v}_{n})$, with $\mathbf{v}_{i} = \mathbf{v}_{1} \times x^{i-1}$. The difference $\mathbf{z}_{i} = \mathbf{v}_{i} - t \cdot \mathbf{e}_{i}$ has length $\left\|\mathbf{z}_{i}\right\| = \left\|\mathbf{v}_{i} - t \cdot \mathbf{e}_{i}\right\| = \left\|\left(\mathbf{v}_{1} - t \cdot \mathbf{e}_{1}\right) \times x^{j-1}\right\| \leq s \cdot \gamma_{\text{Mult}}(R).$ For every point **a** on the surface of $P(\mathbf{B}_{I}^{sk})$, we have $\mathbf{a} = \pm \frac{1}{2} \cdot \mathbf{v}_i + \sum_{i=1}^{n} a_j \mathbf{v}_j$ for some *i* and $|a_j| \le 1/2$. We will show $\|\mathbf{a}\| \ge t/4$, from which the theorem will follow.

$$\begin{aligned} \mathbf{a} &= \pm \frac{1}{2} \cdot \mathbf{v}_{i} + \sum_{j \neq i} a_{j} \mathbf{v}_{j}, \ \left| a_{j} \right| \leq 1/2. \\ \| \mathbf{a} \| \geq \left| \left\langle \mathbf{a}, \mathbf{e}_{i} \right\rangle \right| \geq \left| \frac{1}{2} \cdot \left\langle \mathbf{v}_{i}, \mathbf{e}_{i} \right\rangle + \sum_{j \neq i} a_{j} \left\langle \mathbf{v}_{j}, \mathbf{e}_{i} \right\rangle \right| \\ &= \left| \frac{1}{2} \cdot t + \frac{1}{2} \cdot \left\langle \mathbf{z}_{i}, \mathbf{e}_{i} \right\rangle + \sum_{j \neq i} a_{j} \left\langle \mathbf{z}_{j}, \mathbf{e}_{i} \right\rangle \right| \\ &\geq t/2 - \left| n \left\langle \mathbf{z}_{j}, \mathbf{e}_{i} \right\rangle \right| \geq t/2 - n \left\| \mathbf{z}_{j} \right\| \geq t/2 - n \cdot s \cdot \gamma_{\text{Mult}}(R) \\ &\geq t/2 - t/4 \geq t/4, \text{ where we have used} \\ &\left\langle \mathbf{v}_{i}, \mathbf{e}_{i} \right\rangle = \left\langle \mathbf{z}_{i} + t \cdot \mathbf{e}_{i}, \mathbf{e}_{i} \right\rangle = t + \left\langle \mathbf{z}_{i}, \mathbf{e}_{i} \right\rangle \\ &\left\langle \mathbf{v}_{j}, \mathbf{e}_{i} \right\rangle = \left\langle \mathbf{z}_{j} + t \cdot \mathbf{e}_{j}, \mathbf{e}_{i} \right\rangle = \left\langle \mathbf{z}_{j}, \mathbf{e}_{i} \right\rangle \end{aligned}$$

Generating $\mathbf{B}_{J}^{\mathrm{sk}}$ and $\mathbf{B}_{J}^{\mathrm{pk}}$

- By the theorem, we may generate \mathbf{B}_{J}^{sk} and \mathbf{B}_{J}^{pk} as follows:
 - Randomly generate a vector **v** within distance *s* of $t \cdot \mathbf{e}_1$.
 - Let \mathbf{B}_J^{sk} be the rotation basis of **v**.
 - Let \mathbf{B}_{J}^{pk} be the HNF of \mathbf{B}_{J}^{sk} .
- We have to choose *s*, *t*, ℓ_{Samp} to ensure that $r_{\text{Dec}}/r_{\text{Enc}}$ is sub-exponential.

An example instantiation of the abstract scheme

- Ring: $R = \mathbb{Z}[x]/(f(x)), f(x) = x^n 1, \gamma_{\text{Mult}} \leq \sqrt{n}.$
- Ideal: $I = (2) = 2\mathbb{Z}^n$. $\mathbf{B}_I = (2\mathbf{e}_1, ..., 2\mathbf{e}_n)$. $r_{\text{Enc}} \le 2n + 2n^{3/2}$.
- Plaintext space: (a subset of) $\{(x_1, ..., x_n) : x_i \in \{0, -1\}\}$.
- Samp₁: samples uniformly in $\mathbb{Z}^n \cap \mathcal{B}(n)$.
- Samp($\mathbf{B}_I, \boldsymbol{\pi}$): $\boldsymbol{\pi} + 2\mathbf{r}$ with $\mathbf{r} \leftarrow \text{Samp}_1$.
- Ideal: J

How good is it?

- An improvement over previous work.
- Boneh-Goh-Nissim (2005):
 - quadratic formulas with any number of monomials.
 - plaintext space: $\log \lambda$ bits for security prameter λ .
- Gentry (2009):
 - polynomials of degree log *n*.
 - plaintext space: larger.
- Not bootstrappable yet!

Why not bootstrappable?

- Decryption $(\psi \mathbf{B}_J^{\mathrm{sk}} \cdot \lfloor (\mathbf{B}_J^{\mathrm{sk}})^{-1} \cdot \psi \rceil) \mod \mathbf{B}_I$ involves adding *n* vectors.
- Adding *n k*-bit numbers in [0,1) requires a constant fan-in boolean circuit of depth $\Omega(\log n + \log k)$:
 - 3-for-2: convert 3 numbers to 2 numbers with the same sum; this can be done with a circuit of constant depth, say depth *c*.
 - It takes a circuit of depth $\approx c \log_{3/2} n$ to convert *n* numbers to 2 numbers with the same sum.
 - It needs depth $\Omega(\log k)$ to add the final two numbers.
- The proposed scheme permits circuits of depth $O(\log n)$.

Tweak 1 to simplify the decryption circuit

- Tweak: Narrow the permitted circuits from $\mathcal{B}(r_{\text{Dec}})$ ot $\mathcal{B}(r_{\text{Dec}}/2)$.
- Purpose: To ensure that the ciphertexts vectors are closer to the lattice *J* than they strictly need to be, so that less precision is needed to ensure the correctness of decryption.
- Allowing the coefficients of $(\mathbf{B}_{J}^{\mathrm{sk}})^{-1} \cdot \psi$ to be very close to half-integrs (i.e., ψ very close to the sphere of $\mathcal{B}(r_{\mathrm{Dec}})$) would require high precision (large k) to ensure correct rounding.

- Lemma: If ψ is a valid ciphertext after tweak 1, i.e., $\|\psi\| < r_{\text{Dec}}/2$, then each coefficient of $(\mathbf{B}_J^{\text{sk}})^{-1} \cdot \psi$ is within 1/4 of an integer.
- With Tweak 1, we can reduce the precision to $O(\log n)$ bits, and cut the the circuit depth of adding *n* numbers to $\Omega(\log n + \log \log n) = \Omega(\log n).$
- The new maximum depth of permitted circuits is $\log \log (r_{\text{Dec}}/2) - \log \log (\gamma_{\text{Mult}} \cdot r_{\text{Enc}})$, almost the same as the original depth, which can be as large as $O(\log n)$.
- Unfortunately, the constant hidden in $\Omega(\log n)$ is >1, while that in $O(\log n) < 1$. So, still not bootstrappable.

Tweak 2, optional, more technical, less essential

• Tweak: Modify $\text{Decrypt}(sk, \psi)$ from

 $\left(\psi - \mathbf{B}_{J}^{\mathrm{sk}} \cdot \lfloor (\mathbf{B}_{J}^{\mathrm{sk}})^{-1} \cdot \psi \rceil\right) \mod \mathbf{B}_{I} \implies \left(\psi - \lfloor \mathbf{v}_{J}^{\mathrm{sk}} \times \psi \rceil\right) \mod \mathbf{B}_{I}$ for some vector $\mathbf{v}_{J}^{\mathrm{sk}} \in J^{-1}$.

- Purpose: To reduce the secret key size (as well as public key size in bootstrapping) and per-gate computation in decryption (from matrix-vector mult to ring mult).
- To use this tweak, we will need to replace

$$\boldsymbol{\mathcal{B}}(r_{\text{Dec}}) \implies \boldsymbol{\mathcal{B}}\left(2 \cdot r_{\text{Dec}} / (n^{1.5} \gamma_{\text{Mult}}^{2} \| \mathbf{B}_{I} \|)\right)$$

Decryption complexity of the tweaked scheme

- Decrypt (sk, ψ) : $\pi \leftarrow (\psi \lfloor \mathbf{v}_J^{sk} \times \psi \rceil) \mod \mathbf{B}_I$
 - If Tweak 2 is used, $\mathbf{B}_{J}^{\text{sk1}} = \mathbf{I}$ and $\mathbf{B}_{J}^{\text{sk2}}$ is some rotation matrix, otherwise, $\mathbf{B}_{J}^{\text{sk1}} = \mathbf{B}_{J}^{\text{sk}}$ and $\mathbf{B}_{J}^{\text{sk2}} = (\mathbf{B}_{J}^{\text{sk}})^{-1}$.
- Split the computation of decryption into three steps:
 - Step 1: Generate *n* vectors \mathbf{x}_i with sum $\mathbf{B}_J^{\mathrm{sk2}} \cdot \boldsymbol{\psi}$.
 - Step 2: From the *n* vectors **x**_i, generate integer vectors **y**₁, ..., **y**_n, **y**_{n+1} with sum ∑**x**_i].
 Step 3: Compute π ← (ψ − **B**_J^{sk1} · ∑**y**_i) mod **B**_I.

Plaintext space

- As a somewhat homomorphic scheme, Gentry's scheme provides a large plaintext space, $R \mod \mathbf{B}_I = P(\mathbf{B}_I)$.
- However, in order to make the scheme bootstrappable, Gentry has to limit the plaintext space to $\{0,1\} \mod \mathbf{B}_I$.
- Evaluate evaluates mod B₁-circuits. For bootstrapping, the decryption circuit must be composed of mod B₁-gates.
- Ordinary boolean operations can be esaily emulated with mod B₁ operations.

Decryption complexity of the tweaked scheme

- Decrypt (sk, ψ) : $\pi \leftarrow (\psi \mathbf{B}_J^{sk1} \cdot \lfloor \mathbf{B}_J^{sk2} \cdot \psi \rceil) \mod \mathbf{B}_I$
 - If Tweak 2 is used, $\mathbf{B}_{J}^{\text{sk1}} = \mathbf{I}$ and $\mathbf{B}_{J}^{\text{sk2}}$ is some rotation matrix, otherwise, $\mathbf{B}_{J}^{\text{sk1}} = \mathbf{B}_{J}^{\text{sk}}$ and $\mathbf{B}_{J}^{\text{sk2}} = (\mathbf{B}_{J}^{\text{sk}})^{-1}$.
- Split the computation of decryption into three steps:
 - Step 1: Generate *n* vectors \mathbf{x}_i with $\sum \mathbf{x}_i = \mathbf{B}_J^{\text{sk2}} \cdot \boldsymbol{\psi}$.
 - Step 2: From the *n* vectors \mathbf{x}_i , generate integer vectors $\mathbf{y}_1, \dots, \mathbf{y}_n, \mathbf{y}_{n+1}$ with $\sum \mathbf{y}_i = \lfloor \sum \mathbf{x}_i \rfloor$.
 - Step 3: Compute $\pi \leftarrow (\psi \mathbf{B}_J^{\mathrm{sk1}} \cdot \sum \mathbf{y}_i) \mod \mathbf{B}_I$.

Squashing the Decryption Circuit

Squashing

- A technique to lower the complexity of the decryption circuit, so as to make the encryption scheme bootstrapable.
- Basic idea is to split the decryption algorithm into two phases:
 - computationally intensive, secret-key independent, by the encrypter.
 - computationally lightweight, secret-key dependent, by the decrypter :
- Properties: Does not reduce the evaluation capacity (i.e., the set of permitted circuits remains the same), but may potentially weakens security.

Squashing: generic version

- \mathcal{E}^* : the original encryption scheme.
- \mathcal{E} : to be constructed from \mathcal{E}^* using two algorithms, SplitKey and ExpandCT.
- KeyGen(λ): $(pk^*, sk^*) \leftarrow$ KeyGen^{*}(λ) $(pk, sk) \leftarrow$ SplitKey (pk^*, sk^*) where *sk* is the (new) secret key and $pk := (pk^*, \tau)$.
- Encrypt(pk, π): $\psi^* \leftarrow \text{Encrypt}^*(pk^*, \pi)$ $x \leftarrow \text{ExpandCT}(pk, \psi^*)$ //heavy use of τ // $\psi \leftarrow (\psi^*, x)$

- Decrypt(sk, ψ): decrypts ψ^{*} making use of sk^{*} and x.
 It is desired that Decrypt(sk, ψ) works whenever
 Decrypt^{*}(sk^{*}, ψ^{*}) does.
- Add (pk, ψ_1, ψ_2) : $(\psi_1^*, \psi_2^*) \leftarrow \text{extracted from } (\psi_1, \psi_2)$ $\psi^* \leftarrow \text{Add}^*(pk^*, \psi_1^*, \psi_2^*)$ $x \leftarrow \text{ExpandCT}(pk, \psi^*)$ $\psi \leftarrow (\psi^*, x)$
- Mult (pk, ψ_1, ψ_2) : similar.

Squash: concrete scheme

• Let \mathcal{E}^* be the encryption scheme with Tweak 2. Let $\mathbf{v}_J^{sk^*}$ be the secret key, which is an element of the fractional ideal J^{-1} . Recall the decryption equation:

$$\pi := \left(\psi^* - \left\lfloor \mathbf{v}_J^{sk^*} \times \psi^* \right\rfloor \right) \mod \mathbf{B}_J$$

- Let $\mathbf{t}_i \in_{u} J^{-1} \mod \mathbf{B}_I$, $i \in U$. //uniformly generate a set of $\mathbf{t}_i //$
- Let $S \subset U$ be a sparse subset s.t. $\sum_{i \in S} \mathbf{t}_i = \mathbf{v}_J^{sk^*} \mod \mathbf{B}_I$
- SplitKey (pk^*, sk^*) :

 $\boldsymbol{\tau} := \left\{ \mathbf{t}_i \right\}_{i \in U} . \quad pk := (pk^*, \boldsymbol{\tau}). \quad sk := S \quad (\text{encoding of } S)._{46}$

- ExpandCT(pk, ψ^*): //recall $pk = (pk^*, \tau)//$
 - Compute $\mathbf{c}_i := \mathbf{t}_i \times \psi^* \mod \mathbf{B}_I$ for $i \in U$.
 - The expanded ciphertext is $\psi := (\psi^*, \{\mathbf{c}_i\}_{i \in U}).$
- Decrypt (pk, ψ) :

• Recall
$$\pi := \left(\psi^* - \left\lfloor \mathbf{v}_J^{sk^*} \times \psi^* \right\rfloor \right) \mod \mathbf{B}_I$$

• Recall
$$\mathbf{v}_J^{sk^*} \equiv \sum_{i \in S} \mathbf{t}_i \mod \mathbf{B}_I$$
.

• Thus,
$$\mathbf{v}_J^{sk^*} \times \boldsymbol{\psi}^* \equiv \sum_{i \in S} \mathbf{t}_i \times \boldsymbol{\psi}^* \equiv \sum_{i \in S} \mathbf{c}_i \mod \mathbf{B}_I$$
.
• Thus, $\pi := \left(\boldsymbol{\psi} - \left\lfloor \sum_{i \in S} \mathbf{c}_i \right\rceil \right) \mod \mathbf{B}_I$.