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  Zero lattice: .

  Lattice of integers:  .

  Integral lattices :  sublattices of .

  ( ) :  mod ,  where  is 

    a matrix of dimensions ,  and  an integer.
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A Lattice in 2 dimensions 

Source:  http://cseweb.ucsd.edu/~daniele/lattice/lattice.html 



A different basis for the same lattice 

Source:  http://cseweb.ucsd.edu/~daniele/lattice/lattice.html 
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A Lattice in 2 dimensions 

Source:  http://cseweb.ucsd.edu/~daniele/lattice/lattice.html 
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  By induction.  For 0, the output meets the requirement. 

  Assume the algorithm returns a correct answer for ranks . 

  Let ,  ,   and ,  . Then ,  .   
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IH, the recursive call returns a lattice point ( ) s.t.

   ( ) ,  1 2,  1 2  for all 1,  ...,  1.

  The output of the algorithm is .
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 For 1,  it follows from the IH since
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  Fact:  ( ) min .

  The fundamental region ( ) contains a sphere centered

    at

Nearest Plane Algorithm an

  of radius 

d Closest Vec

min 2 ( ) 2.

  Thus, if a point  
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t in distance  of a lattice point

    ( ),  then  is the closest lattice point to .   

    NearestPlane( , ) will solve the CVP.
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    (a) Randomly generate :  for large primes ,  .
    (b) Public key:  ,  coprime to ( ).
    (c) Secret key:  : mod  ( ). 

  The security of R

Key ge

SA requ

neration:

i

Recall RSA Cryptosystem

n pq p q
e n
d e n

ϕ

ϕ−

=

•

=

•

res that breaking RSA is hard
    for  (but a negligible portion of) instances.
 By breaking RSA we mean finding the secret key. 

  It depends on the assumption that factoring

all

randomly a  
  

   

e

 

  g n
•



erated semiprime  is hard.n pq=



  Worst-case to worst-case reduction, say P1 P2:  
    If there is an algorithm that solves P2 in the worst case, then
    there is an algorithm that slove P

Ajtai's worst-case to average-case reduction 
• ≤

1 in the worst case.  

  Worst-case to average-case reduction, say P1 P2: 
    If there is an algorithm that solves a randomly generated
    instance of  P2 with nonnegligible probability, then there is

• ≤

 an
    algorithm that solves the worst case of P1 with probability 1.

  In 1996, Ajtai established such an worst-case to average-case
    reduction for some lattice problems.  
•

≈



{ }
2

1

  Let  be a matrix of dimensions ,  and  an

    integer, where log  and .  Define

    ( ) :  mod .

  Ajtai showed
    worst  -unique-SVP on an -dimentio- nal e ls aca

n m

c

m
q

c

n m q

m c n n q n

q

n n

×

⊥

∈ ×

 = =  

=

•

 

•

Λ ∈

A
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1 2

ttice
     SVP on ( ) for some  and .

  Based on this reduction, Ajtai and Dwork in 1997 constructed
    a public-key cryptosystem whose security depends on the 
  

average-ca

  (conjectured) wor

se q c c⊥≤

•

Λ A

st-case hardness of unique-SVP.



  Later when we study FHE schemes, it is important to note
    whether the security is based on worst-case or average-case
    hardness.

  Q: Is the security of RSA based on the worst-case hardness
    

•

•
or the average-case hardness of semiprime factorization?
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