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Public-Key Encryption

Reading:  K&L Chapter 11
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Public-Key Encryption

• Also known as asymmetric-key encryption.

• The receiver has a pair of keys: 

a public key pk and a private key sk.

• The public key, known to the public, is used for encryption.

• The private key, known only to its owner, is used for decryption.
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Why Public-Key Cryptography?

• Developed to address two main issues:
– key distribution
– digital signatures

• Invented by Diffie & Hellman in 1976.
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 A tuple of polynomial-time algorithms: ( , , )
 Key generation algorithm :   On input 1 , outputs a

    key {0,1} .  We write (1 )
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  EAV-security  (against eavedroppers, ciphertext-only-attacks)
      one encryption
      multiple encryptions

  CPA-security (against chosen-plaintext attacks)
      on

Different notions of security
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  CCA-security (against chosen-ciphertext attacks)
      one encryption
      multiple encryptions

•









p8.
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,

 Adversary :   a polynomial-time eavesdropper.
 ( , , ) :  a public-key encryption scheme.
 Experiment PubK
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eav
,

 A publick-key encryption scheme is 
    if for every polynomial-time adversary  there exists a negligible
    function  such that

1    Pr PubK
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( ) 1   negl( )
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 Since the adversary knows the publick key ,  it can encrypt
    any polynomial number of me

eavesdropper
ssages of its choice.

 That is,  are automatically capas CPA'ble of .
 Thus, if a pu
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 A  public-key encryption scheme is
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  Compared with private-key encryption, public-key encryption
      is slower
      has longer ciphertexts

  Hybrid encryption
      Use public-key encryption to obtain a shared key 

Hybrid Encryption
•

•







      Use private-key encryption to encrypt the message under key 
k

k
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The KEM/DEM Paradigm
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Hybrid encryption using KEM
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( )
( )
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,
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 ( , , ) :  a KEM.
 Experiment KEM ( ): 

  (1 ) is run to obtain a pair of k    

    

eys , .
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  If  is CPA-Theore secure a d  
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1

1

trapdoor

Easy:          

Hard:        

Easy:      

Use  as the private key.

 Most public-key
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One-way function with trapdoor (informal)
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Modular Arithmetic

Reading:  K&L Section 8.1
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  | :   divides ,  is a divisor of .
  gcd( , ):  greatest common divisor of  and .
  Coprime or relatively prime: gcd( , ) 1.
  Euclid's algorithm:  compute gcd( , ).
  Extented Eucli

Integers
a b a b a b

a b a b
a b
a b

•
•
• =
•
• d's algorithm:  compute integers 
    and  such that gcd( , ) .x y ya b ax b+ =
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   Let 2 be an integer.

   Definition:   is  to  modulo , written 

                mod      (or   mod  as in the book)

     if  | ( )

congruen

,  i.e.,  and  have the m

t

 sa e
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  There are exactly  residue classes modulo :

    [0] ,  [1] ,  [2] ,  ,  [ 1] .

  [0] [1] [ 1] .

  If [ ] ,  [ ] ,  then

         [ ]  and [ ] .

  Define addition and multiplicati

N N N N

N N N

N N

N N

N N

N

N

x a y b

x y a b x y a b

−

= ∪ ∪ ∪ −

∈ ∈

+

•

•
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∈ + ⋅ ∈

•

⋅



 

on for residue classes:

         [ ] [ ] [ ]  

         [ ] [ ] [ ] .
N N N

N N N

a b a b

a b a b

+

⋅

= +

= ⋅
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 A , denoted by ( , ),  is a set  along with a 
   binary operation  such that:
   1. (Closure)  For all ,  ,    
   2. (Associativity)  ( ) ( )   
   3. (Existence of an identi

group

t
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G G

x y G x y G
x y z x y z

•

∈ ∈
=







   

y)  There exists an  
       s.t.  ,  
   4. (Existence of inverses)  For all ,  there exists an 
       element  s.t. .  Such a  is called an
       

identity

inverse of .
 A

G
x G x x x

x G
y G x y y

e
e e

x e y
x

∈
∀ ∈ = =

∈
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 

 

abelian (  commutat group ( , ) is or  if  
   for all 

ive)
, ,  .

G
x y G x y y x∈ =



 
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 A group  ( , ) is  if  is finite.

 The identity of a group is unique.

 The inverse of an element is unique.

 If ( , ) is a group and  itself is a group under
   the same operation ,  then 

finiteG G

G H G
H

•

•

•

• ⊆





  is a  of .

 Examples: ( , ),  ( , ),  ( \{0},  ),  ( , ),
   ( \{0},  

subg

.

o

)

r up G

• + + × +
×
   


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{ }
{ }

( )

( )

  Define  [0] ,  [1] ,  ...,  [ 1] .

  Or, more conveniently, 0,  1,  ...,  1 .

  ,  forms an ab

    

elian (additive) group.

  For ,  ,
  ( ) mod .  

       (That is, [ ] [ ] [ ] [
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∈
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


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mod ] .)
  0 is the identity element.
  The inverse of ,  denoted by , is .

  When doing addition/substraction in , just do the regular
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( )

( )

1

1

1

  ,  is  a group, because 0  does not exist.

   Even if we exclude 0 and consider only \{0},

    ,  is  necessarily a group; some  may not exist.

   For 

not

,   exists if and on

not
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{ }

( )
( )

1

   Let :  gcd( , ) 1 .

  ,  is an abelian (multiplicative) group.

  mod .  
  1 is the identity element.
  The inverse of ,  written , can be computed by the

    

    
    
    

    Exte

N N

N
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 
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
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
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12

nded Euclidean Algorithm.

  For example, 1,5,7,11 .   5

Q:  How many element

7 35mod12 11. 

 s are there in ?   N

Z
∗

= ∗• =

•

=


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{ }

 

1

  Euler's totient function:

  Th

          ( )

                    = :  1  and gcd( , ) 1

          1.  ( ) ( 1)   for prime   

          2.  ( ) ( ) ( )  if g

eorem

cd( ) 1
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,
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e e
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a a N a N

p p p p
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ϕ
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ϕ ϕ ϕ
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=
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•

=


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  Let  be a (multiplicative)  group.

  The order of  is defined as ord( ) .

  The order of , written ord( ), is the smallest
    positive integer  such ( , ident that 

finite

ity el.  t.) emenk

G

G G G

a G a
k ea e

•

• =

• ∈

=

ord( )

 mod  

Corollary:  For any

    For a
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 , .
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∈ =

• ∈
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(

* ( ) *

*

) 1

Euler's theorem: 

  Fermat's little theorem: 
    

    If  

If   (

 (fo

 a prime), then 1 i

r any 1), then 

n .

1 in .

Corollary: 
   

 

  

 If   (for any 1), then
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{ }*
15

*
15

*
15

(15) 8

816243240481

 = 1, 2, 4, 7, 8, 11, 13, 14

(15) (3) (5) 2 4 8

:  1 2 4 7 8 11 13 14
ord

 

(

 

  

  

 

) :  1 4 2 4 4 2 4 2

1

13 ?

 

  

Example:  15

a
a

a a

N

ϕ

ϕ ϕ ϕ= = × = × =
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•

•

•
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= =
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=





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The Chinese Remainder Problem

• A problem described in an ancient Chinese arithmetic book by 
Sun Tze (around 300AD, the author of The Art of War).

• Problem: We have a number of objects, but we do not know 
exactly how many. If we count them by threes we have two 
left over. If we count them by fives we have three left over. If 
we count them by sevens we have two left over. How many 
objects are there?

Mathematically,  if   2mod3,   3mod5,   2mod7,
   wh
  

at is ?
x x x

x
≡ ≡ ≡
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1

2

1

1 1 1

2 2 2

If integers , ,  are  , 
then the system of congruences 

mod               // //

mod               // //
           

   
mod           

pairwise coprime

Chinese remainder theorem

k

n

n

k k

n n

x a n a

x a n a

x a n

≡ ∈

≡ ∈

≡









1 2

1
1

  

    // //

has a unique solution modulo :

          mod

where  and A formula by  mod  Gau ( )ss

kk n

k
k

i i i
i

i i i i i

a

N n n n

x a N y N

N N n y N n
=

−






 ∈

=

≡

= =

∑




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( )1 1 1

1 1 1

Suppose
     1  mod  3
     6 mod  7
     8  mod  10
By the Chinese remainer theorem, the solution is:

1 70 (70 mod3) 6 30 (30 mod7) 8 21 (21 mod10) mod 210

  1 70 (1 mod3) 6 30 (2 mod7) 8 21 (1 m

x
x
x

x − − −

− − −

≡
≡
≡

≡ × × + × × + × ×

≡ × × + × × + × ×( )
( )

od10) mod 210

  1 70 1 6 30 4 8 21 1  mod 210 
  958 mod 210 
  118 mod 210

≡ × × + × × + × ×

≡
≡

Example: Chinese remainder theorem
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1 2

1 2 1

1 2

Let , where , ,  are pairwise coprime.
There is a one-to-one correspondence   

      
         

     ( mod ,  mod ,  ,  mod )

Then,

  Denote th

Chinese remainder theorem

k

k k

N n n n

k

N n n n n n

x x n x n x n

=

←→ × × ×

←→

•

 

    



1 2
e mapping :      .

  ( ) ( ) ( ).

  ( ) ( ) ( ).

kN n n n

x y x y

x y x y

ψ

ψ ψ ψ

ψ ψ ψ

→ × × ×

• ⋅ = ⋅

• + = +

    
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( )
( )

1 2

1

1

  Computations in  can be done by performing 
    corresponding computations in ,  ,  ,  ,  and 

    then solve the CRP.

,  , 
  If              

,  ,  

    then

               

k

N

n n n

k

k

a a a
b b b

a b a

•

↔
•  ↔

± ↔



   





( )
( )
( )

1 1

1 1

1

1

*
1

,  , 
,  ,  

  ,  ,   if  
                   
m

   
        od m    od mod  

k k

k k

k

k k N

b a b
a b a b a b
a b a b a b b Z

N n n

± ±
× ↔ × ×
÷ ↔ ÷ ÷ ∈
↑ ↑ ↑









p38.

( )
( )
( )

* * *
15 3 5 15 3 5     

   8 8mod3,  8mod5 (2,3)

   11 11mod3,  11mod5 (2,1)
 Suppose we want to compute 8 11 mod15.
 8 11mod15 (2 2mod3,  3 1mod5) (1,3).
 (1,3)   (

Example: Chinese remainder theorem

x

• ↔ × ↔ ×

↔ =

↔ =

• ×
• × ↔ × × =
• ↔

     

15which number  corresponds to (1,3)?)
1mod3

 Solve  13
3mod5

x
x

x
x

∈

≡
• ⇒ = ≡


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Algorithms
( )

( ) ( )

1

33

 gcd ,        //1 , //

  mod
  mod

  Running time:  log

k

a b a b N

a N
a N

O N O N

−

•

•

•

=•

≤ ≤
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0

1

1

1 1

Comment: compute gcd( , ),  where 1.
      :
      :
      for : 1,  2,   until = 0 
              : mod     
      return ( )

Running time:
 (log ) i  t

Euclidean Algorithm

n

i i i

n

a b a b
r a
r b

i r
r r r

r

O a

+

+ −

> >
=

=
=

=





2

3

erations; (log ) time for each mod.
 Overall running time: (lo  g )

O a
O a
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Example: gcd(299,221) ?

299 221

Given 0,  compute ,  such that gcd( , ) .

1 78
2 65

  
221 78
78 65

78 65
78 221 78

  
1

65 5 0

gcd(229,221) 13
( 2 ) 3

  
78 22

  
3

13
1

2

3

1
(

Extended Euclidean Algorithm
a b x y a b ax by> > = +

= × +
= × +
= × +
= ⋅ +

= = −
= − − × = ⋅ −
= ×

=

99 221) 221
299

1
23 2 14

− ⋅ −
= × − ×
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1

* 1 *

1

*

  That is, for , compute  in .
   exists if and only if gcd( , ) 1.
  Use the extended Euclidean algorithm to find ,   

    such that     1.
  Then, in ,  

modHow to compute 
N N

N

a a
a a N

x y
ax Ny

Na−

−

−

• ∈

• =
•

+ =

•

 



[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ]1

we have
               1

          1    

          

a x N y

a x

a x−

⋅ + ⋅ =

⇒ ⋅ =

⇒ =
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1  Compute 15  mod 47.
    47 15 3    (divide 47 by 15;  remainder 2)
    15 2 7    (divide 15 by 2;  remainder 1)
      1 15 7                       ( mod 47)
       1

2
1

2
5 ( ) 7      ( mod 47)47 15 3

Example
−•

= × + =
= × + =
= − ×
= − ×− ×

1

1 *
47

       15 22 47 7              ( mod 47)
       15 22                           ( mod 47)
   15  mod 47 22
   That is,  15 22 in 

−

−

= × − ×
= ×

=

= 
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( )

1 0

2

   Comment:  compute  mod  ,  where  in binary.

   1
   for    downto  0  do  
                 mod 

if  1
                  

then   mod 

Algorithm: Square-and-Multiply( , ,  )
c

k k

i

x N c c c c

z
i k

z z N
c

z z x

x c N

−=

←
←

←

=

← ×



( )

...Note:  At t

 i.

he end of iteration 

e.,  mod  

   retu )

 

rn

, .

 (

k

i

i

c

c c

z z x N
N

z

i z x


← ×

=


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2

2

2

2

3

2

   23 10111

   1
   11 mod 187 11    (square and multiply)
    mod 187 121       (square)
   11 mod 187 44   (square and multiply)
   11 mod 187 165  (square and

11 mod187

 mu

Example: 

b

z
z z
z z
z z
z z

=

←

← ⋅ =

← =

← ⋅ =

← ⋅ =
2

ltiply)
   11 mod 187 88    (square and multiply)z z← ⋅ =
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RSA Encryption
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By ivest,  hamir &  dleman of MIT in 1977. 
Best known and most widely used public-key scheme. 
Based on the  one-way property 

  
  
 of mo

R S

du

          

lar
    powering:

  

A

assumed

 

 
 

 

The RSA Cryptosystem
•
•
•

1

          :   mod       (easy)
                      :   mo

Related to the hardne

d       (

ss of integer factorizatio

hard)

  n.

e

e

f x x N
f x x N− →

•

→
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1

RSA

RSA

*

Encryption (easy):          

Decryption (hard):        

Looking for a trapdoor:  ( ) .
If  is a number such that 1mod ( ),  then

( )

It works in group 

1

.

Idea behind RSA

e

e

e d

N

x x

x x

x x
d ed N

ed k N
ϕ

ϕ

−

→

←

=
≡

= +



( )

*

( ) 1 ( )

 for some ,  and thus in the grou ,

( .

 p

)  1
kd d

N

e e N k N

k

x x x x x x xϕ ϕ+= = = ⋅ = ⋅ =


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    (a) Choose two large primes  and ,  and let : .
          ( ,   determined by the security parameter.)
    (b) Choose ,  1 ( ),  coprime to ( ),  and 
 

Key generati

 

on:

 

RSA encryption scheme

p q N pq
p q

e e N Nϕ ϕ

=

< <

•

1

*

*

       compute : mod  ( ). ( .)
    (c) Public key: .   Secret key: .
    ( ) : mod ,  where 

1 mod

.

    ( ) : mod ,  where .
  
    

( )

Encryption:

Decryptio

( ,

n

) )

:

( ,
e

pk N

d
sk N

d e N N

Enc x
pk N e

x N x

Dec y y N y

d
s N d

e
k

ϕ ϕ−=

= ∈

= ∈•

≡
=

•

=




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( )
( )

*

* * ( )

 mod  ( )

  The setting of RSA is the group ,  :

      In group ,  , for any , we have 1

        and, thus, .
      We have chosen ,   s

 

uch that 1 mod  ( ), 
   

Why RSA Works?

N

N
N N

m m N

x x

x x
e d ed N

ϕ

ϕ

ϕ

∈ =

=
≡

• 







  

( )* mod ( ) 1

      so, mod ( ) 1.

      For , . 
de ed ed N

N

ed N

x x x x x xϕ

ϕ =

∈ = = = =
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*

*

  RSA still works, but .

    gcd( , ) 1  |  or | .

  Say |  and 0  (it is trivial if 0).  Then, 

0 mod 0 mod  
    

 mod     m

\ ?

    and   

n

od

ot sec

  

e

  
 

ur

What if 

N

e

N

e

N

d

d

x x N p x q x

p x x x

x p x p
x x q x x q

x

∉ ≠

≠ =

≡ ≡
≡

•

•



⇒

≡





•

⇒

∈



 

( )

( )

 

    The last " "  holds 1mod ( ) 1mod ( ).

  Both  and  are a solution of the system, so by CRT

   mod mod  ( )  .

ed

ed ed

ed N ed q

x x

x x N x N x Dec Enc x x

ϕ ϕ≡ ≡≡ ⇒

⇒ ⇒





=



•

=≡


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  Select two primes:  17,  11.
  Compute the modulus 187.   
  Compute ( ) ( 1)( 1) 160.
  Select  between 0 and 160 such that gcd( ,160) 1. 

    Say 7.
  Compute 

RSA Example: Key Setup
p q

N pq
N p q

e e
e

d

ϕ

= =
= =

•
•
• = −

•

=
=

•
− =

1 1mod  ( ) 7 mod160 23 
    (using extended Euclid's algorithm).
  Public key:  .   
  Secret ke

( ,
y:

 ) (7,  187)
( ,  ) (23  .,   7  18 )  

pk e N

e

s N

N

k d

ϕ− −

= =
= =

=

•

= =

•
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7

23

23

23

  Suppose 88.
  Encryption:  mod 88 mod187 11.
  Decryption:  mod 11 mod187 88.
  When computing 11 mod187,  we  first

    compute 11  and
d

 the
o 

n
ot

 
n

RSA Example: Encryption & Decryption

e

d

m
c m N
m c N

•

•

•

•

=

= = =

= = =

reduce it modulo 187.
  Rather, use , and reduce intermediate 

    results modulo 187 whenever they g
square-a

et bigge
nd-mult

r than 
iply

187.
•
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4 16

  To speed up encryption, small values are usually
    used for .

  Popular choices include 3,  17 2 1,  65537 2 1.
    These values have only two 1's in their binary
    representatio

Encryption Key 

e

e

= + = +

•

•

n.

  There is an interesting attack on small .e•
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1/4

   One may be tempted to use a small  to speed up 
     decryption.

   Unfortunately, that is risky.

   Wiener's attack:  If   

 

 and 2 ,
3

    then the decryption exponent  c

 

Decryption Key 
d

Nd p q

d

p

d
•

•

< < <•

an be computed
     from ( ,  ). 

   CRT can be used to speed up decryption.

N e

•
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3
2

1 2

*   Decryption:  

   Time: ( ).        log 1

   Instead of 

mod   (i.e., 

computing

compute 

 directly, we compute

 in 

  : m   od ,  and :

)

mod  
o  m

Speeding up Decryption by CRT
d d

N

d

c N c

c

O N N

c
N

N

c p c c

= +  

•

•
= =

•





mod ( ) mod ( )
1 1 2 2

1

2

1 2

d
  : mod ,  and  : mod

mod
  recover the plaintext by solving  

mod
   Time: about 1 4  of the direct computation.
   

   

If ... , this strategy will

  

    

 p

 

s

d p d q

t

q
m c p m c q

x m p
x m q

N p p p

ϕ ϕ= =

≡
 ≡

•



=
•





eed up even more.
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Attacks on RSA



p58.

( )

   Five categories of attacks on RSA:
  brute-force key search 

        infeasible given the large key space
  mathem

     

     
   

atical attacks
  miscellaneous atta  cks
  timing  a    

Attacks on RSA
•






 ttacks 
  chosen ciphertext att     acks 
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1

    Then ( ) ( 1)( 1) and
mod ( ) can be calculated

Factor  into .
     

Determine ( ) directly

 easily.

    Equivalent to factoring .
    Knowing ( ) will enable us to f

.

Mathematical Attacks
N p q

d e N

N
N

N pq

Nϕ

ϕ

ϕ

ϕ

−

= − −

=

•

•

Determine  direc

actor  by solving 

    
( 1)( 1)

    If  is known,  can be factored
  

tl
  with high probability.

.

( )

y

N
pq

p

d

q
N

d

N

N

ϕ

•

=
 = − −
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  A difficult problem.

  More and more efficient algorithms have been developed.

  In 1977, RSA challenged researchers to decode a
 ciphertext encrypted with a key ( ) of 129 d   

Integer Factorization 

N

•

•

•
igits (428 bits).

    Prize: $100.  RSA thought it would take quadrillion years
    to break the code using fastest algorithms and computers
    of that time.  Solved in 1994.  

  In 1991, RSA put forwar• d more challenges, with prizes,
    to encourage research on factorization.
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  Each RSA number is a semiprime.  (A number is
     if it is the product of two primes.)
  There are two labeling schemes.

      by the number of decimal digits: 
       RSA-10

semip

0, 

rim

.

e

RSA Numbers
•

•


.., RSA-500, RSA-617.
      by the number of bits: 
       RSA-576, 640, 704, 768, 896, , 1536, 210 .24 048

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  RSA-100 (  bits), 1991, 7 MIPS-year, Quadratic Sieve.
  RSA-110 (  bits), 1992, 75 MIPS-year, QS.
  RSA-120

332
365
3 ( bits), 1993, 830 MIPS-year, QS.

  RSA-129 
98 

4(

RSA Numbers which have been factored
•
•
•
•  bits), 1994, 5000 MIPS-year, QS.
  RSA-130 (  bits), 1996, 1000 MIPS-year, GNFS.
  RSA-140 (  bits), 1999, 2000 MIPS-year, GNFS.
  RSA-155 (  bits), 1999, 8000 MIPS-year, GNFS.

28
4

  

31
465
5

RSA-16
1

0 (
2

530 

•
•
•
•

576 
6

 bits), 2003, Lattice Sieve.
  RSA- (174 digits), 2003, Lattice Sieve.
  RSA-  (193 digits), 2005, Lattice Sieve.
  RSA-200 (  bits), 2005, Lattice

40
663  Sieve.

•
•
•
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RSA-200 =
27,997,833,911,221,327,870,829,467,638,

722,601,621,070,446,786,955,428,537,560,

009,929,326,128,400,107,609,345,671,052,

955,360,856,061,822,351,910,951,365,788,

637,105,954,482,006,576,775,098,580,557,

613,579,098,734,950,144,178,863,178,946,

295,187,237,869,221,823,983. 
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*

  In light of current factorization technologies, 
    RSA recommends 1024 to 2048 bits.

  I

    
   

f a message \ ,

  RSA works, but
  Since gcd( , ) 1,  the sender can factor . 
  S    

Remarks

N N

N

m

m N N

•

=

• ∈

>






 

*

ince gcd( , ) 1,  the adversary can factor ,  too.

  Question:  how likely is  \ ?

e

N N

m N N

m

>

• ∈ 
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1 2

      If two users use the same modulus  and their
       encryption exponents  and  are coprime, then
       a message  sent to them, encrypt

  Common modulus:  

Miscellaneous attacks against RSA

N
e e

m

•



1

2

1 2 1 2

1

2

1 2

1 2

1 2

ed as : mod  
       and : mod ,  is not protected by RSA.

      For  ,  coprime 

        1 for some ,  
         mod mod .

e

e

re se re se r s

c m N
c m N

e e

re se r s
m m m N c c N+ +

=

=

⇒ + =

⇒ = = =





p66.

      Owners of keys ( , , ) usually do not know .
      But, actually, given ( , , ), one can factor  with
        high probability of success.
      Thus

  Another problem with common modulus: 

N e d N pq
N e d N

=

•





 , 

    

if tw

  

o RSA 

So, do

users share 

 not use a c

the same ,  they can
    

ommon .
      Also, 

    figure out each other's secret key (  

if your  is compromised, do not just 
  

valu

      change  

e). 
N

d
e

N
d





and .  You should also change .d N
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2

2

2

     1mod  has four solutions:

            1,   for some 1. 

     If 1mod  and 1

        1 0mod

         | ( 1)( 1)

        gcd( ,

    (may skip  If  is known, we can )factor :

x N

a

a N a

a N

N a a

a

a

n

d N

≡

± ≠ ±

≡ ≠ ±

− ≡

+ −

±

±

⇒

⇒

⇒

•





2

1) yield the factors of 

     Factor  by looking for a nontrivial square root of 1
      mod  (i.e., an 1 such that 1mod ). 

.N

N
N a a N≠ ± ≡


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2 3 1

* 1

2

* *

2 2 2 2 2 2

   For all ,  1 mod . 

   Write 1 2 , where  is odd.   (So, 1mod )  

   Pick any .      (What if \ ?)

   Compute , , , ,  , ,  , ,  

    

   

   

  

  u

  

s

t st

ed
N

s r

N N N

r r r r r r r

w w N

ed r r w N

w w

w w w w w w w
−

−∈ ≡

− = ≡

∈ ∈



  







 

1

2

2 2

ntil we find the first 1mod  for some .

   If 0,  let mod .  Then 1mod ,  and 1.

   If 1,  then  is a nontrivial square root o

   

 f 1 mod .

   Otherwise (i.e., 0 or 1),

 

  

t

t

r

r

w N t

t a w N a N a

a N a N

t a N

−

≡

≠ = ≡ ≠

≠ −

= = −





  try another .w
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A message  sent to  users who employ the same 
        encryption exponent  is not protect
    

   
ed by RSA.

Say, 3,  and Bob sends a message  to three
       re

 

 
 

  Low encryption exponent attack

m e
e

e m

•

• =

•

1 2 3

1 3

1 2 3

3 3 3
1 2

3 3

2 3

3

cipients encrypted as: 
            mod ,  mod ,  mod .

Eve intercepts the three ciphertexts, and recovers : 
          mod ,  mod ,  mod .    

          B

  

y 

 

T

 

CR

c n c n c n

m
m c n m c n m c n

m m m= = =

≡ ≡ ≡

•





3
1 2 3 1 2 3

3 3 3
1 2 3

,  mod  for some . 

          Also, .  So, ,  and .

m c n n n c n n n

m n n n m c m c

≡ <

< = =
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   Recall RSA decryption:  : mod .
    One may be tempted to use a small  to speed up
    decryption.   Unfortunately, that may be risky.   

    The d cry

 

e p

  Wiener's low decryption exponent attack:
dm c N

d
=

•

1 4

tion exponent  may be computed from
    ( , ) if    and  

(Before Wiener's attack, the condition  
     usually held because  ,   were usually chosen to
     have the same numbe

3 2 .

    2

r 

d
N e

p

d N p q p

p q p
q

< < <

< <

of bits.)
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1 1 2

2

3

  Continued fraction :
1    [ , ,..., ]1

1

  Any (positive) rational number  can be expressed 
   as a continued fraction, called its continued fraction
   expansion.
  Convergents of [

m

m

q q q q
q

q
q

a b

q

+ =
+

+ +







 1 2 1 1 2 1 2 3

1 2 1 2

, ,..., ] :   [ ],  [ , ],  [ , , ],
   [ , ,..., ].   (This sequence converges to  [ , ,..., ].) 

m

m m

q q q q q q q q
q q q q q q
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34 1   Example:  0 [0,2,1,10,3]199 2 11 110
3

   Obtained from Euclidean algorithm:
    34 99 34,   99 34 31,   34 31 3,
    31 3 1,   3 1
   Convergents of [0, 2,1,1

0 2 1
10 3

0,3] :
    [0],  [0, 2],  [0, 2,1]

= + =
+

+
+

= × + = × + = × +
= × + = ×







,  [0, 2,1,10],  [0, 2,1,10,3]
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/

2

1 4

1   If ,  wheregcd( , ) 1,
2

    then  equals one of the convergents of the 
    continued fraction expansion of .

  For RSA, ( ) 1 for some .  So, .
( )

 

Theorem.

 If 

 

a 3  

c
d

c

a c d
b d

a b
e e ted t N t
N

d

N d

d N

ϕ
ϕ

− < =

= +

<

≈ ≈





 2

1 then .
2

  So,  equals one of the convergents of .  Check
   the convergents one by one to find the right on

nd ,

e.

2

 

e t
N d d

t d e N

p q p − << <


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     If  the message space is small.  The adversary can 
       encrypt all messages and compare them with the
       intercepted ciphertext. 

     This attack is  snot p

 

 

  Small message space attack:•



 ecific to RSA.
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  Paul Kocher in mid-1990’s demonstrated that a snooper
    can determine a private key by keeping track of how
    long a computer takes to decrypt messages.

  RSA decryption:  mod .  

Timing Attacks

dc N

•

•

( )

  Countermeasures:
 Use constant decryption time
 Add a random delay to decryption time
  modify the ciphertext  to

     
     
     Blin   and computeding

       mod .  

:
d

c c

c N

′

′

•





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  RSA encryption has a homomorphism property:
            RSA( ) RSA( ) RSA( ).
  To decrypt a ciphertext RSA(

    
):

 Generate a random 
    

 messag
 

e .
 Encrypt 

Blinding in Some of RSA Products

m

m r m r
c m

r

⋅ =
•

⋅
=

•





1

 as RSA( ).
 Multiply the two ciphertexts:  RSA( ).
 Decrypting  yields a value equal to .
 Multiplying that value by  yields 

     
     
   .
  Note: all calculations are done in 
  

r

m r

r c r
c c c mr

c mr
r m−

•

=
= =







*  (i.e., modulo ).N N
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Based on RSA's homomorphism property:
              RSA( ) RSA( ) RSA( )

Assume Eve has acess to a decryption oracle.

      

     
   The attack:
           Given : RSA

 
(

 
)

A chosen-ciphertext attack

m

m r m r

c m

•

•
=

=
•

⋅ ⋅



*

,  Eve wants to know 
           She computes : RSA( ) for an arbitrary .
           Now, presenting RSA( )
             to the Oracle, Eve obtains ,

?

 from which she
             

r N

m r m r

c r r
c m r c c

m

m r
⋅

= ∈
= =

⋅

=

⋅
 



1can compute  ( ) . m m r r−= ⋅ ⋅
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Padded RSA
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  We have seen many attacks on RSA. 

  Also, RSA is deterministic and, therefore, not CPA-secure.

  We wish to make RSA secure against CPA and
    aforementioned attacks.

  The RSA we h

Security of RSA
•

•

•

• ave described so far is called:
      RSA primitive,  plain RSA, or textbook RSA
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  Encryption:  ( ) RSA( ) ( ) mod ,
    where  is a random string.

  Thus, Padded-RSA( ) RSA( ) for some random .

  Secure against many of aforeme

Theorem (i

ntioned attacks

nf r

.

 o

Padded RSA
e

pkE m r m r m N
r

m r m r

=•

•

•

•

=

=

 



( )
  Under some assumption, Padded RSA

    is CPA-secure if log , where .

  Padded RSA was adopted in PKCS #1 v.1.5.  

mal):
m O n n N=

•

=



p81.

  PKCS: ublic ey ryptography tandard.
  Let  ( , , ) give a pair of RSA keys.
  Let  be the length of  in bytes (e.g., 216).
  To encrypt a message :

  

P K C S

    pa

Padded RSA as in PKCS #1 v.1.5

N e d
k

m
N N k

•
•

• =

•

=



( ) ( )

d  so that 00 02 00  (  bytes)
      where 8 or more random bytes 00.
      original message  must be 11 bytes.

      the ciphertext is : RSA mod .
  In 1998, Bleichenbacher

   

b

 

 pu l

e

m r k
r

m k

c

m m

m m N

′ =
= ≠

≤ −

′

•

′= =







   

ished a chosen-ciphertext
    attack on this padded RSA.
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  A (padded) message is called  if it has
    the specified format: 
          00 02 pa

PKCS confo

dding stri

rmi

ng 00 original message.
  PKCS #1 implementation

ng

Bleichenbacher's chosen-ciphertext attack
•

•
   

1

1

s usually send you (sender)
    an error message if RSA ( ) is  PKCS conforming.
  It is just like you have an Oracle which, given , answers

    whether or not RSA ( ) is PKCS conforming.
  Bleich

notc
c

c

−

−

•

• enbacher's attack takes advange of such an Oracle.



p83.

*

Given RSA( ),  Eve tries to find . 
   (Assume  is PKCS conforming.)

How can the Oracle help?
     Recall that RSA is homomorphic: 
        RSA( ) RSA( ) RSA( )   (computed in )
     G

  
 

  
 

 iv
N

c m m
m

m s m s

=

⋅

•

= ⋅

•






*

*

en RSA( ), Eve can compute RSA( ) for many .
     She then asks the Oracle,
                      Is  PKCS conforming?
        (That is, is  PKCS conforming?)

Why is this infor
mod
mati

 

  

N

Nms Z

m m s

m N

s

s
•

∈

⋅ ∈




on useful?
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2 8( 2)

2 2

Recall PKCS format (  bytes):
          00 02 padding string 00 original message.

Let 00 01 (00)  (hexadecimal) 2  (binary

  

  

  

  

)

Then  2 00 02 (00)  and   3 00 03 (00)

If  is PKCS 

k k

k k

k

B

B B

m

− −

− −

•

•

•

•

= =

= =

   

 
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conforming       2 3 .

If  is also PKCS conforming
      2 3
      2 3  for some 
      (2 ) (3 )

m  
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• • •

• • •

0                    N                  2N                 3N                 4N

sN

2B   3B

 If  is PKCS conforming   is in the blue area.
 If  is also PKCS conforming

    is in the blue area
    is in the red areas
    is in the red lines.
 Thus,  is in the red line

mod

s

m

 

o

o

d

f t

m m
ms N

ms N
ms
m

m

⇒

⇒

•

⇒

•

⇒

•

he blue area. 
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blue area
 Let's focus on the blue area, (2B, 3B).
 If  is PKCS conforming   is in the .
 If  is also PKCS conforming

     
mod

red areas/is in 
 If  is also PKCS conforming

    

 
 
 

mod
line

 
s

ms

ms N
m

m

m

m
N

•

•
⇒

⇒

•

•
⇒

′

purple areas/line is in 
 So, blu purplre e d

s
em• ∈ ∩ ∩

2B                                                                                                                          3B
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1 2 3

1

 So, starting with the fact that  is PKCS conforming, 
 Eve finds a sequence of integers , , ,  ... such that

            2  and
            mod  is PKCS conforming.

 
   

 To find ,  ra n

i i

i

i

m
s s s

s s
ms N

s

−

•

≤

•

1domly choose an 2 , and ask the oracle
     whether  is PKCS conforming.  If not, then 
     try a different .

 This way, Eve can repeatedly narrow down the area
    containing  and event

d

 

mo

ua

i

ms
s

m

N
s

s

−

•

≥

1 2 3

lly find .
 For  having 1024 bits, it takes roughly 1 million accesses

    to the oracle in order to find ,  ,  ,  ...        
 

  

m
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CCA-Secure RSA in the  
Random Oracle Model
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There are CCAs that only require the oracle to reveal
    partial information about the plaintext such as: 
      whether the plaintext is PKCS conforming 
      whether the plai

  

Protecting Every Bit
•

−
−

*

ntext is even or odd
      whether the plaintext  is in the first half or the
          second half of  (i.e., / 2 or / 2?)

 It is desired to protect every bit (or any partial informati )  on

N

N

x
x N x N

•

− ∈
< ≥




     of the plaintext.
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  Message padding: not simply  or ,
    but ,  where  is a random string.  
  As such, however, there is a 50% overhead. 

    So, we wish to use a shorter bit string . 
  Be

OAEP: basic idea
m r r m

m r r r

r

⊕
•

•

•

 



sides,  should be protected, too.
  This leads to a scheme called ptimal symmetric 

   can be appl ncryption adding ( ).  It   
    to RSA and

ied
 other trapdoor f

O A
E P

unct
O

.
AEP

ions

r
•
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 Choose ,   ( ) s.t.    ( ,  RSA modulus).

 :{0,1} {0,1} , a pseudorandom generator.
 :{0,1} {0,1} , a hash function.

  To eEncryptio ncrypt a block  of  bits :  
   1. choose a rando

n
m

.

OAEP

k l

l k

k l k l k l N N

G
h

m l

+ =

→•

• →

•

•



 bit string {0,1} .
   2. encode  as  : ( ) ( ( ))
       (if , the message space of RSA, return to step 1).
   3. compute the ciphertext : (

Decrypt

).  

  ion: : ( ) .    

k

N

pk

sk

r
m x m G r r h m G r

x Z
y Enc x

x Dec y a b•

∈
= ⊕ ⊕ ⊕

∉
=

= =



 ( )( ) .m a G b h a= ⊕ ⊕
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padding encod
  OAEP is adopted in current version of RSA PKCS #1 (v. 2.1).
  It is a scheme.
  Intuitively, with OAEP, the ciphertext would not reveal any

    

i

i

ng

nf

/

ormation about the 

 

Remarks on OAEP
•
•
•

plaintext if RSA is one-way and
     and  are 
  A slightly more complicated version of OAEP, in which

               ( 0

truely random

( ) ( 0 ( ))),
    has been proved 

 (random oracles).

CC

k k

h G

x m G r r h m G r′ ′= ⊕ ⊕

•

⊕ 

A-secure in the  model
    (i.e., if ,   are random oracles.)

  In practice, hash functions such as SHA-1 are

ran

 us

dom orac

ed for  

e

,

l

.

G h

G h•
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Generating large primes
To set up an RSA cryptosystem, 

we need two large primes p and q.
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1 2

1 2

  Infinitely many.   

  First proved by Euclid:
     Assume only a finite number of primes ,  ,  ,  .  
     Let  1.
      is not a prime,  bec

•
•

aus• e 

How many prime numbers are there?

n

n

i

p p p
M p p p

M M p

•

…
•

= … +
≠ ,  1 .

     So,  is composite and has a prime factor  for some 
         |   |1 contradiction.

• i

i i

i n
M p i
p M p

≤ ≤

⇒ ⇒ ⇒⇐
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 Let ( ) denote the number of primes  . Then

            ( )    for large .
l

The Prime Number Theorem:

Bertrand's The

n

 For any 1, the fraction of -bit integeorem: 

Distribution of Prime Numbers

x x
xx x
x

n n

π

π

≤

≈

> rs
that are prime is at least 1 3 .n
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  Generate a random odd number  of desired length.

  Test if  is prime.

  If not, discard it and try a different number.

  Q:  How many numbers are expected to 

How to generate a large prime number?
N

N

•

•

•

• be tested before
    a prime is found?
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( )( )
( )( )

12

10.5

  Can it be solved in polynomial time?
  A long standing open problem until 2002.

  AKS(Agrawal,  Kayal,  Saxena) :  log .

      Later improved by others to log , 

Primality test :  Is  a prime?

O N

O N

N

ε+

•
•

•



( )( )

( )( )

6

3

and then

       to  log .

  In practice,  Miller-Rabin's probabilistic algorithm is still

    the most popular --- much faster, log .

O N

O N

ε+

•
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*

*

  Looking for a characteristic property of prime numbers:
       is prime   
       is prime   ,  ( )  
      

wha

 is prime   , ( )

t?

 

Miller-Rabin primality test :  Is  a prime?

N

N

N
N a P a true
N a P a t

N

⇔

⇔ ∀ ∈ =

∀ =⇒ ∈

•








*

*

        not prime     elements ,  ( )

  Algorithm:  Check ( ) for  random elements . 
If ( ) is true for all of them then re priturn 

                                   
  m e
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rue
N a P a false

a

k

P a t
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≥∃ ∈

∈

⇒

•

=
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( )

            else return .
  A "prime" answer may be incorrect with probabilit
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)
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( 

y

1 tk Nϕ≤ −
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*
N

*If  is prime, then for all , ( ) is true.NN a P a∈

( )P a true=
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*
N

*If  is , then there are elements ,
called 

not prime
strong witnesses  , .( )s.t. 

NN a
P a false

∈
=



( )P a true=
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1

* 1

* 1

  Looking for ( ) :

      How about ( ) 1 mod ?

      Fermat's little theorem: 
        If  is prime  ,  1 mod .

      If  is not prime  possible that ,  1 mod .

   

N

N
N

N
N

P a

P a a N

N a a N

N a a N

−

−

−



⇒

⇒

= ≡ 

∀ ∈ ≡

∀ ∈ ≡

•









1

1 *

     ( composite numbers  for which

      

C

   1 mod  .)

      Need to strengthen the condition .

armichael numbers :  

 1 mod

N

N

NN a

a N

N

a

−

− ≡

≡

∀ ∈


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*

* 2

  Fact:  if 2 is prime, then 1 has exactly two square
    roots in ,  namely 1.    
  Write 1 2 ,  where  is odd.
  If  is prime

           , 1 mod       (Fermat's little theorem)
 

k

N
k

u
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N

N u u
N

a a N

• ≠

±

• − =
•

∀ ∈ ≡⇒





2 1

*

2 2 2 2

2

1 mod  
( )

1 mod  for some , 0

         , ( ) , where

                 

  Why?  Consider the sequence 

                   ,  ,  ,  ,  
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a N
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3

5 10 20 40

*
41

Example:   41  
  1 40 2 5 2 .  ( 3,  5)
  For 2,  ( ,  ,  ,  ) (32,  1,  1,  1) mod 41

    (2) .
  For every ,  ( ) is true.

                                     
Example:   25

k

N
N u k u

a a a a a
P true

a P a

N

=

• − = = ⋅ = = =

• = ≡ −
=

• ∈

=



( ) ( )

3

3

3 6 12 24

  
  1 24 2 3 2 .  ( 3,  3)
  For 2,  2 8 mod 25

    ,  ,   8, 14, 21, 16  mod 25

    (2) .
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N u k u
a a

a a a a

P false

• − = = ⋅ = = =
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*

   If  not prime  strong witnesses always exist 

  Loosely speaking, :
If  is an odd composite and not a prime power, then

         of the 
 

e
  

le

?

yes
  

at le menast one ts  are strong
  

hal
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N

N
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⇒
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•
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*

  witnesses.
For such an , we may check ( ) for  random elements

        . If ( ) is true for all of them then return 
   

prime
compos

      

     else return .
A "prime" answer may be 

ite
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N P a t
a P a∈







incorrect with probability 2 .t−≤
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prime power
perfect pow

  A composite number  is a  if  for
    some prime  and integer 2.   (It is a  if
     for some integer  and  2.)

   If  is 

er

an odd composite and noTheorem: t a p

e

e

N N p
p e

N k k e

N

=

=

•

•

≥

≥

*

*

rime power,
    then  of the elements  are strong
    witnesses that  is not prime.

  Idea of Proof:  The set  of all -strong witnesses
    f

at least on

orms a proper subgroup of .  So,

e half N

N

n

N

on

a

B•

∈
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 ord( ) ord( ) and
1    ord( ) | ord( ).  So, ord( ) ord( ). 
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   Input: integer 2 and parameter 
    Output: a decision as to whether  is prime or 
    if  is even, return "composit

composite
1. e"

    if  is a per2

 

. fect 

Algorithm: Miller-Rabin primality test
N t

N
N
N

>



power, return "composite"
  for : 1 to  do            
            choose a random integer 
            if gcd( , ) 1, return "composite"
            if  is a strong witness,  ret

3

urn "composit

. 

e

 

N

i t
a

a N
a

=
∈

≠


"
  return ("pri4.   me")
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  If the algorithm answers "composite", it is always correct.

  If the algorithm answers "prime", it may be incorrect with 
    probability at most 2 .

  Actually

Analysis: Miller-Rabin primality test

t−

•

•

• , at most 4 , by a more sophisticated analysis. t−
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  A  is a probabilistic algorithm
      which always gives an answer
      but sometimes the answer may be inco

Mo

rr

nte 

ect.

Carlo a

  A 

lgorithm

Monte Carlo algorithm for a decisi

Monte Carlo algorithms
•

•





on problem is 
    if its “yes” answer is always correct but a “no” answer may
    be incorrect with some error probability.

  A -iteration Miller-Rabin is a “composite”-biased Mon

yes-bias

te Carl
 

ed

o
  

t•

 algorithm with error probability at most 1 4 .t
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  A  is a probabilistic algorithm 
      which may sometimes fail to give an answer
      but never gives an incorrect 

Las Ve

one

 

gas algori

 A Las Vegas algorithm can be conver

thm

Las Vegas algorithms
•

•





ted into a
    Monte Carlo algorithm.
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