CDH/DDH-Based Encryption

K\&L Sections 8.3.1-8.3.3, 11.4.

Cyclic groups

- A finite group G of order q is cyclic if it has an element g of q. In this case, $G=\langle g\rangle=\left\{g^{0}, g^{1}, g^{2}, \ldots, g^{q-1}\right\} ; G$ is said to be generated by g, and g is a generator.
- In any group (not necessarily finite or cyclic), if g is an element of finite order q, then $\langle g\rangle=\left\{g^{0}, g^{1}, g^{2}, \ldots, g^{q-1}\right\}$ is a cyclic group of order q.
- Note: in general, $\langle g\rangle$ denotes the subgroup generated by g.
- Note: we implicitly assume multiplicative groups, and will write the identity of the group as 1 .
- Recall: For any element $a \in G, a^{m}=a^{m \bmod |G|}$.

Discrete logarithm problem (DLP)

- Let G be a cyclic group of order q, and let g be any generator. So, $G=\langle g\rangle=\left\{g^{0}, g^{1}, g^{2}, \ldots, g^{q-1}\right\}$
- For any $h \in G$, there is a unique $x \in \mathbb{Z}_{q}$ such that $g^{x}=h$. This integer x is called the discrete logarithm (or index) of h with respect to base g. We write $\log _{g} h=x$.
- Standard logarithm rules still hold: $\log _{g} 1=0$,

$$
\log _{g}\left(h_{1} \cdot h_{2}\right)=\left(\log _{g} h_{1}+\log _{g} h_{2}\right) \bmod q, \log _{g} h^{k}=\left(k \log _{g} h\right) \bmod q .
$$

- The DLP in G with base g is to compute $\log _{g} h$ for any $h \leftarrow_{u} G$.

DLP in \mathbb{Z}_{p}^{*}

- Theorem: If p is prime, then \mathbb{Z}_{p}^{*} is a cyclic group of order $p-1$.
- Let g be any generator of \mathbb{Z}_{p}^{*}.
- $\mathbb{Z}_{p}^{*}=\{1,2, \ldots, p-1\}=\left\{g^{0}, g^{1}, g^{2}, \ldots, g^{p-2}\right\}$.
$\mathbb{Z}_{p-1}=\{0,1,2, \ldots, p-2\}$.
- DLP: given $g^{\star} \in \mathbb{Z}_{p}^{*}$, compute x.
- There is a subexponential-time algorithm for DLP in \mathbb{Z}_{p}^{*}
- Index Calculus, $O\left(2^{O(\sqrt{\log n})}\right)$, where $n=\log p$.

Frequently used groups

- $\mathbb{Z}_{p}^{*}=\left\{g^{0}, g^{1}, g^{2}, \ldots, g^{p-2}\right\}$,
where p is a large prime, and g is a generator. //less secure//
- A subgroup of \mathbb{Z}_{p}^{*} of prime order q,

$$
G_{q}=\langle\alpha\rangle=\left\{\alpha^{0}, \alpha^{1}, \alpha^{2}, \ldots, \alpha^{q-1}\right\} \subset \mathbb{Z}_{p}^{*}
$$

where $\alpha \in \mathbb{Z}_{p}^{*}$ is an element of prime order q (e.g. $\left.\alpha=g^{(p-1) / q}\right)$.

- The Index Calculus doesn't work.
- Elliptic curves defined over finite fields. //increasingly popular//
- In these groups, there is no polynomial-time algorithm known for DLP.

Example 1

$G=\mathbb{Z}_{19}^{*}=\{1,2, \ldots, 18\}$.
2 is a generator. $\mathbb{Z}_{19}^{*}=\langle 2\rangle=\left\{2^{0}, 2^{1}, 2^{2}, \ldots, 2^{17}\right\}$.
$2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16,2^{5}=13$,
$2^{6}=7,2^{7}=14, \ldots$
$\log _{2} 7=6$
$\log _{2} 14=7$
$\log _{2} 12=$?

Example 2

$G=\mathbb{Z}_{11}^{*}=\{1,2, \ldots, 10\}$.
$G_{5}=\langle 3\rangle=\{1,3,9,5,4\}$.
3 is a generator of G_{5}, but not a generator of Z_{11}^{*}. $\log _{3} 5=3$
$\log _{3} 10=$ not defined

Example 3

DLP in the additive group \mathbb{Z}_{N}.
Every $0 \neq g \in \mathbb{Z}_{N}$ coprime to N is a generator.
DLP: given $k \cdot g$, compute k.

RSA vs. Discrete Logarithm

- RSA is a one-way trapdoor function:

$$
\begin{array}{ll}
x \xrightarrow{\mathrm{RSA}} x^{e} & \text { (easy) } \\
x \stackrel{\mathrm{RSA}^{-1}}{ } x^{e} & \text { (difficult) } \\
x \stackrel{\mathrm{RSA}^{-1}}{ }\left(x^{e}\right)^{d} & (d \text { is a trapdoor })
\end{array}
$$

- Exponetiation is a one-way function without a trapdoor:

$$
\begin{array}{ll}
x \xrightarrow{\exp _{g}} g^{x} & \text { (easy) } \\
x \stackrel{\log _{g}}{\longleftrightarrow} g^{x} & \text { (difficult) }
\end{array}
$$

- An encryption scheme based on the difficulty of discrete log will not simply encrypt x as g^{x}.

Diffie-Hellman key agreement

- $G=\left\{g^{0}, g^{1}, g^{2}, \ldots, g^{q-1}\right\}$, a cyclic group of order q. $\mathbb{Z}_{q}=\{0,1,2, \ldots, q-1\}$.
- Alice and Bob wish to set up a secret key.

1. They agree on (G, g, q).
2. Alice \rightarrow Bob: g^{x}, where $x \leftarrow_{u} \mathbb{Z}_{q}$.
3. Alice \leftarrow Bob: g^{y}, where $y \leftarrow_{u} \mathbb{Z}_{q}$.
4. The agreed-on key: $g^{x y}$.

- Remark: in practice, (G, g, q) is standardized, and there is a mapping between bit strings and the elements of G.

Diffie-Hellman key agreement using \mathbb{Z}_{p}^{*}

- $\mathbb{Z}_{p}^{*}=\left\{g^{0}, g^{1}, g^{2}, \ldots, g^{p-2}\right\}, p$ a large prime. $\mathbb{Z}_{p-1}=\{0,1,2, \ldots, p-2\}$.
- Alice and Bob wish to set up a secret key.

1. Alice and Bob agree on a large prime p and a generator $g \in \mathbb{Z}_{p}^{*} . \quad(p, g$, not secret)
2. Alice \rightarrow Bob: $g^{x} \bmod p$, where $x \leftarrow_{u} \mathbb{Z}_{p-1}$.
3. Alice \leftarrow Bob: $g^{y} \bmod p$, where $y \leftarrow_{u} \mathbb{Z}_{p-1}$.
4. They agree on the key: $g^{x y} \bmod p$.

Diffie-Hellman problems

- $G=\left\{g^{0}, g^{1}, g^{2}, \ldots, g^{q-1}\right\}$, a cyclic group of order q.

$$
Z_{q}=\{0,1,2, \ldots, q-1\} .
$$

- Computational Diffie-Hellman (CDH) Problem: given $g^{x}, g^{y} \in G$, where $x, y \leftarrow_{u} Z_{q}$, compute $g^{x . y}$.
- Decisional Diffie-Hellman (DDH) Problem: given $g^{x}, g^{y}, h \in G$, where $x, y \leftarrow{ }_{u} Z_{q}$, and

$$
h= \begin{cases}g^{x \cdot y} & \text { with probability } 1 / 2 \\ \text { a random element in } G & \text { with probability } 1 / 2\end{cases}
$$

determine if $h=g^{x . y}$.

Relationships between DDH, CDH, DLP

- $\mathrm{DDH} \leq \mathrm{CDH} \leq \mathrm{DLP}$.
- Open question: Is CDH \geq DLP?
- There are example of groups (e.g., \mathbb{Z}_{p}^{*}) in which CDH and DLP are believed to be hard, but DDH is easy.

ElGamal encryption scheme

$$
G=\left\{g^{0}, g^{1}, g^{2}, \ldots, g^{q-1}\right\}, \mathbb{Z}_{q}=\{0,1,2, \ldots, q-1\} .
$$

- Keys: $s k=(G, g, q, x), p k=(G, g, q, h)$ where $x \leftarrow \mathbb{Z}_{q}, h=g^{x}$.
- To encrypt a message $m \in G$:
- Use Diffie-Hellman agreement to set up a "key" $k \in G$ by choosing $y \leftarrow_{u} \mathbb{Z}_{q}$ and computing $k:=h^{y}\left(=g^{x \cdot y}\right)$.
- Use k to encrypt m as $k \cdot m \in G$.
- The ciphertext is $\left\langle g^{y}, k \cdot m\right\rangle=\left\langle g^{y}, h^{y} \cdot m\right\rangle$.
- Decryption: $\operatorname{Dec}_{\text {sk }}\left(c_{1}, c_{2}\right)=c_{2} \cdot c_{1}^{-x}$.

ElGamal encryption in \mathbb{Z}_{p}^{*}

1. Key generation (e.g. for Alice):

- choose a large prime p and a generator $g \in \mathbb{Z}_{p}^{*}$,
where $p-1$ has a large prime factor.
- randomly choose a number $x \in \mathbb{Z}_{p-1}$ and compute $h=g^{x}$;
- let $s k=(p, g, x)$ and $p k=(p, g, h)$.

2. Encryption: $E n c_{p k}(m)=\left(g^{y}, h^{y} \cdot m\right)$, where $m \in \mathbb{Z}_{p}^{*}, y \leftarrow_{u} \mathbb{Z}_{p-1}$.
3. Decryption: $D_{\text {sk }}\left(c_{1}, c_{2}\right)=c_{2} \cdot c_{1}^{-x}$.
4. Remarks: Multiplications are done in \mathbb{Z}_{p}^{*}, i.e., modulo p.

The encryption scheme is randomized.

Security of ElGamal encryption

- Theorem: If the DDH problem is hard, then the ElGamal encryption scheme is CPA-secure.
- ElGamal encryption is homomorphic and thus not CCA-secure.

Homomorphism of ElGamal encryption

- A function $f: G \rightarrow G^{\prime}$ is homomorphic if $f(x y)=f(x) f(y)$.
- ElGamal encryption is homomorphic, $E\left(m m^{\prime}\right)=E(m) \cdot E\left(m^{\prime}\right)$, in the following sense:

$$
\begin{aligned}
& \text { If } E(m)=\left(g^{y}, m h^{y}\right) \text { and } E\left(m^{\prime}\right)=\left(g^{y^{\prime}}, m^{\prime} h^{y^{\prime}}\right) \text {, then } \\
& \begin{aligned}
E(m) \cdot E\left(m^{\prime}\right) & =\left(g^{y}, m h^{y}\right) \cdot\left(g^{y^{\prime}}, m^{\prime} h^{y^{\prime}}\right) \\
& =\left(g^{y} g^{y^{\prime}}, m h^{y} m^{\prime} h^{y^{\prime}}\right) \\
& =\left(g^{y+y^{\prime}}, m m^{\prime} h^{y+y^{\prime}}\right)
\end{aligned}
\end{aligned}
$$

is a valid encryption of $m m^{\prime}$.

Elliptic Curve Cryptography

K\&L Section 8.3.4

Field

- A field, denoted by $(F,+, \times)$, is a set F with two binary operations, + and \times, such that

1. $(F,+)$ is an abelian group (with identity 0).
2. $(F \backslash\{0\}, \times)$ is an abelian group (with identy 1).
3. For all elements $a \in F, 0 \times a=a \times 0=0$.
4. $\forall x, y, z \in F, x \times(y+z)=x \times y+x \times z$ (distributive).

- Example fields: $(\mathbb{Q},+, \times),(\mathbb{R},+, \times),(\mathbb{C},+, \times)$.
- $(\mathbb{Z},+, \times)$ is not a field, because $z^{-1} \notin \mathbb{Z}$ (except for $z=1$).
- For any prime $p,\left(\mathbb{Z}_{p},+, \times\right)$ is a field, denoted as F_{p}.

The equation of an elliptic curve

- An elliptic curve is a curve given by

$$
y^{2}=x^{3}+a x+b
$$

- It is required that the discriminant $\Delta=4 a^{3}+27 b^{2} \neq 0$. When
$\Delta \neq 0$, the polynomial $x^{3}+a x+b=0$ has distinct roots, and the curve is said to be nonsingular.
- For reasons to be explained later, we introduce an additional point, O, called the point at infinity, so the elliptic curve is the set

$$
E=\left\{(x, y): y^{2}=x^{3}+a x+b\right\} \cup\{O\}
$$

- We are often interested in points on the curve of specific coordinates:

$$
\begin{aligned}
& E(\mathbb{Z})=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: y^{2}=x^{3}+a x+b\right\} \cup\{O\} \\
& E(\mathbb{Q})=\left\{(x, y) \in \mathbb{Q} \times \mathbb{Q}: y^{2}=x^{3}+a x+b\right\} \cup\{O\} \\
& E(\mathbb{R})=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: y^{2}=x^{3}+a x+b\right\} \cup\{O\} \\
& E(\mathbb{C})=\left\{(x, y) \in \mathbb{C} \times \mathbb{C}: y^{2}=x^{3}+a x+b\right\} \cup\{O\} \\
& E\left(F_{p}\right)=\left\{(x, y) \in F_{p} \times F_{p}: y^{2}=x^{3}+a x+b\right\} \cup\{O\}
\end{aligned}
$$

Example:

$$
E: y^{2}=x^{3}-4 x \quad(x, y \in \mathbb{R})
$$

Making an elliptic curve into a group

- Amazing fact: we can use geometry to make the points of an elliptic curve into a group.
- Suppose $P \neq Q$. Then define $P+Q=R$.

- Suppose $P=Q$.

Then define $P+Q=2 P=R$.

- What if $P=(x, y), Q=(x,-y)$, so that $\overleftrightarrow{P Q}$ is vertical? In this case, we define $P+Q=O$.
- This is why we added the extra point O into the curve.

- Now having defined $P+Q$ for $P, Q \neq O$, we still need to define $P+O$.
- Let O play the role of identity, and define $P+O=O+P=P$.
- Now every point $P=(x, y)$ has an inverse: $-P=(x,-y)$.

Theorem. The addition law on E has these properties:

1. $P+O=O+P=P$ for all $P \in E$.
2. $P+(-P)=O$ for all $P \in E$.
3. $P+(Q+R)=(P+Q)+R$ for all $P, Q, R \in E$.
4. $P+Q=Q+P$ for all $P, Q \in E$.

- That is, $(E(\mathbb{R}),+)$ forms an abelian group.
- All of these properties are trivial to check except the associative law (3), which can be verified by a lengthy computation using explicit formulas, or by using more advanced algebraic or analytic methods.

Formulas for Addition on E

- $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right), P \neq Q . \quad R=P+Q=\left(x_{3}, y_{3}\right)$.
- The curve $E: y^{2}=x^{3}+a x+b$.
- The line $\overleftrightarrow{P Q}: y=\lambda x+v$, where

$$
\lambda=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \text { and } v=y_{1}-\lambda x_{1} .
$$

- $x_{3}=\lambda^{2}-x_{1}-x_{2}$

$$
y_{3}=\left(x_{1}-x_{3}\right) \lambda-y_{1}
$$

- If $P=Q=\left(x_{1}, y_{1}\right)$, with $y_{1} \neq 0$, and

$$
R=P+Q=2 P=\left(x_{3}, y_{3}\right) \text {, then }
$$

$$
\begin{aligned}
\lambda & =\frac{3 x_{1}^{2}+a}{2 y_{1}} \\
x_{3} & =\lambda^{2}-2 x_{1} \\
y_{3} & =\left(x_{1}-x_{3}\right) \lambda-y_{1}
\end{aligned}
$$

An important fact

- $E: y^{2}=x^{3}+a x+b$.
- If a and b are in a field K and if P and Q have coordinates in K, then $P+Q$ and $2 P$ as computed by the formulas also have coordinates in K, or equal O.
- Thus, we can use the same addition laws to make the points of an elliptic curve over a finite field F_{p} into a group, even though the addition laws will no longer have the geometric interpretations.

Theorem (Poincare, ≈ 1900)

Let K be a field, and suppose that an elliptic curve E is given by an equation of the form

$$
E: y^{2}=x^{3}+a x+b \text { with } a, b \in K
$$

Let $E(K)$ denote the set of points of E with coordinates in K, plus O,

$$
E(K)=\{(x, y) \in E: x, y \in K\} \cup\{O\} .
$$

Then $E(K)$ is a group.

What does $E(C)$ look like?

$$
E: y^{2}=x^{3}+a x+b \text { with } a, b \in R .
$$

Let $E(\mathbb{C})$ denote the set of points of E with coordinates in C, plus O,

$$
E(\mathbb{C})=\left\{(x, y) \in C \times C: y^{2}=x^{3}+a x+b\right\} \cup\{O\}
$$

An amazing fact: $E(\mathbb{C})$ is isomorphic to a torus.

ELLIPTIC CURVES
 arierenemo

Lawrence C. Washington

Elliptic curves defined over F_{p}

Equation: $y^{2}=x^{3}+a x+b$ over F_{p}

$$
\text { where } p>3, a, b \in F_{p}, 4 a^{3}+27 b^{2} \neq 0(\bmod p) \text {. }
$$

$E=\left\{(x, y) \in F_{p} \times F_{p}: y^{2}=x^{3}+a x+b\right\} \cup\{O\}$

Example:
$E: y^{2}=x^{3}+x$ over F_{23}

Example

$E: y^{2}=x^{3}+x+6$ over F_{11}

To find all points (x, y) of E, for each $x \in F_{11}$, compute
$z=x^{3}+x+6 \bmod 11$ and determine whether z is a quadratic residue.
If so, solve $y^{2}=z$ in F_{11}.
$\left|E\left(F_{11}\right)\right|=13$.

x	$x^{3}+x+6$	quad res?	y
0	6	no	
1	8	no	
2	5	yes	4,7
3	3	yes	5,6
4	8	no	
5	4	yes	2,9
6	8	no	
7	4	yes	2,9
8	9	yes	3,8
9	7	no	
10	4	yes	2,9

Example (continued)

There are 13 points in the group.
So, it is cyclic and any point other O is a generator.
Let $\alpha=(2,7)$. We can compute $2 \alpha=\left(x_{2}, y_{2}\right)$ as follows.
$\lambda=\frac{3 x_{1}^{2}+a}{2 y_{1}}=\frac{3(2)^{2}+1}{2 \times 7}=\frac{13}{14}=2 \times 3^{-1}=2 \times 4=8(\bmod 11)$
$x_{2}=\lambda^{2}-2 x_{1}=(8)^{2}-2 \times(2)=5(\bmod 11)$
$y_{2}=\left(x_{1}-x_{2}\right) \lambda-y_{1}=(2-5) \times 8-7=2(\bmod 11)$
$2 \alpha=(5,2)$

Example (continued)
Let $3 \alpha=\left(x_{3}, y_{3}\right)$. Then,

$$
\begin{aligned}
& \lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-7}{5-2}=2(\bmod 11) \\
& x_{3}=\lambda^{2}-x_{1}-x_{2}=2^{2}-2-5=8(\bmod 11) \\
& y_{3}=\left(x_{1}-x_{3}\right) \lambda-y_{1}=(2-8) \times 2-7=3(\bmod 11)
\end{aligned}
$$

$$
\begin{aligned}
\alpha & =(2,7) & 2 \alpha & =(5,2) & 3 \alpha & =(8,3) \\
4 \alpha & =(10,2) & 5 \alpha & =(3,6) & 6 \alpha & =(7,9) \\
7 \alpha & =(7,2) & 8 \alpha & =(3,5) & 9 \alpha & =(10,9) \\
10 \alpha & =(8,8) & 11 \alpha & =(5,9) & 12 \alpha & =(2,4)
\end{aligned}
$$

$$
13 \alpha=\alpha+12 \alpha=2 \alpha+11 \alpha=3 \alpha+10 \alpha=\cdots=?
$$

Point Counting

- Determining $\left|E\left(F_{p}\right)\right|$ is an important problem, called point counting.
- Hasse's Theorem:

$$
p+1-2 \sqrt{p} \leq\left|E\left(F_{p}\right)\right| \leq p+1+2 \sqrt{p} .
$$

- There are polynomial time algorithms that precisely determine $\left|E\left(F_{p}\right)\right|$.
- In practice, $E\left(F_{p}\right)$ of prime order q is used.

DLP in $\langle g\rangle$ - reviewed

- Let $\langle g\rangle=\left\{g^{0}, g^{1}, g^{2}, \ldots, g^{q-1}\right\}$ be a group of order q.
- DLP in $\langle g\rangle$: given an element $h \in\langle g\rangle$, find the unique exponent $x \in \mathbb{Z}_{q}$ such that $g^{x}=h$.

Elliptic Curve Discrete Logarithm Problem

- Consider an elliptic curve group $E\left(F_{p}\right)$.
- Let $G \in E\left(F_{p}\right)$ be a point of large prime order q.
- $\langle G\rangle=\{0 G, 1 G, 2 G, \ldots,(q-1) G\}$ is a subgroup of $E\left(F_{p}\right)$.
- ECDLP : given a point $H \in\langle G\rangle$, find the unique multiplier $x \in \mathbb{Z}_{q}$ such that $x G=H$.

Diffie-Hellman key agreement
Alice $\xrightarrow{g^{a}}$ Bob
Alice $\stackrel{g^{b}}{ }$ Bob
Agreed key: $g^{a b}$

Elliptic Curve Diffie-Hellman

Alice $\xrightarrow{a G}$ Bob
Alice $\stackrel{b G}{\longleftrightarrow}$ Bob
Agreed key: $\quad a b G$

Elliptic Curve Diffie-Hellman key agreement

- Alice and Bob wish to agree on a secret key.

1. Alice and Bob agree on an elliptic curve $E\left(F_{p}\right)$ and a point G on the curve of large prime order q.
2. Alice \rightarrow Bob: $a G$, where $a \leftarrow_{u} Z_{q}$.
3. Alice \leftarrow Bob: $b G$, where $\mathrm{b} \leftarrow{ }_{u} Z_{q}$.
4. They agree on the key $a b G$, which is a point on $E\left(F_{p}\right)$.

- They can now use $x(a b G)$, the x-coordinate of $a b G$, as a secret key for, for example, a symmetric encryption scheme.

Key lengths recommended by NIST

	RSA	Discrete Logarithm	
Effective Key Length	Modulus Length	Order- q Subgroup of \mathbb{Z}_{p}^{*}	Elliptic-Curve Group Order q
112	2048	$p: 2048, q: 224$	224
128	3072	$p: 3072, q: 256$	256
192	7680	$p: 7680, q: 384$	384
256	15360	$p: 15360, q: 512$	512

Effective key length n : brute-force search against an n-bit symmetric key encryption scheme

