CDH/DDH-Based Encryption

K&L Sections 8.3.1-8.3.3, 11.4.

Cyclic groups

- A finite group G of order q is cyclic if it has an element g of q. In this case, $G = \langle g \rangle = \{g^0, g^1, g^2, ..., g^{q-1}\}$; G is said to be generated by g, and g is a generator.
- In any group (not necessarily finite or cyclic), if g is an element of finite order q, then $\langle g \rangle = \{g^0, g^1, g^2, ..., g^{q-1}\}$ is a cyclic group of order q.
- Note: in general, $\langle g \rangle$ denotes the subgroup generated by g.
- Note: we implicitly assume multiplicative groups, and will write the identity of the group as 1.
- Recall: For any element $a \in G$, $a^m = a^{m \mod |G|}$.

Discrete logarithm problem (DLP)

• Let G be a cyclic group of order q, and let g be any generator.

So,
$$G = \langle g \rangle = \{ g^0, g^1, g^2, ..., g^{q-1} \}$$

- For any $h \in G$, there is a unique $x \in \mathbb{Z}_q$ such that $g^x = h$. This integer x is called the discrete logarithm (or index) of h with respect to base g. We write $\log_g h = x$.
- Standard logarithm rules still hold: $\log_g 1 = 0$, $\log_g (h_1 \cdot h_2) = (\log_g h_1 + \log_g h_2) \mod q$, $\log_g h^k = (k \log_g h) \mod q$.
- The DLP in G with base g is to compute $\log_g h$ for any $h \leftarrow_u G$.

DLP in \mathbb{Z}_p^*

- Theorem: If p is prime, then \mathbb{Z}_p^* is a cyclic group of order p-1.
- Let g be any generator of \mathbb{Z}_p^* .
- $\mathbb{Z}_{p}^{*} = \{1, 2, ..., p-1\} = \{g^{0}, g^{1}, g^{2}, ..., g^{p-2}\}.$ $\mathbb{Z}_{p-1} = \{0, 1, 2, ..., p-2\}.$
- DLP: given $g^x \in \mathbb{Z}_p^*$, compute x.
- There is a subexponential-time algorithm for DLP in \mathbb{Z}_p^*
 - Index Calculus, $O\left(2^{O\left(\sqrt{n\log n}\right)}\right)$, where $n = \log p$.

Frequently used groups

- $\mathbb{Z}_p^* = \{g^0, g^1, g^2, ..., g^{p-2}\},$ where p is a large prime, and g is a generator. //less secure//
- A subgroup of \mathbb{Z}_p^* of prime order q,

$$G_q = \langle \alpha \rangle = \{ \alpha^0, \alpha^1, \alpha^2, ..., \alpha^{q-1} \} \subset \mathbb{Z}_p^*,$$

where $\alpha \in \mathbb{Z}_p^*$ is an element of prime order q (e.g. $\alpha = g^{(p-1)/q}$).

- The Index Calculus doesn't work.
- Elliptic curves defined over finite fields. //increasingly popular//
- In these groups, there is no polynomial-time algorithm known for DLP.

$$G = \mathbb{Z}_{19}^* = \{1, 2, ..., 18\}.$$

2 is a generator. $\mathbb{Z}_{19}^* = \langle 2 \rangle = \{2^0, 2^1, 2^2, ..., 2^{17}\}.$
 $2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 16, 2^5 = 13,$
 $2^6 = 7, 2^7 = 14, ...$
 $\log_2 7 = 6$
 $\log_2 14 = 7$
 $\log_2 12 = ?$

$$G = \mathbb{Z}_{11}^* = \{1, 2, ..., 10\}.$$

$$G_5 = \langle 3 \rangle = \{1, 3, 9, 5, 4\}.$$

3 is a generator of G_5 , but not a generator of Z_{11}^* .

$$\log_3 5 = 3$$

 $\log_3 10 = \text{ not defined}$

DLP in the additive group \mathbb{Z}_N .

Every $0 \neq g \in \mathbb{Z}_N$ coprime to N is a generator.

DLP: given $k \cdot g$, compute k.

RSA vs. Discrete Logarithm

• RSA is a one-way trapdoor function:

$$x \xrightarrow{\text{RSA}} x^e$$
 (easy)
 $x \xleftarrow{\text{RSA}^{-1}} x^e$ (difficult)
 $x \xleftarrow{\text{RSA}^{-1}} \left(x^e\right)^d$ (d is a trapdoor)

Exponetiation is a one-way function without a trapdoor:

$$x \xrightarrow{\exp_g} g^x$$
 (easy)
 $x \xleftarrow{\log_g} g^x$ (difficult)

• An encryption scheme based on the difficulty of discrete log will not simply encrypt x as g^x .

Diffie-Hellman key agreement

- $G = \{g^0, g^1, g^2, ..., g^{q-1}\}$, a cyclic group of order q. $\mathbb{Z}_q = \{0, 1, 2, ..., q-1\}$.
- Alice and Bob wish to set up a secret key.
 - 1. They agree on (G, g, q).
 - 2. Alice \rightarrow Bob: g^x , where $x \leftarrow_u \mathbb{Z}_q$.
 - 3. Alice \leftarrow Bob: g^y , where $y \leftarrow_u \mathbb{Z}_q$.
 - 4. The agreed-on key: $g^{x \cdot y}$.
- Remark: in practice, (G, g, q) is standardized, and there is a mapping between bit strings and the elements of G.

Diffie-Hellman key agreement using \mathbb{Z}_p^*

- $\mathbb{Z}_{p}^{*} = \{g^{0}, g^{1}, g^{2}, ..., g^{p-2}\}, p \text{ a large prime.}$ $\mathbb{Z}_{p-1} = \{0, 1, 2, ..., p-2\}.$
- Alice and Bob wish to set up a secret key.
 - 1. Alice and Bob agree on a large prime p and a generator $g \in \mathbb{Z}_p^*$. (p, g, not secret)
 - 2. Alice \rightarrow Bob: $g^x \mod p$, where $x \leftarrow_u \mathbb{Z}_{p-1}$.
 - 3. Alice \leftarrow Bob: $g^y \mod p$, where $y \leftarrow_u \mathbb{Z}_{p-1}$.
 - 4. They agree on the key: $g^{xy} \mod p$.

Diffie-Hellman problems

- $G = \{g^0, g^1, g^2, ..., g^{q-1}\}$, a cyclic group of order q. $Z_q = \{0, 1, 2, ..., q-1\}$.
- Computational Diffie-Hellman (CDH) Problem: given g^x , $g^y \in G$, where $x, y \leftarrow_u Z_q$, compute $g^{x \cdot y}$.
- Decisional Diffie-Hellman (DDH) Problem: given g^x , g^y , $h \in G$, where $x, y \leftarrow_u Z_q$, and $h = \begin{cases} g^{x \cdot y} & \text{with probability } 1/2\\ \text{a random element in } G & \text{with probability } 1/2 \end{cases}$ determine if $h = g^{x \cdot y}$.

Relationships between DDH, CDH, DLP

- DDH \leq CDH \leq DLP.
- Open question: Is CDH ≥ DLP?
- There are example of groups (e.g., \mathbb{Z}_p^*) in which CDH and DLP are believed to be hard, but DDH is easy.

ElGamal encryption scheme

$$G = \{g^0, g^1, g^2, ..., g^{q-1}\}, \mathbb{Z}_q = \{0, 1, 2, ..., q-1\}.$$

- Keys: sk = (G, g, q, x), pk = (G, g, q, h) where $x \leftarrow \mathbb{Z}_q, h = g^x$.
- To encrypt a message $m \in G$:
 - Use Diffie-Hellman agreement to set up a "key" $k \in G$ by choosing $y \leftarrow_u \mathbb{Z}_q$ and computing $k := h^y \ (= g^{x \cdot y})$.
 - Use k to encrypt m as $k \cdot m \in G$.
 - The ciphertext is $\langle g^y, k \cdot m \rangle = \langle g^y, h^y \cdot m \rangle$.
- Decryption: $Dec_{sk}(c_1, c_2) = c_2 \cdot c_1^{-x}$.

ElGamal encryption in \mathbb{Z}_p^*

- 1. Key generation (e.g. for Alice):
 - choose a large prime p and a generator $g \in \mathbb{Z}_p^*$, where p-1 has a large prime factor.
 - randomly choose a number $x \in \mathbb{Z}_{p-1}$ and compute $h = g^x$;
 - let sk = (p, g, x) and pk = (p, g, h).
- 2. Encryption: $Enc_{pk}(m) = (g^y, h^y \cdot m)$, where $m \in \mathbb{Z}_p^*, y \leftarrow_u \mathbb{Z}_{p-1}$.
- 3. Decryption: $D_{sk}(c_1, c_2) = c_2 \cdot c_1^{-x}$.
- 4. Remarks: Multiplications are done in \mathbb{Z}_p^* , *i.e.*, modulo p. The encryption scheme is randomized.

Security of ElGamal encryption

• Theorem: If the DDH problem is hard, then the ElGamal encryption scheme is CPA-secure.

• ElGamal encryption is homomorphic and thus not CCA-secure.

Homomorphism of ElGamal encryption

- A function $f: G \to G'$ is homomorphic if f(xy) = f(x)f(y).
- ElGamal encryption is homomorphic, $E(mm') = E(m) \cdot E(m')$, in the following sense:

If
$$E(m) = (g^y, mh^y)$$
 and $E(m') = (g^{y'}, m'h^{y'})$, then
$$E(m) \cdot E(m') = (g^y, mh^y) \cdot (g^{y'}, m'h^{y'})$$

$$= (g^y g^{y'}, mh^y m'h^{y'})$$

$$= (g^{y+y'}, mm'h^{y+y'})$$

is a valid encryption of mm'.

Elliptic Curve Cryptography

K&L Section 8.3.4

Field

- A field, denoted by $(F, +, \times)$, is a set F with two binary operations, + and \times , such that
 - 1. (F,+) is an abelian group (with identity 0).
 - 2. $(F \setminus \{0\}, \times)$ is an abelian group (with identy 1).
 - 3. For all elements $a \in F$, $0 \times a = a \times 0 = 0$.
 - 3. $\forall x, y, z \in F$, $x \times (y + z) = x \times y + x \times z$ (distributive).
- Example fields: $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, $(\mathbb{C}, +, \times)$.
- $(\mathbb{Z}, +, \times)$ is not a field, because $z^{-1} \notin \mathbb{Z}$ (except for z = 1).
- For any prime p, (\mathbb{Z}_p , +, ×) is a field, denoted as F_p .

The equation of an elliptic curve

• An elliptic curve is a curve given by

$$y^2 = x^3 + ax + b$$

- It is required that the discriminant $\Delta = 4a^3 + 27b^2 \neq 0$. When $\Delta \neq 0$, the polynomial $x^3 + ax + b = 0$ has distinct roots, and the curve is said to be nonsingular.
- For reasons to be explained later, we introduce an additional point, *O*, called the point at infinity, so the elliptic curve is the set

$$E = \{(x, y) : y^2 = x^3 + ax + b\} \cup \{O\}$$

• We are often interested in points on the curve of specific coordinates:

$$E(\mathbb{Z}) = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : y^2 = x^3 + ax + b\} \cup \{O\}$$

$$E(\mathbb{Q}) = \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : y^2 = x^3 + ax + b\} \cup \{O\}$$

$$E(\mathbb{R}) = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y^2 = x^3 + ax + b\} \cup \{O\}$$

$$E(\mathbb{C}) = \{(x, y) \in \mathbb{C} \times \mathbb{C} : y^2 = x^3 + ax + b\} \cup \{O\}$$

$$E(F_p) = \{(x, y) \in F_p \times F_p : y^2 = x^3 + ax + b\} \cup \{O\}$$

$$E: y^2 = x^3 - 4x \qquad (x, y \in \mathbb{R})$$

Making an elliptic curve into a group

- Amazing fact: we can use geometry to make the points of an elliptic curve into a group.
- Suppose $P \neq Q$. Then define P + Q = R.

• Suppose P = Q. Then define P + Q = 2P = R.

- What if P = (x, y), Q = (x, -y), so that PQ is vertical? In this case, we define P + Q = O.
- This is why we added the extra point O into the curve.

- Now having defined P + Q for P, $Q \neq O$, we still need to define P + O.
- Let O play the role of identity, and define P + O = O + P = P.
- Now every point P = (x, y) has an inverse: -P = (x, -y).

Theorem. The addition law on E has these properties:

- 1. P+O=O+P=P for all $P \in E$.
- 2. P + (-P) = O for all $P \in E$.
- 3. P + (Q + R) = (P + Q) + R for all $P, Q, R \in E$.
- 4. P+Q=Q+P for all $P,Q \in E$.

- That is, $(E(\mathbb{R}),+)$ forms an abelian group.
- All of these properties are trivial to check except the associative law (3), which can be verified by a lengthy computation using explicit formulas, or by using more advanced algebraic or analytic methods.

Formulas for Addition on E

- $P = (x_1, y_1), Q = (x_2, y_2), P \neq Q.$ $R = P + Q = (x_3, y_3).$
- The curve $E: y^2 = x^3 + ax + b$.
- The line \overrightarrow{PQ} : $y = \lambda x + \nu$, where

$$\lambda = \frac{y_1 - y_2}{x_1 - x_2}$$
 and $\nu = y_1 - \lambda x_1$.

 $\bullet \quad x_3 = \lambda^2 - x_1 - x_2$ $y_3 = (x_1 - x_3)\lambda - y_1$

• If $P = Q = (x_1, y_1)$, with $y_1 \neq 0$, and $R = P + Q = 2P = (x_3, y_3)$, then

$$\lambda = \frac{3x_1^2 + a}{2y_1}$$

$$x_3 = \lambda^2 - 2x_1$$

$$y_3 = (x_1 - x_3)\lambda - y_1$$

An important fact

- $E: y^2 = x^3 + ax + b$.
- If a and b are in a field K and if P and Q have coordinates in K, then P + Q and 2P as computed by the formulas also have coordinates in K, or equal O.
- Thus, we can use the same addition laws to make the points of an elliptic curve over a finite field F_p into a group, even though the addition laws will no longer have the geometric interpretations.

Theorem (Poincare, ≈ 1900)

Let K be a field, and suppose that an elliptic curve E is given by an equation of the form

$$E: y^2 = x^3 + ax + b \text{ with } a, b \in K.$$

Let E(K) denote the set of points of E with coordinates in K, plus O,

$$E(K) = \{(x, y) \in E : x, y \in K\} \cup \{O\}.$$

Then E(K) is a group.

What does E(C) look like?

$$E: y^2 = x^3 + ax + b \text{ with } a, b \in R.$$

Let $E(\mathbb{C})$ denote the set of points of E with coordinates in C, plus O,

$$E(\mathbb{C}) = \{(x, y) \in C \times C : y^2 = x^3 + ax + b\} \cup \{O\}$$

An amazing fact: $E(\mathbb{C})$ is isomorphic to a torus.

Elliptic curves defined over F_p

Equation: $y^2 = x^3 + ax + b$ over F_p where p > 3, $a, b \in F_p$, $4a^3 + 27b^2 \neq 0 \pmod{p}$. $E = \{ (x, y) \in F_p \times F_p \colon y^2 = x^3 + ax + b \} \cup \{O\}$

Example:

$$E: y^2 = x^3 + x \text{ over } F_{23}$$

Elliptic curve equation: $y^2 = x^3 + x$ over F_{23}

$$E: y^2 = x^3 + x + 6$$
 over F_{11}

To find all points (x, y) of E, for each $x \in F_{11}$, compute $z = x^3 + x + 6 \mod 11$ and determine whether z is a quadratic residue.

If so, solve
$$y^2 = z$$
 in F_{11} .
 $|E(F_{11})| = 13$.

\mathcal{X}	$x^3 + x + 6$	quad res?	y
0	6	no	
1	8	no	
2	5	yes	4,7
3	3	yes	5,6
4	8	no	
5	4	yes	2,9
6	8	no	
7	4	yes	2,9
8	9	yes	3,8
9	7	no	
10	4	yes	2,9

Example (continued)

There are 13 points in the group.

So, it is cyclic and any point other O is a generator.

Let $\alpha = (2,7)$. We can compute $2\alpha = (x_2, y_2)$ as follows.

$$\lambda = \frac{3x_1^2 + a}{2y_1} = \frac{3(2)^2 + 1}{2 \times 7} = \frac{13}{14} = 2 \times 3^{-1} = 2 \times 4 = 8 \pmod{11}$$

$$x_2 = \lambda^2 - 2x_1 = (8)^2 - 2 \times (2) = 5 \pmod{11}$$

$$y_2 = (x_1 - x_2)\lambda - y_1 = (2 - 5) \times 8 - 7 = 2 \pmod{11}$$

$$2\alpha = (5,2)$$

Example (continued)

Let
$$3\alpha = (x_3, y_3)$$
. Then,

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 7}{5 - 2} = 2 \pmod{11}$$

$$x_3 = \lambda^2 - x_1 - x_2 = 2^2 - 2 - 5 = 8 \pmod{11}$$

$$y_3 = (x_1 - x_3)\lambda - y_1 = (2 - 8) \times 2 - 7 = 3 \pmod{11}$$

$$\alpha = (2,7)$$
 $2\alpha = (5,2)$ $3\alpha = (8,3)$

$$4\alpha = (10,2)$$
 $5\alpha = (3,6)$ $6\alpha = (7,9)$

$$7\alpha = (7,2)$$
 $8\alpha = (3,5)$ $9\alpha = (10,9)$

$$10\alpha = (8,8)$$
 $11\alpha = (5,9)$ $12\alpha = (2,4)$

$$13\alpha = \alpha + 12\alpha = 2\alpha + 11\alpha = 3\alpha + 10\alpha = \cdots = ?$$

Point Counting

- Determining $|E(F_p)|$ is an important problem, called point counting.
- Hasse's Theorem:

$$p+1-2\sqrt{p} \leq \left|E(F_p)\right| \leq p+1+2\sqrt{p}.$$

- There are polynomial time algorithms that precisely determine $\left| E(F_p) \right|$.
- In practice, $E(F_p)$ of prime order q is used.

DLP in $\langle g \rangle$ - reviewed

- Let $\langle g \rangle = \{g^0, g^1, g^2, \dots, g^{q-1}\}$ be a group of order q.
- DLP in $\langle g \rangle$: given an element $h \in \langle g \rangle$, find the unique exponent $x \in \mathbb{Z}_q$ such that $g^x = h$.

Elliptic Curve Discrete Logarithm Problem

- Consider an elliptic curve group $E(F_p)$.
- Let $G \in E(F_p)$ be a point of large prime order q.
- $\langle G \rangle = \{0G, 1G, 2G, ..., (q-1)G\}$ is a subgroup of $E(F_p)$.
- ECDLP: given a point $H \in \langle G \rangle$, find the unique multiplier $x \in \mathbb{Z}_q$ such that xG = H.

Diffie-Hellman key agreement

Alice
$$\xrightarrow{g^a}$$
 Bob

Alice
$$\leftarrow^{g^b}$$
 Bob

Agreed key: g^{ab}

Elliptic Curve Diffie-Hellman

Alice
$$\xrightarrow{aG}$$
 Bob

Alice
$$\leftarrow$$
 Bob

Agreed key: abG

Elliptic Curve Diffie-Hellman key agreement

- Alice and Bob wish to agree on a secret key.
 - 1. Alice and Bob agree on an elliptic curve $E(F_p)$ and a point G on the curve of large prime order q.
 - 2. Alice \rightarrow Bob: aG, where $a \leftarrow_u Z_q$.
 - 3. Alice \leftarrow Bob: bG, where $b \leftarrow_u Z_a$.
 - 4. They agree on the key abG, which is a point on $E(F_p)$.
- They can now use x(abG), the x-coordinate of abG, as a secret key for, for example, a symmetric encryption scheme.

Key lengths recommended by NIST

	RSA	Discrete Logarithm	
Effective Key Length	Modulus Length	$egin{array}{c} \mathbf{Order} ext{-}q \ \mathbf{Subgroup \ of} \ \mathbb{Z}_p^* \end{array}$	Elliptic-Curve Group Order q
112 128 192 256	2048 3072 7680 15360	p: 2048, q: 224 p: 3072, q: 256 p: 7680, q: 384 p: 15360, q: 512	224 256 384 512

Effective key length *n*: brute-force search against an *n*-bit symmetric key encryption scheme