Lattices

Mathematical background

Lattices

- \mathbb{R}^n : *n*-dimensional Euclidean space. That is, $\mathbb{R}^n = \{(x_1, \dots, x_n)^T : x_i \in \mathbb{R}, 1 \le i \le n\}.$
- If $\mathbf{x} = (x_1, \dots, x_n)^T$, $\mathbf{y} = (y_1, \dots, y_n)^T$, then
 - $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i} x_{i} y_{i}$ (inner product of **x** and **y**)
 - $\|\mathbf{x}\| = \langle \mathbf{x}, \mathbf{x} \rangle^{1/2}$ (Euclidean length or norm of **x**)
 - $\|\mathbf{x} \mathbf{y}\|$: Euclidean distance between \mathbf{x} and \mathbf{y} .

• Definition 1: A lattice L in \mathbb{R}^n is a discrete subgroup of \mathbb{R}^n .

- subgroup: if $\mathbf{x}, \mathbf{y} \in L$, then $\mathbf{x} \mathbf{y} \in L$.
- discrete: $\exists \varepsilon > 0$ s.t. $\|\mathbf{x} \mathbf{y}\| \ge \varepsilon$ for all $\mathbf{x} \neq \mathbf{y} \in L$.

- Definition 2: An *n*-dimensional lattice of rank *m* is a subset $L \subseteq \mathbb{R}^n$ of the form $L = \{x_1\mathbf{b}_1 + \dots + x_m\mathbf{b}_m : x_i \in \mathbb{Z}\}$ where $\mathbf{b}_1, \dots, \mathbf{b}_m$ are linearly independent vectors in \mathbb{R}^n .
 - Every vector in *L* is an integer linear combination of
 b₁, ..., **b**_m.
 - **Basis:** $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_m)$ is called a **basis** of *L*.
 - *L* has full rank if *m* = *n*. We will be mostly interested in full rank lattices, and call them *n*-dimensional lattices.
- We denote by $L(\mathbf{B})$ the lattice generated by **B**. Thus, if **B** is a basis, then $L(\mathbf{B}) = \mathbf{B} \cdot \mathbb{Z}^m = \{\mathbf{B}\mathbf{x} : \mathbf{x} \in \mathbb{Z}^m\}.$

- Let $\mathbf{b}_1, \ldots, \mathbf{b}_m \in \mathbb{R}^n$ (not necessarily linearly independent). Let $L(\mathbf{b}_1, \ldots, \mathbf{b}_m) \triangleq \{x_1\mathbf{b}_1 + \cdots + x_m\mathbf{b}_m : x_i \in \mathbb{Z}\}.$
- Theorem. $L(\mathbf{b}_1, ..., \mathbf{b}_m)$ is a lattice

• if
$$\mathbf{b}_1, \ldots, \mathbf{b}_m \in \mathbb{Q}^n$$
, or

- if **b**₁, ..., **b**_m are linearly independent.
- When L(b₁, ..., b_m) is a lattice, (b₁, ..., b_m) is said to be a generator. If the b_i's are further lineraly independent, then (b₁, ..., b_m) is a basis.

Example lattices

- Zero lattice: **0**.
- Lattice of integers: \mathbb{Z}^n .
- Integral lattices : sublattices of \mathbb{Z}^n .
- $\Lambda_q^{\perp}(\mathbf{A}) \triangleq \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \mod q \}$, where $\mathbf{A} \in \mathbb{Z}^{n \times m}$ is a matrix of dimensions $n \times m$, and q an integer.
- $L(1,\sqrt{2}) = \{x + \sqrt{2}y : x, y \in \mathbb{Z}\}$ is not a lattice, for there exists a sequence of rationals $(x_n/y_n)_{n\geq 1}$ s.t. $x_n/y_n \to \sqrt{2}$.

A Lattice in 2 dimensions

Source: http://cseweb.ucsd.edu/~daniele/lattice/lattice.html

A different basis for the same lattice

Source: http://cseweb.ucsd.edu/~daniele/lattice/lattice.html

Lattice Bases

• Unimodular matrix: square, having integer entries, and determinant = ± 1 .

• If
$$\mathbf{A} = (a_{ij})$$
 and det $\mathbf{A} \neq 0$, then $\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}}(c_{ij})$, where
 $c_{ij} = (-1)^{i+j} \det \mathbf{A}_{ji}$,
 $\mathbf{A}_{ji} = \mathbf{A}$ with row *j* and column *i* omited.
Furthermore, det $\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}}$.

• If A is unimodular, then A^{-1} is unimodular.

Theorem: Two bases **B** and **C** generate the same lattice,

i.e., $L(\mathbf{B}) = L(\mathbf{C})$, iff $\mathbf{B} = \mathbf{CU}$ for some unimodular matrix \mathbf{U} .

Proof: (\Leftarrow) Assume **B** = **CU**, **U** unimodular. Then **C** = **BU**⁻¹, **U**⁻¹ unimodular.

$$\mathbf{B} = \mathbf{C}\mathbf{U} \Longrightarrow L(\mathbf{B}) \subseteq L(\mathbf{C})$$
$$\mathbf{C} = \mathbf{B}\mathbf{U}^{-1} \Longrightarrow L(\mathbf{C}) \subseteq L(\mathbf{B})$$
$$\Rightarrow L(\mathbf{B}) = L(\mathbf{C}).$$

(⇒) Assume $L(\mathbf{B}) = L(\mathbf{C})$. Each $\mathbf{b}_i \in \mathbf{B}$ is in the lattice, hence

 $\mathbf{b}_i = \mathbf{C} \cdot \mathbf{v}_i$ for some $\mathbf{v}_i \in \mathbb{Z}^m$, $1 \le i \le m$, and $\mathbf{B} = \mathbf{CV}$, where

 $\mathbf{V} = (\mathbf{v}_i)$. Similarly, $\mathbf{C} = \mathbf{BW}$ for some square integer matrix \mathbf{W} .

Hence $\mathbf{B} = \mathbf{BWV} \Rightarrow \mathbf{B}(\mathbf{I} - \mathbf{WV}) = \mathbf{0} \Rightarrow \mathbf{I} - \mathbf{WV} = \mathbf{0}$ (**B** lin. indep.)

 $\Rightarrow \det \mathbf{W} \cdot \det \mathbf{V} = \det \mathbf{W} \mathbf{V} = \det \mathbf{I} = 1 \Rightarrow \det \mathbf{W} = \det \mathbf{V} = \pm 1.$

• For each *n* > 1, there is an infinite number of *n*-dimentional unimodular matrices.

• For example,
$$\begin{pmatrix} a & a-1 \\ 1 & 1 \end{pmatrix}$$
 is unimodular for any $a \in \mathbb{Z}$.

• Each lattice of rank n > 1 has an infinite number of bases.

Fundamental Parallelepiped

- Let $\mathbf{B} = (\mathbf{b}_1, ..., \mathbf{b}_n) \in \mathbb{R}^{n \times n}$ be a full rank basis.
- Fundamental parallelepiped associated to **B**: $P(\mathbf{B}) = \left\{ \mathbf{B} \cdot \mathbf{x} : \mathbf{x} = (x_1, \dots, x_n)^{\mathrm{T}}, \ 0 \le x_i < 1 \right\}.$
- Centered fundamental parallelepiped:

$$C(\mathbf{B}) = \{ \mathbf{B} \cdot \mathbf{x} : \mathbf{x} = (x_1, \dots, x_n)^{\mathrm{T}}, -1/2 \le x_i < 1/2 \}.$$

• $P(\mathbf{B})$ and $C(\mathbf{B})$ are half open.

• The translates $\{P(\mathbf{B}) + \mathbf{v} : \mathbf{v} \in L(\mathbf{B})\}$

form a partition of the whole space \mathbb{R}^n :

$$\mathbb{R}^n = \bigcup_{\mathbf{v}\in L(\mathbf{B})} \left(P(\mathbf{B}) + \mathbf{v} \right)$$

- For any $\mathbf{t} \in \mathbb{R}^n$, there exists a unique point $\mathbf{r} \in P(\mathbf{B})$ s.t. $\mathbf{x} - \mathbf{r} \in L(\mathbf{B})$. This unique \mathbf{r} is denoted by $\mathbf{t} \mod \mathbf{B}$.
- **t** mod **B** can be computed efficiently as:

$$\mathbf{t} \operatorname{mod} \mathbf{B} = \mathbf{t} - \mathbf{B} \cdot \left\lfloor \mathbf{B}^{-1} \cdot \mathbf{t} \right\rfloor$$

where $\lfloor \mathbf{x} \rfloor$ rounds **x**'s coordinates x_i to $\lfloor x_i \rfloor$.

Similarly, the translates {C(B) + v : v ∈ L(B)}
 form a partition of the whole space ℝⁿ:

$$\mathbb{R}^n = \bigcup_{\mathbf{v}\in L(\mathbf{B})} \left(C(\mathbf{B}) + \mathbf{v} \right)$$

- For any $\mathbf{t} \in \mathbb{R}^n$, there exists a unique point $\mathbf{r} \in C(\mathbf{B})$ s.t. $\mathbf{x} - \mathbf{r} \in L(\mathbf{B})$. Let's denote this unique \mathbf{r} is also by $\mathbf{t} \mod \mathbf{B}$.
- **t** mod **B** can be computed efficiently as:

$$\mathbf{t} \operatorname{mod} \mathbf{B} = \mathbf{t} - \mathbf{B} \cdot \lfloor \mathbf{B}^{-1} \cdot \mathbf{t} \rceil$$

where $\lfloor \mathbf{x} \rfloor$ rounds \mathbf{x} 's coordinates to the nearest integer.

Gram-Schmidt orthogonalization

- A basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a vector space is orthogonal if $\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0$ for $i \neq j$. **B** is orthonormal if $\langle \mathbf{b}_i, \mathbf{b}_i \rangle = \delta_{ij}$, where δ_{ij} is Kronecker's delta.
- Any basis B = (b₁, ..., b_n) can be transformed into an orthogonal basis B* = (b₁*, ..., b_n*) using the well-known Gram-Schmidt orthogonalization process:

• $\mathbf{b}_{1}^{*} = \mathbf{b}_{1}^{*}$.

•
$$\mathbf{b}_{i}^{*} = \mathbf{b}_{i} - \sum_{j < i} \mu_{i,j} \mathbf{b}_{j}^{*}$$
 where $\mu_{i,j} = \frac{\left\langle \mathbf{b}_{i}, \mathbf{b}_{j}^{*} \right\rangle}{\left\langle \mathbf{b}_{j}^{*}, \mathbf{b}_{j}^{*} \right\rangle} = \frac{\left\langle \mathbf{b}_{i}, \mathbf{b}_{j}^{*} \right\rangle}{\left\| \mathbf{b}_{j}^{*} \right\|^{2}}.$

Determinant

• **B**, $\mathbf{C} \in \mathbb{R}^{n \times n}$: full rank bases.

B^{*}: the Gram-Schmidt basis of **B**.

- Theorem 1: If **B**, **C** are two bases of the same lattice, then det $\mathbf{B} = \pm \det \mathbf{C}$. Also, $|\det \mathbf{B}| = \prod_{i} ||\mathbf{b}_{i}^{*}||$.
- Definition: The determinant of a lattice $\Lambda = L(\mathbf{B})$ is det $\Lambda = \det L(\mathbf{B}) = \operatorname{vol}(P(\mathbf{B})) = \prod_{i} ||\mathbf{b}_{i}^{*}|| = |\det \mathbf{B}|.$
- This quantity is an invariant of Λ , independent of bases.

Hermite normal form

- A square, non-singular, integer or rational matrix $\mathbf{B} = (b_{ij})$ is in Hermite normal form (HNF) iff
 - **B** is lower triangular $(b_{ij} = 0 \text{ for } i < j)$
 - For all j < i, $0 \le b_{ij} < b_{ii}$.
- Some authors prefer using upper triangular matrices.

• Examples:

$$\begin{pmatrix} 3 & 0 & 0 & 0 \\ 1 & 7 & 0 & 0 \\ 4 & 0 & 5 & 0 \\ 0 & 6 & 3 & 8 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 3 & 1 & 4 & 0 \\ 0 & 7 & 0 & 6 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 8 \end{pmatrix}$$

HNF for singular or non-square matrices

- An integer or rational $n \times m$ matrix $\mathbf{B} = (b_{ij})$ is in HNF if
 - $\exists 1 \le i_1 < i_2 < \cdots < i_h \le n \text{ s.t. } b_{ij} \neq 0 \Longrightarrow (j \le h) \land (i \ge i_j).$
 - For all k < j, $0 \le b_{i_j,k} < b_{i_j,j}$.
- Example: $\begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0 \\ 2 & 8 & 0 & 0 & 0 & 0 \\ -3 & 5 & 0 & & & \\ 1 & 0 & 2 & 0 & 0 & 0 \\ 4 & 3 & 1 & 5 & 0 & 0 \\ -1 & 9 & 0 & -2 & 0 & 0 \end{pmatrix}$

- The first *h* columns are linearly independent.
- Theorem: If two matrices B, B' in HNF generate the same lattice, then B = B' (except for the number of zero-columns at the end).
- Theorem: Any lattice *L*(**B**) has a unique basis **H** in HNF, which can be constructed from **B** in polynomial time.
- HNF is useful for solving many lattice problems.
- Basis Problem: Given a set of rational vectors B, find a basis for the lattice *L*(B).

Good bases and bad basses

- Let $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ be a basis of lattice *L*.
- Roughly speaking, **B** is a good basis if
 - the vectors \mathbf{b}_i are reasonably short and nearly orthogonal
 - the inequality $\prod_{i} \|\mathbf{b}_{i}\| \ge \det(L)$ comes close to equality.
- HNF(*L*) is a bad basis and is a good choice for the public lattice basis. It reveals no more info about *L*'s structure than any other basis, because HNF(*L*) can be computed from any basis in polynomial time.

Dual Lattice

- The dual of a (full rank) lattice $\Lambda = L(\mathbf{B}) \subseteq \mathbb{R}^n$ is the set $\Lambda^* = \{ \mathbf{x} \in \mathbb{R}^n : \langle \mathbf{x}, \mathbf{v} \rangle \in \mathbb{Z} \text{ for all } \mathbf{v} \in \Lambda \}.$
- Theorem: The dual of a lattice $\Lambda = L(\mathbf{B})$ is a lattice with basis $\mathbf{D} = (\mathbf{B}^{-1})^{\mathrm{T}} = (\mathbf{B}^{\mathrm{T}})^{-1}$. That is, $L(\mathbf{D}) = \Lambda^{*}$.
 - $L(\mathbf{D}) \subseteq \Lambda^* \leftarrow \mathbf{D} \subseteq \Lambda^* \leftarrow \mathbf{d}_i \mathbf{b}_j \in \mathbb{Z} \ \forall i, j \leftarrow (\mathbf{d}_i \mathbf{b}_j) = \mathbf{D}^{\mathrm{T}} \mathbf{B} = \mathbf{I}.$
 - $\Lambda^* \subseteq L(\mathbf{D})$: If $\mathbf{x} \in \Lambda^*$, then $\langle \mathbf{x}, \mathbf{b}_j \rangle \in \mathbb{Z}$ for all j, which means $\mathbf{B}^{\mathrm{T}}\mathbf{x} \in \mathbb{Z}^n \implies \mathbf{x} \in (\mathbf{B}^{\mathrm{T}})^{-1} \mathbb{Z}^n = \mathbf{D}\mathbb{Z}^n = L(\mathbf{D})$

Minimum distance and shortest vector

- Definition: The minimum distance of a lattice Λ = L(B) is the smallest distance between any two lattice points:
 λ(Λ) = min {|| x − y ||: x, y ∈ Λ, x ≠ y}.
- Note that λ(Λ) is equal to the length of a shortest nonzero lattice vector:
 λ(Λ) = λ₁(Λ) = min { || x || : x ∈ Λ, x ≠ 0 }.
- We can use min because lattices are discrete.

Successive minima

- Definition: For any lattice Λ and integer k ≤ rank(Λ), let λ_k(Λ) be the smallest r s.t. the closed ball B
 (r) contains at least k linearly independent lattice vectors. That is, λ_k(Λ) = min {max || x₁ ||,..., || x_k ||: x₁,..., x_k ∈ Λ linearly ind.}
 //length of the kth shortest linearly independent vector//
- Obviously, $\lambda_1(\Lambda) \leq \lambda_2(\Lambda) \leq \cdots \leq \lambda_k(\Lambda)$.
- $\lambda_1, \dots, \lambda_k$ are called succesive minima of Λ : first minimum, second minimum, and so on.

Easy Lattice Problems

Equivalence problem: Given two bases B and B', determine if they generate the same lattice, L(B) = L(B').

• Sum of lattices: Given bases **B** and **B**', find a basis for the smallest lattice containing both $L(\mathbf{B})$ and $L(\mathbf{B}')$, which is $L(\mathbf{B}) + L(\mathbf{B}') = \{\mathbf{x} + \mathbf{y} : \mathbf{x} \in L(\mathbf{B}), \mathbf{y} \in L(\mathbf{B}')\}.$

Containment problem: Given two bases B and B', determine if *L*(B) ⊆ *L*(B').

• Membership problem: Is $\mathbf{v} \in L(\mathbf{B})$?

• Dual lattice: Given a lattice basis **B**, compute its dual.

Intersection of lattices: Given two bases B and B', find a basis for the intersection L(B) ∩ L(B').

- Cyclic lattice:
 - Let $r(\mathbf{x})$ be the cyclic rotation of vector \mathbf{x} , i.e., $r(x_1, \dots, x_n) = (x_n, x_1, \dots, x_{n-1})$.
 - A lattice Λ is cyclic iff $\mathbf{x} \in \Lambda$ implies $r(\mathbf{x}) \in \Lambda$.
 - Problem: Given $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_m)$, find the smallest cyclic lattice containing $L(\mathbf{B})$.

• Problem: Is a given lattice *L*(**B**) cyclic?

Some Important Hard Lattice Problems

Shortest Vector Problems

- Exact Shortest Vector Problem (SVP):
 Given a basis for a lattice *L* of rank *n*, find a nonzero vector v ∈ L of length λ₁(L).
- Approximate Shortest Vector Problem (SVP_γ): Given a basis for a lattice *L* of rank *n*, find a nonzero vector **v** ∈ *L* of length at most γ · λ₁(*L*). (The approximation factor γ may be a function of *n*.)
- SVP has been studied since the time of Gauss (1801).

Hardness of SVP_{γ}

- NP-hard for any constant γ .
 - There is no polynomial algorithm unless P = NP.
- Hard for $\gamma(n) = n^{c/\log \log n}$ for some c > 0.
 - There is no polynomial algorithm unless NP \subseteq RSUBEXP.
- Cannot be NP-hard for $\gamma(n) = \sqrt{n/\log n}$ unless NP \subseteq coAM.
- Cannot be NP-hard for $\gamma(n) = \sqrt{n}$ unless NP = coNP.

constant	$n^{c/\log\log n}$	$\sqrt{n/\log n}$	\sqrt{n}	• • •
NP-hard	hard	unlikely NP-hard	unlikely NP-hard	•••

SVP_{γ} can be solved in polynomial time

- LLL algorithm (1982): for $\gamma(n) = 2^{n/2}$.
 - Deterministic algorithm.
- Schnorr (1985): for $\gamma(n) = 2^{O(n(\log \log n)^2/\log n)}$.
 - Deterministic algorithm.
- Ajtai, Kumar, and Sivakumar(2001): $\gamma(n) = 2^{O(n \log \log n / \log n)}$.
 - Ramdomized algorithm with bounded error.

\sqrt{n}	•••	$2^{O(n\log\log n/\log n)}$	$2^{O(n(\log\log n)^2/\log n)}$	$2^{n/2}$
unlikely NP-hard	•••	BPP	Р	Р

SVP_{γ} : open problems

It would be a breakthrough if one can:

- Solve SVP_{n^c} in polynomial time for some c > 0.
- Prove $SVP_{n^{\varepsilon}}$ hard or NP-hard for some $\varepsilon > 0$.

Two other important problems: CVP and SIVP

• Closest Vector Problem (CVP_{γ}):

Given a basis for a lattice (of rank *n*) $L \subseteq \mathbb{R}^n$ and a vector $\mathbf{t} \in \mathbb{R}^n$, find a nonzero vector $\mathbf{v} \in L$ s.t. $\|\mathbf{t} - \mathbf{v}\| \le \gamma(n) \cdot \operatorname{dist}(\mathbf{t}, L).$

• Shortest Independent Vectors Problem (SIVP_{γ}): Given a basis for a lattice *L* of rank *n*, find linearly independent vectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in L$ of length at most $\gamma(n) \cdot \lambda_n(n)$.

CVP_{γ} is at least as hard as SVP_{γ}

Theorem: SVP_{ν} can be reduced to CVP_{ν} : $SVP_{\nu} \leq CVP_{\nu}$. **Proof (for** $\gamma = 1$): Let $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ be the input to SVP. Wish to find a shortest vector $\mathbf{s} = \sum x_i \mathbf{b}_i \in L(\mathbf{B})$ by calling CVP. The idea is to consider a sublattice $L' \subset L(\mathbf{B})$ and a point $\mathbf{c} \in L - L'$ s.t. $\mathbf{c} + \mathbf{s} \in L'$, in which case, dist $(\mathbf{c}, L') = \|\mathbf{s}\|$. Thus, if $\mathbf{y} \leftarrow \text{CVP}(L', \mathbf{c})$ then $\mathbf{y} - \mathbf{c}$ is a solution to SVP(L). Based on this idea, for each *i*, consider the point \mathbf{b}_i and the sublattice L^i generated by $\mathbf{B}^i = (\mathbf{b}_1, ..., 2\mathbf{b}_i, ..., \mathbf{b}_n)$. We have $\mathbf{b}_i \in L - L'$, and $\mathbf{b}_i + \mathbf{s} \in L'$ if x_i is odd. Let $\mathbf{y}_i \leftarrow \text{CVP}(\mathbf{B}^i, \mathbf{b}_i)$. The shortest vector in $\{\mathbf{y}_i - \mathbf{b}_i\}_{i=1}^n$ is a shortest vector in $L(\mathbf{B})$.

Relationship among SVP_{γ} , CVP_{γ} , $SIVP_{\gamma}$

- $SVP_{\gamma} \leq CVP_{\gamma}$.
- $SIVP_{\gamma} \leq CVP_{\gamma}$.
- $SVP_1 \leq SIVP_1$.
- Open problem: $SVP_{\gamma} \leq SIVP_{\gamma}$?

• Bounded Distance Decoding Problem (BDDP_{γ}):

Given a lattice $L \subseteq \mathbb{R}^n$ and a vector $\mathbf{t} \in \mathbb{R}^n$ satisfying $\operatorname{dist}(\mathbf{t}, L) < \lambda_1(L) / (\gamma(n) + 1)$, find a nonzero vector $\mathbf{v} \in L$ s.t. $\|\mathbf{t} - \mathbf{v}\| \leq \gamma(n) \cdot \operatorname{dist}(\mathbf{t}, L)$.

- Same as CVP_γ except for the "bounded" condition on t, which implies a unique solution.
- Uniqueness: The vector $\mathbf{v} \in L$ with $\|\mathbf{t} \mathbf{v}\| = \operatorname{dist}(\mathbf{t}, L)$ is obviously a solution, and any other $\mathbf{w} \in L$ is not a solution since $\|\mathbf{t} - \mathbf{w}\| \ge \|\mathbf{v} - \mathbf{w}\| - \|\mathbf{v} - \mathbf{t}\| \ge \lambda_1(n) - \operatorname{dist}(\mathbf{t}, L)$ $> (\gamma(n) + 1) \cdot \operatorname{dist}(\mathbf{t}, L) - \operatorname{dist}(\mathbf{t}, L) = \gamma(n) \cdot \operatorname{dist}(\mathbf{t}, L).$

Centered Orthogonalized Parallelepiped

- Let $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \in \mathbb{R}^{m \times n}$ be a basis.
- Let $\mathbf{B}^* = (\mathbf{b}_1^*, \dots, \mathbf{b}_n^*)$ be the Gram-Schmidt matrix of **B**.
- Centered orthogonalized parallelepiped:

$$C(\mathbf{B}^*) = \left\{ \mathbf{B}^* \cdot \mathbf{x} : \mathbf{x} = (x_1, \dots, x_n)^{\mathrm{T}}, -1/2 \le x_i < 1/2 \right\}.$$

- $C(\mathbf{B}^*)$ is a fundamental region: $Span(\mathbf{B}) = \bigcup_{\mathbf{v}\in L(\mathbf{B})} (C(\mathbf{B}^*) + \mathbf{v}).$
- Nearest plane algorithm: Given a target point t ∈ Span(B),
 find the unique cell C(B^{*}) + v that contains t.

A Lattice in 2 dimensions

Source: http://cseweb.ucsd.edu/~daniele/lattice/lattice.html

Nearest Plane Algorithm

• Given **B** and **t**, find a lattice point $\mathbf{v} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \in L(\mathbf{B})$ s.t. $\langle \mathbf{t} - \mathbf{v}, \mathbf{b}_i^* \rangle / \| \mathbf{b}_i^* \|^2 \in [-1/2, 1/2)$ for all $1 \le i \le n$.

In particular, if $\mathbf{t} \in Span(\mathbf{B})$, then $\mathbf{t} \in C(\mathbf{B}^*) + \mathbf{v}$.

- Let $L(\mathbf{B'})$ be the sublattice generated by $\mathbf{B'} = (\mathbf{b}_1, \dots, \mathbf{b}_{n-1})$.
- *L*(**B**) can be decomposed into "sublattices"

$$L(\mathbf{B}) = \bigcup_{c \in \mathbb{Z}} (c\mathbf{b}_n + L(\mathbf{B'})) \subset \bigcup_{c \in \mathbb{Z}} (c\mathbf{b}_n^* + \operatorname{span}(\mathbf{B'}))$$

• The hyperplane $c\mathbf{b}_n + \operatorname{span}(\mathbf{B}')$ closest to **t** is when c =

$$\lfloor \langle \mathbf{t}, \mathbf{b}_n^* \rangle / \| \mathbf{b}_n^* \|^2$$
]. We choose $c_n = c$.

Algorithm NearestPlane($\mathbf{B} = (\mathbf{b}_1, ..., \mathbf{b}_n), \mathbf{t}$)

if n = 0 then return **0**

else $\mathbf{B}^* \leftarrow \text{Gram-Schmidt}(\mathbf{B})$

$$c \leftarrow \left\lfloor \left\langle \mathbf{t}, \, \mathbf{b}_n^* \right\rangle / \left\| \mathbf{b}_n^* \right\|^2 \right\rceil$$

return $c\mathbf{b}_n$ + NearestPlane($(\mathbf{b}_1, ..., \mathbf{b}_{n-1}), \mathbf{t} - c\mathbf{b}_n$)

Correstness Proof

- By induction. For n = 0, the output meets the requirement.
- Assume the algorithm returns a correct answer for ranks < n.

• Let
$$\mathbf{C} = (\mathbf{b}_1, \dots, \mathbf{b}_{n-1})$$
 and $\mathbf{B} = (\mathbf{C}, \mathbf{b}_n)$. Then $\mathbf{B}^* = (\mathbf{C}^*, \mathbf{b}_n^*)$.

• By IH, the recursive call returns a lattice point $\mathbf{v}' \in L(\mathbf{C})$ s.t.

$$\langle (\mathbf{t} - c\mathbf{b}_n) - \mathbf{v}', \mathbf{b}_i^* \rangle \in [-1/2, 1/2) \cdot \|\mathbf{b}_i^*\|^2$$
 for all $i = 1, ..., n-1$.

- The output of the algorithm is $\mathbf{v} = \mathbf{v}' + c\mathbf{b}_n$.
- Need to prove $\langle \mathbf{t} \mathbf{v}, \mathbf{b}_i^* \rangle \in [-1/2, 1/2) \cdot \|\mathbf{b}_i^*\|^2$ for all $1 \le i \le n$.

• For
$$i \le n-1$$
, it follows from the IH since
 $\langle \mathbf{t} - \mathbf{v}, \mathbf{b}_i^* \rangle = \langle \mathbf{t} - (\mathbf{v}' + c\mathbf{b}_n), \mathbf{b}_i^* \rangle = \langle (\mathbf{t} - c\mathbf{b}_n) - \mathbf{v}', \mathbf{b}_i^* \rangle.$
• For $i = n$,
 $\frac{\langle \mathbf{t} - (\mathbf{v}' + c\mathbf{b}_n), \mathbf{b}_n^* \rangle}{\|\mathbf{b}_i^*\|^2} = \frac{\langle \mathbf{t}, \mathbf{b}_n^* \rangle - \langle \mathbf{v}', \mathbf{b}_n^* \rangle - c \langle \mathbf{b}_n, \mathbf{b}_n^* \rangle}{\|\mathbf{b}_i^*\|^2}$
 $= \frac{\langle \mathbf{t}, \mathbf{b}_n^* \rangle}{\|\mathbf{b}_i^*\|^2} - c \in [-1/2, 1/2].$

where we have used $\langle \mathbf{v}', \mathbf{b}_n^* \rangle = 0$ and $\langle \mathbf{b}_n, \mathbf{b}_n^* \rangle = \|\mathbf{b}_i^*\|^2$.

Nearest Plane Algorithm and Closest Vector Problem

• Fact:
$$\lambda_1(L(\mathbf{B})) \ge \min_i \|\mathbf{b}_i^*\|$$

- The fundamental region $C(\mathbf{B}^*)$ contains a sphere centered at **0** of radius $\rho = \min_i \|\mathbf{b}_i^*\|/2 \le \lambda_1 (L(\mathbf{B}))/2$.
- Thus, if a point t is within distance ρ of a lattice point
 v ∈ L(B), then v is the closest lattice point to t.
 NearestPlane(B,t) will solve the CVP.

Recall RSA Cryptosystem

- Key generation:
 - (a) Randomly generate n := pq for large primes p, q.
 (b) Public key: e, coprime to φ(n).
 (c) Secret key: d := e⁻¹ mod φ(n).
- The security of RSA requires that breaking RSA is hard for all (but a negligible portion of) instances.
 - By breaking RSA we mean finding the secret key.
- It depends on the assumption that factoring a randomly generated semiprime n = pq is hard.

Ajtai's worst-case to average-case reduction

- Worst-case to worst-case reduction, say P1 ≤ P2: If there is an algorithm that solves P2 in the worst case, then there is an algorithm that slove P1 in the worst case.
- Worst-case to average-case reduction, say P1 ≤ P2: If there is an algorithm that solves a randomly generated instance of P2 with nonnegligible probability, then there is an algorithm that solves the worst case of P1 with probability ≈ 1.
- In 1996, Ajtai established such an worst-case to average-case reduction for some lattice problems.

- Let $\mathbf{A} \in \mathbb{Z}^{n \times m}$ be a matrix of dimensions $n \times m$, and q an integer, where $m = \lfloor c_1 n \log n \rfloor$ and $q = \lfloor n^{c_2} \rfloor$. Define $\Lambda_q^{\perp}(\mathbf{A}) \triangleq \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \mod q \}.$
- Ajtai showed
 worst-case n^c-unique-SVP on an n-dimentional lattice
 ≤ average-case SVP on Λ[⊥]_q(A) for some c₁ and c₂.
- Based on this reduction, Ajtai and Dwork in 1997 constructed a public-key cryptosystem whose security depends on the (conjectured) worst-case hardness of unique-SVP.

- Later when we study FHE schemes, it is important to note whether the security is based on worst-case or average-case hardness.
- Q: Is the security of RSA based on the worst-case hardness or the average-case hardness of semiprime factorization?