CSE 5351 Homework 2

Due: Thursday, February 1 by class time

- 1. Consider Caesar's shift cipher with $M = \{a,b,c,d\}$ represented as $\{0,1,2,3\}$.
 - Key generation: $k \leftarrow_u \{0, \dots, 25\}$.
 - Encryption: $Enc_k(m) = \begin{cases} (m+k) \mod 26 & \text{with probability } 1/2 \\ (m+k+5) \mod 26 & \text{with probability } 1/2 \end{cases}$
 - Assume $\Pr[M = m] = (m+1)/10$.

Questions :

- (a) Compute $\Pr[Enc_{\mathsf{K}}(m) = 10]$ for each $m \in M$. (K is random.)
- (b) Compute $Pr[Enc_{K}(M) = 10]$. (Both K and M are random.)
- 2. Let Π denote the Vigenere cipher where the message space consists of all 3-character strings (i.e., M = {a, ..., z}³), and the key is generated by first choosing the period t ←_u {1, 2, 3} and then letting the key be a uniform string of length t (i.e., k ←_u {a, ..., z}^t or {0, ..., 25}^t). So, the key space is K = {a, ..., z} ∪ {a, ..., z}² ∪ {a, ..., z}³.
 Question: Compute Pr[K = k] for k = a, k = ab, and k = abc.
- 3. Consider the encryption scheme Π in Question 2 and the experiment $\operatorname{PrivK}_{A,\Pi}^{\operatorname{eav}}$, where adversary *A* is defined as follows: *A* outputs two messages $m_0 = \operatorname{aab}$ and $m_1 = \operatorname{abb}$. When given a challenge ciphertext *c*, *A* outputs 0 if the first two characters of *c* are the same, and outputs 1 otherwise.

Questions :

- (a) Suppose Bob chooses b = 0. For what keys k will A succeed (i.e., $A(m_0, m_1, Enc_k(m_0)) = 0$)?
- (b) Suppose Bob chooses b = 1. For what keys k will A succeed (i.e., $A(m_0, m_1, Enc_k(m_1)) = 1$)?

(One more question on page 2)

4. Question: Compute $\Pr\left[\operatorname{PrivK}_{A,\Pi}^{eav}(m_0, m_1) = 1\right]$ for the scheme and adversary in Question 3. Hint: $\Pr\left[\operatorname{PrivK}_{A,\Pi}^{eav}(m_0, m_1) = 1\right]$ $= \sum_{k=1}^{n} \Pr\left[\mathbf{b} = b\right] \cdot \Pr\left[\mathbf{K} = k\right] \cdot \Pr\left[A\left(m_0, m_1, Enc_k(m_b)\right) = b\right]$

$$= \frac{1}{2} \cdot \sum_{k \in K} \Pr[\mathsf{K} = k] \cdot \Pr[A(m_0, m_1, Enc_k(m_0)) = 0] + \frac{1}{2} \cdot \sum_{k \in K} \Pr[\mathsf{K} = k] \cdot \Pr[A(m_0, m_1, Enc_k(m_1)) = 1]$$