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  GGH:  Goldreich, Goldwasser, Halevi.

  Based on the hardness of ClosestVector Problem (CVP).

  Our discussion of GGH is variant by D. Mic

Gentry’s scheme is a GGH-like sche

ci

me. 

a

GGH cryptosystem
•

•

•

• ncio:
    "Improving lattice based cryptosystems using the 
     Hermite normal form," Cryptography and Lattices 2001.
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  The sceret key is  a "good" basis ,  ,   of a lattice .

     For computational purpose, assume .
1     The quantity min  is relatively large.
2

     We know:  ( ) min ;  
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     Thus, the orthogonalized centered parallelepiped ( )
       is , containing a ball of radius .

     Any point  with dist ,  can be corrected to
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tice point (using the nearest plane algorithm).



Source: Daniele Micciancio's paper, CaLC 2001 

A good basis and the corresponding correction  radius 
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  The public key is  a "bad" basis ,  ,   of .
     For example, HNF( ).
     Its orthogonalized parallelepiped, ( ),  is skiny.

1     min  is much smaller than .
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(BDDC) is hard (w/o knowing ) even if dist , .

     Denote by mod  the unique ( ) s.t.
        is congruent to  modulo  (i.e.,  or ).

     (Here we use ( ) as the representative 
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Source: Daniele Micciancio's paper, CaLC 2001 

HNF basis and corresponding orthogonalized parallelepiped 



  Encryption:  to encrypt a message ,
     Encode  as a vector , .
     mod .

  Decryption:  to decrypt a ciphertext ,
     Recover  from  by mod .
     Recov
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From Micciancio's paper 

Correcting small errors using the private basis 
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  If the encoding scheme is such that

 
               

    and if , < 2,  then GGH is additively
    homomorphic:
           GGH( ) GGH( ) GGH(

Is GGH homomorphic?
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  How to make it multiplicatively homomorphic?
      Genty's answer: use ideal lattices.
•




Ideals 

Gentry’s scheme uses ideal lattices, which are 
lattices corresponding to some ideals 



  A ring  is a set together with two binary operations + and 
    satisfying the following axioms:
     ( , ) is an abelian group.
      is associative: ( ) ( ) for all , , . 
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 Distributive laws hold:  ( ) ( ) ( ) and
       ( ) ( ) ( ).

  The ring  is commutative if .

  The ring  is said to have an identity if there is an element
    1  with 1 1

a b c a c b c
a b c a b a c

R a b b a

R
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  We will only be interested in communative rings with an identy.

a a R

•

∈



  An ideal  of a ring  is an additive subgroup of  s.t.
     for all .  (I.e., a subset  s.t.
     and  for all ,  ,  .)    

  Example:
     Consider the ring .  
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  For any integer ,  :  is an ideal.
     Conversely, any ideal  is equal to  for some .
     The mapping  :   is a bijective function from
       nonnegative integers ideals of .
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  The name  comes from  "ideal" numbideal ers.



[ ]

1
1 1 0
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  An  is a number  
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  For instance, 
an odd prime  can be expressed as  ( , ) 

    iff  1mod
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,  then  factors into ( )( )
      if  3mod 4,  then  cannot be factored.

  While  has the  property, 
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    prime factorizations: 6 2 3 1 5 1 5 .= ⋅ = + − − −
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  Eduard Kummer, inspired by the discovery of imaginary
    numbers, introduced .  

  For instance, in the example of 6 2 3 1 5 1 5 ,

ideal numbers

ideal prime nu    we ma mbersy define  ,  ,  ,  , p p p p

•

−• = ⋅ = + − −

1 2 3 4 1 3 2 4

1 2 3 4

which
    are subject to the rules:

    2,    3,    1 5,    1 5. 

  Then, 6 would have the unique prime factorization:
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laced by 

    that of , by Richard Dedekind.
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  Let ,   be ideals of the ring .

  :   :  ,  ,  
    which is the smallest ideal containing both  and .

  :   the set of all

Sum of ideals

Product o  ff ide in tals i

Operations on Ideals
I J R

I J a b a I b J
I J

I J

+

•

•

∈• + ∈

×





{ }

e sums of 
    the form  with ,  .  I.e., the smallest ideal
    containing :  ,  .   Th identy.

divid

us,  is the 

      iff .    Thus,  ( , ) .

    is a  

es gcd( , )

prime ideal if

a b a I b J
a b a I b J R

I J I IJ I J I J

I

J

× ∈ ∈

×

⊇ =• +

•

∈

=

∈

 , ,  or .

   Two ideal  and  are  if .relatively prime

a b R ab I a I b I

I J I J R

∀ ∈ ∈ ⇒ ∈ ∈

+ =•



1 1

  Let  be any subset of a ring . 

  Denote by ( ) the smallest ideal
the

 of  containing ,   
    called .  We have:

    ( ) :  

 ideal generated by 

,  ,
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  The ideal ( ) is  if  is finite, and
    is a  if  contains a 
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  Let  be an ideal of a ring . 

   is partitioned into  s.t. two elements ,   are
    in the same coset iff .   
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  The cosets form a ring , called the quotient ring.

  Choose an element from each coset as a ,
    then we hav
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Gentry’s Ideal-based Scheme 
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  Let  be an ideal of the ring ,  and  a basis of .

  : a system of representatives for  defined by .

  If  are two bases for the same ideal
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From Micciancio's paper 
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      Input:  a ring , a basis  of an ideal .  

      , IdealGen , .

      Public key  .    Secret key  .
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     plaintexts as ring elements.
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      Input:  a public key ; a composed of
        Add  and Mult  (and identity) gates; and ciphertexts 
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  Let  be a ring,  an ideal,  and  a basis.

  IdealGen: an algorithm that given ( , ) outputs

    two bases ,   of the same ideal . 
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