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The concept of fully homomorphic encryption, originally called
     was proposed by Rivest, Adleman
    and Dertouzos in 1978 (one yea
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r after 
vacy homomorph
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Homomorphic encryption before Gentry
•

RSA was published).
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In 2009, Gentry proposed the first FHE scheme.

 Three steps:
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ption scheme
       using ideal lattices
   a

 

  Squ

Gentry's fully homomorphic encryption scheme
•

•


 shing the Decryption Circuit
     Bootstrapping

8 



Bootstrapping 

9 



{ } { }

{ }

 

 

AND, XOR , i.e., , , is a complete set of gates, from
     which any Boo
 

 

 

 Fa   If an encryption scheme is -homomorphic, 
    then 

lean function can be constructed.

,
i

lse:

Why does SH not imply FH? 

+ ×

• + ×

•

t is fully homomorphic.

  Ciphertexts typically contain an "error" or "noise". 
    When operations are performed on ciphertexts, errors grow.
    When the error becomes too large, the c

Rea

iph

son:

x

 

erte

•

t cannot be 
    correctly decrypted.

10 



{ }

( )

  

 

1 1

 Key: a large odd integer .

 Encryp( , ):  To encrypt a bit  
    wh

0,1 , let 2 ,
2 .  2  is the no

 

 

 

 

ere ,   are random with 0

 Decryp( , ):  let mod mod 2. 

 is

 

e.

If 

Example
p

c pq r m
r p

c

p m m
q r

p c m

r

c

pq

p

•

• ∈

≤

=

= + +

= +

•

•



1 1 2 2 2 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

2 2 ,  then
     is a ciphertext of , with noise 2( ),  and 

 is a ciphertext of , with n

What if the no

 and 

  oise 2(2 ).  

 The no ise gro

i

ws!  

c s  be e

r m c pq r m
c c m m r r
c c m m r r r m m r

+ = + +
+ + +

+

•

+

•

omes too large, say 2 ?r p>
11 



{ }  Can we have a -homomorphic encryption scheme
 ?  
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 In a nut shell, bootstrapping is to perform
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( ) ,   ,  .

 :  a set of gates (with input/output in the plaintext
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 Theorem.  If  is bootstrappable w.r.t. a complete
    set of gates  (including the identity gate), then the family 
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 Theorem.  For a circuit  of  and  
    (the number of wires), the time complexity of evaluating  is
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 Theorem.  If  is semantically secure, then
                      is semantically secure for each .
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 Challenger:  on input the security parameter , 
     generates a key pair ( , ),  
 

 
     sends  to the adversary.

 Adversary:  produces two me
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 So, the semantic security game for homomorphic encryption
    is the same as the  semantic security game
    for ordinary pub

 

 

lic-key encryption.

 It has been shown t

multi-ciph

hat an alg

e

o

rt

ri  

ext

thm

•

• A that breaks the semantic
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 Theorem.  If  is semantically secure (and bootstrappable),
    then  is semantically secure for each .
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( ) Game  is the same as the game for  except that each ,

    1,  is replaced by some  unrelated to :  
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 To prove the theorem, assume the existence of an adversary
     that has a non-negligible advantage against  (Game 0).
   We construct an algorithm  that breaks  (Game ) with a
   non-negligib
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).
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Game against 
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( )In summary, if  has a non-negligible advantage against ,
   then  has a non-negligible advantage against the 
   multi-ciphertext version of ,  from which one can construct 
   an algorithm '  a
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ainst (the single-ciphertext version of)  
   with a non-negligible advantage.  This proves the theorem.

 Theorem.  If  is semantically secure (and bootstrappable),
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( ) The public key of  (including the evaluation key)
    contains 1 -public keys and a chain of  encrypted
    -secre
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t keys.
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    adversaries have  advantages.

 Remark:  The game for asymmetric encryption is sim . ilar•



 Semantic security assumes that the messages to be encrypted
    are independent of the secret key.

 Suppose ( , , ) is semantically secure (IND-CPA).  
    Suppose we modify the encryption algorit
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ecure if used to encrypt key-dependent
     messages.

   This suggests the notion of KDM security.•
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 Parameters: security parameter , an integer 0,  a class
     of functions that map  secret keys to a message. 

 Setup.  The challenger chooses a ran

 

 

KDM-security game (for asymmetric encryption)
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 A public-key encryption scheme is 
     if all polynomial-time adversaries have
    negligible advantages in

-way KDM-secure
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 the KDM-security game
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KDM-security
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 KDM-security for this class of functions implies semantic
    security as well as circular security.  (In circular security, we
    have a cycle of  key pairs, and we are allowed to encrypt 
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 The KDM-security needed to convert leveled FHE to
    FHE is circular security for some 0.

 Since the underlying SHE is bootstra

 

 ppable, using multiple 
    key-pairs

The KDM-security needed for FHE
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 ( 1) does not seem to be more secure than 
    using just one pair ( 1).  Why?
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