Fully homomorphic encryption scheme using ideal lattices

Gentry's STOC'09 paper - Part I

Homomorphic encryption

- KeyGen: On input 1^{λ}, outputs a pair of keys, ($p k, s k$).
- Encrypt: On input a public key $p k$ and a plaintext $\pi \in M_{p k}$, outputs a ciphertext ψ. We write $\psi \leftarrow \operatorname{Encrypt}(p k, \pi)$. (The plaintext space $M_{p k}$ may depend on $p k$.)
- Decrypt: On input a secret key sk and a ciphertext ψ, outputs a plaintext π. We write $\pi \leftarrow \operatorname{Decrypt}(s k, \psi)$.
- Evaluate: On input a circuit C, public key $p k$, ciphertexts ($\psi_{1}, \ldots, \psi_{t}$), outputs a ciphertext. We write $\psi \leftarrow \operatorname{Evaluate}\left(p k, C, \psi_{1}, \ldots, \psi_{t}\right)$.

Correctness

- $\Sigma=$ (KeyGen, Encrypt, Decrypt, Evaluate).
- The scheme Σ is correct for circuit C if for any plaintexts $\left(\pi_{1}, \ldots, \pi_{t}\right)$ and any ciphertexts $\left(\psi_{1}, \ldots, \psi_{t}\right)$ with $\psi_{i} \leftarrow \operatorname{Encrypt}\left(p k, \pi_{i}\right)$, it holds that: $\psi \leftarrow E v a l u a t e\left(p k, C, \psi_{1}, \ldots, \psi_{t}\right)$

$$
\Rightarrow C\left(\pi_{1}, \ldots, \pi_{t}\right)=\operatorname{Decrypt}(s k, \psi)
$$

Compactness

- $\Sigma=($ KeyGen, Encrypt, Decrypt, Evaluate).
- The scheme Σ is compact if the output ciphertext of Evaluate is independent (in length) of the input circuit C; more specificly, Decrypt can be expressed as a circuit of size poly (λ).
- This is to avoid trivial solutions such as:
- Evaluate $\left(p k, C, \psi_{1}, \ldots, \psi_{t}\right)$ simply returns $\psi:=\left(C, \psi_{1}, \ldots, \psi_{t}\right)$ as the ciphertext.
- $\operatorname{Decrypt}(s k, \psi)$ decrypts each ψ_{i} to π_{i} and computes $C\left(\pi_{1}, \ldots, \pi_{t}\right)$.

Fully homomorphic encryption

- $\Sigma=($ KeyGen, Encrypt, Decrypt, Evaluate).
- C : a class of circuits (including the identity circuit).
- Σ is C-homomorphic if Σ is correct and compact for every circuit in C.
- Σ is somewhat homomorphic if it is C-homomorphic for some set of circuits C.
- Σ is fully homomorphic if it is homomorphic for all circuits (i.e., C-homomorphic for the set of all circuits C).

Leveled fully homomorphic encryption

- $\Sigma^{(d)}=\left(\right.$ KeyGen $^{(d)}$, Encrypt ${ }^{(d)}$, Decrypt ${ }^{(d)}$, Evaluate $\left.{ }^{(d)}\right)$.
- A family of schemes $\left\{\Sigma^{(d)}: d \in \mathbb{Z}^{+}\right\}$is said to be leveled fully homomorphic iff:
- all schemes $\Sigma^{(d)}$ use the same decryption circuit,
- $\Sigma^{(d)}$ is homomorphic for all circuits of depth up to d (that use some specified set of gates),
- the computational complexity of $\Sigma^{(d)}$'s algorithms is polynomial in λ, d, and (in the case of Evaluate ${ }^{(d)}$) the size of C.

Homomorphic encryption before Gentry

- The concept of fully homomorphic encryption, originally called privacy homomorphism, was proposed by Rivest, Adleman and Dertouzos in 1978 (one year after RSA was published).
- Homomorphic encryption schemes before 2009:
- Multiplicatively homomorphic: RSA, ElGammal, etc.
- Additively homomorphic: Goldwasser-Micali, Paillier, etc.
- Quadratic polynomials: Boneh-Goh-Nissim
- Arbitrary circuits but with exponential ciphertext-size: "Polly Craker" by Fellows and Koblitz
- NC^{1} circuits (poly-size, depth $O(\log n)$, using bounded fan-in AND, OR, and NOT gates): Sanders-Young-Yung

Gentry's fully homomorphic encryption scheme

- In 2009, Gentry proposed the first FHE scheme.
- Three steps:
- Building a somewhat homomorphic encryption scheme using ideal lattices
- Squashing the Decryption Circuit
- Bootstrapping

Bootstrapping

Why does SH not imply FH?

- \{AND, XOR $\}$, i.e., $\{+, \times\}$, is a complete set of gates, from which any Boolean function can be constructed.
- False: If an encryption scheme is $\{+, x\}$-homomorphic, then it is fully homomorphic.
- Reason: Ciphertexts typically contain an "error" or "noise". When operations are performed on ciphertexts, errors grow. When the error becomes too large, the ciphertext cannot be correctly decrypted.

Example

- Key: a large odd integer p.
- $\operatorname{Encryp}(p, m)$: To encrypt a bit $m \in\{0,1\}$, let $c=p q+2 r+m$, where q, r are random with $0 \leq 2 r \ll p . \quad 2 r$ is the noise.
- $\operatorname{Decryp}(p, c):$ let $m=(c \bmod p) \bmod 2$.
- If $c_{1}=p q_{1}+2 r_{1}+m_{1}$ and $c_{2}=p q_{2}+2 r_{2}+m_{2}$, then $c_{1}+c_{2}$ is a ciphertext of $m_{1}+m_{2}$, with noise $2\left(r_{1}+r_{2}\right)$, and $c_{1} c_{2}$ is a ciphertext of $m_{1} m_{2}$, with noise $2\left(2 r_{1} r_{2}+r_{1} m_{2}+m_{1} r_{2}\right)$.
- The noise grows!
- What if the noise becomes too large, say $2 r>p$?

Challenge

- Can we have a $\{+, \times\}$-homomorphic encryption scheme without noises growing?
- That is, the ciphertexts output by Evaluate is as fresh as those output by Encrypt (in terms of amount of noise).
- Such a scheme will automatically be fully homomorphic.
- Gentry proposed a simple yet powerful strategy to achieve that (no noise growing): Bootstrapping!

Bootstrapping

- In a nut shell, bootstrapping is to perform (augmented) Decrypt homomorphically.

If we can evaluate decrypt homomorphically

- We can allow anyone to convert a ciphertext under key pk_{A} into a ciphertext under key $\mathrm{pk}_{\mathrm{B}} \mathrm{w} / \mathrm{o}$ revealing the message.

```
Pink box:
encrypted under
pk
```


Blue box: encrypted under pk_{B}.

May use
WeakEncrypt

g-augumented decryption circuit

- g : a gate (with input and output in the plaintext space).
- g-augmented decryption circuit: illustrated below.

NAND-augmented Decrypt:

c_{1}, c_{2} are ciphertexts of m_{1}, m_{2} under key pk_{A}

If we can evaluate NAND-Decrypt homomorphically

- Encrypt all input using pk_{B} (figuratively, put them in a blue box).
- Evaluate NAND-Decrypt.
- We obtain a "fresh" ciphertext of m_{1} NAND m_{2} under key pk_{B}.

If we can evaluate NAND-Decrypt homomorphically...

- then from the ciphertexts of m_{1} and m_{2} under $p k_{A}$, we can obtain a "fresh" ciphertext of m_{1} NAND m_{2} under key $p k_{B}$, provided that the encryption of $s k_{A}$ under $p k_{B}$ is given.
- That is, we can perform m_{1} NAND m_{2} homomorphically without increasing the noise.

Suppose we want to evaluate this circuit homomorphically, with $m_{1}, m_{2}, m_{3}, m_{4}$ encrypted under pk_{A}. $\operatorname{Evaluate}\left(C, \mathrm{pk}_{\mathrm{A}}, \psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)$.

Bootstrappable encryption

- $\Sigma=($ KeyGen, Encrypt, Decrypt, Evaluate $)$.
- Γ : a set of gates (with input/output in the plaintext space).
- $D_{\Sigma}(\Gamma)$: the set of g-augmented Decrypt, $g \in \Gamma$.
- C : a class of circuits (including the identity circuit).
- Suppose Σ is C-homomorphic.
- Σ is said to be bootstrappable with respect to Γ if $D_{\Sigma}(\Gamma) \subseteq C$.
- If Σ is bootstrappable w.r.t. a complete set of gates Γ (including the identity gate), then we can construct a leveled fully homomorphic family of schemes $\left\{\Sigma^{(d)}: d \in \mathbb{Z}^{+}\right\}$(for circuits with gates in Γ).
$\Sigma^{(d)}$: homomorphic for circuits of depth $\leq d$
- Assume $\Sigma=$ (KeyGen, Encrypt, Decrypt, Evaluate) is bootstrappable w.r.t. a set of gates Γ. We construct from Σ $\Sigma^{(d)}=\left(\right.$ KeyGen $^{(d)}$, Encrypt $^{(d)}$, Decrypt ${ }^{(d)}$, Evaluate $\left.{ }^{(d)}\right)$.
- KeyGen ${ }^{(d)}(\lambda, d): \quad / / T h e ~ s a m e ~ a l g o r i t h m ~ f o r ~ a l l ~ d . / / ~$
- Use KeyGen to generate $d+1$ key pairs ($s k_{i}, p k_{i}$), $0 \leq i \leq d$.
- Represent $s k_{i}$ as a sequence of plaintexts: $s k_{i}=\left(s k_{i 1}, \ldots, s k_{i \ell}\right)$.
- Encrypt (each element of) $s k_{i}: \overline{s k_{i}} \leftarrow \operatorname{Encrypt}\left(p k_{i-1}, s k_{i}\right)$.
- Secret key: $s k^{(d)}=s k_{0}$.
- Public key: $p k^{(d)}=\left\{\left\langle p k_{i}\right\rangle_{0 \leq i \leq d},\left\langle\overline{s k_{i}}\right\rangle_{1 \leq i \leq d}\right\}$.

$$
\begin{array}{lllll}
p k_{d} & p k_{d-1} & \cdots & p k_{1} & p k_{0}
\end{array}
$$

$$
\begin{array}{lllll}
\overline{s k_{d}} & \overline{s k_{d-1}} & \cdots & \overline{s k_{1}} & s k_{0}
\end{array}
$$

The rest are the evaluation key

Decryption key

- Encrypt ${ }^{(d)}$:
- Input: a public key $p k^{(d)}$ and a plaintext π.
- Output: ciphertext $\psi \leftarrow \operatorname{Encrypt}\left(p k_{d}, \pi\right)$.
- Decrypt ${ }^{(d)}$:
- Input: a secret key $s k^{(d)}$ and a ciphertext ψ.
- Output: ciphertext $\pi \leftarrow \operatorname{Decrypt}\left(s k_{0}, \psi\right)$.
- Remark: ψ is assumed to be an output of Evaluate ${ }^{(d)}$. What if ψ was produced by Encrypt ${ }^{(d)}$?
- Evaluate ${ }^{(d)}\left(p k^{(d)}, C_{d}, \Psi_{d}\right)$:
- Recursive procudure: Evaluate ${ }^{(\delta)}\left(p k^{(\delta)}, C_{\delta}, \Psi_{\delta}\right)$.
- C_{δ} has exactly δ levels; gates at level i are connected to gates at level $i-1$. (Any circuit of depth $\leq \delta$ can be converted to such a circuit by inserting identity gates.)
- Ψ_{δ} is a tuple of ciphertexts under $p k_{\delta}$.
- Initial call: Evaluate ${ }^{(d)}\left(p k^{(d)}, C_{d}, \Psi_{d}\right)$.

Evaluate ${ }^{(\delta)}\left(p k^{(\delta)}, C_{\delta}, \Psi_{\delta}\right)$
level $\delta \quad$ level 1
under $p k_{\delta}$

$$
C_{\delta}
$$

Evaluate ${ }^{(\delta)}\left(p k^{(\delta)}, C_{\delta}, \Psi_{\delta}\right)$

level δ	level 1

$\Psi_{\delta}, s k_{\delta}$ encrypted under $p k^{\delta-1}$
C_{δ} augmented with decryption circuits

Evaluate ${ }^{(\delta)}\left(p k^{(\delta)}, C_{\delta}, \Psi_{\delta}\right)$

$$
\text { level } \delta-1 \quad \text { level } 1
$$

Call Evaluate ${ }^{(\delta-1)}\left(p k^{(\delta-1)}, C_{\delta-1}, \Psi_{\delta-1}\right)$

Evaluate ${ }^{(0)}\left(p k^{(0)}, C_{0}, \Psi_{0}\right)$
When $\delta=0$, simply return Ψ_{0},
which is under $p k_{0}$ and can be decrypted with $s k^{(d)}=s k_{0}$.

Correctness

- Theorem. If Σ is bootstrappable w.r.t. a complete set of gates Γ (including the identity gate), then the family $\left\{\Sigma^{(d)}: d \in \mathbb{Z}^{+}\right\}$constructed above is leveled fully homomorphic (for circuits with gates in Γ).
- That is, Decrypt ${ }^{(d)}$ correctly evaluate any circuit (composed of gates in Γ) of depth at most d.

Complexity

- Theorem. For a circuit C of depth d and size s
(the number of wires), the time complexity of evaluating C is dominated by $O(s \cdot l)$ applications of Encrypt and $O(s)$ applications of Evaluate to $(g \in \Gamma)$-augmented decryption circuits, where $\ell=\ell(\lambda)$ is the number of "bist" of each ciphertext and sk.
- Remark: If the given circuit C has depth $<d$ and size s, it can be converted into a circuit of depth d and size at most $s d$.
- Theorem. For a circuit C of depth $\leq d$ and size s (the number of wires), the time complexity of evaluating C is dominated by $O(s \cdot l \cdot d)$ applications of Encrypt and $O(s \cdot d)$ applications of Evaluate to $(g \in \Gamma)$-augmented decryption circuits.

Security

- Theorem. If Σ is semantically secure, then $\Sigma^{(d)}$ is semantically secure for each d.
- Two questions:
- What's the meaning of semantic security for homomorphic encryption schemes?
- How to prove the theorem?

Semantic security game for public-key encryption

- Challenger: on input the security parameter λ,
- generates a key pair ($p k, s k$),
- sends $p k$ to the adversary.
- Adversary: produces two messages m_{0}, m_{1}, and sends them to the challenger.
- Challenger: chooses a random bit $b \leftarrow\{0,1\}$ and sends $c \leftarrow \operatorname{Enc}_{p k}\left(m_{b}\right)$ to the adversary.
- Adversary: determines whether $b=0$ or $b=1$.

Question: Does this model apply to homomorphic encryption?

Semantic security for homomorphic encryption

- Is it different from that for ordinary public-key encryption? We will argue that it is the same.
- Since ciphertexts may be produced by Evaluate, a natural modification to the model is to let the adversary provide a circuit C and two inputs $\mathbf{m}_{0}=\left(m_{01}, \ldots, m_{0 t}\right)$, $\mathbf{m}_{1}=\left(m_{11}, \ldots, m_{1 t}\right)$.
- The challenger chooses $b \leftarrow\{0,1\}$, encrypts \mathbf{m}_{b} as $\boldsymbol{\psi}$, runs $\psi \leftarrow$ Evaluate(pk, C, ψ), and gives ψ to the adversary as the challenge ciphertext.
- The challenger may simply give $\boldsymbol{\psi}$ as the challenge ciphertext, since the adversary can run $\psi \leftarrow$ Evaluate(pk, C, ψ) itself.
- So, the semantic security game for homomorphic encryption is the same as the multi-ciphertext semantic security game for ordinary public-key encryption.
- It has been shown that an algorithm A that breaks the semantic security of the game with multiple ciphertexts can be used to construct an algorithm B that breaks the semantic security of the ordinry game. That is, breaking single-ciphertext semantic security \leq breaking multi-ciphertext semantic security.
- Therefore, to prove semantic security of a homomorphic encryption scheme, we can just use the semantic game for ordinary public-key encryption.

Why is it not trivial?

- Theorem. If Σ is semantically secure (and bootstrappable), then $\Sigma^{(d)}$ is semantically secure for each d.

$$
\begin{array}{lllll}
p k_{d} & p k_{d-1} & \cdots & p k_{1} & p k_{0}
\end{array}
$$

$$
\left.\begin{array}{llll}
\overline{s k_{d}} & \overline{s k_{d-1}} & \ldots & \overline{s k_{1}}
\end{array}\right\} s k_{0}
$$

These encrypted keys $\overline{s k_{i}}$ might leak information about the ciphertext (under $p k_{d}$), unless we prove otherwise.

Semantic Security Game $k, d \geq k \geq 0$.

- Game k is the same as the game for $\Sigma^{(d)}$ except that each $\overline{s k_{i}}$, $d \geq i \geq 1$, is replaced by some $\overline{s k_{i}^{\prime}}$ unrelated to $p k_{i}$:
- $\left(s k_{i}^{\prime}, p k_{i}^{\prime}\right) \leftarrow \operatorname{KeyGen}\left(1^{\lambda}\right)$
- $\overline{s k_{i}^{\prime}} \leftarrow$ encryption of $s k^{\prime}$ under $p k_{i-1}$
- Game $d=$ game for Σ. Game $0=$ game for $\Sigma^{(d)}$.

$$
\begin{array}{llllll}
p k_{d} & \cdots & p k_{k} & \cdots & p k_{1} & p k_{0} \\
\overline{s k_{d}} & \cdots & \overline{s k_{k}^{\prime}} & \cdots & \overline{s k_{1}^{\prime}} & s k_{0}
\end{array}
$$

- To prove the theorem, assume the existence of an adversary A that has a non-negligible advantage against $\Sigma^{(d)}$ (Game 0). We construct an algorithm B that breaks Σ (Game d) with a non-negligible advantage. (B will use A as a "subroutine".)
- Let $\varepsilon_{k}(\lambda)=A$'s advantage in Game k.

Apparently, $\varepsilon_{d}(\lambda) \leq \varepsilon_{d-1}(\lambda) \leq \cdots \leq \varepsilon_{0}(\lambda)$.

- Two cases:
- $\varepsilon_{d}(\lambda)$ is non-negligible (A breaks Σ and we are done).
- $\varepsilon_{d}(\lambda)$ is negligible.
- Assume $\varepsilon_{d}(\lambda)$ is negligible. There must exist a $d>k \geq 0$ such that $\varepsilon_{k}(\lambda)$ is non-negligible and $\varepsilon_{k+1}(\lambda)$ is negligible.
- Fix this k and consider Games k and $k+1$.
- $\varepsilon_{k}(\lambda)$ is non-negligible and $\varepsilon_{k+1}(\lambda)$ is negligible.

$$
\begin{array}{cccccc}
p k_{d} & \cdots & p k_{k+1} & p k_{k} & \cdots & p k_{0} \\
\overline{s k_{d}} & \cdots & \overline{s k_{k+1}} & \overline{s k_{k}^{\prime}} & \cdots & s k_{0} \\
& & \nwarrow & \text { insecure against A, but } \\
& & & & \text { secure if } \overline{s k_{k+1}} \text { is replaced by } \overline{s k_{k+1}^{\prime}} .
\end{array}
$$ So, A can help us distinguish between $\overline{s k_{k+1}}$ and $\overline{s k_{k+1}^{\prime}}$.

- Three players, two games:
$\overbrace{C \text { (challenger) }}^{\text {Game against } \Sigma} \quad$ (adversary) $B \overbrace{\text { (challenger) }}^{\text {Game against } \Sigma^{(d)}} A$ (adversary)
- Remark: between B and C is a multi-ciphertext game.
- $\varepsilon_{k}(\lambda)$ is non-negligible and $\varepsilon_{k+1}(\lambda)$ is negligible.

$$
\begin{array}{cccccc}
p k_{d} & \cdots & p k_{k+1} & p k & \cdots & p k_{0} \\
\overline{s k_{d}} & \cdots & \psi & \overline{s k_{k}^{\prime}} & \cdots & s k_{0} \\
& & \nwarrow & \text { insecure if } \psi=\overline{s k_{k+1}} \\
& & & & & \\
& \text { secure if } \psi=\overline{s k_{k+1}^{\prime}} .
\end{array}
$$

A can help us distinguish between $\overline{s k_{k+1}}$ and $\overline{s k_{k+1}^{\prime}}$.

Game against Σ
C (challenger)

1. generate $p k$, $s k$;
2. send $p k$ to B;
3. choose b;
B (adversary)
4. send $\pi_{0}=s k_{k+1}, \pi_{1}=s k_{k+1}^{\prime}$ to C;
5. (B is to guess b, with A^{\prime} 's help);
6. if $\beta=\beta^{\prime}$ then $b^{\prime}=0$ else $b^{\prime}=1$;
7. send b^{\prime} to C.

Game against $\Sigma^{(d)}$
B (challenger)
3. set up the game with A;
4. replace $p k_{k}$ by $p k$;
9. replace $\overline{s k_{k+1}}$ by ψ;
10. send the "keys" to A;
12. choose β and send $\psi^{\prime} \leftarrow E_{p k_{d}}\left(\pi_{\beta}^{\prime}\right)$ to A;

- In summary, if A has a non-negligible advantage against $\Sigma^{(d)}$, then B has a non-negligible advantage against the multi-ciphertext version of Σ, from which one can construct an algorithm B^{\prime} against (the single-ciphertext version of) Σ with a non-negligible advantage. This proves the theorem.
- Theorem. If Σ is semantically secure (and bootstrappable), then $\Sigma^{(d)}$ is semantically secure for each d.

Can we use just one pair of keys?

- The public key of $\Sigma^{(d)}$ (including the evaluation key) contains $d+1 \Sigma$-public keys and a chain of d encrypted Σ-secret keys.
- Question: why don't we use just one pair of keys?

$$
\begin{array}{|ccccc|}
\hline p k_{d} & p k_{d-1} & \cdots & p k_{1} & p k_{0} \\
\overline{s k_{d}} & \overline{s k_{d-1}} & \cdots & \overline{s k_{1}} & s k_{0}
\end{array} \stackrel{?}{\Rightarrow} \begin{array}{|ccccc|}
\hline p k_{0} & p k_{0} & \cdots & p k_{0} & p k_{0} \\
\overline{s k_{0}} & \overline{s k_{0}} & \cdots & \overline{s k_{0}} & s k_{0} \\
\hline
\end{array}
$$

Leveled FHE becomes FHE if Σ is KDM-secure

- Theorem. If Σ is KDM-secure, then we can shorten $p k^{(d)}$ to
$\left\{p k_{0}, \overline{s k_{0}}\right\}$, with $\overline{s k_{0}} \leftarrow \operatorname{Encrypt}\left(p k_{0}, s k_{0}\right)$. Then, all $\Sigma^{(d)}$ are the same and we have an FHE scheme.

$p k_{d}$	$p k_{d-1}$	\cdots	$p k_{1}$	$p k_{0}$						
$\overline{s k_{d}}$	$\overline{s k_{d-1}}$	\cdots	$\overline{s k_{1}}$	$s k_{0}$	\left\lvert\,\Rightarrow	$p k_{0}$	$p k_{0}$	\cdots	$p k_{0}$	$p k_{0}$
:---:	:---:	:---:	:---:	:---:						
$\overline{s k_{0}}$	$\overline{s k_{0}}$	\cdots	$\overline{s k_{0}}$	$s k_{0}$	\right.					

KDM-Security

(KDM: Key-Dependent Message)

Recall: IND- CPA (semantic security)

- In the IND-CPA game,

$$
\operatorname{Pr}[A \text { wins }] \triangleq \operatorname{Pr}\left[\begin{array}{l}
A^{E_{k}}\left(1^{\lambda}, m_{0}, m_{1}, E_{k}\left(m_{b}\right)\right)=b: \\
k \leftarrow G\left(1^{\lambda}\right), b \leftarrow_{u}\{0,1\}, m_{0}, m_{1} \leftarrow_{A} M
\end{array}\right] .
$$

- Define the adversary's advantage to be $\mid \operatorname{Pr}[A$ wins $]-1 / 2 \mid$.
- An encryption scheme is IND-CPA if all polynomial-time adversaries have negligible advantages.
- Remark: The game for asymmetric encryption is similar.
- Semantic security assumes that the messages to be encrypted are independent of the secret key.
- Suppose $\Sigma=(G, E, D)$ is semantically secure (IND-CPA). Suppose we modify the encryption algorithm such that

$$
E_{k}^{\prime}(m)= \begin{cases}0 \| E_{k}(m) & \text { if } m \neq k \\ 1 \| k & \text { otherwise }\end{cases}
$$

- Q: Is $\Sigma^{\prime}=\left(G, E^{\prime}, D\right)$ semantically secure?
- Σ^{\prime} is apparently insecure if it is used to encrypt the key itself, and potentially insecure if used to encrypt key-dependent messages.
- This suggests the notion of KDM security.

KDM-security game (for asymmetric encryption)

- Parameters: security parameter λ, an integer $n>0$, a class
C of functions that map n secret keys to a message.
- Setup. The challenger chooses a random bit $b \leftarrow\{0,1\}$, generates n key pairs $\left(p k_{1}, s k_{1}\right), \ldots,\left(p k_{n}, s k_{n}\right)$, and sends public keys ($p k_{1}, \ldots, p k_{n}$) to the adversary.
- Queries. The adversary issues queries of the form (i,f) with $1 \leq i \leq n$ and $f \in C$. The challenger responds with $c \leftarrow\left(\begin{array}{ll}E\left(p k_{i}, m\right) & \text { if } b=0 \\ E\left(p k_{i}, 0^{|m|}\right) & \text { if } b=1\end{array} \quad\right.$ where $m=f\left(s k_{1}, \ldots, s k_{n}\right)$.
- Finish. The adversary guesses whether $b=0$ or $b=1$.

KDM-security

- A public-key encryption scheme is n-way KDM-secure with respect to C if all polynomial-time adversaries have negligible advantages in the KDM-security game.
- Boneh et al (Crypto'08) proposed a KDM-secure encryption scheme w.r.t. the following class of functions:
- all constant functions: $f_{m}\left(x_{1}, \ldots, x_{n}\right)=m$ for $m \in M$.
- all selector functions $f_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ for $1 \leq i \leq n$.
- KDM-security for this class of functions implies semantic security as well as circular security. (In circular security, we have a cycle of n key pairs, and we are allowed to encrypt each $s k_{i}, 1 \leq i \leq n$, under $\left.p k_{(i \bmod n)+1}\right)$.

The KDM-security needed for FHE

- The KDM-security needed to convert leveled FHE to FHE is circular security for some $n>0$.
- Since the underlying SHE is bootstrappable, using multiple key-pairs ($n>1$) does not seem to be more secure than using just one pair $(n=1)$. Why?

