Fully homomorphic encryption scheme using ideal lattices

Gentry's STOC'09 paper - Part I

Homomorphic encryption

- KeyGen: On input 1^{λ} , outputs a pair of keys, (pk, sk).
- Encrypt: On input a public key *pk* and a plaintext π ∈ M_{pk}, outputs a ciphertext ψ. We write ψ ← Encrypt(*pk*,π). (The plaintext space M_{pk} may depend on *pk*.)
- Decrypt: On input a secret key sk and a ciphertext ψ, outputs a plaintext π. We write π ← Decrypt(sk,ψ).
- Evaluate: On input a circuit C, public key pk, ciphertexts (ψ₁, ..., ψ_t), outputs a ciphertext. We write ψ ← Evaluate(pk, C, ψ₁, ..., ψ_t).

Correctness

- $\Sigma = (KeyGen, Encrypt, Decrypt, Evaluate).$
- The scheme Σ is correct for circuit *C* if for any plaintexts $(\pi_1, ..., \pi_t)$ and any ciphertexts $(\psi_1, ..., \psi_t)$ with $\psi_i \leftarrow \text{Encrypt}(pk, \pi_i)$, it holds that: $\psi \leftarrow \text{Evaluate}(pk, C, \psi_1, ..., \psi_t)$ $\Rightarrow C(\pi_1, ..., \pi_t) = \text{Decrypt}(sk, \psi)$

Compactness

- $\Sigma = (KeyGen, Encrypt, Decrypt, Evaluate).$
- The scheme Σ is compact if the output ciphertext of Evaluate is independent (in length) of the input circuit C; more specificly, Decrypt can be expressed as a circuit of size poly(λ).
- This is to avoid trivial solutions such as:
 - Evaluate $(pk, C, \psi_1, ..., \psi_t)$ simply returns
 - $\psi := (C, \psi_1, \ldots, \psi_t)$ as the ciphertext.
 - Decrypt (sk,ψ) decrypts each ψ_i to π_i and computes $C(\pi_1, ..., \pi_t)$.

Fully homomorphic encryption

- $\Sigma = (KeyGen, Encrypt, Decrypt, Evaluate).$
- *C* : a class of circuits (including the identity circuit).
- Σ is C-homomorphic if Σ is correct and compact for every circuit in C.
- Σ is somewhat homomorphic if it is C-homomorphic for some set of circuits C.
- Σ is fully homomorphic if it is homomorphic for *all* circuits (i.e., *C*-homomorphic for the set of all circuits *C*).

Leveled fully homomorphic encryption

- $\Sigma^{(d)} = (\text{KeyGen}^{(d)}, \text{Encrypt}^{(d)}, \text{Decrypt}^{(d)}, \text{Evaluate}^{(d)}).$
- A family of schemes {Σ^(d) : d ∈ Z⁺} is said to be leveled fully homomorphic iff:
 - all schemes $\Sigma^{(d)}$ use the same decryption circuit,
 - Σ^(d) is homomorphic for all circuits of depth up to d (that use some specified set of gates),
 - the computational complexity of Σ^(d)'s algorithms is polynomial in λ, d, and (in the case of Evaluate^(d)) the size of C.

Homomorphic encryption before Gentry

- The concept of fully homomorphic encryption, originally called privacy homomorphism, was proposed by Rivest, Adleman and Dertouzos in 1978 (one year after RSA was published).
- Homomorphic encryption schemes before 2009:
 - Multiplicatively homomorphic: RSA, ElGammal, etc.
 - Additively homomorphic: Goldwasser-Micali, Paillier, etc.
 - Quadratic polynomials: Boneh-Goh-Nissim
 - Arbitrary circuits but with exponential ciphertext-size: "Polly Craker" by Fellows and Koblitz
 - NC¹ circuits (poly-size, depth O(log n), using bounded fan-in AND, OR, and NOT gates): Sanders-Young-Yung

Gentry's fully homomorphic encryption scheme

- In 2009, Gentry proposed the first FHE scheme.
- Three steps:
 - Building a somewhat homomorphic encryption scheme using ideal lattices
 - Squashing the Decryption Circuit
 - Bootstrapping

Bootstrapping

Why does SH not imply FH?

- {AND, XOR}, i.e., {+, ×}, is a complete set of gates, from which any Boolean function can be constructed.
- False: If an encryption scheme is {+, ×}-homomorphic, then it is fully homomorphic.
- Reason: Ciphertexts typically contain an "error" or "noise". When operations are performed on ciphertexts, errors grow. When the error becomes too large, the ciphertext cannot be correctly decrypted.

Example

- Key: a large odd integer *p*.
- Encryp(p, m): To encrypt a bit $m \in \{0, 1\}$, let c = pq + 2r + m, where q, r are random with $0 \le 2r \ll p$. 2r is the noise.
- Decryp(p, c): let $m = (c \mod p) \mod 2$.
- If $c_1 = pq_1 + 2r_1 + m_1$ and $c_2 = pq_2 + 2r_2 + m_2$, then $c_1 + c_2$ is a ciphertext of $m_1 + m_2$, with noise $2(r_1 + r_2)$, and c_1c_2 is a ciphertext of m_1m_2 , with noise $2(2r_1r_2 + r_1m_2 + m_1r_2)$.
- The noise grows!
- What if the noise becomes too large, say 2r > p?

Challenge

- Can we have a {+, ×}-homomorphic encryption scheme without noises growing?
- That is, the ciphertexts output by Evaluate is as fresh as those output by Encrypt (in terms of amount of noise).
- Such a scheme will automatically be fully homomorphic.
- Gentry proposed a simple yet powerful strategy to achieve that (no noise growing): Bootstrapping!

Bootstrapping

• In a nut shell, bootstrapping is to perform (augmented) Decrypt homomorphically.

If we can evaluate decrypt homomorphically

• We can allow anyone to convert a ciphertext under key pk_A into a ciphertext under key pk_B w/o revealing the message.

g-augumented decryption circuit

- g: a gate (with input and output in the plaintext space).
- *g*-augmented decryption circuit: illustrated below.

NAND-augmented Decrypt:

 c_1 , c_2 are ciphertexts of m_1 , m_2 under key pk_A

If we can evaluate NAND-Decrypt homomorphically

- Encrypt all input using pk_B (figuratively, put them in a blue box).
- Evaluate NAND-Decrypt.
- We obtain a "fresh" ciphertext of m_1 NAND m_2 under key pk_B.

If we can evaluate NAND-Decrypt homomorphically...

- then from the ciphertexts of m₁ and m₂ under pk_A, we can obtain a "fresh" ciphertext of m₁ NAND m₂ under key pk_B, provided that the encryption of sk_A under pk_B is given.
- That is, we can perform m_1 NAND m_2 homomorphically without increasing the noise.

Suppose we want to evaluate this circuit homomorphically, with m_1 , m_2 , m_3 , m_4 encrypted under pk_A. Evaluate $(C, pk_A, \psi_1, \psi_2, \psi_3, \psi_4)$.

Bootstrappable encryption

- $\Sigma = (KeyGen, Encrypt, Decrypt, Evaluate).$
- Γ : a set of gates (with input/output in the plaintext space).
- $D_{\Sigma}(\Gamma)$: the set of *g*-augmented Decrypt, $g \in \Gamma$.
- *C* : a class of circuits (including the identity circuit).
- Suppose Σ is *C*-homomorphic.
- Σ is said to be bootstrappable with respect to Γ if $D_{\Sigma}(\Gamma) \subseteq \mathcal{C}$.
- If Σ is bootstrappable w.r.t. a complete set of gates Γ (including the identity gate), then we can construct a leveled fully homomorphic family of schemes {Σ^(d) : d ∈ Z⁺} (for circuits with gates in Γ).

$\Sigma^{(d)}$: homomorphic for circuits of depth $\leq d$

- Assume $\Sigma = (\text{KeyGen, Encrypt, Decrypt, Evaluate})$ is bootstrappable w.r.t. a set of gates Γ . We construct from Σ $\Sigma^{(d)} = (\text{KeyGen}^{(d)}, \text{Encrypt}^{(d)}, \text{Decrypt}^{(d)}, \text{Evaluate}^{(d)}).$
- KeyGen^(d) (λ, d) : //The same algorithm for all d.//
 - Use KeyGen to generate d + 1 key pairs $(sk_i, pk_i), 0 \le i \le d$.
 - Represent sk_i as a sequence of plaintexts: $sk_i = (sk_{i1}, ..., sk_{i\ell})$.
 - Encrypt (each element of) $sk_i : \overline{sk_i} \leftarrow \text{Encrypt}(pk_{i-1}, sk_i)$.
 - Secret key: $sk^{(d)} = sk_0$.
 - Public key: $pk^{(d)} = \left\{ \left\langle pk_i \right\rangle_{0 \le i \le d}, \left\langle \overline{sk_i} \right\rangle_{1 \le i \le d} \right\}.$

- Encrypt^(d) :
 - Input: a public key $pk^{(d)}$ and a plaintext π .
 - Output: ciphertext $\psi \leftarrow \text{Encrypt}(pk_d, \pi)$.
- **Decrypt**^(d) :
 - Input: a secret key $sk^{(d)}$ and a ciphertext ψ .
 - Output: ciphertext $\pi \leftarrow \mathsf{Decrypt}(sk_0, \psi)$.
 - Remark: ψ is assumed to be an output of Evaluate^(d).
 What if ψ was produced by Encrypt^(d)?

- Evaluate^(d) $(pk^{(d)}, C_d, \Psi_d)$:
 - Recursive procudure: Evaluate^(δ) ($pk^{(\delta)}$, C_{δ} , Ψ_{δ}).
 - C_δ has exactly δ levels; gates at level i are connected to gates at level i −1. (Any circuit of depth ≤ δ can be converted to such a circuit by inserting identity gates.)
 - Ψ_{δ} is a tuple of ciphertexts under pk_{δ} .
 - Initial call: Evaluate^(d) $(pk^{(d)}, C_d, \Psi_d)$.

Evaluate^(δ) $\left(pk^{(\delta)}, C_{\delta}, \Psi_{\delta} \right)$

Evaluate^(δ) ($pk^{(\delta)}, C_{\delta}, \Psi_{\delta}$)

$\mathsf{Evaluate}^{(\delta)}\left(pk^{(\delta)}, \ C_{\delta}, \ \Psi_{\delta}\right)$

Call Evaluate^(δ -1) ($pk^{(\delta-1)}$, $C_{\delta-1}$, $\Psi_{\delta-1}$)

Evaluate⁽⁰⁾
$$\left(pk^{(0)}, C_0, \Psi_0 \right)$$

When $\delta = 0$, simply return Ψ_0 ,

which is under pk_0 and can be decrypted with $sk^{(d)} = sk_0$.

Correctness

- Theorem. If Σ is bootstrappable w.r.t. a complete set of gates Γ (including the identity gate), then the family {Σ^(d) : d ∈ Z⁺} constructed above is leveled fully homomorphic (for circuits with gates in Γ).
- That is, Decrypt^(d) correctly evaluate any circuit (composed of gates in Γ) of depth at most d.

Complexity

- Theorem. For a circuit *C* of depth *d* and size *s*(the number of wires), the time complexity of evaluating *C* is dominated by *O*(*s* · *l*) applications of Encrypt and *O*(*s*) applications of Evaluate to (*g* ∈ Γ)-augmented decryption circuits, where *l* = *l*(*λ*) is the number of "bits" of each ciphertext and sk.
- Remark: If the given circuit *C* has depth < *d* and size s, it can be converted into a circuit of depth *d* and size at most *sd*.
- Theorem. For a circuit *C* of depth ≤ *d* and size *s* (the number of wires), the time complexity of evaluating *C* is dominated by *O*(*s* · *l* · *d*) applications of Encrypt and *O*(*s* · *d*) applications of Encrypt and *O*(*s* · *d*) applications of Evaluate to (*g* ∈ Γ)-augmented decryption circuits.

Security

• Theorem. If Σ is semantically secure, then

 $\Sigma^{(d)}$ is semantically secure for each *d*.

- Two questions:
 - What's the meaning of semantic security for homomorphic encryption schemes?
 - How to prove the theorem?

Semantic security game for public-key encryption

- Challenger: on input the security parameter λ ,
 - generates a key pair (*pk*, *sk*),
 - sends *pk* to the adversary.
- Adversary: produces two messages m₀, m₁, and sends them to the challenger.
- Challenger: chooses a random bit b ← {0, 1} and sends c ← Enc_{pk}(m_b) to the adversary.
- Adversary: determines whether b = 0 or b = 1.

Question: Does this model apply to homomorphic encryption?

Semantic security for homomorphic encryption

- Is it different from that for ordinary public-key encryption? We will argue that it is the same.
- Since ciphertexts may be produced by Evaluate,
 a natural modification to the model is to let the adversary
 provide a circuit *C* and two inputs **m**₀ = (m₀₁,...,m_{0t}),
 m₁ = (m₁₁,...,m_{1t}).
- The challenger chooses b ← {0,1}, encrypts m_b as ψ, runs ψ ← Evaluate(pk, C, ψ), and gives ψ to the adversary as the challenge ciphertext.
- The challenger may simply give ψ as the challenge ciphertext, since the adversary can run $\psi \leftarrow \text{Evaluate}(\text{pk}, C, \psi)$ itself.

- So, the semantic security game for homomorphic encryption is the same as the multi-ciphertext semantic security game for ordinary public-key encryption.
- It has been shown that an algorithm A that breaks the semantic security of the game with multiple ciphertexts can be used to construct an algorithm B that breaks the semantic security of the ordinry game. That is, breaking single-ciphertext semantic security ≤ breaking multi-ciphertext semantic security.
- Therefore, to prove semantic security of a homomorphic encryption scheme, we can just use the semantic game for ordinary public-key encryption.

Why is it not trivial?

Theorem. If Σ is semantically secure (and bootstrappable),
 then Σ^(d) is semantically secure for each *d*.

$$pk_d pk_{d-1} \cdots pk_1 pk_0$$

$$\overline{sk_d}$$
 $\overline{sk_{d-1}}$ \cdots $\overline{sk_1}$ sk_0

These encrypted keys $\overline{sk_i}$ might leak information about the ciphertext (under pk_d), unless we prove otherwise.

Semantic Security Game $k, d \ge k \ge 0$.

- Game k is the same as the game for $\Sigma^{(d)}$ except that each sk_i , $d \ge i \ge 1$, is replaced by some $\overline{sk'_i}$ unrelated to pk_i :
 - $(sk'_i, pk'_i) \leftarrow \text{KeyGen}(1^{\lambda})$
 - $sk'_i \leftarrow$ encryption of sk' under pk_{i-1}
- Game $d = \text{game for } \Sigma$. Game $0 = \text{game for } \Sigma^{(d)}$.

$$\frac{pk_d}{sk_d} \cdots \frac{pk_k}{sk_k'} \cdots \frac{pk_1}{sk_1'} \frac{pk_0}{sk_0}$$

- To prove the theorem, assume the existence of an adversary *A* that has a non-negligible advantage against Σ^(d) (Game 0). We construct an algorithm *B* that breaks Σ (Game *d*) with a non-negligible advantage. (*B* will use *A* as a "subroutine".)
- Let $\varepsilon_k(\lambda) = A$'s advantage in Game k. Apparently, $\varepsilon_d(\lambda) \le \varepsilon_{d-1}(\lambda) \le \cdots \le \varepsilon_0(\lambda)$.
- Two cases:
 - $\varepsilon_d(\lambda)$ is non-negligible (A breaks Σ and we are done).
 - $\varepsilon_d(\lambda)$ is negligible.
- Assume $\varepsilon_d(\lambda)$ is negligible. There must exist a $d > k \ge 0$ such that $\varepsilon_k(\lambda)$ is non-negligible and $\varepsilon_{k+1}(\lambda)$ is negligible.
- Fix this k and consider Games k and k + 1.

• $\varepsilon_k(\lambda)$ is non-negligible and $\varepsilon_{k+1}(\lambda)$ is negligible.

$$pk_{d} \cdots pk_{k+1} pk_{k} \cdots pk_{0}$$

$$\overline{sk_{d}} \cdots \overline{sk_{k+1}} \overline{sk'_{k}} \cdots sk_{0}$$

$$\swarrow \text{ insecure against } A, \text{ but}$$

$$\text{ secure if } \overline{sk_{k+1}} \text{ is replaced by } \overline{sk'_{k+1}}.$$
So, A can help us distinguish between $\overline{sk_{k+1}}$ and $\overline{sk'_{k+1}}.$

• Three players, two games:

• Remark: between *B* and *C* is a multi-ciphertext game. $_{39}$

• $\varepsilon_k(\lambda)$ is non-negligible and $\varepsilon_{k+1}(\lambda)$ is negligible.

$$pk_{d} \cdots pk_{k+1} \quad pk \cdots pk_{0}$$

$$\overline{sk_{d}} \cdots \psi \quad \overline{sk_{k}'} \cdots sk_{0}$$

$$\overline{\ } \text{ insecure if } \psi = \overline{sk_{k+1}}$$

$$\overline{secure if } \psi = \overline{sk_{k+1}'}.$$

A can help us distinguish between sk_{k+1} and sk'_{k+1} .

Game against Σ	
----------------	--

- C (challenger)
 - 1. generate *pk*, *sk*;
 - 2. send pk to B;
 - 6. choose *b*;

B (adversary) 5. send $\pi_0 = sk_{k+1}$, $\pi_1 = sk'_{k+1}$ to *C*;

8. (B is to guess b, with A's help);

14. if
$$\beta = \beta'$$
 then $b' = 0$ else $b' = 1$;

7. send $\psi \leftarrow E_{pk}(\pi_b)$ to *B*; 15. send *b'* to *C*.

Game against $\Sigma^{(d)}$

B (challenger)

A (adversary)

- 3. set up the game with *A*;
- 4. replace pk_k by pk;
- 9. replace sk_{k+1} by ψ ;
- 10. send the "keys" to *A*;
- 12. choose β and send $\psi' \leftarrow E_{pk_d}(\pi'_{\beta})$ to A;

11. send plaintexts π'_0 , π'_1 to *B*;

41

13. send its guess β' to B;

- In summary, if A has a non-negligible advantage against Σ^(d), then B has a non-negligible advantage against the multi-ciphertext version of Σ, from which one can construct an algorithm B' against (the single-ciphertext version of) Σ with a non-negligible advantage. This proves the theorem.
- Theorem. If Σ is semantically secure (and bootstrappable),
 then Σ^(d) is semantically secure for each *d*.

Can we use just one pair of keys?

- The public key of Σ^(d) (including the evaluation key) contains d +1 Σ-public keys and a chain of d encrypted Σ-secret keys.
- Question: why don't we use just one pair of keys?

Leveled FHE becomes FHE if Σ is KDM-secure

• Theorem. If Σ is KDM-secure, then we can shorten $pk^{(d)}$ to

$$\{pk_0, \overline{sk_0}\}$$
, with $\overline{sk_0} \leftarrow \text{Encrypt}(pk_0, sk_0)$. Then, all $\Sigma^{(d)}$

are the same and we have an FHE scheme.

KDM-Security

(KDM: Key-Dependent Message)

Recall: IND- CPA (semantic security)

• In the IND-CPA game,

$$\Pr[A \text{ wins}] \triangleq \Pr\left[\begin{array}{l} A^{\boldsymbol{E}_{k}} \left(1^{\lambda}, m_{0}, m_{1}, \boldsymbol{E}_{k} \left(m_{b} \right) \right) = \boldsymbol{b} :\\ k \leftarrow G(1^{\lambda}), \ \boldsymbol{b} \leftarrow_{\boldsymbol{u}} \{0, 1\}, \ m_{0}, m_{1} \leftarrow_{\boldsymbol{A}} M \end{array} \right].$$

- Define the adversary's advantage to be $|\Pr[A \text{ wins}] 1/2|$.
- An encryption scheme is IND-CPA if all polynomial-time adversaries have negligible advantages.
- Remark: The game for asymmetric encryption is similar.

- Semantic security assumes that the messages to be encrypted are independent of the secret key.
- Suppose Σ = (G, E, D) is semantically secure (IND-CPA).
 Suppose we modify the encryption algorithm such that

$$E'_{k}(m) = \begin{cases} 0 \parallel E_{k}(m) & \text{if } m \neq k \\ 1 \parallel k & \text{otherwise} \end{cases}$$

- Q: Is $\Sigma' = (G, E', D)$ semantically secure?
- Σ' is apparently insecure if it is used to encrypt the key itself, and potentially insecure if used to encrypt key-dependent messages.
- This suggests the notion of KDM security.

KDM-security game (for asymmetric encryption)

- Parameters: security parameter λ, an integer n > 0, a class
 C of functions that map n secret keys to a message.
- Setup. The challenger chooses a random bit b ← {0, 1}, generates n key pairs (pk₁, sk₁), ..., (pk_n, sk_n), and sends public keys (pk₁, ..., pk_n) to the adversary.
- Queries. The adversary issues queries of the form (i, f)with $1 \le i \le n$ and $f \in C$. The challenger responds with $c \leftarrow \begin{pmatrix} E(pk_i, m) & \text{if } b = 0 \\ E(pk_i, 0^{|m|}) & \text{if } b = 1 \end{cases}$ where $m = f(sk_1, ..., sk_n)$.
- Finish. The adversary guesses whether b = 0 or b = 1.

KDM-security

- A public-key encryption scheme is *n*-way KDM-secure with respect to *C* if all polynomial-time adversaries have negligible advantages in the KDM-security game.
- Boneh et al (Crypto'08) proposed a KDM-secure encryption scheme w.r.t. the following class of functions:
 - all constant functions: $f_m(x_1, ..., x_n) = m$ for $m \in M$.
 - all selector functions $f_i(x_1, ..., x_n) = x_i$ for $1 \le i \le n$.
- KDM-security for this class of functions implies semantic security as well as circular security. (In circular security, we have a cycle of *n* key pairs, and we are allowed to encrypt each *sk_i*, 1 ≤ *i* ≤ *n*, under *pk_{(imod n)+1}*).

The KDM-security needed for FHE

- The KDM-security needed to convert leveled FHE to FHE is circular security for some *n* > 0.
- Since the underlying SHE is bootstrappable, using multiple key-pairs (n > 1) does not seem to be more secure than using just one pair (n = 1). Why?