CSE 5351 Homework 2

Due: Thursday, February 1 by class time

1. Consider Caesar's shift cipher with $M=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ represented as $\{0,1,2,3\}$.

- Key generation: $k \leftarrow_{u}\{0, \ldots, 25\}$.
- Encryption: $E n c_{k}(m)= \begin{cases}(m+k) \bmod 26 & \text { with probability } 1 / 2 \\ (m+k+5) \bmod 26 & \text { with probability } 1 / 2\end{cases}$
- Assume $\operatorname{Pr}[\mathrm{M}=m]=(m+1) / 10$.

Questions:

(a) Compute $\operatorname{Pr}\left[E n c_{\mathrm{K}}(m)=10\right]$ for each $m \in M$. (K is random.)
(b) Compute $\operatorname{Pr}\left[E n c_{\mathrm{K}}(\mathrm{M})=10\right]$. (Both K and M are random.)
2. Let Π denote the Vigenere cipher where the message space consists of all 3-character strings (i.e., $\left.M=\{\mathrm{a}, \ldots, \mathrm{z}\}^{3}\right)$, and the key is generated by first choosing the period $t \leftarrow_{u}\{1,2,3\}$ and then letting the key be a uniform string of length t (i.e., $k \leftarrow_{u}\{\mathrm{a}, \ldots, \mathrm{z}\}^{t}$ or $\{0, \ldots, 25\}^{t}$).
So, the key space is $K=\{\mathrm{a}, \ldots, \mathrm{z}\} \cup\{\mathrm{a}, \ldots, \mathrm{z}\}^{2} \cup\{\mathrm{a}, \ldots, \mathrm{z}\}^{3}$.
Question : Compute $\operatorname{Pr}[\mathrm{K}=k]$ for $k=\mathrm{a}, k=\mathrm{ab}$, and $k=\mathrm{abc}$.
3. Consider the encryption scheme Π in Question 2 and the experiment $\operatorname{PrivK}_{A, \Pi}^{\mathrm{eav}}$, where adversary A is defined as follows: A outputs two messages $m_{0}=\mathrm{aab}$ and $m_{1}=\mathrm{abb}$.
When given a challenge ciphertext c, A outputs 0 if the first two characters of c are the same, and outputs 1 otherwise.

Questions :

(a) Suppose Bob chooses $b=0$. For what keys k will A succeed (i.e., $\left.A\left(m_{0}, m_{1}, E n c_{k}\left(m_{0}\right)\right)=0\right)$?
(b) Suppose Bob chooses $b=1$. For what keys k will A succeed (i.e., $\left.A\left(m_{0}, m_{1}, E n c_{k}\left(m_{1}\right)\right)=1\right)$?
4. Question : Compute $\operatorname{Pr}\left[\operatorname{PrivK}_{A, \Pi}^{\text {eav }}\left(m_{0}, m_{1}\right)=1\right]$ for the scheme and adversary in Question 3.

Hint : $\operatorname{Pr}\left[\operatorname{PrivK}_{A, \Pi}^{\text {eav }}\left(m_{0}, m_{1}\right)=1\right]$

$$
\begin{aligned}
= & \sum_{\substack{b \in\{0,1\} \\
k \in K}} \operatorname{Pr}[\mathrm{~B}=b] \cdot \operatorname{Pr}[\mathrm{K}=k] \cdot \operatorname{Pr}\left[A\left(m_{0}, m_{1}, E n c_{k}\left(m_{b}\right)\right)=b\right] \\
= & \frac{1}{2} \cdot \sum_{k \in K} \operatorname{Pr}[\mathrm{~K}=k] \cdot \operatorname{Pr}\left[A\left(m_{0}, m_{1}, \operatorname{Enc}_{k}\left(m_{0}\right)\right)=0\right] \\
& +\frac{1}{2} \cdot \sum_{k \in K} \operatorname{Pr}[\mathrm{~K}=k] \cdot \operatorname{Pr}\left[A\left(m_{0}, m_{1}, \operatorname{Enc}_{k}\left(m_{1}\right)\right)=1\right]
\end{aligned}
$$

