Fully homomorphic encryption
scheme using ideal lattices

Gentry’s STOC’09 paper - Part |



Homomorphic encryption
KeyGen: On input1*, outputs a pair of keys, ( pk,sk).

Encrypt: On input a public key pk and a plaintext ze M,

outputs a ciphertext . We write y < Encrypt( pk, 7).
(The plaintext space M , may depend on pk.)

Decrypt: On input a secret key sk and a ciphertext iy,
outputs a plaintext 7. We write 7 <— Decrypt(sk,y).

Evaluate: On Input a circuit C, public key pk, ciphertexts
(v, ..., W), outputs a ciphertext. We write

y <« Evaluate(pk, C, v, ..., ¥,).



Correctness

> = (KeyGen, Encrypt, Decrypt, Evaluate).
The scheme X Is correct for circuit C if for any
plaintexts (7,, ..., 7,) and any ciphertexts (y,, ..., ¥,)
with . < Encrypt(pk, ), 1t holds that:

y « Evaluate(pk, C, v, ..., ¥,)

= C(7,, ..., m,)=Decrypt(sk, y)



Compactness
Z:(KeyGen, Encrypt, Decrypt, Evaluate).

The scheme X Is compact if the output ciphertext of Evaluate
IS iIndependent (in length) of the input circuit C; more specificly,
Decrypt can be expressed as a circuit of size poly(A4).

This is to avoid trivial solutions such as:

- Evaluate(pk, C, v, ..., w,) simply returns
w:=(C, y,, ..., v,) as the ciphertext.

- Decrypt(sk,y ) decrypts each y; to z; and computes
C(my, «.v ).



Fully homomaorphic encryption
> =(KeyGen, Encrypt, Decrypt, Evaluate).

C : aclass of circuits (including the identity circuit).

> IS ¢-homomorphic if £ is correct and compact
for every circuit in C.

> IS somewhat homomorphic if it Is €-homomorphic for
some set of circuits C.

> 1s fully homomorphic if it is homomorphic for all circuits
(1.e., ¢-homomorphic for the set of all circuits €).



Leveled fully homomorphic encryption

> (@) :(KeyGen(d), Encrypt'®), Decrypt'®, EvaIuate(d)).

A family of schemes {=“ :d e Z" } is said to be

leveled fully homomorphic iff:
. all schemes ') use the same decryption circuit,

. 2" is homomorphic for all circuits of depth up to d
(that use some specified set of gates),

- the computational complexity of =“”'s algorithms is

polynomial in 4, d, and (in the case of Evaluate'?)
the size of C.



Homomorphic encryption before Gentry

The concept of fully homomorphic encryption, originally called
privacy homomorphism, was proposed by Rivest, Adleman
and Dertouzos in 1978 (one year after RSA was published).

Homomorphic encryption schemes before 2009:
 Multiplicatively homomorphic: RSA, EIGammal, etc.
Additively homomorphic: Goldwasser-Micali, Paillier, etc.
Quadratic polynomials: Boneh-Goh-Nissim

Arbitrary circuits but with exponential ciphertext-size:
"Polly Craker" by Fellows and Koblitz

NC* circuits (poly-size, depth O(logn), using bounded fan-in
AND, OR, and NOT gates): Sanders-Young-Yung
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Gentry's fully homomorphic encryption scheme
In 2009, Gentry proposed the first FHE scheme.

Three steps:

- Building a somewhat homomorphic encryption scheme
using ideal lattices

« Squashing the Decryption Circuit

- Bootstrapping



Bootstrapping



Why does SH not imply FH?

{AND, XOR}, i.e., {+, x}, is a complete set of gates, from
which any Boolean function can be constructed.

False: If an encryption scheme is {+, x}-homomorphic,
then it is fully homomorphic.

Reason: Ciphertexts typically contain an "error" or "noise".
When operations are performed on ciphertexts, errors grow.
When the error becomes too large, the ciphertext cannot be
correctly decrypted.
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Example
Key: a large odd integer p.

Encryp(p, m): To encrypta bit me{0,1}, letc= pq+2r+m,
where g, r are random with 0 <2r <« p. 2r Is the noise.

Decryp(p, c): letm=(cmod p)mod2.

If c, = pg, + 2r, + m, and ¢, = pg, + 2r, + m,, then
c, +C, is a ciphertext of m,_+m,, with noise 2(r, +r,), and
c,C, Is a ciphertext of m,m,, with noise 2(2rr, + r,m, + m,r,).

The noise grows!

What if the noise becomes too large, say 2r > p?
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Challenge

Can we have a {+, x}-homomorphic encryption scheme
without noises growing?

That Is, the ciphertexts output by Evaluate Is as fresh as
those output by Encrypt (in terms of amount of noise).

Such a scheme will automatically be fully homomorphic.

Gentry proposed a simple yet powerful strategy to achieve
that (no noise growing): Bootstrapping!
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Bootstrapping

In a nut shell, bootstrapping is to perform
(augmented) Decrypt homomorphically.
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If we can evaluate decrypt homomorphically
» We can allow anyone to convert a ciphertext under key pk ,

Into a ciphertext under key pk; w/o revealing the message.

Pink box: SkA — [

encrypted under Decrypt J__’ m
pKa. m —

Blue box:

encrypted under

. SK 5

May use
WeakEncrypt

7

> | Evaluate
Decrypt m

/ fresh

14




g-augumented decryption circuit

g : agate (with input and output in the plaintext space).
g-augmented decryption circuit: illustrated below.

NAND-augmented Decrypt:

SK f [
C Decrypt NARD
. —

sk >
A [ Decrypt
C,

M, NAND m,

Cy, C, are ciphertexts of m;, m, under key pka
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If we can evaluate NAND-Decrypt homomorphically
» Encrypt all input using pk (figuratively, put them in a blue box).
o Evaluate NAND-Decrypt.

» We obtain a "fresh" ciphertext of m, NAND m, under key pks;.

Evaluate
Sk /.
:[ Decrypt MR
My m,
y M, NAND m,
S A >
’ & >{ Decrypt fresh
eV m |
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If we can evaluate NAND-Decrypt homomorphically...
then from the ciphertexts of m, and m, under pk,, we can obtain
a "fresh" ciphertext of m, NAND m, under key pk;, provided that

the encryption of sk, under pk; is given.

That is, we can perform m; NAND m, homomorphically without
Increasing the noise.

17



Suppose we want to evaluate this circuit
homomorphically, with m;, m,, m,, m, encrypted

under pk,. Evaluate(C, pkn, v, ;. Wy, ¥,).

m,
m,
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(m; NAND M,) NAND Q:w NAND m,)
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m<m_cm$

moJ\E NAN H_

\
af)]
M, NAND M, IM M3 NAND My
! 1
M, NAND M, M; NAND My
m<m_cm$ m<m_cm$
Decrypt-NAN Decrypt-NAN
[ é I 1 @
< B < o <
5 g S \E_E




Bootstrappable encryption
> =(KeyGen, Encrypt, Decrypt, Evaluate).
[": aset of gates (with input/output In the plaintext space).
D, (I') : the set of g-augmented Decrypt, g €I
C : aclass of circuits (including the identity circuit).
Suppose X i1s ¢-homomorphic.
2 Is said to be bootstrappable with respect to I if D, (I') < C.

If X is bootstrappable w.r.t. a complete set of gates I' (including the
Identity gate), then we can construct a leveled fully homomorphic

family of schemes {Z(d) 'd e Z*} (for circuits with gates in I').
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>@) - homomorphic for circuits of depth <d

Assume X = (KeyGen, Encrypt, Decrypt, Evaluate) is
bootstrappable w.r.t. a set of gates I". We construct from X

@) = (KeyGen(d) Encrypt'®, Decrypt'®, Evaluate(d))

KeyGen'” (4, d):  //The same algorithm for all d./
- Use KeyGen to generate d +1 key pairs (sk;, pk.), 0<i<d.
Represent sk. as a sequence of plaintexts: sk. = (sk.,, ..., sk:,).

Encrypt (each element of) sk, : sk; < Encrypt( pk; ,, sk, ).

Secret key: sk'®) = sk.,.
Public key: pk' ={(pk,),.,., . (5k) 1
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Encrypt(d) :
. Input: a public key pk'® and a plaintext 7.

- Output: ciphertext y « Encrypt( pk,, 7).

Decrypt(d) :
. Input: a secret key sk'®’ and a ciphertext .
- Output: ciphertext 7 «<— Decrypt(sk,, v ).

. Remark: y is assumed to be an output of Evaluate'®.

What if  was produced by Encrypt'® 2
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Evaluate!® ( pk'Y, C,, ¥, ) ;

+ Recursive procudure: Evaluate'” ( pk®, C,, W, ).

- C, hasexactly ¢ levels; gates at level I are connected to
gates at level 1 —1. (Any circuit of depth <6 can be
converted to such a circuit by inserting identity gates.)

- Y, Is atuple of ciphertexts under pk;,.

- Initial call: Evaluate” ( pk®, C,, ¥, ).
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Evaluate'®’ ( pk'?, C, ‘If(s)

Y. =

under pk

level 6 level 1
g /
C

o
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Evaluate'”’ ( pk'?, C, LIf(s)

level & level 1
ar ™
) 3
Yol | g
- 2. E N
Sk5) é.
WY, sk \ /
encrypted

under pk C, augmented with decryption circuits
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Evaluate'” ( pk'?, C,, ‘Pg)

level 6 -1 level 1
- 4
) 3
b Y S
S
‘>l
Sk5) é E NN
WY, sk \
encrypted

under pk -
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Call Evaluate(5‘1)(pk(5‘1), C, ., ¥ 5_1)

level 6 -1 level 1

4 )
Y, =
under pk
\- /
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Evaluate® ( pk®, C,, ‘PO)

When 6 =0, simply return ¥,
which is under pk, and can be decrypted with sk'® = sk.,.

4 )

Y. = =27

under pk  \_ )
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Correctness

Theorem. If X is bootstrappable w.r.t. a complete
set of gates I' (including the identity gate), then the family
{£'9:d e Z"} constructed above is leveled fully homomorphic

(for circuits with gates in I).

That is, Decrypt'®’ correctly evaluate any circuit (composed of
gates in I") of depth at most d.

30



Complexity
Theorem. For a circuit C of depth d and size s
(the number of wires), the time complexity of evaluating C Is
dominated by O(s-I) applications of Encrypt and O(s)
applications of Evaluate to (g € I')-augmented decryption circuits,
where ¢ = /() Is the number of "bits" of each ciphertext and sk.

Remark: If the given circuit C has depth <d and size s, it can
be converted into a circuit of depth d and size at most sd.

Theorem. For a circuit C of depth <d and size s
(the number of wires), the time complexity of evaluating C Is
dominated by O(s-I-d) applications of Encrypt and O(s-d)

applications of Evaluate to (g € I')-augmented decryption circuits.
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Security

Theorem. If X Is semantically secure, then
> is semantically secure for each d.

Two questions:

« What's the meaning of semantic security for homomorphic
encryption schemes?

« How to prove the theorem?
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Semantic security game for public-key encryption

Challenger: on input the security parameter A,
« generates a key pair (pk, sk),
- sends pk to the adversary.

Adversary: produces two messages m,, m;, and sends them
to the challenger.

Challenger: chooses a random bit b < {0, 1} and
sends ¢ <— Enc,, (m,) to the adversary.

Adversary: determines whetherb=0or b=1.

Question: Does this model apply to homomorphic encryption?
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Semantic security for homomorphic encryption

Is it different from that for ordinary public-key encryption?
We will argue that it is the same.

Since ciphertexts may be produced by Evaluate,

a natural modification to the model is to let the adversary
provide a circuit C and two inputs m, = (m,,,...,m,,),

m; = (Myy,...,My).

The challenger chooses b «—{0,1}, encrypts m, as v,

runs i < Evaluate(pk, C, y), and gives v to the
adversary as the challenge ciphertext.

The challenger may simply give y as the challenge ciphertext,
since the adversary can run y <« Evaluate(pk, C, y) itself.



So, the semantic security game for homomorphic encryption
IS the same as the multi-ciphertext semantic security game
for ordinary public-key encryption.

It has been shown that an algorithm A that breaks the semantic
security of the game with multiple ciphertexts can be

used to construct an algorithm B that breaks the semantic
security of the ordinry game. That is, breaking single-ciphertext
semantic security < breaking multi-ciphertext semantic security.

Therefore, to prove semantic security of a homomorphic
encryption scheme, we can just use the semantic game for
ordinary public-key encryption.
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Why is it not trivial?

Theorem. If X Is semantically secure (and bootstrappable),
then =) is semantically secure for each d.

pkd pkd—l pkl pko

[skOI sk, , - s_kl]skO

These encrypted keys s_k, might leak information
about the ciphertext (under pk, ), unless we prove

otherwise. .



Semantic Security Game k, d >k >0.

Game k is the same as the game for £*) except that each sk,
d >12>1, isreplaced by some s_k,’ unrelated to pk. :
o (sk/, pk/) < KeyGen(1*)

. sk’ « encryption of sk’ under pk._,

Game d = game for=. Game 0 = game for ='*.

pkd pkk pk1 pko

sk, ...Lskk' Sk{} sk,
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To prove the theorem, assume the existence of an adversary

A that has a non-negligible advantage against =) (Game 0).
We construct an algorithm B that breaks ~ (Game d) with a
non-negligible advantage. (B will use A as a "subroutine".)
Let ¢, (4) = A's advantage In Game k.

Apparently, &,(1)<¢g, (1) << g,(4).

Two cases:

« &,(A4) 1s non-negligible (A breaks £ and we are done).

- &,(A) 1s negligible.

Assume ¢, (A1) 1s negligible. There mustexistad >k >0
such that g, (1) Is non-negligible and ¢, ,(4) Is negligible.

Fix this k and consider Games k and k + 1. N



&, (4) 1s non-negligible and ¢, (A1) 1s negligible.

pkd pkk+1 pkk pko

sk, -+ sk., sk -+ sk,
"\ insecure against A, but

4

secure If sk, Is replaced by sk, ..

So, A can help us distinguish between sk, , and sk, ;.

Three players, two games:

Game against X Game against £(9)

C (challenger) (adversaryj B Zchallenger) A (adversaryﬁ

Remark: between B and C is a multi-ciphertext game. 4



&, (4) 1s non-negligible and ¢,_, (1) Is negligible.

pkd pkk+1 pk pko

Skd 4 Ské Sko

\\ insecure if y =sk, .,

secure If = sk, _,.

A can help us distinguish between sk, ., and sk, .

40



Game against X

C (challenger) B (adversaryj

1. generate pk, sk; 5. send z, =sk,.,, 7, =k, , to C;
2. send pk to B; 8. (B isto guess b, with A's help);
6. choose b; 14.1f f =" thenb'=0celse b’ =1;

7.send w < E, (7,) to B; 15. send b’ to C.

Game against =’

B (challenger) A (adversaryj
3. set up the game with A, 11. send plaintexts r,, =, to B;
4. replace pk, by pk; 13. send its guess S’ to B;

9. replace sk, ., by v;
10. send the "keys" to A;
12. choose g and send y' «— E, (7}) to A; 2



In summary, if A has a non-negligible advantage against ='*’,
then B has a non-negligible advantage against the
multi-ciphertext version of X, from which one can construct
an algorithm B' against (the single-ciphertext version of) X
with a non-negligible advantage. This proves the theorem.

Theorem. If X Is semantically secure (and bootstrappable),
then = is semantically secure for each d.
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Can we use just one pair of keys?

The public key of =) (including the evaluation key)

contains d +1 Z-public keys and a chain of d encrypted
>.-secret keys.

Question: why don't we use just one pair of keys?

pky  Pkgy o Pk, pkg

)

pky  Pky - Pk,

sk, sk, , --- sk, sk, sk, sk, --- sk,




Leveled FHE becomes FHE if X i1s KDM-secure

Theorem. If T is KDM-secure, then we can shorten pk‘®’ to
{pko’ %} with sk, < Encrypt(pk,, sk, ). Then, all £

are the same and we have an FHE scheme.

pky  Pkg, o Pk, pk, pky Pk - Pk,

sk, sk,, --- sk, sk, sk, sk, --- sk,




KDM-Security

(KDM: Key-Dependent Message)
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Recall: IND- CPA (semantic security)
In the IND-CPA game,

A% (1%, my,m;, E, (m,))=b:

Pr[Awins] 2 Pr .
ke G@1"), b, {01}, mm «, M

Define the adversary's advantage to be ‘Pr[A wins|—1/ 2‘.

An encryption scheme is IND-CPA if all polynomial-time
adversaries have negligible advantages.

Remark: The game for asymmetric encryption is similar.
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Semantic security assumes that the messages to be encrypted
are independent of the secret key.

Suppose X = (G, E, D) is semantically secure (IND-CPA).
Suppose we modify the encryption algorithm such that

OlE,(m) 1fm=k
1] Kk otherwise

-]

Q: IsX'=(G,E’, D) semantically secure?

2" 1s apparently insecure If it is used to encrypt the key itself,

and potentially insecure if used to encrypt key-dependent
messages.

This suggests the notion of KDM security.
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KDM-security game (for asymmetric encryption)

Parameters: security parameter A, an integer n >0, a class
C of functions that map n secret keys to a message.

Setup. The challenger chooses a random bit b « {0, 1},
generates n key pairs (pk,, sk;), ..., (pk,,sk.), and
sends public keys (pk,, ..., pk,) to the adversary.

Queries. The adversary issues queries of the form (i, )
with1<i<nand f €C. The challenger responds with

(E(pki, m) ifb=0
C

_ where m = f (sk;, ..., sk.).
E(pk, 0") ifb=1

Finish. The adversary guesses whether b=0 or b =1.
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KDM-security

A public-key encryption scheme is n-way KDM-secure
with respect to C if all polynomial-time adversaries have
negligible advantages in the KDM-security game.

Boneh et al (Crypto'08) proposed a KDM-secure encryption
scheme w.r.t. the following class of functions:

- all constant functions: f_(x,, ..., X,)=m forme M.

- all selector functions f. (x,, ..., X,)=x for1<i<n.

KDM-security for this class of functions implies semantic
security as well as circular security. (In circular security, we
have a cycle of n key pairs, and we are allowed to encrypt

each sk;, 1<i<n, under pK .4ny.1)- 3



The KDM-security needed for FHE

The KDM-security needed to convert leveled FHE to
FHE is circular security for some n > 0.

Since the underlying SHE is bootstrappable, using multiple
key-pairs (n >1) does not seem to be more secure than
using just one pair (n =1). Why?
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