CSE 5351 Homework 3

Due: Tuesday, February 13 by class time

Let G be a pseudorandom generator with expansion factor l(n) = 2n. Define F(k,x) = G(k) ⊕ x for k ∈ {0,1}ⁿ and x ∈ {0,1}²ⁿ (thus, F_k(x) = G(k) ⊕ x) (Note: here l_{key}(n) = n, l_{in}(n) = l_{out}(n) = 2n.) Question: Is F a pseudorandom function? That is, is the following true? Justify your answer.

$$\left| \operatorname{Pr}\left[D^{F_{k}(\cdot)}(1^{n}) = 1 \colon k \leftarrow_{u} \{0,1\}^{n} \right] - \operatorname{Pr}\left[D^{f(\cdot)}(1^{n}) = 1 \colon f \leftarrow_{u} \operatorname{Func}_{2n} \right] \right| \leq \operatorname{negl}(n)$$

where Func_{2n} is the set of all functions $f: \{0,1\}^{2n} \to \{0,1\}^{2n}$.

- Let F be a (length-preserving) pseudorandom function and G a pseudorandom generator with expansion factor l(n) = n +1. For each of the following encryption schemes, state whether the scheme is EAV-secure and whether it is CPA-secure. (In each case, the key is a uniform k ∈ {0,1}ⁿ.) Explain your answer.
 - (a) To encrypt $m \in \{0,1\}^{n+1}$, choose uniform $r \in \{0,1\}^n$ and let $c := \langle r, G(r) \oplus m \rangle$.
 - (b) To encrypt $m \in \{0,1\}^n$, output the ciphertext $F_k(0^n) \oplus m$.
 - (c) To encrypt $m \in \{0,1\}^{2n}$, parse *m* as $m_1 || m_2$ with $|m_1| = |m_2|$, then choose uniform $r \in \{0,1\}^n$ and let the ciphertext be $\langle r, m_1 \oplus F_k(r), m_2 \oplus F_k(r+1) \rangle$.
- 3. Say CBC- mode is used with a block cipher having a 256-bit key and 128-bit block length to encrypt a 1024-bit message. What is the length of the resulting ciphertext? (Assume a padding scheme that appends to the message a 1 and as many 0's as needed.)