
p1.

Public-Key Encryption

Reading: K&L Chapter 11

p2.

Public-Key Encryption

• Also known as asymmetric-key encryption.

• The receiver has a pair of keys:

a public key pk and a private key sk.

• The public key, known to the public, is used for encryption.

• The private key, known only to its owner, is used for decryption.

p3.

mcE D

Bob Alice

m

Alice’s Alice’s
public key secret key

Public-key Encryption

p4.

Why Public-Key Cryptography?

• Developed to address two main issues:
– key distribution
– digital signatures

• Invented by Diffie & Hellman in 1976.

p5.

 A tuple of polynomial-time algorithms: (, ,)
 Key generation algorithm : On input 1 , outputs a

 key {0,1} . We write (1)

.

Symmetric-key encryption scheme (for comparison)

n

n n

Gen Enc Dec
Gen

k k Gen∈ ←

•

•

Π =

*

 (: security parameter.)
 Encryption algorithm : On input a key and a message

 {0,1} , outputs a ciphertext . We write ().
 Decryption algorithm : On input a key and a cip

k

n
Enc k

m c c Enc m
Dec k•

∈

•

←

()

*

hertext ,
 outputs a message or an error symbol .
 We write : ().

 Correctness requirement: for every (1) and {0,1} ,
 () .

 , are probabi

i l

k
n

k k

c
Dec m

m Dec c
k Gen m

Dec Enc m m
Gen Enc

•

•

⊥
=

← ∈

=

stic. , deterministic. Dec

p6.

()
()

 : on input 1 , outputs a pair of keys, , ,

 each of length at least . We write (1).
 : on input a public key and a message ,

 out

,

Public-key encryption scheme
n

n

pk

Gen pk sk

n Gen
Enc pk

k
m

s
M

p k

•

•

←

∈

puts a ciphertext . We write ().
 (.)

 : On input a secret key and a ciphertext , o
The message space may depend o

utputs a
 mess

n

age or an error symbol . We

 te

wri

pk

pk

c c Enc m

Dec s
p

k
m

M
c

k
←

⊥
•

()

()

except possibly with

: ().

 It is

 negligible

r

 probability over key pairs
 ,

equired that Pr () : 1

 output by (

1).

sk

sk pk pk

n

m Dec c

Dec Enc m m m

pk sk Gen

M

=

 = ← = •

p7.

 EAV-security (against eavedroppers, ciphertext-only-attacks)
 one encryption
 multiple encryptions

 CPA-security (against chosen-plaintext attacks)
 on

Different notions of security
•

•





 e encryption
 multiple encryptions

 CCA-security (against chosen-ciphertext attacks)
 one encryption
 multiple encryptions

•







p8.

eav
,

 Adversary : a polynomial-time eavesdropper.
 (, ,) : a public-key encryption scheme.
 Experiment PubK

():

 (1) is run to obtain a pair

Ciphertext Indistinguishability

A

n

A
Gen Enc Dec

n

Gen
Π

• Π =
•

•

 ()

0 1

of keys , .
 , and outputs a pair of

 messages , of the same length.
 A random bit {0,1} is chosen;

The ad

 and a

 ciphert

versary

ext
 () is computed

 is given

pk

pk b

pk
pk sk

m m M
b

c E m

∈

←
←





eav
,

and given to the adversary.
 The adversary output s a bit .
 PubK () 1 if and

only if .

 A

b
n b bΠ

′

′= =





p9.

eav
,

 A publick-key encryption scheme is
 if for every polynomial-time adversary there exists a negligible
 function such that

1 Pr PubK

De EAV-secu

() 1 negl()
2

refinition:

W

A

A
negl

n nΠ = ≤

•

+

•

CPA-secue may si ritymilarly define a CCA-securnd ity.

p10.

 Since the adversary knows the publick key , it can encrypt
 any polynomial number of me

eavesdropper
ssages of its choice.

 That is, are automatically capas CPA'ble of .
 Thus, if a pu

 b

s

Remarks
pk•

•
• lic-key encryption scheme is EAV-secure,
 then it is also CPA-secure.

 A public-key encryption scheme is
 not CPA-secure, and hence
 not EAV-secure.

 If

d

a public-key enc

eterministic

r

•

•





yption scheme is CPA-secure, then it is
 mult C iplePA-secur encrypte for ions.

p11.11

 Compared with private-key encryption, public-key encryption
 is slower
 has longer ciphertexts

 Hybrid encryption
 Use public-key encryption to obtain a shared key

Hybrid Encryption
•

•







 Use private-key encryption to encrypt the message under key
k

k

p12.

p13.

The KEM/DEM Paradigm

p14.

()
()

 on input 1 , outputs a pair of keys, , ,

 each of length at least . (1).

 on input 1 and a public key , outputs
 a ciphe

:

,

:
r

Key-encapsulation mechanism (KEM)
n

n

n

pk sk

n Gen

Gen

p

pk sk

Enca kps

←

•

•

()

()text and a key {0,1} .
 We write , (1).

 on input a secret key and a ciphertext , outputs a
 key or an error

 symbol . We write : ().
 It is requir

:

n

n
pk

sk

c k
c k Encaps

sk c
k

Decap
k Decaps c

s

∈

←

⊥
•

•

=



()

()

ed that with all but negligible probability over ,

 output by (1), it holds:
 , (1) ()

n

n
pk sk

pk sk

Gen
c k Encaps Decaps c k← ⇒ =

p15.

Hybrid encryption using KEM

p16.

hy hy hy hy

hy

 Construct an encryption scheme (, ,)
 from a KEM (, ,) and
 a private-key encryption scheme (, ,).

 : on

Hybrid encryption using KEM

Gen Enc Dec
Gen Encaps Decaps

Gen Enc Dec
Gen

Π =
Π =

′ ′ ′ ′Π =

•

• ()

()

()

hy *

hy

input 1 , run , (1).

 : on input a public key and message {0,1} ,
 , (1)
 ()
 output the ciphertext , .

 : on input a secret key

n n

n
pk

k

pk sk Gen

Enc pk m
c k Encaps

c Enc m
c c

Dec sk

←

∈

←

′ ′←

•

′

•







() and a ciphertext , ,
 : ()

 : ()
sk

k

c c
k Decaps c
m Dec c

′

=
′ ′=





p17.

()
()

cpa
,

()

 (, ,) : a KEM.
 Experiment KEM ():

 (1) is run to obtain a pair of k

eys , .

 (1) is run to generate , with {

0,1} .

CPA-security of KEMs

A

n

n n
pk

Gen Encaps Decaps
n

Gen pk sk

Encaps c k k

Π

Π =

∈

•

•







()

()

cpa
,

 A random bit {0,1} is chosen; and
if 0ˆ :

a random string in{0,1} else

 The adversary, given , outputs a bit .

 KEM () 1 if and only if

ˆ, ,

n

A

p

b
k b

k

b

n b b

k c k

Π

←

=
= 


′

′= =









cpa
,

.
1 is iff , Pr KEM (C) 1 neglPA-sec ().
2

 ure AA n nΠ Π ∀ = +• ≤ 

p18.

hy hy hy hy Let (, ,) be constructed from
 (, ,) and
 (, ,)
 as above.

 If is CPA-Theore secure a d

m n:

Security of hybrid encryption

Gen Enc Dec
Gen Encaps Decaps
Gen Enc Dec

Π =
Π =
′ ′ ′ ′Π =

Π• ′Π

•

hy

hy

is EAV-secure, then
 is CPA-secure.

 If is CCA-secure and is CCA-secure, then
 is CCA-secu

Theo e :
re

r m
.

•

Π

′Π Π

Π

p19.

1

1

trapdoor

Easy:

Hard:

Easy:

Use as the private key.

 Most public-key

trapd

 enc

oor

ryption schemes are based on
 ass

One-way function with trapdoor (informal)
f

f

f

x y

x y

x y

−

−

→

←

•



←

 one-way functions.

 Most one-way functions come from number th

ume

 .

d

eory•

p20.

Modular Arithmetic

Reading: K&L Section 8.1

p21.

 | : divides , is a divisor of .
 gcd(,): greatest common divisor of and .
 Coprime or relatively prime: gcd(,) 1.
 Euclid's algorithm: compute gcd(,).
 Extented Eucli

Integers
a b a b a b

a b a b
a b
a b

•
•
• =
•
• d's algorithm: compute integers
 and such that gcd(,) .x y ya b ax b+ =

p22.

 Let 2 be an integer.

 Definition: is to modulo , written

 mod (or mod as in the book)

 if | ()

congruen

, i.e., and have the m

t

 sa e

Integers modulo
N

a b N

a b N a b N

N a b a b

N
≥

−

•

•

≡ =

{ }

 remainder

 when divided by .

 Define [] : mod .

 [] is called a modulo , and is a

residue cl

representative of that cl

ass

ass.

N

N

N

a x x a N

a N a

• = ≡

•

∈

p23.

 There are exactly residue classes modulo :

 [0] , [1] , [2] , , [1] .

 [0] [1] [1] .

 If [] , [] , then

 [] and [] .

 Define addition and multiplicati

N N N N

N N N

N N

N N

N N

N

N

x a y b

x y a b x y a b

−

= ∪ ∪ ∪ −

∈ ∈

+

•

•

•

∈ + ⋅ ∈

•

⋅



 

on for residue classes:

 [] [] []

 [] [] [] .
N N N

N N N

a b a b

a b a b

+

⋅

= +

= ⋅

p24.

 A , denoted by (,), is a set along with a
 binary operation such that:
 1. (Closure) For all , ,
 2. (Associativity) () ()
 3. (Existence of an identi

group

t

Group
G G

x y G x y G
x y z x y z

•

∈ ∈
=







   

y) There exists an
 s.t. ,
 4. (Existence of inverses) For all , there exists an
 element s.t. . Such a is called an

identity

inverse of .
 A

G
x G x x x

x G
y G x y y

e
e e

x e y
x

∈
∀ ∈ = =

∈
∈ = =

•

 

 

abelian (commutat group (,) is or if
 for all

ive)
, , .

G
x y G x y y x∈ =



 

p25.

 A group (,) is if is finite.

 The identity of a group is unique.

 The inverse of an element is unique.

 If (,) is a group and itself is a group under
 the same operation , then

finiteG G

G H G
H

•

•

•

• ⊆





 is a of .

 Examples: (,), (,), (\{0},), (,),
 (\{0},

subg

.

o

)

r up G

• + + × +
×
   



p26.

{ }
{ }

()

()

 Define [0] , [1] , ..., [1] .

 Or, more conveniently, 0, 1, ..., 1 .

 , forms an ab

elian (additive) group.

 For , ,
 () mod .

 (That is, [] [] [] [

N N N N

N

N

N

N N N

N

N

a b
a b a b N

a b a b a b

= −

= −

∈

= +

=

•

•

•

+

•

+ = +

+

+









mod] .)
 0 is the identity element.
 The inverse of , denoted by , is .

 When doing addition/substraction in , just do the regular
 addition/substraction and r

e

duce the result m d

o

N

N

N

a a N a−

•

−







10

ulo .
 In , 5 5 9 4 6 2 8 3 ?

N
+ + + + + + + = 

p27.

()

()

1

1

1

 , is a group, because 0 does not exist.

 Even if we exclude 0 and consider only \{0},

 , is necessarily a group; some may not exist.

 For

not

, exists if and on

not

N

N N

N

N

a

a a

−

+

+ −

−

∗

=

∗

∈

•

•

•



 



 ly if gcd(,) 1.a N =

p28.

{ }

()
()

1

 Let : gcd(,) 1 .

 , is an abelian (multiplicative) group.

 mod .
 1 is the identity element.
 The inverse of , written , can be computed by the

 Exte

N N

N

a a N

a b ab N

a a

∗

∗

−

=

•

=• ∈

∗

∗ =

 









{ }*
12

nded Euclidean Algorithm.

 For example, 1,5,7,11 . 5

Q: How many element

7 35mod12 11.

 s are there in ? N

Z
∗

= ∗• =

•

=



p29.

{ }

1

 Euler's totient function:

 Th

 ()

 = : 1 and gcd(,) 1

 1. () (1) for prime

 2. () () () if g

eorem

cd() 1

:

,

N

e e

N

a a N a N

p p p p

ab a b a b

ϕ

ϕ

ϕ ϕ ϕ

∗

−

=

≤ ≤ =

= −

=

•

•

=



p30.

 Let be a (multiplicative) group.

 The order of is defined as ord() .

 The order of , written ord(), is the smallest
 positive integer such (, ident that

finite

ity el. t.) emenk

G

G G G

a G a
k ea e

•

• =

• ∈

=

ord()

 mod

Corollary: For any

 For a

 element

ny element , orLagrang d() | ord()

, .

Corollary: For any element

e's theore .

m

 , .

:

GG

m Gm

a G a a e

a G a

a G a G

a

∈ = =

∈ =

• ∈

•

•

p31.

(

* () *

*

) 1

Euler's theorem:

 Fermat's little theorem:

 If

If (

 (fo

 a prime), then 1 i

r any 1), then

n .

1 in .

Corollary:

 If (for any 1), then

N
N

p p

m

p

N

N

p

a N a

a N a

a p a a

ϕ

ϕ∗ − ∗

•

∈ = =

>

•

•

∈ > =

∈

 

 



 mod () * in .m N
Na ϕ= 

p32.

{ }*
15

*
15

*
15

(15) 8

816243240481

 = 1, 2, 4, 7, 8, 11, 13, 14

(15) (3) (5) 2 4 8

: 1 2 4 7 8 11 13 14
ord

(

) : 1 4 2 4 4 2 4 2

1

13 ?

Example: 15

a
a

a a

N

ϕ

ϕ ϕ ϕ= = × = × =

•

•

•

•

•

∈

= =

=

=






p33.

The Chinese Remainder Problem

• A problem described in an ancient Chinese arithmetic book by
Sun Tze (around 300AD, the author of The Art of War).

• Problem: We have a number of objects, but we do not know
exactly how many. If we count them by threes we have two
left over. If we count them by fives we have three left over. If
we count them by sevens we have two left over. How many
objects are there?

Mathematically, if 2mod3, 3mod5, 2mod7,
 wh

at is ?
x x x

x
≡ ≡ ≡

p34.

1

2

1

1 1 1

2 2 2

If integers , , are ,
then the system of congruences

mod // //

mod // //

mod

pairwise coprime

Chinese remainder theorem

k

n

n

k k

n n

x a n a

x a n a

x a n

≡ ∈

≡ ∈

≡









1 2

1
1

 // //

has a unique solution modulo :

 mod

where and A formula by mod Gau ()ss

kk n

k
k

i i i
i

i i i i i

a

N n n n

x a N y N

N N n y N n
=

−






 ∈

=

≡

= =

∑





p35.

()1 1 1

1 1 1

Suppose
 1 mod 3
 6 mod 7
 8 mod 10
By the Chinese remainer theorem, the solution is:

1 70 (70 mod3) 6 30 (30 mod7) 8 21 (21 mod10) mod 210

 1 70 (1 mod3) 6 30 (2 mod7) 8 21 (1 m

x
x
x

x − − −

− − −

≡
≡
≡

≡ × × + × × + × ×

≡ × × + × × + × ×()
()

od10) mod 210

 1 70 1 6 30 4 8 21 1 mod 210
 958 mod 210
 118 mod 210

≡ × × + × × + × ×

≡
≡

Example: Chinese remainder theorem

p36.

1 2

1 2 1

1 2

Let , where , , are pairwise coprime.
There is a one-to-one correspondence

 (mod , mod , , mod)

Then,

 Denote th

Chinese remainder theorem

k

k k

N n n n

k

N n n n n n

x x n x n x n

=

←→ × × ×

←→

•

 

    



1 2
e mapping : .

 () () ().

 () () ().

kN n n n

x y x y

x y x y

ψ

ψ ψ ψ

ψ ψ ψ

→ × × ×

• ⋅ = ⋅

• + = +

    

p37.

()
()

1 2

1

1

 Computations in can be done by performing
 corresponding computations in , , , , and

 then solve the CRP.

, ,
 If

, ,

 then

k

N

n n n

k

k

a a a
b b b

a b a

•

↔
•  ↔

± ↔



   





()
()
()

1 1

1 1

1

1

*
1

, ,
, ,

 , , if

m

 od m od mod

k k

k k

k

k k N

b a b
a b a b a b
a b a b a b b Z

N n n

± ±
× ↔ × ×
÷ ↔ ÷ ÷ ∈
↑ ↑ ↑







p38.

()
()
()

* * *
15 3 5 15 3 5

 8 8mod3, 8mod5 (2,3)

 11 11mod3, 11mod5 (2,1)
 Suppose we want to compute 8 11 mod15.
 8 11mod15 (2 2mod3, 3 1mod5) (1,3).
 (1,3) (

Example: Chinese remainder theorem

x

• ↔ × ↔ ×

↔ =

↔ =

• ×
• × ↔ × × =
• ↔

     

15which number corresponds to (1,3)?)
1mod3

 Solve 13
3mod5

x
x

x
x

∈

≡
• ⇒ = ≡



p39.

Algorithms
()

() ()

1

33

 gcd , //1 , //

 mod
 mod

 Running time: log

k

a b a b N

a N
a N

O N O N

−

•

•

•

=•

≤ ≤

p40.

0

1

1

1 1

Comment: compute gcd(,), where 1.
 :
 :
 for : 1, 2, until = 0
 : mod
 return ()

Running time:
 (log) i t

Euclidean Algorithm

n

i i i

n

a b a b
r a
r b

i r
r r r

r

O a

+

+ −

> >
=

=
=

=





2

3

erations; (log) time for each mod.
 Overall running time: (lo g)

O a
O a

p41.

Example: gcd(299,221) ?

299 221

Given 0, compute , such that gcd(,) .

1 78
2 65

221 78
78 65

78 65
78 221 78

1

65 5 0

gcd(229,221) 13
(2) 3

78 22

3

13
1

2

3

1
(

Extended Euclidean Algorithm
a b x y a b ax by> > = +

= × +
= × +
= × +
= ⋅ +

= = −
= − − × = ⋅ −
= ×

=

99 221) 221
299

1
23 2 14

− ⋅ −
= × − ×

p42.

1

* 1 *

1

*

 That is, for , compute in .
 exists if and only if gcd(,) 1.
 Use the extended Euclidean algorithm to find ,

 such that 1.
 Then, in ,

modHow to compute
N N

N

a a
a a N

x y
ax Ny

Na−

−

−

• ∈

• =
•

+ =

•

 



[] [] [] [] []
[] [] []
[] []1

we have
 1

 1

a x N y

a x

a x−

⋅ + ⋅ =

⇒ ⋅ =

⇒ =

p43.

1 Compute 15 mod 47.
 47 15 3 (divide 47 by 15; remainder 2)
 15 2 7 (divide 15 by 2; remainder 1)
 1 15 7 (mod 47)
 1

2
1

2
5 () 7 (mod 47)47 15 3

Example
−•

= × + =
= × + =
= − ×
= − ×− ×

1

1 *
47

 15 22 47 7 (mod 47)
 15 22 (mod 47)
 15 mod 47 22
 That is, 15 22 in

−

−

= × − ×
= ×

=

= 

p44.

()

1 0

2

 Comment: compute mod , where in binary.

 1
 for downto 0 do
 mod

if 1

then mod

Algorithm: Square-and-Multiply(, ,)
c

k k

i

x N c c c c

z
i k

z z N
c

z z x

x c N

−=

←
←

←

=

← ×



()

...Note: At t

 i.

he end of iteration

e., mod

 retu)

rn

, .

 (

k

i

i

c

c c

z z x N
N

z

i z x


← ×

=



p45.

2

2

2

2

3

2

 23 10111

 1
 11 mod 187 11 (square and multiply)
 mod 187 121 (square)
 11 mod 187 44 (square and multiply)
 11 mod 187 165 (square and

11 mod187

 mu

Example:

b

z
z z
z z
z z
z z

=

←

← ⋅ =

← =

← ⋅ =

← ⋅ =
2

ltiply)
 11 mod 187 88 (square and multiply)z z← ⋅ =

p46.

RSA Encryption

p47.

By ivest, hamir & dleman of MIT in 1977.
Best known and most widely used public-key scheme.
Based on the one-way property

 of mo

R S

du

lar
 powering:

A

assumed

The RSA Cryptosystem
•
•
•

1

 : mod (easy)
 : mo

Related to the hardne

d (

ss of integer factorizatio

hard)

 n.

e

e

f x x N
f x x N− →

•

→

p48.

1

RSA

RSA

*

Encryption (easy):

Decryption (hard):

Looking for a trapdoor: () .
If is a number such that 1mod (), then

()

It works in group

1

.

Idea behind RSA

e

e

e d

N

x x

x x

x x
d ed N

ed k N
ϕ

ϕ

−

→

←

=
≡

= +



()

*

() 1 ()

 for some , and thus in the grou ,

(.

 p

) 1
kd d

N

e e N k N

k

x x x x x x xϕ ϕ+= = = ⋅ = ⋅ =



p49.

 (a) Choose two large primes and , and let : .
 (, determined by the security parameter.)
 (b) Choose , 1 (), coprime to (), and

Key generati

on:

RSA encryption scheme

p q N pq
p q

e e N Nϕ ϕ

=

< <

•

1

*

*

 compute : mod (). (.)
 (c) Public key: . Secret key: .
 () : mod , where

1 mod

.

 () : mod , where .

()

Encryption:

Decryptio

(,

n

))

:

(,
e

pk N

d
sk N

d e N N

Enc x
pk N e

x N x

Dec y y N y

d
s N d

e
k

ϕ ϕ−=

= ∈

= ∈•

≡
=

•

=





p50.

()
()

*

* * ()

 mod ()

 The setting of RSA is the group , :

 In group , , for any , we have 1

 and, thus, .
 We have chosen , s

uch that 1 mod (),

Why RSA Works?

N

N
N N

m m N

x x

x x
e d ed N

ϕ

ϕ

ϕ

∈ =

=
≡

• 







  

()* mod () 1

 so, mod () 1.

 For , .
de ed ed N

N

ed N

x x x x x xϕ

ϕ =

∈ = = = =

p51.

*

*

 RSA still works, but .

 gcd(,) 1 | or | .

 Say | and 0 (it is trivial if 0). Then,

0 mod 0 mod

 mod m

\ ?

 and

n

od

ot sec

e

ur

What if

N

e

N

e

N

d

d

x x N p x q x

p x x x

x p x p
x x q x x q

x

∉ ≠

≠ =

≡ ≡
≡

•

•



⇒

≡





•

⇒

∈



 

()

()

 The last " " holds 1mod () 1mod ().

 Both and are a solution of the system, so by CRT

 mod mod () .

ed

ed ed

ed N ed q

x x

x x N x N x Dec Enc x x

ϕ ϕ≡ ≡≡ ⇒

⇒ ⇒





=



•

=≡



p52.

 Select two primes: 17, 11.
 Compute the modulus 187.
 Compute () (1)(1) 160.
 Select between 0 and 160 such that gcd(,160) 1.

 Say 7.
 Compute

RSA Example: Key Setup
p q

N pq
N p q

e e
e

d

ϕ

= =
= =

•
•
• = −

•

=
=

•
− =

1 1mod () 7 mod160 23
 (using extended Euclid's algorithm).
 Public key: .
 Secret ke

(,
y:

) (7, 187)
(,) (23 ., 7 18)

pk e N

e

s N

N

k d

ϕ− −

= =
= =

=

•

= =

•

p53.

7

23

23

23

 Suppose 88.
 Encryption: mod 88 mod187 11.
 Decryption: mod 11 mod187 88.
 When computing 11 mod187, we first

 compute 11 and
d

 the
o

n
ot

n

RSA Example: Encryption & Decryption

e

d

m
c m N
m c N

•

•

•

•

=

= = =

= = =

reduce it modulo 187.
 Rather, use , and reduce intermediate

 results modulo 187 whenever they g
square-a

et bigge
nd-mult

r than
iply

187.
•

p54.

4 16

 To speed up encryption, small values are usually
 used for .

 Popular choices include 3, 17 2 1, 65537 2 1.
 These values have only two 1's in their binary
 representatio

Encryption Key

e

e

= + = +

•

•

n.

 There is an interesting attack on small .e•

p55.

1/4

 One may be tempted to use a small to speed up
 decryption.

 Unfortunately, that is risky.

 Wiener's attack: If

 and 2 ,
3

 then the decryption exponent c

Decryption Key
d

Nd p q

d

p

d
•

•

< < <•

an be computed
 from (,).

 CRT can be used to speed up decryption.

N e

•

p56.

3
2

1 2

* Decryption:

 Time: (). log 1

 Instead of

mod (i.e.,

computing

compute

 directly, we compute

 in

 : m od , and :

)

mod
o m

Speeding up Decryption by CRT
d d

N

d

c N c

c

O N N

c
N

N

c p c c

= +  

•

•
= =

•





mod () mod ()
1 1 2 2

1

2

1 2

d
 : mod , and : mod

mod
 recover the plaintext by solving

mod
 Time: about 1 4 of the direct computation.

If ... , this strategy will

 p

s

d p d q

t

q
m c p m c q

x m p
x m q

N p p p

ϕ ϕ= =

≡
 ≡

•



=
•





eed up even more.

p57.

Attacks on RSA

p58.

()

 Five categories of attacks on RSA:
 brute-force key search

 infeasible given the large key space
 mathem

atical attacks
 miscellaneous atta cks
 timing a

Attacks on RSA
•






 ttacks
 chosen ciphertext att acks 

p59.

1

 Then () (1)(1) and
mod () can be calculated

Factor into .

Determine () directly

 easily.

 Equivalent to factoring .
 Knowing () will enable us to f

.

Mathematical Attacks
N p q

d e N

N
N

N pq

Nϕ

ϕ

ϕ

ϕ

−

= − −

=

•

•

Determine direc

actor by solving

(1)(1)

 If is known, can be factored

tl
 with high probability.

.

()

y

N
pq

p

d

q
N

d

N

N

ϕ

•

=
 = − −

p60.

 A difficult problem.

 More and more efficient algorithms have been developed.

 In 1977, RSA challenged researchers to decode a
 ciphertext encrypted with a key () of 129 d

Integer Factorization

N

•

•

•
igits (428 bits).

 Prize: $100. RSA thought it would take quadrillion years
 to break the code using fastest algorithms and computers
 of that time. Solved in 1994.

 In 1991, RSA put forwar• d more challenges, with prizes,
 to encourage research on factorization.

p61.

 Each RSA number is a semiprime. (A number is
 if it is the product of two primes.)
 There are two labeling schemes.

 by the number of decimal digits:
 RSA-10

semip

0,

rim

.

e

RSA Numbers
•

•


.., RSA-500, RSA-617.
 by the number of bits:
 RSA-576, 640, 704, 768, 896, , 1536, 210 .24 048


p62.

 RSA-100 (bits), 1991, 7 MIPS-year, Quadratic Sieve.
 RSA-110 (bits), 1992, 75 MIPS-year, QS.
 RSA-120

332
365
3 (bits), 1993, 830 MIPS-year, QS.

 RSA-129
98

4(

RSA Numbers which have been factored
•
•
•
• bits), 1994, 5000 MIPS-year, QS.
 RSA-130 (bits), 1996, 1000 MIPS-year, GNFS.
 RSA-140 (bits), 1999, 2000 MIPS-year, GNFS.
 RSA-155 (bits), 1999, 8000 MIPS-year, GNFS.

28
4

31
465
5

RSA-16
1

0 (
2

530

•
•
•
•

576
6

 bits), 2003, Lattice Sieve.
 RSA- (174 digits), 2003, Lattice Sieve.
 RSA- (193 digits), 2005, Lattice Sieve.
 RSA-200 (bits), 2005, Lattice

40
663 Sieve.

•
•
•

p63.

RSA-200 =
27,997,833,911,221,327,870,829,467,638,

722,601,621,070,446,786,955,428,537,560,

009,929,326,128,400,107,609,345,671,052,

955,360,856,061,822,351,910,951,365,788,

637,105,954,482,006,576,775,098,580,557,

613,579,098,734,950,144,178,863,178,946,

295,187,237,869,221,823,983.

p64.

*

 In light of current factorization technologies,
 RSA recommends 1024 to 2048 bits.

 I

f a message \ ,

 RSA works, but
 Since gcd(,) 1, the sender can factor .
 S

Remarks

N N

N

m

m N N

•

=

• ∈

>






 

*

ince gcd(,) 1, the adversary can factor , too.

 Question: how likely is \ ?

e

N N

m N N

m

>

• ∈ 

p65.

1 2

 If two users use the same modulus and their
 encryption exponents and are coprime, then
 a message sent to them, encrypt

 Common modulus:

Miscellaneous attacks against RSA

N
e e

m

•



1

2

1 2 1 2

1

2

1 2

1 2

1 2

ed as : mod
 and : mod , is not protected by RSA.

 For , coprime

 1 for some ,
 mod mod .

e

e

re se re se r s

c m N
c m N

e e

re se r s
m m m N c c N+ +

=

=

⇒ + =

⇒ = = =



p66.

 Owners of keys (, ,) usually do not know .
 But, actually, given (, ,), one can factor with
 high probability of success.
 Thus

 Another problem with common modulus:

N e d N pq
N e d N

=

•





 ,

if tw

o RSA

So, do

users share

 not use a c

the same , they can

ommon .
 Also,

 figure out each other's secret key (

if your is compromised, do not just

valu

 change

e).
N

d
e

N
d





and . You should also change .d N

p67.

2

2

2

 1mod has four solutions:

 1, for some 1.

 If 1mod and 1

 1 0mod

 | (1)(1)

 gcd(,

 (may skip If is known, we can)factor :

x N

a

a N a

a N

N a a

a

a

n

d N

≡

± ≠ ±

≡ ≠ ±

− ≡

+ −

±

±

⇒

⇒

⇒

•





2

1) yield the factors of

 Factor by looking for a nontrivial square root of 1
 mod (i.e., an 1 such that 1mod).

.N

N
N a a N≠ ± ≡



p68.

2 3 1

* 1

2

* *

2 2 2 2 2 2

 For all , 1 mod .

 Write 1 2 , where is odd. (So, 1mod)

 Pick any . (What if \ ?)

 Compute , , , , , , , ,

 u

s

t st

ed
N

s r

N N N

r r r r r r r

w w N

ed r r w N

w w

w w w w w w w
−

−∈ ≡

− = ≡

∈ ∈



  







 

1

2

2 2

ntil we find the first 1mod for some .

 If 0, let mod . Then 1mod , and 1.

 If 1, then is a nontrivial square root o

 f 1 mod .

 Otherwise (i.e., 0 or 1),

t

t

r

r

w N t

t a w N a N a

a N a N

t a N

−

≡

≠ = ≡ ≠

≠ −

= = −





 try another .w

p69.

A message sent to users who employ the same
 encryption exponent is not protect

ed by RSA.

Say, 3, and Bob sends a message to three
 re

 Low encryption exponent attack

m e
e

e m

•

• =

•

1 2 3

1 3

1 2 3

3 3 3
1 2

3 3

2 3

3

cipients encrypted as:
 mod , mod , mod .

Eve intercepts the three ciphertexts, and recovers :
 mod , mod , mod .

 B

y

T

CR

c n c n c n

m
m c n m c n m c n

m m m= = =

≡ ≡ ≡

•





3
1 2 3 1 2 3

3 3 3
1 2 3

, mod for some .

 Also, . So, , and .

m c n n n c n n n

m n n n m c m c

≡ <

< = =

p70.

 Recall RSA decryption: : mod .
 One may be tempted to use a small to speed up
 decryption. Unfortunately, that may be risky.

 The d cry

e p

 Wiener's low decryption exponent attack:
dm c N

d
=

•

1 4

tion exponent may be computed from
 (,) if and

(Before Wiener's attack, the condition
 usually held because , were usually chosen to
 have the same numbe

3 2 .

 2

r

d
N e

p

d N p q p

p q p
q

< < <

< <

of bits.)

p71.

1 1 2

2

3

 Continued fraction :
1 [, ,...,]1

1

 Any (positive) rational number can be expressed
 as a continued fraction, called its continued fraction
 expansion.
 Convergents of [

m

m

q q q q
q

q
q

a b

q

+ =
+

+ +







 1 2 1 1 2 1 2 3

1 2 1 2

, ,...,] : [], [,], [, ,],
 [, ,...,]. (This sequence converges to [, ,...,].)

m

m m

q q q q q q q q
q q q q q q

p72.

34 1 Example: 0 [0,2,1,10,3]199 2 11 110
3

 Obtained from Euclidean algorithm:
 34 99 34, 99 34 31, 34 31 3,
 31 3 1, 3 1
 Convergents of [0, 2,1,1

0 2 1
10 3

0,3] :
 [0], [0, 2], [0, 2,1]

= + =
+

+
+

= × + = × + = × +
= × + = ×







, [0, 2,1,10], [0, 2,1,10,3]

p73.

/

2

1 4

1 If , wheregcd(,) 1,
2

 then equals one of the convergents of the
 continued fraction expansion of .

 For RSA, () 1 for some . So, .
()

Theorem.

 If

a 3

c
d

c

a c d
b d

a b
e e ted t N t
N

d

N d

d N

ϕ
ϕ

− < =

= +

<

≈ ≈





 2

1 then .
2

 So, equals one of the convergents of . Check
 the convergents one by one to find the right on

nd ,

e.

2

e t
N d d

t d e N

p q p − << <



p74.

 If the message space is small. The adversary can
 encrypt all messages and compare them with the
 intercepted ciphertext.

 This attack is snot p

 Small message space attack:•



 ecific to RSA.

p75.

 Paul Kocher in mid-1990’s demonstrated that a snooper
 can determine a private key by keeping track of how
 long a computer takes to decrypt messages.

 RSA decryption: mod .

Timing Attacks

dc N

•

•

()

 Countermeasures:
 Use constant decryption time
 Add a random delay to decryption time
 modify the ciphertext to

 Blin and computeding

 mod .

:
d

c c

c N

′

′

•






p76.

 RSA encryption has a homomorphism property:
 RSA() RSA() RSA().
 To decrypt a ciphertext RSA(

):

 Generate a random

 messag

e .
 Encrypt

Blinding in Some of RSA Products

m

m r m r
c m

r

⋅ =
•

⋅
=

•





1

 as RSA().
 Multiply the two ciphertexts: RSA().
 Decrypting yields a value equal to .
 Multiplying that value by yields

 .
 Note: all calculations are done in

r

m r

r c r
c c c mr

c mr
r m−

•

=
= =







* (i.e., modulo).N N

p77.

Based on RSA's homomorphism property:
 RSA() RSA() RSA()

Assume Eve has acess to a decryption oracle.

 The attack:
 Given : RSA

(

)

A chosen-ciphertext attack

m

m r m r

c m

•

•
=

=
•

⋅ ⋅



*

, Eve wants to know
 She computes : RSA() for an arbitrary .
 Now, presenting RSA()
 to the Oracle, Eve obtains ,

?

 from which she

r N

m r m r

c r r
c m r c c

m

m r
⋅

= ∈
= =

⋅

=

⋅
 



1can compute () . m m r r−= ⋅ ⋅

p78.

Padded RSA

p79.

 We have seen many attacks on RSA.

 Also, RSA is deterministic and, therefore, not CPA-secure.

 We wish to make RSA secure against CPA and
 aforementioned attacks.

 The RSA we h

Security of RSA
•

•

•

• ave described so far is called:
 RSA primitive, plain RSA, or textbook RSA

p80.

 Encryption: () RSA() () mod ,
 where is a random string.

 Thus, Padded-RSA() RSA() for some random .

 Secure against many of aforeme

Theorem (i

ntioned attacks

nf r

.

 o

Padded RSA
e

pkE m r m r m N
r

m r m r

=•

•

•

•

=

=

 



()
 Under some assumption, Padded RSA

 is CPA-secure if log , where .

 Padded RSA was adopted in PKCS #1 v.1.5.

mal):
m O n n N=

•

=

p81.

 PKCS: ublic ey ryptography tandard.
 Let (, ,) give a pair of RSA keys.
 Let be the length of in bytes (e.g., 216).
 To encrypt a message :

P K C S

 pa

Padded RSA as in PKCS #1 v.1.5

N e d
k

m
N N k

•
•

• =

•

=



() ()

d so that 00 02 00 (bytes)
 where 8 or more random bytes 00.
 original message must be 11 bytes.

 the ciphertext is : RSA mod .
 In 1998, Bleichenbacher

b

 pu l

e

m r k
r

m k

c

m m

m m N

′ =
= ≠

≤ −

′

•

′= =







   

ished a chosen-ciphertext
 attack on this padded RSA.

p82.

 A (padded) message is called if it has
 the specified format:
 00 02 pa

PKCS confo

dding stri

rmi

ng 00 original message.
 PKCS #1 implementation

ng

Bleichenbacher's chosen-ciphertext attack
•

•
   

1

1

s usually send you (sender)
 an error message if RSA () is PKCS conforming.
 It is just like you have an Oracle which, given , answers

 whether or not RSA () is PKCS conforming.
 Bleich

notc
c

c

−

−

•

• enbacher's attack takes advange of such an Oracle.

p83.

*

Given RSA(), Eve tries to find .
 (Assume is PKCS conforming.)

How can the Oracle help?
 Recall that RSA is homomorphic:
 RSA() RSA() RSA() (computed in)
 G

 iv
N

c m m
m

m s m s

=

⋅

•

= ⋅

•






*

*

en RSA(), Eve can compute RSA() for many .
 She then asks the Oracle,
 Is PKCS conforming?
 (That is, is PKCS conforming?)

Why is this infor
mod
mati

N

Nms Z

m m s

m N

s

s
•

∈

⋅ ∈




on useful?

p84.

2 8(2)

2 2

Recall PKCS format (bytes):
 00 02 padding string 00 original message.

Let 00 01 (00) (hexadecimal) 2 (binary

)

Then 2 00 02 (00) and 3 00 03 (00)

If is PKCS

k k

k k

k

B

B B

m

− −

− −

•

•

•

•

= =

= =

   

 

   

conforming 2 3 .

If is also PKCS conforming
 2 3
 2 3 for some
 (2) (3)

m

d

d

o
mo

m

ms N
m

B B

B B
B t N B t N t
B t N

s N
ms
s B t Nm s

⇒ < <

⇒ < <
⇒ + < < +

< < +

•

⇒ +

p85.

• • •

• • •

0 N 2N 3N 4N

sN

2B 3B

 If is PKCS conforming is in the blue area.
 If is also PKCS conforming

 is in the blue area
 is in the red areas
 is in the red lines.
 Thus, is in the red line

mod

s

m

o

o

d

f t

m m
ms N

ms N
ms
m

m

⇒

⇒

•

⇒

•

⇒

•

he blue area.

p86.

blue area
 Let's focus on the blue area, (2B, 3B).
 If is PKCS conforming is in the .
 If is also PKCS conforming

mod

red areas/is in
 If is also PKCS conforming

mod
line

s

ms

ms N
m

m

m

m
N

•

•
⇒

⇒

•

•
⇒

′

purple areas/line is in
 So, blu purplre e d

s
em• ∈ ∩ ∩

2B 3B

p87.

1 2 3

1

 So, starting with the fact that is PKCS conforming,
 Eve finds a sequence of integers , , , ... such that

 2 and
 mod is PKCS conforming.

 To find , ra n

i i

i

i

m
s s s

s s
ms N

s

−

•

≤

•

1domly choose an 2 , and ask the oracle
 whether is PKCS conforming. If not, then
 try a different .

 This way, Eve can repeatedly narrow down the area
 containing and event

d

mo

ua

i

ms
s

m

N
s

s

−

•

≥

1 2 3

lly find .
 For having 1024 bits, it takes roughly 1 million accesses

 to the oracle in order to find , , , ...

m
N

s s s
•

p88.

CCA-Secure RSA in the
Random Oracle Model

p89.

There are CCAs that only require the oracle to reveal
 partial information about the plaintext such as:
 whether the plaintext is PKCS conforming
 whether the plai

Protecting Every Bit
•

−
−

*

ntext is even or odd
 whether the plaintext is in the first half or the
 second half of (i.e., / 2 or / 2?)

 It is desired to protect every bit (or any partial informati) on

N

N

x
x N x N

•

− ∈
< ≥




 of the plaintext.

p90.

 Message padding: not simply or ,
 but , where is a random string.
 As such, however, there is a 50% overhead.

 So, we wish to use a shorter bit string .
 Be

OAEP: basic idea
m r r m

m r r r

r

⊕
•

•

•

 



sides, should be protected, too.
 This leads to a scheme called ptimal symmetric

 can be appl ncryption adding (). It
 to RSA and

ied
 other trapdoor f

O A
E P

unct
O

.
AEP

ions

r
•

p91.

 Choose , () s.t. (, RSA modulus).

 :{0,1} {0,1} , a pseudorandom generator.
 :{0,1} {0,1} , a hash function.

 To eEncryptio ncrypt a block of bits :
 1. choose a rando

n
m

.

OAEP

k l

l k

k l k l k l N N

G
h

m l

+ =

→•

• →

•

•



 bit string {0,1} .
 2. encode as : () (())
 (if , the message space of RSA, return to step 1).
 3. compute the ciphertext : (

Decrypt

).

 ion: : () .

k

N

pk

sk

r
m x m G r r h m G r

x Z
y Enc x

x Dec y a b•

∈
= ⊕ ⊕ ⊕

∉
=

= =



 ()() .m a G b h a= ⊕ ⊕

p92.

padding encod
 OAEP is adopted in current version of RSA PKCS #1 (v. 2.1).
 It is a scheme.
 Intuitively, with OAEP, the ciphertext would not reveal any

i

i

ng

nf

/

ormation about the

Remarks on OAEP
•
•
•

plaintext if RSA is one-way and
 and are
 A slightly more complicated version of OAEP, in which

 (0

truely random

() (0 ())),
 has been proved

 (random oracles).

CC

k k

h G

x m G r r h m G r′ ′= ⊕ ⊕

•

⊕ 

A-secure in the model
 (i.e., if , are random oracles.)

 In practice, hash functions such as SHA-1 are

ran

 us

dom orac

ed for

e

,

l

.

G h

G h•

p93.

Generating large primes
To set up an RSA cryptosystem,

we need two large primes p and q.

p94.

1 2

1 2

 Infinitely many.

 First proved by Euclid:
 Assume only a finite number of primes , , , .
 Let 1.
 is not a prime, bec

•
•

aus• e

How many prime numbers are there?

n

n

i

p p p
M p p p

M M p

•

…
•

= … +
≠ , 1 .

 So, is composite and has a prime factor for some
 | |1 contradiction.

• i

i i

i n
M p i
p M p

≤ ≤

⇒ ⇒ ⇒⇐

p95.

 Let () denote the number of primes . Then

 () for large .
l

The Prime Number Theorem:

Bertrand's The

n

 For any 1, the fraction of -bit integeorem:

Distribution of Prime Numbers

x x
xx x
x

n n

π

π

≤

≈

> rs
that are prime is at least 1 3 .n

p96.

 Generate a random odd number of desired length.

 Test if is prime.

 If not, discard it and try a different number.

 Q: How many numbers are expected to

How to generate a large prime number?
N

N

•

•

•

• be tested before
 a prime is found?

p97.

()()
()()

12

10.5

 Can it be solved in polynomial time?
 A long standing open problem until 2002.

 AKS(Agrawal, Kayal, Saxena) : log .

 Later improved by others to log ,

Primality test : Is a prime?

O N

O N

N

ε+

•
•

•



()()

()()

6

3

and then

 to log .

 In practice, Miller-Rabin's probabilistic algorithm is still

 the most popular --- much faster, log .

O N

O N

ε+

•

p98.

*

*

 Looking for a characteristic property of prime numbers:
 is prime
 is prime , ()

wha

 is prime , ()

t?

Miller-Rabin primality test : Is a prime?

N

N

N
N a P a true
N a P a t

N

⇔

⇔ ∀ ∈ =

∀ =⇒ ∈

•








*

*

 not prime elements , ()

 Algorithm: Check () for random elements .
If () is true for all of them then re priturn

 m e

N

N

rue
N a P a false

a

k

P a t
P a

≥∃ ∈

∈

⇒

•

=



()

 else return .
 A "prime" answer may be incorrect with probabilit

composi

)

te

(

y

1 tk Nϕ≤ −

•

p99.

*
N

*If is prime, then for all , () is true.NN a P a∈

()P a true=

p100.

*
N

*If is , then there are elements ,
called

not prime
strong witnesses , .()s.t.

NN a
P a false

∈
=



()P a true=

p101.

1

* 1

* 1

 Looking for () :

 How about () 1 mod ?

 Fermat's little theorem:
 If is prime , 1 mod .

 If is not prime possible that , 1 mod .

N

N
N

N
N

P a

P a a N

N a a N

N a a N

−

−

−



⇒

⇒

= ≡ 

∀ ∈ ≡

∀ ∈ ≡

•









1

1 *

 (composite numbers for which

C

 1 mod .)

 Need to strengthen the condition .

armichael numbers :

 1 mod

N

N

NN a

a N

N

a

−

− ≡

≡

∀ ∈





p102.

*

* 2

 Fact: if 2 is prime, then 1 has exactly two square
 roots in , namely 1.
 Write 1 2 , where is odd.
 If is prime

 , 1 mod (Fermat's little theorem)

k

N
k

u
N

N

N u u
N

a a N

• ≠

±

• − =
•

∀ ∈ ≡⇒





2 1

*

2 2 2 2

2

1 mod
()

1 mod for some , 0

 , () , where

 Why? Consider the sequence

 , , , ,

o

1

r

1

,
k

i

k

N

u

u

u u

u

u u

a P a true

a a a a

a N
P a

a N i i k

a
−

 ≡= 
≡ − ≤ ≤ −

∈ =

•

≡

⇒ ∀ 



p103.

3

5 10 20 40

*
41

Example: 41
 1 40 2 5 2 . (3, 5)
 For 2, (, , ,) (32, 1, 1, 1) mod 41

 (2) .
 For every , () is true.

Example: 25

k

N
N u k u

a a a a a
P true

a P a

N

=

• − = = ⋅ = = =

• = ≡ −
=

• ∈

=



() ()

3

3

3 6 12 24

 1 24 2 3 2 . (3, 3)
 For 2, 2 8 mod 25

 , , 8, 14, 21, 16 mod 25

 (2) .

k

u

N u k u
a a

a a a a

P false

• − = = ⋅ = = =

• = = ≡

≡

=

p104.

*

 If not prime strong witnesses always exist

 Loosely speaking, :
If is an odd composite and not a prime power, then

 of the

e

le

?

yes

at le menast one ts are strong

hal

f

N

N

N
a

⇒

∈

•

•





*

 witnesses.
For such an , we may check () for random elements

 . If () is true for all of them then return

prime
compos

 else return .
A "prime" answer may be

ite

N

N P a t
a P a∈







incorrect with probability 2 .t−≤

p105.

prime power
perfect pow

 A composite number is a if for
 some prime and integer 2. (It is a if
 for some integer and 2.)

 If is

er

an odd composite and noTheorem: t a p

e

e

N N p
p e

N k k e

N

=

=

•

•

≥

≥

*

*

rime power,
 then of the elements are strong
 witnesses that is not prime.

 Idea of Proof: The set of all -strong witnesses
 f

at least on

orms a proper subgroup of . So,

e half N

N

n

N

on

a

B•

∈



*

* *

 ord() ord() and
1 ord() | ord(). So, ord() ord().
2

N

N N

B

B B

<

≤



 

p106.

 Input: integer 2 and parameter
 Output: a decision as to whether is prime or
 if is even, return "composit

composite
1. e"

 if is a per2

. fect

Algorithm: Miller-Rabin primality test
N t

N
N
N

>



power, return "composite"
 for : 1 to do
 choose a random integer
 if gcd(,) 1, return "composite"
 if is a strong witness, ret

3

urn "composit

.

e

N

i t
a

a N
a

=
∈

≠


"
 return ("pri4. me")

p107.

 If the algorithm answers "composite", it is always correct.

 If the algorithm answers "prime", it may be incorrect with
 probability at most 2 .

 Actually

Analysis: Miller-Rabin primality test

t−

•

•

• , at most 4 , by a more sophisticated analysis. t−

p108.

 A is a probabilistic algorithm
 which always gives an answer
 but sometimes the answer may be inco

Mo

rr

nte

ect.

Carlo a

 A

lgorithm

Monte Carlo algorithm for a decisi

Monte Carlo algorithms
•

•





on problem is
 if its “yes” answer is always correct but a “no” answer may
 be incorrect with some error probability.

 A -iteration Miller-Rabin is a “composite”-biased Mon

yes-bias

te Carl

ed

o

t•

 algorithm with error probability at most 1 4 .t

p109.

 A is a probabilistic algorithm
 which may sometimes fail to give an answer
 but never gives an incorrect

Las Ve

one

gas algori

 A Las Vegas algorithm can be conver

thm

Las Vegas algorithms
•

•





ted into a
 Monte Carlo algorithm.

	Public-Key Encryption
	Public-Key Encryption
	Slide Number 3
	Why Public-Key Cryptography?
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Modular Arithmetic
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	The Chinese Remainder Problem
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Algorithms
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	RSA Encryption
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Attacks on RSA
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Padded RSA
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	CCA-Secure RSA in the Random Oracle Model
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Generating large primes
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109

