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CDH/DDH-Based Encryption 

K&L Sections 8.3.1-8.3.3, 11.4. 
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DLP in the additive group .
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  DDH CDH DLP.

  Open question: Is CDH DLP? 

  There are example of groups (e.g., ) in which

    CDH and DLP are believed to be hard, but DDH is easy.
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Elliptic Curve Cryptography 

K&L Section 8.3.4 



 A field, denoted by ( ,  ,  ),  is a set  with two 
   binary operations,  and ,  such that
   1. ( , ) is an abelian group (with identity 0).
   2. ( \{0}, ) is an abelian group (with identy 1).

Field
F F

F
F

• + ×
+ ×

+
×

1

   3. For all elements ,  0 0 0.
   3. , , ,  ( )   (distributive).

 Example fields: ( ,  ,  ),  ( ,  ,  ), ( ,  ,  ).

 ( , , ) is not a field, because  (except for  1).

 For 

a F a a
x y z F x y z x y x z

z z−

∈ × = × =
∀ ∈ × + = × + ×

• + × + × + ×

• + × ∉ =

•

  

 

any prime , ( ,  ,  ) is a field, denoted as .p pp F+ ×
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  An  is a curve given by  

                          

  It is required that the discrimin

elliptic c

ant =4 27 0.  When
    0,  the polynomial 
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The equation of an elliptic curve

x ax
a b

y x ax b
∆ + ≠

∆ ≠

•

•

+ +

= + +

 has distinct roots,
    and the curve is said to be nonsingular.
  For reasons to be explained later, we introduce an

    additional point, , call the point at infinityed , so the
    elliptic curve 

0

O

b =
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is the set 

                ( , ) :E x y y x ax b O= = + + 
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  We are often interested in points on the curve of specific
    coordinates:

      ( ) ( , ) :  

      ( ) ( , ) :  

      ( ) ( , ) :  

      ( ) ( , ) :

E x y y x ax b O

E x y y x ax b O

E x y y x ax b O

E x y

•

= ∈ × = + +

= ∈ × = + +

= ∈ × = + +

= ∈ ×
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y x ax b O

E F x y F F y x ax b O

= + +
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 Amazing fact: we can use geometry to make the points
    of an elliptic curve into a group.

 Suppose .    Then def
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Making an elliptic curve into a group
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 What if ( , ),  ( , ),  so that   is vertical?
    In this case, we define .

 This is why we added the extra point  into the cu e
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P x y Q x y PQ
P Q O

O

• = = −
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•



P=(x,y)

-P=(x,-y)Q=(x,-y) 
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 Now having defined  for ,  ,  we still need
    to define .

 Let  play the role 

 

 

 

of identity, and define
    .

 Now every point ( , ) has an inverse: ( , ). 

P Q P Q O
P O
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P O O P P

P x y P x y

+ ≠
+

+ = + =
= − = −
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P=(x,y)

-P=(x,-y)
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 The addition law on  has these properties:
   1.   for all .
   2.  ( )  for all .
   3.  ( ) ( )  for all , , .
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P P O P E
P Q R P Q R P Q R E
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    computation usin explicit formul
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advanced algebraic or analytic methods.
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E
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λ ν λ
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•
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P=Q

R=2P
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3 3

2
3 1

1 1 1

2
1

1

3 1 3 1

  If ( , ),  with 0,  and
2 , th  en  

    

( , )

  2
   

3   

    
   (

2

)

P Q x y y
P Q P

x a
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R x y

x x
y x x y

λ

λ
λ
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= =

+
=

−

+ =



30 

2 3:  
If  and  are in a field  and if  and  have coordinates

    in , then  and 2  as computed by the formulas also
    have coordinates in 

   .
 

,  or equal .
Thu

 

  s

An important fact

E
a b K P Q
K P Q P

K

y x x b

O

a• = + +
•

•

+

, we can use the same addition laws to make the points
    of an elliptic curve over a finite field  into a group, even

    though the addition laws will no longer have the geometric
    interpretation

pF

s.
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Let  be a field, and suppose that an elliptic curve  is given
by an equation of the form
          :   with , .
Let ( ) denote the set of points of  with coordi

Theorem (Poincare, 19 ) 00
K E

E y x ax b a b K
E K E

= + + ∈

≈

{ } { }

nates in ,
plus ,
       ( )  ( , ) :  , .
Then ( ) is a group.

K
O
E K x y E x y K O

E K
= ∈ ∈ ∪
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          :   with , .

Let ( ) denote the set of points of  with coordinates in ,
plus ,

    

( ) is isomorph

   ( ) ( , ) :  

An amazing fact: ic 

What does ( ) look like? 

E y x ax b a b R

E E C
O

E x y C C

E

y x ax b O

E C

= + + ∈

= ∈ × = + + ∪





  to a torus.
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3 2

2 3

2 3
23

Equation:   over 

                where 3,  , ,  4 27 0 (mod  ).

 ( , ) :   

:    over  
Example:

Elliptic curves defined over 

p

p

p p

p

y x ax b F

p a b F a b p

E x y F F y x ax b O

E y x x F

F

= + +

> ∈ + ≠

= ∈ × = + + ∪

= +
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11

11
3

2
11

11

: 6  over  

To find all points ( , ) of ,
for each , compute 

6mod11 and
determine whether  is a
quadratic residue. 
If so, solve  in .

( ) 13.

Example
E y x x F

x y E
x F

z x x
z

y z F
E F

= + +

∈

= + +

=

= 9,2410
79

8,398
9,247

86
9,245

84
6,533
7,452

81
60

res? quad63

yes
no
yes
yes
no
yes
no
yes
yes
no
no

yxxx ++
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2 2

22
11

1

There are 13 points in the group.  

So, it is cyclic and any point other  is a generator.

Let (2,7). We can compute 2 ( , ) as follows.

3 2 13 13 2 3 2 4 8 ( mod
2 2 7 14

Example (continued)

O

x y

x a
y

α α

λ −

= =

++
= = = = × = × =

×

( ) ( )
( )

22
2 1

2 1 2 1

11)

2 8 2 2 5  ( mod11)

( ) 2 5 8 7 2 ( mod11)

2 (5,2)

x x

y x x y

λ

λ

α

= − = − × =

= − − = − × − =

=
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3 3

2 1

2 1
2 2

3 1 2

3 1 3 1

Let 3 ( , ).  Then,
2 7   2  ( mod11)
5 2

  2 2 5 8  ( mod11)
  ( ) 2 8

Ex

2 7 3  ( mod11)

(2,7) 2 (5,2) 3 (8,3)
4 (10,2) 5 (

ample (continued

3,6) 6 (7,9)
7 (7,2) 8 (

)
x y

y y
x x

x x x
y x x y

α

λ

λ
λ

α α α
α α α
α α

=
− −

= = =
− −

= − − = − − =

= − − = − × − =

= = =
= = =
= = 3,5) 9 (10,9)

10 (8,8) 11 (5,9) 12 (2,4)

13 12 2 11 3 10 ?

α
α α α

α α α α α α α

=
= = =

= + = + = + = =
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Hasse's Theor

  Determining ( )  is an important problem,

    called point counting.

  

    1 2   ( )   1 2 .

  There are polynomial time algorithms that

    precisely determi

m:

e

e

n  

Point Counting

p

p

E F

p p E F p p+ − ≤ ≤ + +

•

•

•

( ) .

  In practice, ( ) of prime order  is used. 

p

p

E F

E F q•
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{ }0 1 2 1    Let , , , ,  be a group of order .

    DLP in :  given an element ,  find the

         unique exponent  such that  .

DLP in  - reviewed
q

x
q

g g g g g q

g h g

x h

g

g

−• =

• ∈

∈ =
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  Consider an elliptic curve  group ( ).  

  Let ( ) be a point of large prime order .

  0 ,  1 ,  2 ,  ,  ( 1)  is a subgroup of ( ).

  ECDLP :  given

Elliptic Curve Discrete Logarithm Problem

p

p

p

E F
G E F q

G G G G q G E F

•

•

•

•

∈

= −

 a point ,  find the unique multiplier  
     such that  .q

H G
x xG H

∈

∈ =
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                  Alice  Bob

                  Alice  Bob
        Agreed key:    

                  Alice  Bob
                 

Diffie-Hellman key agreement

Elliptic Curve Diffie-Hellman 

a

b

g

g

ab

aG

g

→

←

→

 Alice  Bob
        Agreed key:         

bG

abG
←
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  Alice and Bob wish to agree on a  key.
    1. Alice and Bob agree on an elliptic curve ( )

        and a point  on the curve of large p

secret

rime order 

Elliptic Curve Diffie-Hellman key agreement 

pE F
G

•

.
    2. Alice Bob:  ,  where .

    3. Alice Bob:  ,  where b .

    4. They agree on the key ,  which is a point on ( ).

  They can now use ( ),  the -coordinate of ,
    as a secret 

u q

u q

p

q
aG a Z
bG Z

E F

x abG

G

x

a

abG

b

→ ←

← ←

•
key for, for example, a symmetric encryption

    scheme.
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Key lengths recommended by NIST 

Effective key length n: brute-force search against an n-bit  
symmetric key encryption scheme 
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