Lattices

Mathematical background

Lattices

- $\mathbb{R}^{n}: n$-dimensional Euclidean space. That is,
$\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}: x_{i} \in \mathbb{R}, 1 \leq i \leq n\right\}$.
- If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}, \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\mathrm{T}}$, then
- $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i} x_{i} y_{i} \quad$ (inner product of \mathbf{x} and \mathbf{y})
- $\|\mathbf{x}\|=\langle\mathbf{x}, \mathbf{x}\rangle^{1 / 2} \quad$ (Euclidean length or norm of \mathbf{x})
- $\|\mathbf{x}-\mathbf{y}\|$: Euclidean distance between \mathbf{x} and \mathbf{y}.
- Definition 1: A lattice L in \mathbb{R}^{n} is a discrete subgroup of \mathbb{R}^{n}.
- subgroup: if $\mathbf{x}, \mathbf{y} \in L$, then $\mathbf{x}-\mathbf{y} \in L$.
- discrete: $\exists \varepsilon>0$ s.t. $\|\mathbf{x}-\mathbf{y}\| \geq \varepsilon$ for all $\mathbf{x} \neq \mathbf{y} \in L$.
- Definition 2: An n-dimensional lattice of rank m is a subset
$L \subseteq \mathbb{R}^{n}$ of the form $L=\left\{x_{1} \mathbf{b}_{1}+\cdots+x_{m} \mathbf{b}_{m}: x_{i} \in \mathbb{Z}\right\}$ where $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ are linearly independent vectors in \mathbb{R}^{n}.
- Every vector in L is an integer linear combination of $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$.
- Basis: $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ is called a basis of L.
- L has full rank if $m=n$. We will be mostly interested in full rank lattices, and call them n-dimentional lattices.
- We denote by $L(\mathbf{B})$ the lattice generated by \mathbf{B}. Thus, if \mathbf{B} is a basis, then $L(\mathbf{B})=\mathbf{B} \cdot \mathbb{Z}^{m}=\left\{\mathbf{B x}: \mathbf{x} \in \mathbb{Z}^{m}\right\}$.
- Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m} \in \mathbb{R}^{n}$ (not necessarily linearly independent). Let $L\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right) \triangleq\left\{x_{1} \mathbf{b}_{1}+\cdots+x_{m} \mathbf{b}_{m}: x_{i} \in \mathbb{Z}\right\}$.
- Theorem. $L\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ is a lattice
- if $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m} \in \mathbb{Q}^{n}$, or
- if $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ are linearly independent.
- When $L\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ is a lattice, $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ is said to be a generator. If the \mathbf{b}_{i} 's are further lineraly independent, then $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ is a basis.

Example lattices

- Zero lattice: 0.
- Lattice of integers: \mathbb{Z}^{n}.
- Integral lattices: sublattices of \mathbb{Z}^{n}.
- $\Lambda_{q}^{\perp}(\mathbf{A}) \triangleq\left\{\mathbf{x} \in \mathbb{Z}^{m}: \mathbf{A x}=\mathbf{0} \bmod q\right\}$, where $\mathbf{A} \in \mathbb{Z}^{n \times m}$ is a matrix of dimensions $n \times m$, and q an integer.
- $L(1, \sqrt{2})=\{x+\sqrt{2} y: x, y \in \mathbb{Z}\}$ is not a lattice, for there exists a sequence of rationals $\left(x_{n} / y_{n}\right)_{n \geq 1}$ s.t. $x_{n} / y_{n} \rightarrow \sqrt{2}$.

A Lattice in 2 dimensions

Source: http://cseweb.ucsd.edu/~daniele/lattice/lattice.html

A different basis for the same lattice

Source: http://cseweb.ucsd.edu/~daniele/lattice/lattice.html

Lattice Bases

- Unimodular matrix: square, having integer entries, and determinant $= \pm 1$.
- If $\mathbf{A}=\left(a_{i j}\right)$ and $\operatorname{det} \mathbf{A} \neq 0$, then $\mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}}\left(c_{i j}\right)$, where $c_{i j}=(-1)^{i+j} \operatorname{det} \mathbf{A}_{j i}$,
$\mathbf{A}_{j i}=\mathbf{A}$ with row j and column i omited.
Furthermore, $\operatorname{det} \mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}}$.
- If \mathbf{A} is unimodular, then \mathbf{A}^{-1} is unimodular.

Theorem: Two bases \mathbf{B} and \mathbf{C} generate the same lattice, i.e., $L(\mathbf{B})=L(\mathbf{C})$, iff $\mathbf{B}=\mathbf{C} \mathbf{U}$ for some unimodular matrix \mathbf{U}.

Proof: (\Leftarrow) Assume $\mathbf{B}=\mathbf{C} \mathbf{U}, \mathbf{U}$ unimodular. Then $\mathbf{C}=\mathbf{B U}^{-1}$, \mathbf{U}^{-1} unimodular.

$$
\left.\begin{array}{l}
\mathbf{B}=\mathbf{C} \mathbf{U} \Rightarrow L(\mathbf{B}) \subseteq L(\mathbf{C}) \\
\mathbf{C}=\mathbf{B U}^{-1} \Rightarrow L(\mathbf{C}) \subseteq L(\mathbf{B})
\end{array}\right\} \Rightarrow L(\mathbf{B})=L(\mathbf{C}) .
$$

(\Rightarrow) Assume $L(\mathbf{B})=L(\mathbf{C})$. Each $\mathbf{b}_{i} \in \mathbf{B}$ is in the lattice, hence $\mathbf{b}_{i}=\mathbf{C} \cdot \mathbf{v}_{i}$ for some $\mathbf{v}_{i} \in \mathbb{Z}^{m}, 1 \leq i \leq m$, and $\mathbf{B}=\mathbf{C V}$, where $\mathbf{V}=\left(\mathbf{v}_{i}\right)$. Similarly, $\mathbf{C}=\mathbf{B W}$ for some square integer matrix \mathbf{W}. Hence $\mathbf{B}=\mathbf{B W V} \Rightarrow \mathbf{B}(\mathbf{I}-\mathbf{W V})=\mathbf{0} \Rightarrow \mathbf{I}-\mathbf{W V}=\mathbf{0}$ (B lin. indep.)
$\Rightarrow \operatorname{det} \mathbf{W} \cdot \operatorname{det} \mathbf{V}=\operatorname{det} \mathbf{W} \mathbf{V}=\operatorname{det} \mathbf{I}=1 \Rightarrow \operatorname{det} \mathbf{W}=\operatorname{det} \mathbf{V}= \pm 1$.

- For each $n>1$, there is an infinite number of n-dimentional unimodular matrices.
- For example, $\left(\begin{array}{cc}a & a-1 \\ 1 & 1\end{array}\right)$ is unimodular for any $a \in \mathbb{Z}$.
- Each lattice of rank $n>1$ has an infinite number of bases.

Fundamental Parallelepiped

- Let $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right) \in \mathbb{R}^{n \times n}$ be a full rank basis.
- Fundamental parallelepiped associated to \mathbf{B} :

$$
P(\mathbf{B})=\left\{\mathbf{B} \cdot \mathbf{x}: \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}, 0 \leq x_{i}<1\right\} .
$$

- Centered fundamental parallelepiped:

$$
C(\mathbf{B})=\left\{\mathbf{B} \cdot \mathbf{x}: \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}},-1 / 2 \leq x_{i}<1 / 2\right\} .
$$

- $P(\mathbf{B})$ and $C(\mathbf{B})$ are half open.
- The translates $\{P(\mathbf{B})+\mathbf{v}: \mathbf{v} \in L(\mathbf{B})\}$
form a partition of the whole space \mathbb{R}^{n} :

$$
\mathbb{R}^{n}=\bigcup_{\mathbf{v} \in L(\mathbf{B})}(P(\mathbf{B})+\mathbf{v})
$$

- For any $\mathbf{t} \in \mathbb{R}^{n}$, there exists a unique point $\mathbf{r} \in P(\mathbf{B})$ s.t. $\mathbf{x}-\mathbf{r} \in L(\mathbf{B})$. This unique \mathbf{r} is denoted by $\mathbf{t} \bmod \mathbf{B}$.
- $\mathbf{t} \bmod \mathbf{B}$ can be computed efficiently as:

$$
\mathbf{t} \bmod \mathbf{B}=\mathbf{t}-\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{t}\right\rfloor
$$

where $\lfloor\mathbf{x}\rfloor$ rounds \mathbf{x} 's coordinates x_{i} to $\left\lfloor x_{i}\right\rfloor$.

- Similarly, the translates $\{C(\mathbf{B})+\mathbf{v}: \mathbf{v} \in L(\mathbf{B})\}$ form a partition of the whole space \mathbb{R}^{n} :

$$
\mathbb{R}^{n}=\bigcup_{\mathbf{v} \in L(\mathbf{B})}(C(\mathbf{B})+\mathbf{v})
$$

- For any $\mathbf{t} \in \mathbb{R}^{n}$, there exists a unique point $\mathbf{r} \in C(\mathbf{B})$ s.t. $\mathbf{x}-\mathbf{r} \in L(\mathbf{B})$. Let's denote this unique \mathbf{r} is also by $\mathbf{t} \bmod \mathbf{B}$.
- $\mathbf{t} \bmod \mathbf{B}$ can be computed efficiently as:

$$
\mathbf{t} \bmod \mathbf{B}=\mathbf{t}-\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{t}\right\rceil
$$

where $L \mathbf{x}\rceil$ rounds \mathbf{x} 's coordinates to the nearest integer.

Gram-Schmidt orthogonalization

- A basis $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ of a vector space is orthogonal if $\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}\right\rangle=0$ for $i \neq j$. B is orthonormal if $\left\langle\mathbf{b}_{i}, \mathbf{b}_{i}\right\rangle=\delta_{i j}$, where $\delta_{i j}$ is Kronecker's delta.
- Any basis $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ can be transformed into an orthogonal basis $\mathbf{B}^{*}=\left(\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}\right)$ using the well-known Gram-Schmidt orthogonalization process:
- $\mathbf{b}_{1}^{*}=\mathbf{b}_{1}$.
- $\mathbf{b}_{i}^{*}=\mathbf{b}_{i}-\sum_{j i i} \mu_{i, j} \mathbf{b}_{j}^{*}$ where $\mu_{i, j}=\frac{\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle}{\left\langle\mathbf{b}_{j}^{*}, \mathbf{b}_{j}^{*}\right\rangle}=\frac{\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle}{\left\|\mathbf{b}_{j}^{*}\right\|^{2}}$.

Determinant

- B, $\mathbf{C} \in \mathbb{R}^{n \times n}$: full rank bases.
\mathbf{B}^{*} : the Gram-Schmidt basis of \mathbf{B}.
- Theorem 1: If \mathbf{B}, \mathbf{C} are two bases of the same lattice, then $\operatorname{det} \mathbf{B}= \pm \operatorname{det} \mathbf{C}$. Also, $|\operatorname{det} \mathbf{B}|=\prod_{i}\left\|\mathbf{b}_{i}^{*}\right\|$.
- Definition: The determinant of a lattice $\Lambda=L(\mathbf{B})$ is $\operatorname{det} \Lambda=\operatorname{det} L(\mathbf{B})=\operatorname{vol}(P(\mathbf{B}))=\prod_{i}\left\|\mathbf{b}_{i}^{*}\right\|=|\operatorname{det} \mathbf{B}|$.
- This quantity is an invariant of Λ, independent of bases.

Hermite normal form

- A square, non-singular, integer or rational matrix $\mathbf{B}=\left(b_{i j}\right)$ is in Hermite normal form (HNF) iff
- B is lower triangular ($b_{i j}=0$ for $i<j$)
- For all $j<i, 0 \leq b_{i j}<b_{i i}$.
- Some authors prefer using upper triangular matrices.
- Examples: $\left(\begin{array}{llll}3 & 0 & 0 & 0 \\ 1 & 7 & 0 & 0 \\ 4 & 0 & 5 & 0 \\ 0 & 6 & 3 & 8\end{array}\right)$ or $\left(\begin{array}{llll}3 & 1 & 4 & 0 \\ 0 & 7 & 0 & 6 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 8\end{array}\right)$

HNF for singular or non-square matrices

- An integer or rational $n \times m$ matrix $\mathbf{B}=\left(b_{i j}\right)$ is in HNF if
- $\exists 1 \leq i_{1}<i_{2}<\cdots<i_{h} \leq n$ s.t. $b_{i j} \neq 0 \Rightarrow(j \leq h) \wedge\left(i \geq i_{j}\right)$.
- For all $k<j, 0 \leq b_{i_{j}, k}<b_{i_{j}, j}$.
- Example: $\left(\begin{array}{rrrrrr}3 & 0 & 0 & 0 & 0 & 0 \\ 2 & 8 & 0 & 0 & 0 & 0 \\ -3 & 5 & 0 & & & \\ 1 & 0 & 2 & 0 & 0 & 0 \\ 4 & 3 & 1 & 5 & 0 & 0 \\ -1 & 9 & 0 & -2 & 0 & 0\end{array}\right)$
- The first h columns are linearly independent.
- Theorem: If two matrices $\mathbf{B}, \mathbf{B}^{\prime}$ in HNF generate the same lattice, then $\mathbf{B}=\mathbf{B}^{\prime}$ (except for the number of zero-columns at the end).
- Theorem: Any lattice $L(\mathbf{B})$ has a unique basis \mathbf{H} in HNF, which can be constructed from \mathbf{B} in polynomial time.
- HNF is useful for solving many lattice problems.
- Basis Problem: Given a set of rational vectors B, find a basis for the lattice $L(\mathbf{B})$.

Good bases and bad basses

- Let $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ be a basis of lattice L.
- Roughly speaking, \mathbf{B} is a good basis if
- the vectors \mathbf{b}_{i} are reasonably short and nearly orthogonal
- the inequality $\prod_{i}\left\|\mathbf{b}_{i}\right\| \geq \operatorname{det}(L)$ comes close to equality.
- $\operatorname{HNF}(L)$ is a bad basis and is a good choice for the public lattice basis. It reveals no more info about L 's structure than any other basis, because $\operatorname{HNF}(L)$ can be computed from any basis in polynomial time.

Dual Lattice

- The dual of a (full rank) lattice $\Lambda=L(\mathbf{B}) \subseteq \mathbb{R}^{n}$ is the set

$$
\Lambda^{*}=\left\{\mathbf{x} \in \mathbb{R}^{n}:\langle\mathbf{x}, \mathbf{v}\rangle \in \mathbb{Z} \text { for all } \mathbf{v} \in \Lambda\right\} .
$$

- Theorem: The dual of a lattice $\Lambda=L(\mathbf{B})$ is a lattice with basis $\mathbf{D}=\left(\mathbf{B}^{-1}\right)^{\mathrm{T}}=\left(\mathbf{B}^{\mathrm{T}}\right)^{-1}$. That is, $L(\mathbf{D})=\Lambda^{*}$.
- $L(\mathbf{D}) \subseteq \Lambda^{*} \Leftarrow \mathbf{D} \subseteq \Lambda^{*} \Leftarrow \mathbf{d}_{i} \mathbf{b}_{j} \in \mathbb{Z} \forall i, j \Leftarrow\left(\mathbf{d}_{i} \mathbf{b}_{j}\right)=\mathbf{D}^{\mathrm{T}} \mathbf{B}=\mathbf{I}$.
- $\Lambda^{*} \subseteq L(\mathbf{D})$: If $\mathbf{x} \in \Lambda^{*}$, then $\left\langle\mathbf{x}, \mathbf{b}_{j}\right\rangle \in \mathbb{Z}$ for all j, which means $\mathbf{B}^{\mathrm{T}} \mathbf{x} \in \mathbb{Z}^{n} \Rightarrow \mathbf{x} \in\left(\mathbf{B}^{\mathrm{T}}\right)^{-1} \mathbb{Z}^{n}=\mathbf{D} \mathbb{Z}^{n}=L(\mathbf{D})$

Minimum distance and shortest vector

- Definition: The minimum distance of a lattice $\Lambda=L(\mathbf{B})$ is the smallest distance between any two lattice points: $\lambda(\Lambda)=\min \{\|\mathbf{x}-\mathbf{y}\|: \mathbf{x}, \mathbf{y} \in \Lambda, \mathbf{x} \neq \mathbf{y}\}$.
- Note that $\lambda(\Lambda)$ is equal to the length of a shortest nonzero lattice vector:

$$
\lambda(\Lambda)=\lambda_{1}(\Lambda)=\min \{\|\mathbf{x}\|: \mathbf{x} \in \Lambda, \mathbf{x} \neq \mathbf{0}\} .
$$

- We can use min because lattices are discrete.

Successive minima

- Definition: For any lattice Λ and integer $k \leq \operatorname{rank}(\Lambda)$, let $\lambda_{k}(\Lambda)$ be the smallest r s.t. the closed ball $\bar{B}(r)$ contains at least k linearly independent lattice vectors. That is, $\lambda_{k}(\Lambda)=\min \left\{\max \left\|\mathbf{x}_{1}\right\|, \ldots,\left\|\mathbf{x}_{k}\right\|: \mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in \Lambda\right.$ linearly ind. $\}$ //length of the k th shortest linearly independent vector//
- Obviously, $\lambda_{1}(\Lambda) \leq \lambda_{2}(\Lambda) \leq \cdots \leq \lambda_{k}(\Lambda)$.
- $\lambda_{1}, \ldots, \lambda_{k}$ are called succesive minima of Λ :
first minimum, second minimum, and so on.

Easy Lattice Problems

- Equivalence problem: Given two bases \mathbf{B} and \mathbf{B}^{\prime}, determine if they generate the same lattice, $L(\mathbf{B})=L\left(\mathbf{B}^{\prime}\right)$.
- Sum of lattices: Given bases \mathbf{B} and \mathbf{B}^{\prime}, find a basis for the smallest lattice containing both $L(\mathbf{B})$ and $L\left(\mathbf{B}^{\prime}\right)$, which is $L(\mathbf{B})+L\left(\mathbf{B}^{\prime}\right)=\left\{\mathbf{x}+\mathbf{y}: \mathbf{x} \in L(\mathbf{B}), \mathbf{y} \in L\left(\mathbf{B}^{\prime}\right)\right\}$.
- Containment problem: Given two bases \mathbf{B} and \mathbf{B}^{\prime}, determine if $L(\mathbf{B}) \subseteq L\left(\mathbf{B}^{\prime}\right)$.
- Membership problem: Is $\mathbf{v} \in L(\mathbf{B})$?
- Dual lattice: Given a lattice basis B, compute its dual.
- Intersection of lattices: Given two bases \mathbf{B} and \mathbf{B}^{\prime}, find a basis for the intersection $L(\mathbf{B}) \cap L\left(\mathbf{B}^{\prime}\right)$.
- Cyclic lattice:
- Let $r(\mathbf{x})$ be the cyclic rotation of vector \mathbf{x}, i.e., $r\left(x_{1}, \ldots, x_{n}\right)=\left(x_{n}, x_{1}, \ldots, x_{n-1}\right)$.
- A lattice Λ is cyclic iff $\mathbf{x} \in \Lambda$ implies $r(\mathbf{x}) \in \Lambda$.
- Problem: Given $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$, find the smallest cyclic lattice containing $L(\mathbf{B})$.
- Problem: Is a given lattice $L(\mathbf{B})$ cyclic?

Some Important Hard Lattice Problems

Shortest Vector Problems

- Exact Shortest Vector Problem (SVP):

Given a basis for a lattice L of rank n, find a nonzero vector $\mathbf{v} \in L$ of length $\lambda_{1}(L)$.

- Approximate Shortest Vector Problem (SVP_{γ}):

Given a basis for a lattice L of rank n, find a nonzero vector $\mathbf{v} \in L$ of length at most $\gamma \cdot \lambda_{1}(L)$.
(The approximation factor γ may be a function of n.)

- SVP has been studied since the time of Gauss (1801).

Hardness of SVP ${ }_{r}$

- NP-hard for any constant γ.
- There is no polynomial algorithm unless $\mathrm{P}=\mathrm{NP}$.
- Hard for $\gamma(n)=n^{c / \log \log n}$ for some $c>0$.
- There is no polynomial algorithm unless NP \subseteq RSUBEXP.
- Cannot be NP-hard for $\gamma(n)=\sqrt{n / \log n}$ unless NP \subseteq coAM.
- Cannot be NP-hard for $\gamma(n)=\sqrt{n}$ unless NP $=$ coNP.

constant	$n^{c / \log \log n}$	$\sqrt{n / \log n}$	\sqrt{n}	\cdots
NP-hard	hard	unlikely NP-hard	unlikely NP-hard	\cdots

SVP_{γ} can be solved in polynomial time

- LLL algorithm (1982): for $\gamma(n)=2^{n / 2}$.
- Deterministic algorithm.
- Schnorr (1985): for $\gamma(n)=2^{O\left(n(\log \log n)^{2} / \log n\right)}$.
- Deterministic algorithm.
- Ajtai, Kumar, and Sivakumar(2001) : $\gamma(n)=2^{O(n \log \log n / \log n)}$.
- Ramdomized algorithm with bounded error.

\sqrt{n}	\cdots	$2^{O(n \log \log n / \log n)}$	$2^{O\left(n(\log \log n)^{2} / \log n\right)}$	$2^{n / 2}$
unlikely NP-hard	\cdots	BPP	P	P

SVP_{γ} : open problems

It would be a breakthrough if one can:

- Solve $\mathrm{SVP}_{n^{c}}$ in polynomial time for some $c>0$.
- Prove SVP $_{n^{\varepsilon}}$ hard or NP-hard for some $\varepsilon>0$.

Two other important problems: CVP and SIVP

- Closest Vector Problem (CVP_{γ}):

Given a basis for a lattice (of rank n) $L \subseteq \mathbb{R}^{n}$ and
a vector $\mathbf{t} \in \mathbb{R}^{n}$, find a nonzero vector $\mathbf{v} \in L$ s.t.
$\|\mathbf{t}-\mathbf{v}\| \leq \gamma(n) \cdot \operatorname{dist}(\mathbf{t}, L)$.

- Shortest Independent Vectors Problem (SIVP $_{\gamma}$):

Given a basis for a lattice L of rank n, find linearly independent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in L$ of length at most $\gamma(n) \cdot \lambda_{n}(n)$.

CVP_{γ} is at least as hard as SVP_{γ}

Theorem: SVP_{γ} can be reduced to $\mathrm{CVP}_{\gamma}: \mathrm{SVP}_{\gamma} \leq \mathrm{CVP}_{\gamma}$. Proof (for $\gamma=1$): Let $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ be the input to SVP. Wish to find a shortest vector $\mathbf{s}=\sum x_{i} \mathbf{b}_{i} \in L(\mathbf{B})$ by calling CVP. The idea is to consider a sublattice $L^{\prime} \subset L(\mathbf{B})$ and a point $\mathbf{c} \in L-L^{\prime}$ s.t. $\mathbf{c}+\mathbf{s} \in L^{\prime}$, in which case, $\operatorname{dist}\left(\mathbf{c}, L^{\prime}\right)=\|\boldsymbol{s}\|$. Thus, if $\mathbf{y} \leftarrow \operatorname{CVP}\left(L^{\prime}, \mathbf{c}\right)$ then $\mathbf{y}-\mathbf{c}$ is a a solution to $\operatorname{SVP}(L)$. Based on this idea, for each i, consider the point \mathbf{b}_{i} and the sublattice L^{i} generated by $\mathbf{B}^{i}=\left(\mathbf{b}_{1}, \ldots, 2 \mathbf{b}_{i}, \ldots, \mathbf{b}_{n}\right)$. We have $\mathbf{b}_{i} \in L-L^{\prime}$, and $\mathbf{b}_{i}+\mathbf{s} \in L^{\prime}$ if x_{i} is odd. Let $\mathbf{y}_{i} \leftarrow \operatorname{CVP}\left(\mathbf{B}^{i}, \mathbf{b}_{i}\right)$. The shortest vector in $\left\{\mathbf{y}_{i}-\mathbf{b}_{i}\right\}_{i=1}^{n}$ is a shortest vector in $L(\mathbf{B})$.

Relationship among SVP $_{\gamma}$, CVP $_{\gamma}$, SIVP $_{\gamma}$

- $\mathrm{SVP}_{\gamma} \leq \mathrm{CVP}_{\gamma}$.
- $\operatorname{SIVP}_{\gamma} \leq \mathrm{CVP}_{\gamma}$.
- $\mathrm{SVP}_{1} \leq \mathrm{SIVP}_{1}$.
- Open problem: SVP $_{\gamma} \leq \operatorname{SIVP}_{\gamma}$?
- Bounded Distance Decoding Problem (BDDP_{γ}):

Given a lattice $L \subseteq \mathbb{R}^{n}$ and a vector $\mathbf{t} \in \mathbb{R}^{n}$ satisfying $\operatorname{dist}(\mathbf{t}, L)<\lambda_{1}(L) /(\gamma(n)+1)$, find a nonzero vector $\mathbf{v} \in L$ s.t. $\|\mathbf{t}-\mathbf{v}\| \leq \gamma(n) \cdot \operatorname{dist}(\mathbf{t}, L)$.

- Same as CVP ${ }_{\gamma}$ except for the "bounded" condition on \mathbf{t}, which implies a unique solution.
- Uniqueness: The vector $\mathbf{v} \in L$ with $\|\mathbf{t}-\mathbf{v}\|=\operatorname{dist}(\mathbf{t}, L))$ is obviously a solution, and any other $\mathbf{w} \in L$ is not a solution

$$
\begin{aligned}
\text { since } & \|\mathbf{t}-\mathbf{w}\| \geq\|\mathbf{v}-\mathbf{w}\|-\|\mathbf{v}-\mathbf{t}\| \geq \lambda_{1}(n)-\operatorname{dist}(\mathbf{t}, L) \\
& >(\gamma(n)+1) \cdot \operatorname{dist}(\mathbf{t}, L)-\operatorname{dist}(\mathbf{t}, L)=\gamma(n) \cdot \operatorname{dist}(\mathbf{t}, L) .
\end{aligned}
$$

Centered Orthogonalized Parallelepiped

- Let $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right) \in \mathbb{R}^{m \times n}$ be a basis.
- Let $\mathbf{B}^{*}=\left(\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}\right)$ be the Gram-Schmidt matrix of \mathbf{B}.
- Centered orthogonalized parallelepiped:
$C\left(\mathbf{B}^{*}\right)=\left\{\mathbf{B}^{*} \cdot \mathbf{x}: \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}},-1 / 2 \leq x_{i}<1 / 2\right\}$.
- $C\left(\mathbf{B}^{*}\right)$ is a fundamental region: $\operatorname{Span}(\mathbf{B})=\bigcup_{\mathbf{v} \in L(\mathbf{B})}\left(C\left(\mathbf{B}^{*}\right)+\mathbf{v}\right)$.
- Nearest plane algorithm: Given a target point $\mathbf{t} \in \operatorname{Span}(\mathbf{B})$, find the unique cell $C\left(\mathbf{B}^{*}\right)+\mathbf{v}$ that contains \mathbf{t}.

A Lattice in 2 dimensions

Source: http://cseweb.ucsd.edu/~daniele/lattice/lattice.html

Nearest Plane Algorithm

- Given \mathbf{B} and \mathbf{t}, find a lattice point $\mathbf{v}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} \in L(\mathbf{B})$
s.t. $\left\langle\mathbf{t}-\mathbf{v}, \mathbf{b}_{i}^{*}\right\rangle /\left\|\mathbf{b}_{i}^{*}\right\|^{2} \in[-1 / 2,1 / 2)$ for all $1 \leq i \leq n$.

In particular, if $\mathbf{t} \in \operatorname{Span}(\mathbf{B})$, then $\mathbf{t} \in C\left(\mathbf{B}^{*}\right)+\mathbf{v}$.

- Let $L\left(\mathbf{B}^{\prime}\right)$ be the sublattice generated by $\mathbf{B}^{\prime}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}\right)$.
- $L(\mathbf{B})$ can be decomposed into "sublattices"

$$
L(\mathbf{B})=\bigcup_{c \in \mathbb{Z}}\left(c \mathbf{b}_{n}+L\left(\mathbf{B}^{\prime}\right)\right) \subset \bigcup_{c \in \mathbb{Z}}\left(c \mathbf{b}_{n}^{*}+\operatorname{span}\left(\mathbf{B}^{\prime}\right)\right)
$$

- The hyperplane $c \mathbf{b}_{n}+\operatorname{span}\left(\mathbf{B}^{\prime}\right)$ closest to \mathbf{t} is when $c=$ $\left\lfloor\left\langle\mathbf{t}, \mathbf{b}_{n}^{*}\right\rangle /\left\|\mathbf{b}_{n}^{*}\right\|^{2}\right\rceil$. We choose $c_{n}=c$.

Algorithm NearestPlane $\left(\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right), \mathbf{t}\right)$
if $n=0$ then return $\mathbf{0}$
else $\mathbf{B}^{*} \leftarrow$ Gram-Schmidt(B)

$$
\begin{aligned}
& c \leftarrow\left\lfloor\left\langle\mathbf{t}, \mathbf{b}_{n}^{*}\right\rangle /\left\|\mathbf{b}_{n}^{*}\right\|^{2}\right\rceil \\
& \text { return } c \mathbf{b}_{n}+\operatorname{NearestPlane}\left(\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}\right), \mathbf{t}-c \mathbf{b}_{n}\right)
\end{aligned}
$$

Correstness Proof

- By induction. For $n=0$, the output meets the requirement.
- Assume the algorithm returns a correct answer for ranks <n.
- Let $\mathbf{C}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}\right)$ and $\mathbf{B}=\left(\mathbf{C}, \mathbf{b}_{n}\right)$. Then $\mathbf{B}^{*}=\left(\mathbf{C}^{*}, \mathbf{b}_{n}^{*}\right)$.
- By IH, the recursive call returns a lattice point $\mathbf{v}^{\prime} \in L(\mathbf{C})$ s.t.
$\left\langle\left(\mathbf{t}-c \mathbf{b}_{n}\right)-\mathbf{v}^{\prime}, \mathbf{b}_{i}^{*}\right\rangle \in[-1 / 2,1 / 2) \cdot\left\|\mathbf{b}_{i}^{*}\right\|^{2}$ for all $i=1, \ldots, n-1$.
- The output of the algorithm is $\mathbf{v}=\mathbf{v}^{\prime}+c \mathbf{b}_{n}$.
- Need to prove $\left\langle\mathbf{t}-\mathbf{v}, \mathbf{b}_{i}^{*}\right\rangle \in[-1 / 2,1 / 2) \cdot\left\|\mathbf{b}_{i}^{*}\right\|^{2}$ for all $1 \leq i \leq n$.
- For $i \leq n-1$, it follows from the IH since

$$
\left\langle\mathbf{t}-\mathbf{v}, \mathbf{b}_{i}^{*}\right\rangle=\left\langle\mathbf{t}-\left(\mathbf{v}^{\prime}+c \mathbf{b}_{n}\right), \mathbf{b}_{i}^{*}\right\rangle=\left\langle\left(\mathbf{t}-c \mathbf{b}_{n}\right)-\mathbf{v}^{\prime}, \mathbf{b}_{i}^{*}\right\rangle .
$$

- For $i=n$,

$$
\frac{\left\langle\mathbf{t}-\left(\mathbf{v}^{\prime}+c \mathbf{b}_{n}\right), \mathbf{b}_{n}^{*}\right\rangle}{\left\|\mathbf{b}_{i}^{*}\right\|^{2}}=\frac{\left\langle\mathbf{t}, \mathbf{b}_{n}^{*}\right\rangle-\left\langle\mathbf{v}^{\prime}, \mathbf{b}_{n}^{*}\right\rangle-c\left\langle\mathbf{b}_{n}, \mathbf{b}_{n}^{*}\right\rangle}{\left\|\mathbf{b}_{i}^{*}\right\|^{2}}
$$

$$
=\frac{\left\langle\mathbf{t}, \mathbf{b}_{n}^{*}\right\rangle}{\left\|\mathbf{b}_{i}^{*}\right\|^{2}}-c \in[-1 / 2,1 / 2) .
$$

where we have used $\left\langle\mathbf{v}^{\prime}, \mathbf{b}_{n}^{*}\right\rangle=0$ and $\left\langle\mathbf{b}_{n}, \mathbf{b}_{n}^{*}\right\rangle=\left\|\mathbf{b}_{i}^{*}\right\|^{2}$.

Nearest Plane Algorithm and Closest Vector Problem

- Fact: $\lambda_{1}(L(\mathbf{B})) \geq \min _{i}\left\|\mathbf{b}_{i}^{*}\right\|$.
- The fundamental region $C\left(\mathbf{B}^{*}\right)$ contains a sphere centered at $\mathbf{0}$ of radius $\rho=\min _{i}\left\|\mathbf{b}_{i}^{*}\right\| / 2 \leq \lambda_{1}(L(\mathbf{B})) / 2$.
- Thus, if a point \mathbf{t} is within distance ρ of a lattice point $\mathbf{v} \in L(\mathbf{B})$, then \mathbf{v} is the closest lattice point to \mathbf{t}. NearestPlane(B,t) will solve the CVP.

Recall RSA Cryptosystem

- Key generation:
(a) Randomly generate $n:=p q$ for large primes p, q.
(b) Public key: e, coprime to $\varphi(n)$.
(c) Secret key: $d:=e^{-1} \bmod \varphi(n)$.
- The security of RSA requires that breaking RSA is hard for all (but a negligible portion of) instances.
- By breaking RSA we mean finding the secret key.
- It depends on the assumption that factoring a randomly generated semiprime $n=p q$ is hard.

Ajtai's worst-case to average-case reduction

- Worst-case to worst-case reduction, say $\mathrm{P} 1 \leq \mathrm{P} 2$:

If there is an algorithm that solves P 2 in the worst case, then there is an algorithm that slove P1 in the worst case.

- Worst-case to average-case reduction, say $\mathrm{P} 1 \leq \mathrm{P} 2$: If there is an algorithm that solves a randomly generated instance of P2 with nonnegligible probability, then there is an algorithm that solves the worst case of P1 with probability ≈ 1.
- In 1996, Ajtai established such an worst-case to average-case reduction for some lattice problems.
- Let $\mathbf{A} \in \mathbb{Z}^{n \times m}$ be a matrix of dimensions $n \times m$, and q an integer, where $m=\left\lfloor c_{1} n \log n\right\rfloor$ and $q=\left\lfloor n^{c_{2}}\right\rfloor$. Define
$\Lambda_{q}^{\perp}(\mathbf{A}) \triangleq\left\{\mathbf{x} \in \mathbb{Z}^{m}: \mathbf{A x}=\mathbf{0} \bmod q\right\}$.
- Ajtai showed
worst-case n^{c}-unique-SVP on an n-dimentional lattice
\leq average-case SVP on $\Lambda_{q}^{\perp}(\mathbf{A})$ for some c_{1} and c_{2}.
- Based on this reduction, Ajtai and Dwork in 1997 constructed a public-key cryptosystem whose security depends on the (conjectured) worst-case hardness of unique-SVP.
- Later when we study FHE schemes, it is important to note whether the security is based on worst-case or average-case hardness.
- Q: Is the security of RSA based on the worst-case hardness or the average-case hardness of semiprime factorization?

