Fully homomorphic encryption scheme using ideal lattices

Gentry's STOC'09 paper - Part II

GGH cryptosystem

- Gentry’s scheme is a GGH-like scheme.
- GGH: Goldreich, Goldwasser, Halevi.
- Based on the hardness of ClosestVector Problem (CVP).
- Our discussion of GGH is variant by D. Micciancio: "Improving lattice based cryptosystems using the Hermite normal form," Cryptography and Lattices 2001.

Secret key

- The sceret key is a "good" basis $\mathbf{R}=\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right)$ of a lattice L.
- For computational purpose, assume $L \subset \mathbb{Z}^{n}$.
- The quantity $\rho_{\mathbf{R}}=\frac{1}{2} \min \left\|\mathbf{r}_{i}^{*}\right\|$ is relatively large.
- We know: $\lambda_{1}(L) \geq \min \left\|\mathbf{r}_{i}^{*}\right\|$; thus, $\lambda_{1}(L) \geq 2 \rho_{\mathbf{R}}$.
- Thus, the orthogonalized centered parallelepiped $C\left(\mathbf{R}^{*}\right)$ is fat, containing a ball of radius $\rho_{\mathbf{R}}$.
- Any point $\mathbf{t} \in \mathbb{Z}^{n}$ with $\operatorname{dist}(\mathbf{t}, L)<\rho_{\mathbf{R}}$ can be corrected to the closest lattice point (using the nearest plane algorithm).

A good basis and the corresponding correction radius

Source: Daniele Micciancio's paper, CaLC 2001

Public key

- The public key is a "bad" basis $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ of L.
- For example, $\mathbf{B}=\operatorname{HNF}(\mathbf{R})$.
- Its orthogonalized parallelepiped, $P\left(\mathbf{B}^{*}\right)$, is skiny.
- $\rho_{\mathbf{B}}=\frac{1}{2} \min \left\|\mathbf{b}_{i}^{*}\right\|$ is much smaller than $\rho_{\mathbf{R}}$.
- CVP (BDDC) is hard (w/o knowing \mathbf{R}) even if $\operatorname{dist}(\mathbf{t}, L)<\rho_{\mathbf{R}}$.
- Denote by $\mathbf{t} \bmod \mathbf{B}$ the unique $\mathbf{s} \in P\left(\mathbf{B}^{*}\right)$ s.t.
\mathbf{s} is congruent to \mathbf{t} modulo L (i.e., $\mathbf{s} \equiv_{L} \mathbf{t}$ or $\mathbf{t}-\mathbf{s} \in L$).
- (Here we use $P\left(\mathbf{B}^{*}\right)$ as the representative system of \mathbb{R}^{n} / L.)

HNF basis and corresponding orthogonalized parallelepiped

Source: Daniele Micciancio's paper, CaLC 2001

Encryption and Decryption

- Encryption: to encrypt a message m,
- Encode m as a vector $\mathbf{r},\|\mathbf{r}\|<\rho_{\mathbf{R}}$.
- $\mathbf{c} \leftarrow \mathbf{r} \bmod \mathbf{B}$.
- Decryption: to decrypt a ciphertext c,
- Recover \mathbf{r} from \mathbf{c} by $\mathbf{r} \leftarrow \mathbf{c} \bmod \mathbf{R}$.
- Recover m from \mathbf{r}.

Correcting small errors using the private basis
From Micciancio's paper

Is GGH homomorphic?

- If the encoding scheme is such that

$$
\left.\begin{array}{l}
m_{1} \rightarrow \mathbf{r}_{1} \\
m_{2} \rightarrow \mathbf{r}_{2}
\end{array}\right\} \Rightarrow m_{1}+m_{2} \rightarrow \mathbf{r}_{1}+\mathbf{r}_{2}
$$

and if $\left\|\mathbf{r}_{1}\right\|,\left\|\mathbf{r}_{2}\right\|<\rho_{\mathbf{R}} / 2$, then GGH is additively homomorphic:

$$
\mathrm{GGH}\left(m_{1}+m_{2}\right)=\mathrm{GGH}\left(m_{1}\right)+_{\bmod \mathbf{B}} \operatorname{GGH}\left(m_{2}\right)
$$

- How to make it multiplicatively homomorphic?
- Genty's answer: use ideal lattices.

Ideals

Gentry's scheme uses ideal lattices, which are lattices corresponding to some ideals

Rings

- A ring R is a set together with two binary operations + and \times satisfying the following axioms:
- $(R,+)$ is an abelian group.
- \times is associative: $(a \times b) \times c=a \times(b \times c)$ for all $a, b, c \in R$.
- Distributive laws hold: $(a+b) \times c=(a \times c)+(b \times c)$ and $a \times(b+c)=(a \times b)+(a \times c)$.
- The ring R is commutative if $a \times b=b \times a$.
- The ring R is said to have an identity if there is an element $1 \in R$ with $a \times 1=1 \times a=a$ for all $a \in R$.
- We will only be interested in communative rings with an identy.

Ideals

- An ideal I of a ring R is an additive subgroup of R s.t. $r \times I \subseteq I$ for all $r \in R$. (I.e., a subset $I \subseteq R$ s.t. $a-b \in I$ and $r \times a \in I$ for all $a, b \in I, r \in R$.)
- Example:
- Consider the ring \mathbb{Z}.
- For any integer $a, I_{a}=\{n a: n \in \mathbb{Z}\}$ is an ideal.
- Conversely, any ideal $I \subseteq \mathbb{Z}$ is equal to I_{a} for some $a \in \mathbb{Z}$.
- The mapping $f: a \mapsto I_{a}$ is a bijective function from $\{$ nonnegative integers $\} \rightarrow\{$ ideals of $\mathbb{Z}\}$.
- The name ideal comes from "ideal" numbers.

Some historical notes

- An algebraic integer is a number $x \in \mathbb{C}$ satisfying

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0 \text {, where } a_{i} \in \mathbb{Z} \text {. }
$$

- The set of all algebraic integers forms a ring.
- For any algebraic integer $\alpha, \mathbb{Z}[\alpha]$ denote the closure of $\mathbb{Z} \cup\{\alpha\}$ under,,$+- \times$.
- Example: $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$. Gaussian integers.
- $\mathbb{Z}[\alpha]$ resembles \mathbb{Z}, and many questions concerning \mathbb{Z} can be answered by considering $\mathbb{Z}[\alpha]$.
- For instance, Format's theorem on sums of two squares: an odd prime p can be expressed as $p=x^{2}+y^{2}(x, y \in \mathbb{Z})$ iff $p \equiv 1 \bmod 4$.
- This theorem can be proved by showing that in $\mathbb{Z}[i]$
- if $p \equiv 1 \bmod 4$, then p factors into $p=(a+b i)(a-b i)$
- if $p \equiv 3 \bmod 4$, then p cannot be factored.
- While \mathbb{Z} has the unique prime factorization property, $\mathbb{Z}[\alpha]$ in general doesn't. For instance, in $\mathbb{Z}[\sqrt{-5}]$, 6 has two prime factorizations: $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$.
- Eduard Kummer, inspired by the discovery of imaginary numbers, introduced ideal numbers.
- For instance, in the example of $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$, we may define ideal prime numbers $p_{1}, p_{2}, p_{3}, p_{4}$, which are subject to the rules:

$$
p_{1} p_{2}=2, \quad p_{3} p_{4}=3, \quad p_{1} p_{3}=1+\sqrt{-5}, \quad p_{2} p_{4}=1-\sqrt{-5} .
$$

- Then, 6 would have the unique prime factorization: $6=p_{1} p_{2} p_{3} p_{4}$.
- Kummer's concept of ideal numbers was later replaced by that of ideals, by Richard Dedekind.

Operations on Ideals

- Let I, J be ideals of the ring R.
- Sum of ideals: $I+J \triangleq\{a+b: a \in I, b \in J\}$, which is the smallest ideal containing both I and J.
- Product of ideals: $I \times J \triangleq$ the set of all finite sums of the form $a \times b$ with $a \in I, b \in J$. I.e., the smallest ideal containing $\{a \times b: a \in I, b \in J\}$. Thus, R is the identy.
- $\quad I$ divides J iff $I \supseteq J$. Thus, $\operatorname{gcd}(I, J)=(I, J)=I+J$.
- I is a prime ideal if $\forall a, b \in R, a b \in I \Rightarrow a \in I$ or $b \in I$.
- Two ideal I and J are relatively prime if $I+J=R$.

Generators and Bases of ideals

- Let B be any subset of a ring R.
- Denote by (B) the smallest ideal of R containing B, called the ideal generated by B. We have:

$$
(B)=\left\{r_{1} b_{1}+\cdots+r_{n} b_{n}: r_{i} \in R, b_{i} \in B, n \in \mathbb{Z}^{+}\right\}
$$

- The ideal $I=(B)$ is finitely generated if B is finite, and is a principal ideal if B contains a single element.
- $\quad B$ is a basis of $I=(B)$ if it is linearly independent.

Cosets

- Let I be an ideal of a ring R.
- R is partitioned into cosets s.t. two elements $a, b \in R$ are in the same coset iff $a-b \in I . \quad R=\bigcup_{a \in \mathcal{Z}}(I+a)$
- The coset containing a is $[a]_{I}=a+I=\{a+i: i \in I\}$.
- Define $[a]_{I}+[b]_{I}=[a+b]_{I}$ and $[a]_{I} \times[b]_{I}=[a \times b]_{I}$.
- The cosets form a ring R / I, called the quotient ring.
- Choose an element from each coset as a representative, then we have a system of representatives for R / I.
For $x \in R$, denote by $x \bmod I$ the element representing $[x]_{I}$.

Gentry’s Ideal-based Scheme

Notations

- Let I be an ideal of the ring R, and \mathbf{B}_{I} a basis of I.
- $R \bmod \mathbf{B}_{I}$: a system of representatives for R / I defined by \mathbf{B}_{I}.
- If $\mathbf{B}_{1} \neq \mathbf{B}_{2}$ are two bases for the same ideal, we have in general $\mathbf{x} \bmod \mathbf{B}_{1} \neq \mathbf{x} \bmod \mathbf{B}_{2}$ (not necessarily equal).
- $\operatorname{Samp}\left(\mathbf{x}, \mathbf{B}_{I}\right)$: samples the coset $\mathbf{x}+I$ according to some probability distribution.
- C : a circuit whose gates perform + and \times operations $\bmod \mathbf{B}_{I}$.
- $g(C)$: generalized C, the same as C but without $\bmod \mathbf{B}_{I}$.
- $C_{\mathbf{B}_{J}}$: same as C, but gates perform $\bmod \mathbf{B}_{J}$ operations instead.

From Micciancio's paper

Σ : an ideal-based encryption scheme

- $\operatorname{KeyGen}\left(R, \mathbf{B}_{I}\right)$:
- Input: a ring R, a basis \mathbf{B}_{I} of an ideal I.
- $\left(\mathbf{B}_{J}^{\mathrm{sk}}, \mathbf{B}_{J}^{\mathrm{pk}}\right) \leftarrow_{\mathrm{R}} \operatorname{IdealGen}\left(R, \mathbf{B}_{I}\right)$.
- Public key $p k:=\mathbf{B}_{J}^{\mathrm{pk}}$. Secret key $s k:=\mathbf{B}_{J}^{\mathrm{sk}}$.
- Parameters: (R, \mathbf{B}_{I}, Samp $)$, which are public info.
- Plaintext space P := (a subset of) $R \bmod \mathbf{B}_{I}$
- Remarks: As in GGH, $\mathbf{B}_{J}^{\text {sk }}$ is a good (fat) basis and $\mathbf{B}_{J}^{\mathrm{pk}}$ a bad (skiny) one. The ideal I is used to encode plaintexts as ring elements.
- $\operatorname{Encrypt}(p k, \pi): / / \pi \in P / /$

$$
\begin{aligned}
& \pi^{\prime} \leftarrow \operatorname{Samp}\left(\pi, \mathbf{B}_{I}\right) \quad / / \text { an element in coset } \pi+I / / \\
& \psi \leftarrow \pi^{\prime} \bmod \mathbf{B}_{J}^{\mathrm{pk}} \quad / / \text { the ciphertext // }
\end{aligned}
$$

- Decrypt $(s k, \psi)$:

$$
\pi \leftarrow\left(\psi \bmod \mathbf{B}_{J}^{\mathrm{sk}}\right) \bmod \mathbf{B}_{I}
$$

- Remarks:
- π is encoded as a random element π^{\prime} in the same coset.
- π^{\prime} is then encrypted as in GGH.
- Decryption is correct if $\pi^{\prime} \in R \bmod \mathbf{B}_{J}^{\mathrm{sk}}$.
- Evaluate $(p k, C, \Psi)$:
- Input: a public key $p k$; a $\bmod \mathbf{B}_{I}$ circuit C composed of $\operatorname{Add}_{\mathbf{B}_{I}}$ and Mult $_{\mathbf{B}_{I}}$ (and identity) gates; and ciphertexts $\Psi=\left(\psi_{1}, \ldots, \psi_{t}\right)$, where $\psi_{i}=\operatorname{Encrypt}\left(p k, \pi_{i}\right), \pi_{i} \in P$.
- Output: $\psi:=g(C)(\Psi) \bmod \mathbf{B}_{J}^{p k} . / /=g(C)\left(\Pi^{\prime}\right) \bmod \mathbf{B}_{J}^{p k} / /$
- Remarks:
- Evaluate $\left(p k, \operatorname{Add}_{\mathbf{B}_{I}}, \psi_{1}, \psi_{2}\right)$: outputs $\psi_{1}+\psi_{2} \bmod \mathbf{B}_{J}^{p k}$.
- Evaluate $\left(p k, \operatorname{Mult}_{\mathbf{B}_{I}}, \psi_{1}, \psi_{2}\right)$: outputs $\psi_{1} \times \psi_{2} \bmod \mathbf{B}_{J}^{p k}$.
- Evaluate circuit C by evaluating its gates in a proper order.

Correctness: informal

- Evaluating C yields:

$$
\psi:=C_{\mathbf{B}_{J}^{p k}}(\Psi)=g(C)(\Psi) \bmod \mathbf{B}_{J}^{p k}=g(C)\left(\Pi^{\prime}\right) \bmod \mathbf{B}_{J}^{p k}
$$

where $\Pi=\left(\pi_{1}, \ldots, \pi_{t}\right) \xrightarrow{\text { encode }} \Pi^{\prime}=\left(\pi_{1}^{\prime}, \ldots, \pi_{t}^{\prime}\right)$

$$
\xrightarrow{\bmod B_{I}^{p k}} \Psi=\left(\psi_{1}, \ldots, \psi_{t}\right) .
$$

- Decrypting ψ will yield: $\pi:=\left(\psi \bmod \mathbf{B}_{J}^{\text {sk }}\right) \bmod \mathbf{B}_{I}$.
- Correct if $g(C)\left(\Pi^{\prime}\right) \in R \bmod \mathbf{B}_{J}^{\text {sk }}$.
- Thus, if we restrict $\pi_{1}^{\prime}, \ldots, \pi^{\prime}$ to be in certain region, the scheme will be homomorphic for circuits C for which $g(C)\left(\Pi^{\prime}\right) \in R \bmod \mathbf{B}_{J}^{\text {sk }}$.

Correctness of the ideal-based scheme Σ

- Let $X_{\text {Enc }} \triangleq \operatorname{Samp}\left(\mathbf{B}_{I}, M\right)$ and $X_{\text {Dec }} \triangleq R \bmod \mathbf{B}_{J}^{p k}$.
- A $\bmod \mathbf{B}_{I}$ circuit C (including the identity circuit) with $t \geq 1$ inputs is a permitted circuit w.r.t. the scheme if:

$$
\forall x_{1}, \ldots, x_{t} \in X_{\text {Enc }}, g(C)\left(x_{1}, \ldots, x_{t}\right) \in X_{\text {Dec }} .
$$

- Theorem: If C_{Σ} is a set of permitted circuits containing the identity circuit, then the scheme is correct for C_{Σ}.
- I.e., algorithm Decrypt correctly decrypts valid ciphertexts:
$C(\Pi)=\operatorname{Decrypt}(s k, \operatorname{Evaluate}(p k, C, \Psi))$,
where $C \in C_{\Sigma}$ and $\Psi \leftarrow \operatorname{Encrypt}(s k, \Pi)$.
- Valid ciphertexts: outputs of Evaluate $(p k, C, \Psi), C \in C_{\Sigma}$.

coset $\pi+I$

Encrypt: $\pi \xrightarrow{\operatorname{Samp}\left(\mathbf{B}_{I}, \pi\right)} \pi^{\prime} \xrightarrow{\bmod \mathbf{B}_{J}^{\mathrm{pk}}} \psi$
Decrypt: $\pi \stackrel{\bmod \mathbf{B}_{I}}{\longleftarrow} \psi^{\prime} \stackrel{\bmod \mathbf{B}_{J}^{\text {sk }}}{\longleftarrow} \psi$
It works if $\pi^{\prime}=\psi^{\prime}$, i.e. if $\pi^{\prime} \in R \bmod \mathbf{B}_{J}^{\text {sk }}$.

Q: Is $C(\Pi)=\operatorname{Decrypt}\left(s k, C_{\mathbf{B}_{J}^{p k}}(\Psi)\right) \triangleq\left(C_{\mathbf{B}_{J}^{p k}}(\Psi) \bmod \mathbf{B}_{J}^{s k}\right) \bmod \mathbf{B}_{I}$?

$$
\begin{aligned}
C(\Pi)=\quad g(C)\left(\Pi^{\prime}\right) \bmod \mathbf{B}_{I} & \\
g(C)\left(\Pi^{\prime}\right) \bmod \mathbf{B}_{J}^{p k} & =C_{\mathbf{B}_{J k}}(\Psi) \\
g(C)\left(\Pi^{\prime}\right) \bmod \mathbf{B}_{J}^{s k} & =C_{\mathbf{B}_{J}^{p k}}(\Psi) \bmod \mathbf{B}_{J}^{s k}
\end{aligned}
$$

$$
\left(g(C)\left(\Pi^{\prime}\right) \bmod \mathbf{B}_{J}^{s k}\right) \bmod \mathbf{B}_{I}=\left(C_{\mathbf{B}_{J}^{p k}}(\Psi) \bmod \mathbf{B}_{J}^{s k}\right) \bmod \mathbf{B}_{I}
$$

Yes, if $g(C)\left(\Pi^{\prime}\right)=g(C)\left(\Pi^{\prime}\right) \bmod \mathbf{B}_{J}^{s k}$, i.e., $g(C)\left(\Pi^{\prime}\right) \in R \bmod \mathbf{B}_{J}^{s k}$.

Security of the ideal-based scheme

Ideal Coset Problem (ICP)

- Let R be a ring, I an ideal, and \mathbf{B}_{I} a basis.
- IdealGen: an algorithm that given $\left(R, \mathbf{B}_{I}\right)$ outputs two bases $\mathbf{B}_{J}^{\mathrm{sk}}, \mathbf{B}_{J}^{\mathrm{pk}}$ of the same ideal J.
- Samp $_{1}$: a random algorithm that samples R (non-uniformly).
- Ideal Coset Problem: Fix R, \mathbf{B}_{I}, IdealGen, Samp ${ }_{1}$.
- Challenger: $\left(\mathbf{B}_{J}^{\text {sk }}, \mathbf{B}_{J}^{\mathrm{pk}}\right) \leftarrow_{\mathrm{R}} \operatorname{IdealGen}\left(R, \mathbf{B}_{I}\right) . b \leftarrow_{\mathrm{u}}\{0,1\}$.

If $b=0$, then $\mathbf{r} \leftarrow_{\mathrm{R}} \operatorname{Samp}_{1}(R), \mathbf{t} \leftarrow \mathbf{r} \bmod \mathbf{B}_{J}^{\mathrm{pk}}$.
If $b=1$, then $\mathbf{t} \leftarrow_{\text {uniformly }} R \bmod \mathbf{B}_{J}^{\mathrm{pk}}$.

- Adversary: given \mathbf{t} and $\mathbf{B}_{J}^{\mathrm{pk}}$, determine if $b=0$ or 1 .
- Essentially, the problem is to to distinguish between:
- $b=0$: a coset $[\mathbf{t}]_{J}$ is chosen according to some "Samp ${ }_{1}$ ".
- $b=1$: a coset $[\mathbf{t}]_{J}$ is chosen uniformly randomly.
- The hardness of ICP depends on Samp ${ }_{1}$.
- How does ICP connect to Gentry's encryption scheme Σ ?
- A ciphertext is essentially a coset $\left[\pi^{\prime}\right]_{J}$ chosen by Samp.
- Σ is semantically secure if the ciphertext is random-like.
- ICP is hard if coset $[\mathbf{t}]_{J}$, chosen by Samp ${ }_{1}$ is random-like.
- Will show ICP \leq distinguishing ciphertexts of scheme Σ.
- Will use Samp ${ }_{1}$ to define Samp.

Connect Samp to Samp ${ }_{1}$

- $\mathbf{r} \leftarrow \operatorname{Samp}_{1}(R)$ samples an element in ring R.
- $\mathbf{x}^{\prime} \leftarrow \operatorname{Samp}\left(\mathbf{x}, \mathbf{B}_{I}\right)$ samples an element in coset $[\mathbf{x}]_{I}$.
- Wanted:

$$
\mathbf{r} \text { random } \Rightarrow \mathbf{x}^{\prime} \text { random }
$$

- Let $I=(\mathbf{s})=R \times \mathbf{s}$ be a principal ideal generated by \mathbf{s}.

Then, $[\mathbf{x}]_{I}=\mathbf{x}+R \times \mathbf{s}$.

- Let $\operatorname{Samp}\left(\mathbf{x}, \mathbf{B}_{I}\right) \triangleq \mathbf{x}+\operatorname{Samp}_{1}(R) \times \mathbf{s}$.

Security of the ideal-based scheme Σ

- The Ideal Coset Problem is to distinguish between
- $\mathbf{t} \leftarrow \operatorname{Samp}_{1}(R) \bmod \mathbf{B}_{J}^{p k}$
- $\mathbf{t} \leftarrow \operatorname{uniform}\left(R \bmod \mathbf{B}_{J}^{p k}\right)$.
- $\operatorname{Encrypt}(p k, \boldsymbol{\pi})$:
$\psi \leftarrow \operatorname{Samp}\left(\pi, \mathbf{B}_{I}\right) \bmod \mathbf{B}_{J}^{\mathrm{pk}}$

$$
\left(\boldsymbol{\pi}+\operatorname{Samp}_{1}(R) \times \mathbf{s}\right) \bmod \mathbf{B}_{J}^{\mathrm{pk}}
$$

where $I=(\mathbf{s})=R \times \mathbf{s}$ is a principal ideal generated by \mathbf{s}.

Theorem: If there is an algorithm A that breaks the semantic security of Σ with advantage ε when it uses Samp, then there is an algorithm B, running in about the same time as A, that solves the ICP with advantage $\varepsilon / 2$.

Proof: The challenger of ICP sends B an instance ($\left.\mathbf{t}, \mathbf{B}_{J}^{p k}\right)$.
B chooses an ideal $I=(\mathbf{s})$ relatively prime to J and sets up the other parameters of Σ. We have two games:
(1) the ICP game between Challenger and B (adversary), and
(2) the Σ game between B (challenger) and A (adversary).

They run as follows.

Challenger

$$
b:={ }_{\mathrm{u}}\{0,1\}
$$

$$
\stackrel{b^{\prime}}{\longleftrightarrow}:=\beta \oplus \beta^{\prime}
$$

$$
\beta:={ }_{u}\{0,1\}
$$

where if $b=0, \mathbf{t} \leftarrow \operatorname{Samp}_{1}(R) \bmod \mathbf{B}_{J}^{p k}$; else, $\mathbf{t} \leftarrow_{\mathrm{u}} R \bmod \mathbf{B}_{J}^{p k}$; and $\boldsymbol{\psi}_{\beta} \leftarrow \underbrace{\left(\boldsymbol{\pi}_{\beta}+\mathbf{t} \times \mathbf{s}\right)}_{\boldsymbol{\pi}_{\beta}^{\prime} \in \boldsymbol{\pi}_{\beta}+I} \bmod \mathbf{B}_{J}^{p k}$.

- If $b=0, \mathbf{t} \leftarrow \operatorname{Samp}_{1}(R) \bmod \mathbf{B}_{J}^{p k}$ and $\boldsymbol{\psi}_{\beta}=\left(\boldsymbol{\pi}_{\beta}+\mathbf{t} \times \mathbf{s}\right) \bmod \mathbf{B}_{J}^{p k}$
$=\underbrace{\left(\boldsymbol{\pi}_{\beta}+\operatorname{Samp}_{1}(R) \times \mathbf{s}\right)}_{\boldsymbol{\pi}_{\beta}^{\prime} \leftarrow \operatorname{Samp}\left(\boldsymbol{\pi}_{\beta}, \mathbf{B}_{t}\right)} \bmod \mathbf{B}_{J}^{p k}=\operatorname{Encrypt}\left(\mathbf{B}_{J}^{p k}, \boldsymbol{\pi}_{\beta}\right)$.
$\operatorname{Pr}\left[b=b^{\prime} \mid b=0\right]=\operatorname{Pr}\left[\beta=\beta^{\prime} \mid b=0\right]=1 / 2+\varepsilon$.
- If $b=1, \mathbf{t} \leftarrow_{\text {uniform }} R \bmod \mathbf{B}_{J}^{p k}$, so $\boldsymbol{\psi}_{\beta}=\left(\boldsymbol{\pi}_{\beta}+\mathbf{t} \times \mathbf{s}\right) \bmod \mathbf{B}_{J}^{p k}$
is unformly random (for $I=(\mathbf{s})$ is relatively prime to $J \Rightarrow$
\mathbf{s}^{-1} exists $\Rightarrow \mathbf{t} \mapsto \boldsymbol{\pi}_{\beta}+\mathbf{t} \times \mathbf{s}$ bijective $\Rightarrow \boldsymbol{\pi}_{\beta}+\mathbf{t} \times \mathbf{s}$ uniform.)
$\operatorname{Pr}\left[b=b^{\prime} \mid b=1\right]=\operatorname{Pr}\left[\beta \neq \beta^{\prime} \mid b=1\right]=1 / 2$.
- Thus, B has advantage $\varepsilon / 2$.

