CSE 5351 Homework 5

Due: Tuesday, March 6 by class time

- 1. In basic CBC-MAC, t_0 is fixed. Show that the following modification (where t_0 is not fixed) does not yield a secure fixed-length MAC for messages of length nq.
 - (Modified) Tag generation: For key $k \in \{0,1\}^n$ and message $m \in \{0,1\}^{n \cdot q}$,
 - parse m as $m = (m_1, \dots, m_q) // q$ blocks //
 - apply CBC to m, i.e., let
 - $t_0 \leftarrow_u \{0,1\}^n$ and $t_i \coloneqq F_k(m_i \oplus t_{i-1})$ for $1 \le i \le q$
 - output $\langle t_0, t_q \rangle$ as the tag
- 2. Show that appending the message length |m| (number of blocks) to the *end* of *m* before applying basic-CBC-MAC does not result in a secure MAC for arbitrary-length messages. Hint: The adversary obtains three samples as follows:
 - Present a 1-block message m_1 to the oracle and obtain tag t_1 , where $t_1 = \text{basic-CBC-MAC}_k(m_1, |m_1|)$. (k is a secret key not known to the adversary.)
 - Present another 1-block message m_2 to the oracle and obtain tag t_2 , where $t_2 = \text{basic-CBC-MAC}_k(m_2, |m_2|)$.)
 - Present a 3-block message $m_3 = (m_1, |m_1|, m_2)$ to the oracle and obtain tag t_3 , where

 $t_3 = \text{basic-CBC-MAC}_k(m_1, |m_1|, m_2, |m_3|).$

- From the above three samples, construct a valid pair (*m*,*t*).
- 3. Let F be a pseudorandom function. Construct a fixed-length MAC scheme for messages of length 2n as follows. The shared key is a random k ∈ {0,1}ⁿ. To authenticate a message m₁m₂ with |m₁| = |m₂| = n, let the tag be ⟨F_k(m₁), F_k(F_k(m₂))⟩. Is this scheme secure against chosen-message attacks? Justify your answer.