Fully homomorphic encryption scheme using ideal lattices

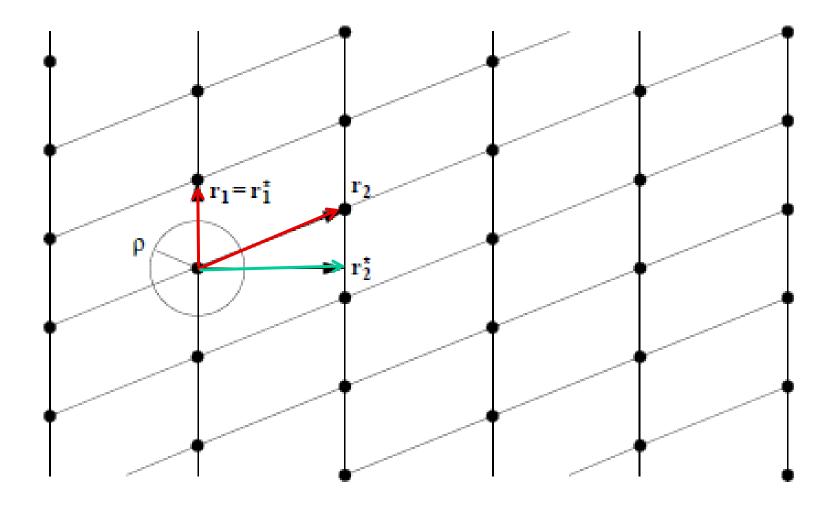
Gentry's STOC'09 paper - Part II

GGH cryptosystem

- Gentry's scheme is a GGH-like scheme.
- GGH: Goldreich, Goldwasser, Halevi.
- Based on the hardness of ClosestVector Problem (CVP).
- Our discussion of GGH is variant by D. Micciancio: "Improving lattice based cryptosystems using the Hermite normal form," Cryptography and Lattices 2001.

Secret key

- The sceret key is a "good" basis $\mathbf{R} = (\mathbf{r}_1, \dots, \mathbf{r}_n)$ of a lattice *L*.
 - For computational purpose, assume $L \subset \mathbb{Z}^n$.
 - The quantity $\rho_{\mathbf{R}} = \frac{1}{2} \min \left\| \mathbf{r}_i^* \right\|$ is relatively large.
 - We know: $\lambda_1(L) \ge \min \left\| \mathbf{r}_i^* \right\|$; thus, $\lambda_1(L) \ge 2\rho_{\mathbf{R}}$.
 - Thus, the orthogonalized centered parallelepiped $C(\mathbf{R}^*)$ is fat, containing a ball of radius $\rho_{\mathbf{R}}$.
 - Any point $\mathbf{t} \in \mathbb{Z}^n$ with dist $(\mathbf{t}, L) < \rho_{\mathbf{R}}$ can be corrected to the closest lattice point (using the nearest plane algorithm).



A good basis and the corresponding correction radius

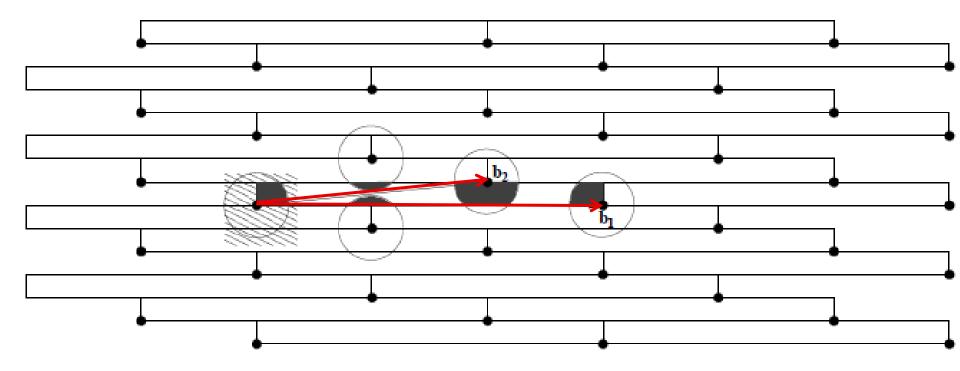
Source: Daniele Micciancio's paper, CaLC 2001

Public key

- The public key is a "bad" basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of *L*.
 - For example, $\mathbf{B} = HNF(\mathbf{R})$.
 - Its orthogonalized parallelepiped, $P(\mathbf{B}^*)$, is skiny.

•
$$\rho_{\mathbf{B}} = \frac{1}{2} \min \left\| \mathbf{b}_{i}^{*} \right\|$$
 is much smaller than $\rho_{\mathbf{R}}$.

- CVP (BDDC) is hard (w/o knowing **R**) even if dist $(\mathbf{t}, L) < \rho_{\mathbf{R}}$.
- Denote by $\mathbf{t} \mod \mathbf{B}$ the unique $\mathbf{s} \in P(\mathbf{B}^*)$ s.t. \mathbf{s} is congruent to \mathbf{t} modulo L (i.e., $\mathbf{s} \equiv_L \mathbf{t}$ or $\mathbf{t} - \mathbf{s} \in L$).
- (Here we use $P(\mathbf{B}^*)$ as the representative system of \mathbb{R}^n/L .)

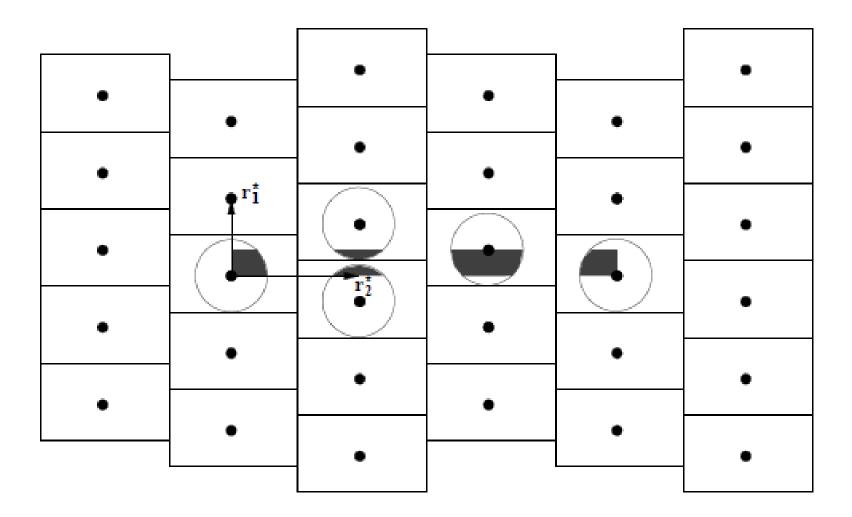


HNF basis and corresponding orthogonalized parallelepiped

Source: Daniele Micciancio's paper, CaLC 2001

Encryption and Decryption

- Encryption: to encrypt a message *m*,
 - Encode *m* as a vector \mathbf{r} , $\|\mathbf{r}\| < \rho_{\mathbf{R}}$.
 - $\mathbf{c} \leftarrow \mathbf{r} \mod \mathbf{B}$.
- Decryption: to decrypt a ciphertext **c**,
 - Recover **r** from **c** by $\mathbf{r} \leftarrow \mathbf{c} \mod \mathbf{R}$.
 - Recover *m* from **r**.



Correcting small errors using the private basis

From Micciancio's paper

Is GGH homomorphic?

• If the encoding scheme is such that

$$\begin{array}{c} m_1 \rightarrow \mathbf{r}_1 \\ m_2 \rightarrow \mathbf{r}_2 \end{array} \} \quad \Rightarrow \quad m_1 + m_2 \rightarrow \mathbf{r}_1 + \mathbf{r}_2$$

and if $\|\mathbf{r}_1\|$, $\|\mathbf{r}_2\| < \rho_{\mathbf{R}}/2$, then GGH is additively homomorphic:

 $GGH(m_1 + m_2) = GGH(m_1) +_{mod \mathbf{B}} GGH(m_2)$

- How to make it multiplicatively homomorphic?
 - Genty's answer: use ideal lattices.

Ideals

Gentry's scheme uses ideal lattices, which are lattices corresponding to some ideals

Rings

- A ring *R* is a set together with two binary operations + and × satisfying the following axioms:
 - (R,+) is an abelian group.
 - × is associative: $(a \times b) \times c = a \times (b \times c)$ for all $a, b, c \in R$.
 - Distributive laws hold: $(a+b) \times c = (a \times c) + (b \times c)$ and $a \times (b+c) = (a \times b) + (a \times c).$
- The ring *R* is commutative if $a \times b = b \times a$.
- The ring *R* is said to have an identity if there is an element $1 \in R$ with $a \times 1 = 1 \times a = a$ for all $a \in R$.
- We will only be interested in communative rings with an identy.

Ideals

- An ideal *I* of a ring *R* is an additive subgroup of *R* s.t. $r \times I \subseteq I$ for all $r \in R$. (I.e., a subset $I \subseteq R$ s.t. $a - b \in I$ and $r \times a \in I$ for all $a, b \in I, r \in R$.)
- Example:
 - Consider the ring \mathbb{Z} .
 - For any integer a, $I_a = \{na : n \in \mathbb{Z}\}$ is an ideal.
 - Conversely, any ideal $I \subseteq \mathbb{Z}$ is equal to I_a for some $a \in \mathbb{Z}$.
 - The mapping $f : a \mapsto I_a$ is a bijective function from $\{\text{nonnegative integers}\} \rightarrow \{\text{ideals of } \mathbb{Z}\}.$
- The name ideal comes from "ideal" numbers.

Some historical notes

- An algebraic integer is a number $x \in \mathbb{C}$ satisfying $x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 = 0$, where $a_i \in \mathbb{Z}$.
- The set of all algebraic integers forms a ring.
- For any algebraic integer α , $\mathbb{Z}[\alpha]$ denote the closure of $\mathbb{Z} \cup \{\alpha\}$ under +, -, ×.
- Example: $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$. Gaussian integers.
- Z[α] resembles Z, and many questions concerning Z can be answered by considering Z[α].

- For instance, Format's theorem on sums of two squares:
 an odd prime *p* can be expressed as *p* = *x*² + *y*² (*x*, *y* ∈ Z)
 iff *p* ≡ 1 mod 4.
- This theorem can be proved by showing that in $\mathbb{Z}[i]$
 - if $p \equiv 1 \mod 4$, then p factors into p = (a+bi)(a-bi)
 - if $p \equiv 3 \mod 4$, then p cannot be factored.
- While \mathbb{Z} has the unique prime factorization property, $\mathbb{Z}[\alpha]$ in general doesn't. For instance, in $\mathbb{Z}[\sqrt{-5}]$, 6 has two prime factorizations: $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$.

- Eduard Kummer, inspired by the discovery of imaginary numbers, introduced ideal numbers.
- For instance, in the example of $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$, we may define ideal prime numbers p_1 , p_2 , p_3 , p_4 , which are subject to the rules:

$$p_1p_2 = 2$$
, $p_3p_4 = 3$, $p_1p_3 = 1 + \sqrt{-5}$, $p_2p_4 = 1 - \sqrt{-5}$.

- Then, 6 would have the unique prime factorization: $6 = p_1 p_2 p_3 p_4.$
- Kummer's concept of ideal numbers was later replaced by that of ideals, by Richard Dedekind.

Operations on Ideals

- Let *I*, *J* be ideals of the ring *R*.
- Sum of ideals: $I + J \triangleq \{a + b : a \in I, b \in J\},$ which is the smallest ideal containing both *I* and *J*.
- Product of ideals: *I* × *J* ≜ the set of all finite sums of the form *a*×*b* with *a* ∈ *I*, *b* ∈ *J*. I.e., the smallest ideal containing {*a*×*b*: *a*∈*I*, *b*∈*J*}. Thus, *R* is the identy.
- *I* divides *J* iff $I \supseteq J$. Thus, gcd(I, J) = (I, J) = I + J.
- *I* is a prime ideal if $\forall a, b \in R, ab \in I \Rightarrow a \in I$ or $b \in I$.
- Two ideal *I* and *J* are relatively prime if I + J = R.

Generators and Bases of ideals

- Let *B* be any subset of a ring *R*.
- Denote by (*B*) the smallest ideal of *R* containing *B*, called the ideal generated by *B*. We have: $(B) = \left\{ r_1 b_1 + \dots + r_n b_n : r_i \in R, b_i \in B, n \in \mathbb{Z}^+ \right\}$
- The ideal *I* = (*B*) is finitely generated if *B* is finite, and is a principal ideal if *B* contains a single element.
- *B* is a basis of I = (B) if it is linearly independent.

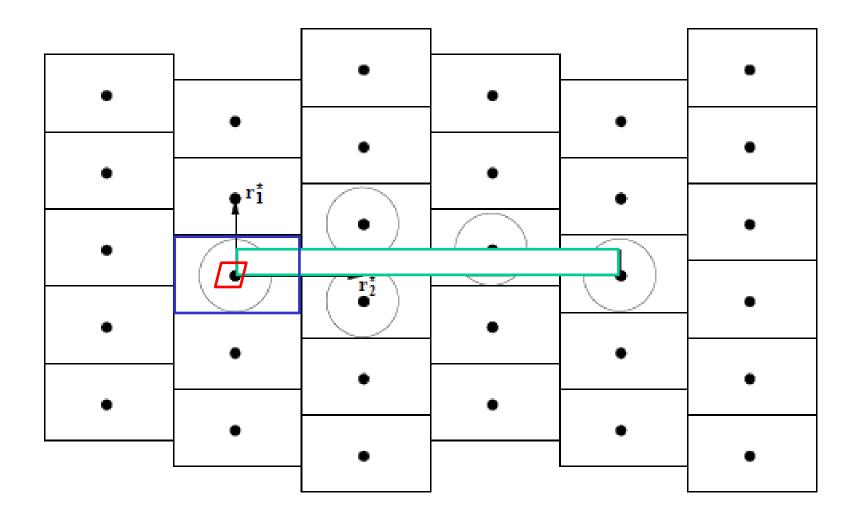
Cosets

- Let *I* be an ideal of a ring *R*.
- *R* is partitioned into cosets s.t. two elements $a, b \in R$ are in the same coset iff $a-b \in I$. $R = \bigcup_{a \in Z} (I+a)$
- The coset containing *a* is $[a]_I = a + I = \{a + i : i \in I\}.$
- Define $[a]_I + [b]_I = [a+b]_I$ and $[a]_I \times [b]_I = [a \times b]_I$.
- The cosets form a ring R/I, called the quotient ring.
- Choose an element from each coset as a representative, then we have a system of representatives for *R*/*I*.
 For *x* ∈ *R*, denote by *x* mod *I* the element representing [*x*]_{*I*}.

Gentry's Ideal-based Scheme

Notations

- Let *I* be an ideal of the ring *R*, and \mathbf{B}_I a basis of *I*.
- $R \mod \mathbf{B}_I$: a system of representatives for R/I defined by \mathbf{B}_I .
- If $\mathbf{B}_1 \neq \mathbf{B}_2$ are two bases for the same ideal, we have in general $\mathbf{x} \mod \mathbf{B}_1 \neq \mathbf{x} \mod \mathbf{B}_2$ (not necessarily equal).
- Samp(x, B_I): samples the coset x + I according to some probability distribution.
- C: a circuit whose gates perform + and \times operations mod **B**_{*I*}.
- g(C): generalized C, the same as C but without mod \mathbf{B}_{I} .
- $C_{\mathbf{B}_{I}}$: same as C, but gates perform mod \mathbf{B}_{I} operations instead.



From Micciancio's paper

Σ : an ideal-based encryption scheme

- KeyGen (R, \mathbf{B}_I) :
 - Input: a ring R, a basis \mathbf{B}_I of an ideal I.
 - $(\mathbf{B}_{J}^{\mathrm{sk}}, \mathbf{B}_{J}^{\mathrm{pk}}) \leftarrow_{\mathrm{R}} \mathrm{IdealGen}(R, \mathbf{B}_{I}).$
 - Public key $pk := \mathbf{B}_J^{pk}$. Secret key $sk := \mathbf{B}_J^{sk}$.
 - Parameters: $(R, \mathbf{B}_I, \text{Samp})$, which are public info.
 - Plaintext space $P := (a \text{ subset of}) R \mod \mathbf{B}_I$
- Remarks: As in GGH, B^{sk}_J is a good (fat) basis and
 B^{pk}_J a bad (skiny) one. The ideal *I* is used to encode plaintexts as ring elements.

- Encrypt (pk, π) : $//\pi \in P//$ $\pi' \leftarrow \operatorname{Samp}(\pi, \mathbf{B}_I)$ // an element in coset $\pi + I$ // $\psi \leftarrow \pi' \mod \mathbf{B}_J^{pk}$ // the ciphertext //
- Decrypt (sk, ψ) : $\pi \leftarrow (\psi \mod \mathbf{B}_J^{sk}) \mod \mathbf{B}_I$
- Remarks:
 - π is encoded as a random element π' in the same coset.
 - π' is then encrypted as in GGH.
 - Decryption is correct if $\pi' \in R \mod \mathbf{B}_J^{\mathrm{sk}}$.

- Evaluate (pk, C, Ψ) :
 - Input: a public key pk; a mod \mathbf{B}_I circuit C composed of $\operatorname{Add}_{\mathbf{B}_I}$ and $\operatorname{Mult}_{\mathbf{B}_I}$ (and identity) gates; and ciphertexts $\Psi = (\psi_1, \dots, \psi_t)$, where $\psi_i = \operatorname{Encrypt}(pk, \pi_i), \ \pi_i \in P$.
 - Output: $\psi := g(C)(\Psi) \mod \mathbf{B}_J^{pk}$. $// = g(C)(\Pi') \mod \mathbf{B}_J^{pk} //$
- Remarks:
 - Evaluate $(pk, \operatorname{Add}_{\mathbf{B}_{I}}, \psi_{1}, \psi_{2})$: outputs $\psi_{1} + \psi_{2} \operatorname{mod} \mathbf{B}_{J}^{pk}$.
 - Evaluate $(pk, \text{Mult}_{\mathbf{B}_{I}}, \psi_{1}, \psi_{2})$: outputs $\psi_{1} \times \psi_{2} \mod \mathbf{B}_{J}^{pk}$.
 - Evaluate circuit C by evaluating its gates in a proper order.

Correctness: informal

• Evaluating C yields:

$$\psi \coloneqq C_{\mathbf{B}_{J}^{pk}} (\Psi) = g(C)(\Psi) \operatorname{mod} \mathbf{B}_{J}^{pk} = g(C)(\Pi') \operatorname{mod} \mathbf{B}_{J}^{pk}$$

where
$$\Pi = (\pi_1, ..., \pi_t) \xrightarrow{\text{encode}} \Pi' = (\pi'_1, ..., \pi'_t)$$

$$\xrightarrow{\operatorname{mod} \mathbf{B}_J^{pk}} \to \Psi = (\psi_1, \ldots, \psi_t).$$

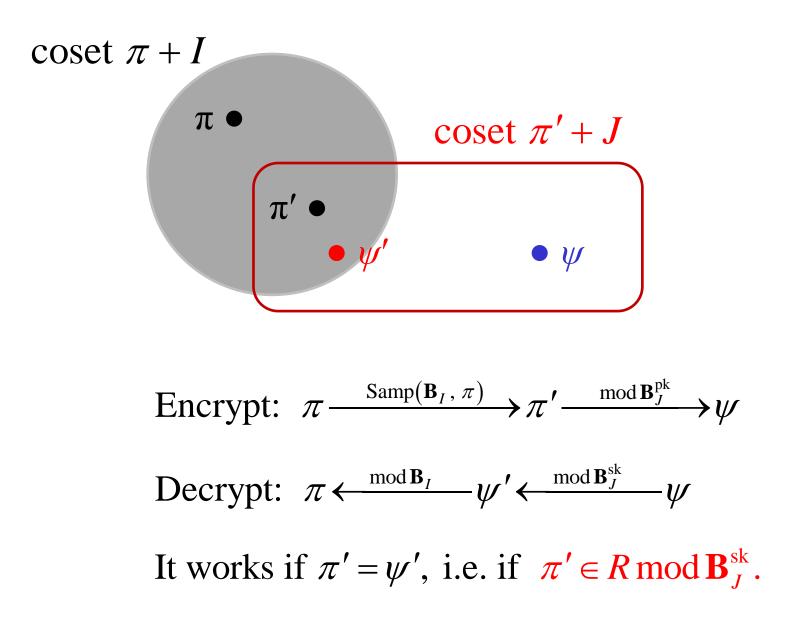
- Decrypting ψ will yield: $\pi := (\psi \mod \mathbf{B}_J^{\mathrm{sk}}) \mod \mathbf{B}_I$.
- Correct if $g(C)(\Pi') \in R \mod \mathbf{B}_J^{\mathrm{sk}}$.
- Thus, if we restrict π'_1, \ldots, π' to be in certain region, the scheme will be homomorphic for circuits *C* for which $g(C)(\Pi') \in R \mod \mathbf{B}_J^{\mathrm{sk}}$.

Correctness of the ideal-based scheme $\boldsymbol{\Sigma}$

- Let $X_{Enc} \triangleq \operatorname{Samp}(\mathbf{B}_I, M)$ and $X_{Dec} \triangleq R \mod \mathbf{B}_J^{pk}$.
- A mod \mathbf{B}_{I} circuit *C* (including the identity circuit) with $t \ge 1$ inputs is a permitted circuit w.r.t. the scheme if:

$$\forall x_1, ..., x_t \in X_{Enc}, g(C)(x_1, ..., x_t) \in X_{Dec}.$$

- Theorem: If C_{Σ} is a set of permitted circuits containing the identity circuit, then the scheme is correct for C_{Σ} .
 - I.e., algorithm Decrypt correctly decrypts valid ciphertexts: $C(\Pi) = \text{Decrypt}(sk, \text{Evaluate}(pk, C, \Psi)),$ where $C \in C_{\Sigma}$ and $\Psi \leftarrow \text{Encrypt}(sk, \Pi).$
 - Valid ciphertexts: outputs of Evaluate $(pk, C, \Psi), C \in C_{\Sigma}$.



$$\pi \bullet \pi' \bullet \pi' \bullet \pi' \bullet \varphi$$

$$C(\Pi) = \operatorname{Decrypt}\left(sk, C_{\mathbf{B}_{J}^{pk}}\left(\Psi\right)\right) \triangleq \left(C_{\mathbf{B}_{J}^{pk}}\left(\Psi\right) \mod \mathbf{B}_{J}^{sk}\right) \mod \mathbf{B}_{I} ?$$

$$C(\Pi) = \operatorname{g}(C)(\Pi') \mod \mathbf{B}_{I}$$

$$g(C)(\Pi') \mod \mathbf{B}_{J}^{pk} = C_{\mathbf{B}_{J}^{pk}}\left(\Psi\right)$$

$$g(C)(\Pi') \mod \mathbf{B}_{J}^{sk} = C_{\mathbf{B}_{J}^{pk}}\left(\Psi\right) \mod \mathbf{B}_{J}^{sk}$$

$$\left(g(C)(\Pi') \mod \mathbf{B}_{J}^{sk}\right) \mod \mathbf{B}_{I} = \left(C_{\mathbf{B}_{J}^{pk}}\left(\Psi\right) \mod \mathbf{B}_{J}^{sk}\right) \mod \mathbf{B}_{I}$$

$$Yes, \text{ if } g(C)(\Pi') = g(C)(\Pi') \mod \mathbf{B}_{J}^{sk}, \text{ i.e., } g(C)(\Pi') \in R \mod \mathbf{B}_{J}^{sk}.$$

Security of the ideal-based scheme

Ideal Coset Problem (ICP)

- Let R be a ring, I an ideal, and \mathbf{B}_{I} a basis.
- IdealGen: an algorithm that given (R, \mathbf{B}_I) outputs two bases \mathbf{B}_J^{sk} , \mathbf{B}_J^{pk} of the same ideal J.
- Samp₁: a random algorithm that samples R (non-uniformly).
- Ideal Coset Problem: Fix R, \mathbf{B}_I , IdealGen, Samp₁.
 - Challenger: $(\mathbf{B}_{J}^{\text{sk}}, \mathbf{B}_{J}^{\text{pk}}) \leftarrow_{R} \text{IdealGen}(R, \mathbf{B}_{I}). b \leftarrow_{u} \{0, 1\}.$ If b = 0, then $\mathbf{r} \leftarrow_{R} \text{Samp}_{1}(R)$, $\mathbf{t} \leftarrow \mathbf{r} \mod \mathbf{B}_{J}^{\text{pk}}.$ If b = 1, then $\mathbf{t} \leftarrow_{\text{uniformly}} R \mod \mathbf{B}_{J}^{\text{pk}}.$
 - Adversary: given **t** and \mathbf{B}_{J}^{pk} , determine if b = 0 or 1.

- Essentially, the problem is to to distinguish between:
 - b = 0: a coset $[\mathbf{t}]_{I}$ is chosen according to some "Samp₁".
 - b = 1: a coset $[\mathbf{t}]_{I}$ is chosen uniformly randomly.
- The hardness of ICP depends on Samp₁.
- How does ICP connect to Gentry's encryption scheme Σ ?
 - A ciphertext is essentially a coset $[\pi']_{\tau}$ chosen by Samp.
 - Σ is semantically secure if the ciphertext is random-like.
 - ICP is hard if coset $[t]_{t}$ chosen by Samp₁ is random-like.
- Will show ICP \leq distinguishing ciphertexts of scheme Σ .
- Will use Samp₁ to define Samp.

Connect Samp to Samp₁

- $\mathbf{r} \leftarrow \operatorname{Samp}_1(R)$ samples an element in ring *R*.
- $\mathbf{x'} \leftarrow \operatorname{Samp}(\mathbf{x}, \mathbf{B}_I)$ samples an element in coset $[\mathbf{x}]_I$.
- Wanted:

r random \Rightarrow **x**' random

- Let $I = (\mathbf{s}) = R \times \mathbf{s}$ be a principal ideal generated by \mathbf{s} . Then, $[\mathbf{x}]_I = \mathbf{x} + R \times \mathbf{s}$.
- Let $\operatorname{Samp}(\mathbf{x}, \mathbf{B}_{I}) \triangleq \mathbf{x} + \operatorname{Samp}_{1}(R) \times \mathbf{s}.$

Security of the ideal-based scheme Σ

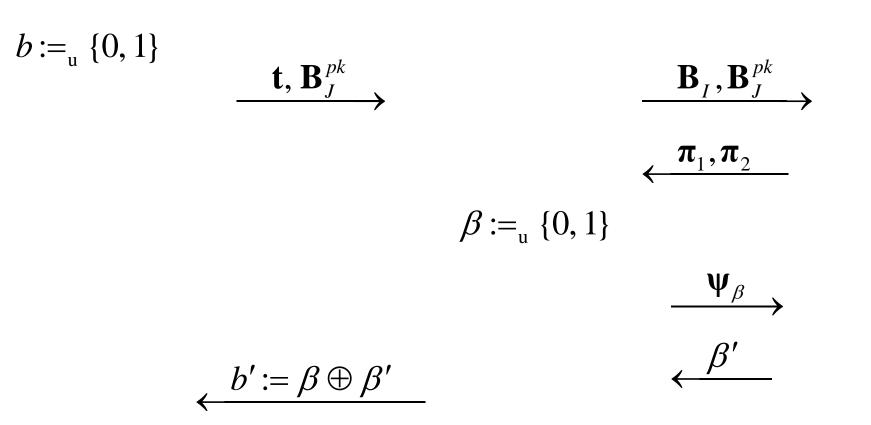
- The Ideal Coset Problem is to distinguish between
 - $\mathbf{t} \leftarrow \operatorname{Samp}_1(\mathbf{R}) \operatorname{mod} \mathbf{B}_J^{pk}$
 - $\mathbf{t} \leftarrow \operatorname{uniform}(R \mod \mathbf{B}_J^{pk}).$
- Encrypt (pk, π) :

 $\psi \leftarrow \operatorname{Samp}(\boldsymbol{\pi}, \mathbf{B}_{I}) \mod \mathbf{B}_{J}^{pk}$ $\left(\boldsymbol{\pi} + \operatorname{Samp}_{1}(R) \times \mathbf{s}\right) \mod \mathbf{B}_{J}^{pk}$

where $I = (\mathbf{s}) = R \times \mathbf{s}$ is a principal ideal generated by \mathbf{s} .

Theorem: If there is an algorithm *A* that breaks the semantic security of Σ with advantage ε when it uses Samp, then there is an algorithm *B*, running in about the same time as *A*, that solves the ICP with advantage $\varepsilon/2$.

Proof: The challenger of ICP sends *B* an instance $(\mathbf{t}, \mathbf{B}_J^{pk})$. *B* chooses an ideal $I = (\mathbf{s})$ relatively prime to *J* and sets up the other parameters of Σ . We have two games: (1) the ICP game between Challenger and *B* (adversary), and (2) the Σ game between *B* (challenger) and *A* (adversary). They run as follows. Challenger



where if b = 0, $\mathbf{t} \leftarrow \operatorname{Samp}_{1}(R) \mod \mathbf{B}_{J}^{pk}$; else, $\mathbf{t} \leftarrow_{u} R \mod \mathbf{B}_{J}^{pk}$; and $\psi_{\beta} \leftarrow \underbrace{\left(\boldsymbol{\pi}_{\beta} + \mathbf{t} \times \mathbf{s}\right)}_{\boldsymbol{\pi}_{\beta}' \in \boldsymbol{\pi}_{\beta} + I} \mod \mathbf{B}_{J}^{pk}$. • If b = 0, $\mathbf{t} \leftarrow \operatorname{Samp}_1(R) \mod \mathbf{B}_J^{pk}$ and $\psi_\beta = (\pi_\beta + \mathbf{t} \times \mathbf{s}) \mod \mathbf{B}_J^{pk}$

$$= \underbrace{\left(\boldsymbol{\pi}_{\beta} + \operatorname{Samp}_{1}(R) \times \mathbf{s}\right)}_{\boldsymbol{\pi}_{\beta}' \leftarrow \operatorname{Samp}(\boldsymbol{\pi}_{\beta}, \mathbf{B}_{I})} \operatorname{mod} \mathbf{B}_{J}^{pk} = \operatorname{Encrypt}(\mathbf{B}_{J}^{pk}, \boldsymbol{\pi}_{\beta}).$$

 $\Pr[b = b' | b = 0] = \Pr[\beta = \beta' | b = 0] = 1/2 + \varepsilon.$

• If
$$b = 1$$
, $\mathbf{t} \leftarrow_{\text{uniform}} R \mod \mathbf{B}_J^{pk}$, so $\psi_\beta = (\pi_\beta + \mathbf{t} \times \mathbf{s}) \mod \mathbf{B}_J^{pk}$

is unformly random (for $I = (\mathbf{s})$ is relatively prime to $J \Rightarrow$

- \mathbf{s}^{-1} exists $\Rightarrow \mathbf{t} \mapsto \boldsymbol{\pi}_{\beta} + \mathbf{t} \times \mathbf{s}$ bijective $\Rightarrow \boldsymbol{\pi}_{\beta} + \mathbf{t} \times \mathbf{s}$ uniform.) $\Pr[b = b' | b = 1] = \Pr[\beta \neq \beta' | b = 1] = 1/2.$
- Thus, *B* has advantage $\varepsilon/2$.