Public-Key Encryption

Reading: K&L Chapter 11



Public-Key Encryption

Also known as asymmetric-key encryption.

The recelver has a pair of keys:

a public key pk and a private key sk.

The public key, known to the public, is used for encryption.

The private key, known only to its owner, is used for decryption.



Public-key Encryption

Alice’s
secret key

l

Boph  Alice’s
public key
m 1 E

Alice

"D

p3.



Why Public-Key Cryptography?

« Developed to address two main Issues:
— key distribution
— digital signatures

 Invented by Diffie & Hellman in 1976.



Symmetric-key encryption scheme (for comparison)

A tuple of polynomial-time algorithms: I'T = (Gen, Enc, Dec)
Key generation algorithm Gen: On input 1", outputs a

key k €{0,1}". We write k <~ Gen(1"). (n:security parameter.)
Encryption algorithm Enc: On input a key k and a message

m e{0,1} , outputs a ciphertext c. We write ¢ <— Enc, (m).

Decryption algorithm Dec: On input a key k and a ciphertext c,

Dec outputs a message m or an error symbol L.

We write m = Dec, (c).

Correctness requirement: for every k «— Gen(1") and m €{0,1} ,
Dec, (Enc,(m))=m.

Gen, Enc are probabilistic. Dec, deterministic.

pS.



Public-key encryption scheme

Gen: on input 1", outputs a pair of keys, (pk, sk),

each of length at least n. We write ( pk, sk )« Gen(1").

Enc: on input a public key pk and a message me M

outputs a ciphertext c. We write ¢ <« Enc , (m).

(The message space M , may depend on pk.)

Dec: On input a secret key sk and a ciphertext c, outputs a
message m or an error symbol L. We write m:= Dec, (c).

It is required that Pr[DecSk (EncIok (m)) =m: m« M pk] =1
except possibly with negligible probability over key pairs ﬁ
(pk, sk) output by Gen(1").

p6.



Different notions of security

EAV-security (against eavedroppers, ciphertext-only-attacks)
- 0ONe encryption

« multiple encryptions

CPA-security (against chosen-plaintext attacks)
- 0ONne encryption
« multiple encryptions

CCA-security (against chosen-ciphertext attacks)
e ONe encryption
- multiple encryptions



Ciphertext Indistinguishability

Adversary A: a polynomial-time eavesdropper.
IT=(Gen, Enc, Dec): a public-key encryption scheme.
Experiment PubK?, (n):

» Gen(1") is run to obtain a pair of keys ( pk, sk).

The adversary is given pk, and outputs a pair of
messages my,m, € M , of the same length.

A random bit b <~ {0,1} is chosen; and a ciphertext
¢ < E, (m,) Is computed and given to the adversary.

The adversary outputs a bit b’.
PubK’ T (n)=1ifand only if b=b".

p8.



Definition: A publick-key encryption scheme is EAV-secure
If for every polynomial-time adversary A there exists a negligible
function negl such that

Pr| PubK$y, (n) =1] < %4‘ negl(n)

We may similarly define CPA-security and CCA-security.

p9.



Remarks

Since the adversary knows the publick key pk, it can encrypt
any polynomial number of messages of its choice.

That Is, eavesdroppers are automatically capable of CPA's.
Thus, If a public-key encryption scheme is EAV-secure,

then it is also CPA-secure.

A deterministic public-key encryption scheme is

« not CPA-secure, and hence

- not EAV-secure.

If a public-key encryption scheme i1s CPA-secure, then it is
CPA-secure for multiple encryptions.

p10.



Hybrid Encryption

Compared with private-key encryption, public-key encryption
- IS slower

- has longer ciphertexts

Hybrid encryption

 Use public-key encryption to obtain a shared key k
o Use private-key encryption to encrypt the message under key k

1 pll.



pl2.



The KEM/DEM Paradigm

p13.



Key-encapsulation mechanism (KEM)

Gen: on input 1", outputs a pair of keys, ( pk, sk),

each of length at leastn.  ( pk, sk) «— Gen(1").

Encaps: on input 1" and a public key pk, outputs

a ciphertext ¢ and a key k e {0,13'™".

We write (c, k)« Encaps, (1").

Decaps : on input a secret key sk and a ciphertext c, outputs a
key k or an error symbol L. We write k := Decaps,, ().

It is required that with all but negligible probability over ( Pk, sk)
output by Gen(1"), it holds:
(c, k)« Encaps, (1") = Decaps, (c) =k

pl4.



Hybrid encryption using KEM

p15.



Hybrid encryption using KEM

Construct an encryption scheme IT" = (Gen"™, Enc", Dec")
from a KEM IT = (Gen, Encaps, Decaps) and

a private-key encryption scheme IT" = (Gen’, Enc’, Dec’).
Gen™ : on input1", run ( pk, sk) <« Gen(1").

Enc™ : on input a public key pk and message m €{0,1} ,
- (¢, k)« Encaps,, (1")

« C' '« Enc;(m)

- output the ciphertext (c, ).

Dec™ : on input a secret key sk and a ciphertext (c, ¢'),
- k:=Decaps, (C)

- m:=Dec, (c')

p16.



CPA-security of KEMSs

IT = (Gen, Encaps, Decaps): a KEM.
Experiment KEM'P* (n):

ATl
- Gen(1") is run to obtain a pair of keys ( pk, sk).
Encaps , (1") is run to generate (c, k) with k e {0,1}'"".
A random bit b <~ {0,1} is chosen; and
~ |k Ifb=0
: {

a random string in{0,1}'"" else

The adversary, given ( pk, c, IZ), outputs a bit b,
- KEMY(n)=1ifand only if b=b"

IT is CPA-secure iff VA, Pr| KEM% (n) =1| < %4— negl(n).

pl7.



Security of hybrid encryption

Let [TV = (Gen™, Enc"™, Dec™) be constructed from
IT = (Gen, Encaps, Decaps) and
IT"=(Gen’, Enc’, Dec’)
as above.
Theorem: If IT is CPA-secure and I'T' is EAV-secure, then
1" is CPA-secure.

Theorem: If IT i1s CCA-secure and IT' is CCA-secure, then
IT" is CCA-secure.

p18.



One-way function with trapdoor (informal)

Easy: X——>y

Hard:  x<«'—y

Easy: X<————y

trapdoor

Use trapdoor as the private key.

Most public-key encryption schemes are based on
assumed one-way functions.

Most one-way functions come from number theory.

p19.



Modular Arithmetic

Reading: K&L Section 8.1

p20.



Integers

e a|b: adivides b, a Is a divisor of b.

e gcd(a,b). greatest common divisor of a and b.

e Coprime or relatively prime: gcd(a,b) =1.

e Euclid's algorithm: compute gcd(a,b).

e Extented Euclid's algorithm: compute integers
x and y such that ax + by = gcd(a, b).

p21.



Integers modulo N

Let N > 2 be an integer.

Definition: a is congruent to b modulo N, written
a=b modN (or a=b modN as in the book)

If N|(a—Db), 1.e., a and b have the same remainder

when divided by N.

Define [a], ={xeZ: x=a mod N}.

a],, Is called a residue class modulo N, and a is a
representative of that class.

p22.



There are exactly N residue classes modulo N :
O], [y, [2]y, ---» [N —=1],.

Z,=[0], Y[1], v---U[N -1],.

If xe[a]y, Y €[b],, then

X+yela+b], andx-yela-b],.
Define addition and multiplication for residue classes:
a]y +[bly =[a+Db]y
a]y -[bly =[a-b]y.




Group

e A group, denoted by (G, ), Is a set G along with a
binary operation o such that:
1. (Closure) Forall x, yeG, xoyeG
2. (Associativity) Xo(yoz)=(Xoy)oz
3. (Existence of an identity) There exists an identity e e G
S.I. VXe(G, eoXx=Xoe=X
4. (Existence of inverses) For all x € G, there exists an
elementy e G s.t. Xxoy=Yyox=e. Suchay is called an
Inverse of x.
e A group (G,o) Is abelian (or commutative) if
forall X,y e G, Xoy=yox

p24.



e Agroup (G,o) is finite if |G| is finite.

e The identity of a group Is unique.

e The inverse of an element Is unique.

o If (G,o) Isagroup and H — G itself is a group under
the same operation o, then H is a subgroup of G.

e Examples: (Z,+), (Q,+), (Q\{0}, %), (R,+),
(R\{0}, x).

p25.



Define Z, ={[0],, [y, ... [N—1],}.
Or, more conveniently, Z,, ={0, 1, ..., N -1}.
(Z,,+) forms an abelian (additive) group.

Fora, beZ,,
» a+b=((a+b)modN).
(Thatis, [a], +[b], =[a+Db], =[a+bmodN],.)
« 0 1s the identity element.
« The inverse of a, denoted by —a, iIs N —a.

When doing addition/substraction in Z,,, just do the regular
addition/substraction and reduce the result modulo N.
e INZ,, 5+5+9+4+6+2+8+3="7

p26.



e (Z,,*) isnotagroup, because 0~ does not exist.
o Even if we exclude 0 and consider only Z}, =7 \{0},

(Z3*) is not necessarily a group; some a™ may not exist.

e ForaeZ,, a— exists if and only if gcd(a,N)=1.

p27.



e LetZ, ={aeZ,: gcd(a,N)=1}.

e (Z.*) is an abelian (multiplicative) group.
- axb=(abmodN).
1 1s the identity element.

- The inverse of a, written a™*, can be computed by the
Extended Euclidean Algorithm.

e Forexample, Z;, ={1,5,7,11}. 5%7=35mod12=11.

e Q: How many elements are there in Z, ?

p28.



e Euler's totient function:
o(N) =7

=|{a: 1<a<N and ged(a,N) =1}]

e Theorem:

1. p(p®)=(p-1)p°* forprimep
2. o(ab) = p(a) p(b) if ged(a,b) =1

p29.



Let G be a (multiplicative) finite group.
The order of G Is defined as ord(G) = G\.

The order of a € G, written ord(a), is the smallest
positive integer k such that a“ =e. (e, identity element.)

Lagrange's theorem: For any element a € G, ord(a) | ord(G).

ord(G)

Corollary: For any elementaeG, a™©® =a° =e.

m mod (G|

Corollary: ForanyelementaeG, a™ =a

p30.



e Fermat's little theorem:
. - (P) _ aP-1_1in 7"
If aeZ, (paprime),thena”"” =a*~=1inZ.

e Euler's theorem:
If aeZ, (foranyN >1),thena’™ =1inZ,.

e Corollary:
If acZ, (foranyN >1), thena™ =a"™ ™™ inZ.

p31.



Example: N =15

7 = {1,2,4,7,8,11, 13, 14}

ZlS

=(15) = p3)xp(5) =2x4 =38

aeZ,.. 1 2 4 7 8 11 13 14

ord(a): 1 4 2 4 4 2 4 2

a’®™ =3° =1

816243240481
13 =7?

p32.



The Chinese Remainder Problem

« A problem described in an ancient Chinese arithmetic book by
Sun Tze (around 300AD, the author of The Art of War).

* Problem: We have a number of objects, but we do not know
exactly how many. If we count them by threes we have two
left over. If we count them by fives we have three left over. If
we count them by sevens we have two left over. How many
objects are there?

- Mathematically, If x=2mod3, x=3mod5, x=2mod7,
what Is X?

p33.



Chinese remainder theorem

If integers n,,...,Nn, are pairwise coprime,
then the system of congruences

(x=a, modn, lla, eZ, Il
X =4a, modn, lla,eZ, Il
<
X =4a, modn, la, eZ, Il

has a unique solution modulo N =nn,...n, :
K
x=> aN,y,modN
=1

where N, = N/n. and y, = N, " modn, (A formula by Gauss)

p34.



Example: Chinese remainder theorem

Suppose
Xx=1 mod 3
X=6 mod 7
x=8 mod 10
By the Chinese remainer theorem, the solution is:

X=(1x70x (707 mod3) +6x30x (30 mod 7) +8x 21 x (21" mod10) ) mod 210

(1x70x (17 mod3) + 6 x 30 x (27 mod 7) + 8 x 21x (1™ mod10) ) mod 210

(1><70><1+6><30><4+8><21><1) mod 210
=958 mod 210
=118 mod 210

p35.



Chinese remainder theorem

Let N =nn,...n , wheren,...,n_are pairwise coprime.
There Is a one-to-one correspondence

Ly <> Ly x Ly X - X Ly
X «—> (xmodn, xmodn,, ..., xmodn,)
Then,

e Denote the mapping v :Z — Z, x Z, x - x Z

e w(X-y)=w(X) w(y).
o w(X+y)=w(x)+w(y).

p36.



o Computations in Z,, can be done by performing
corresponding computationsinZ, , Z, , ..., Z
then solve the CRP.

n, !

and

. ;a < (a, .. a)
b < (b, ...b)
then
atbh <o (azxh, ..., a xh)
axb o (axb, ..., a xb)
a+b o (a+b, ...a +h) ifbeZ
T T T

mod N mod n, mod n,

p37.



Example: Chinese remainder theorem
0 Ly > Lyx Ly (Zys <> Ly x L)

8 <> (8mod3, 8mod5)=(2,3)

114> (11mod3, 11mod5)=(2,1)
e Suppose we want to compute 8 x11 mod15.

e 8x11modl5«> (2x2mod3, 3x1mod5)=(1,3).
X <> (1,3) (which number x e Z,. corresponds to (1,3)?)

X =1mod3
e Solve = Xx=13
X =3mod5

p38.



Algorithms
ged(a,b)  /<a,b< N/

a‘modN
a“ mod N

Running time: O(Iog3 N ) = O(HNHS)

p39.



Euclidean Algorithm

Comment: compute gcd(a,b), wherea >b >1.

I, =a

L =D

fori =1 2, ...untilr,_,=0
L. =Tr_ modr

return (r,)
Running time:
- O(loga) iterations; O(log” a) time for each mod.
. Overall running time: O(log® a)

p40.



Extended Euclidean Algorithm

Given a > b >0, compute X, y such that gcd(a,b) = ax+ by.
Example: gcd(299, 221) =7

299 =1x221+78

221=2x78+65
78=1x65+13
65=5-13+0

gcd(229,221) =13=78-65
=78—(221-2x78)=3-78—-221
=3x(299-1.221)-221
=3x299-4x221

p4l.



How to compute a*mod N

e Thatis, foraeZ,, computea™ inZ,.

e a ' exists if and only if gcd(a, N) =1.

e Use the extended Euclidean algorithm to find x, y
such that ax+ Ny =1.

e Then, inZ,, we have

[a]-x]+[NJ-[y]=[1]

= [a{x]=[1

= [a]*=[x



Example

e Compute 15 mod47.
47=15x3+2 (divide 47 by 15; remainder = 2)
15=2x7+1 (divide 15 by 2; remainder =1)

1=15-2x7 (mod47)
=15—-(47-15x3)x7 (mod47)
=15%x22—-47x7 (mod47)
=15x%x22 (mod47)

157 mod47 =22
Thatis, 15=22inZ,,

p43.



Algorithm: Square-and-Multiply(x, ¢, N)

Comment: compute x°mod N, wherec=c,C_,...C, in binary.
Z<1
for 1<k downto O do
Z < z° mod N
If ¢ =1 _
e,z (zxx") mod N
then z <« (zxx) mod N

return (z)

Ci

Note: At the end of iteration i, z = x*"".

p44.



Example: 11”° mod187
23=10111,

Z<1

Z<« z°-11mod 187 =11 (square and multiply)
Zz < z°mod 187 =121  (square)

Z < z°-11 mod 187 =44 (square and multiply)
Z < z°-11 mod 187 =165 (square and multiply)

Z <« z°-11 mod 187 =88 (square and multiply)

p45.



RSA Encryption

p46.



The RSA Cryptosystem

By Rivest, Shamir & Adleman of MIT in 1977.
Best known and most widely used public-key scheme.
Based on the assumed one-way property of modular
powering:
f:x—>x" modN (easy)
f*:x*>x modN  (hard)

Related to the hardness of integer factorization.

p47.



ldea behind RSA

It works in group Z |, .

Encryption (easy): X—2 5 X

e

RSA! e

Decryption (hard): X € X

Looking for a trapdoor: (x®)° = x.
If d Is a number such that ed =1mod (N ), then
ed =kep(N)+1 for some k, and thus in the group Z,

K
(X°)" = X% = Pkt (xo0) 1 x = x

p48.



RSA encryption scheme

Key generation:
(a) Choose two large primes p and ¢, and let N := pq.

(|p|. |a| determined by the security parameter.)

(b) Choose e, 1<e<@(N), coprime to ¢(N), and
compute d :==e " mod ¢(N). (ed =1 modp(N).)

(c) Public key: pk =(N,e). Secret key: sk =(N,d).

Encryption: Enc, (x):=x°*mod N, where x e Z,.

Decryption: Dec, (y):=y‘modN, whereyeZ,,. ﬁ

p49.



Why RSA Works?

The setting of RSA is the group (Z}, +):

*

+ Ingroup (Zy, ), for any x e Z},, we have x"™) =1

and, thus, x™ = x™ med #(N)

« We have chosen e, d such thated =1 mod ¢(N),
so, ed mod@(N) =1.

* d
« ForxeZy, (x°) =x* = xHmaet = xt = x,

p5S0.



What if xeZ \Z’, ?
RSA still works, but not secure.
xeZ, = gcd(x,N)#1 = p|xorq|x.

Sayp|xandx=0 (itistrivial if x=0). Then,

=0 =
{x mod p d ) 0 mod p
X=X mod( x* = x modg

(The last " =" holds -.-ed =1mod@(N) = ed =1mod ¢(q).)
Both x and x** are a solution of the system, so by CRT

x** =x modN = x* modN = x = Dec(Enc(x))= x.
p51.



RSA Example: Key Setup

Select two primes: p=17, q=11.

Compute the modulus N = pq =187.

Compute o(N) =(p-1)(g-1) =160.

Select e between 0 and 160 such that gcd(e,160) =1.
Saye=".

Compute d =e*mod ¢(N)=7"mod160 =23
(using extended Euclid's algorithm).

Public key: pk =(e, N)=(7, 187).

Secret key: sk =(d, N)=(23, 187).

p52.



RSA Example: Encryption & Decryption

Suppose m =38.

Encryption: ¢=m°®modN =88" mod187 =11.
Decryption: m=c® mod N =11° mod187 = 88.
When computing 11*° mod187, we do not first

compute 11* and then reduce it modulo 187.

Rather, use square-and-multiply, and reduce intermediate
results modulo 187 whenever they get bigger than 187.

p53.



Encryption Key e

To speed up encryption, small values are usually
used for e.

Popular choices include 3, 17 =2* +1, 65537 = 2"° +1.
These values have only two 1's in their binary
representation.

There Is an interesting attack on small e.

p54.



Decryption Key d

One may be tempted to use a small d to speed up
decryption.

Unfortunately, that is risky.

Nl/4
Wiener's attack: If d <

and p<q<2p,

then the decryption exponent d can be computed
from (N, e). —>
CRT can be used to speed up decryption.

p55.



Speeding up Decryption by CRT

Decryption: ¢ mod N (i.e., compute ¢ in Z,)
Time: ON[). [N =|log, N |+1
Instead of computing c® mod N directly, we compute
e C,’=Cmod p, and ¢, :=c mod(
- m, =¢ ™" mod p, and m, =¢,"™*Ymodq

_ _ {x =m, mod p
« recover the plaintext by solving

X=m, mod(

Time: about 1/4 of the direct computation.
If N = p,p,...p,, this strategy will speed up even more.

p56.



Attacks on RSA



Attacks on RSA

Five categories of attacks on RSA:

» brute-force key search

(infeasible given the large key space)
mathematical attacks

miscellaneous attacks

timing attacks

chosen ciphertext attacks

p58.



Mathematical Attacks

Factor N into pg. Then ¢(N)=(p-1)(q-1) and
d =e*mode(N) can be calculated easily.

Determine @(N) directly. Equivalent to factoring N.
Knowing ¢(N) will enable us to factor N by solving
JN=pa

p(N)=(p-1)(q-1)

Determine d directly. If d 1s known, N can be factored
with high probability. —

p59.



Integer Factorization
A difficult problem.
More and more efficient algorithms have been developed.

In 1977, RSA challenged researchers to decode a

ciphertext encrypted with a key (N) of 129 digits (428 bits).
Prize: $100. RSA thought it would take quadrillion years
to break the code using fastest algorithms and computers

of that time. Solved in 1994.

In 1991, RSA put forward more challenges, with prizes,
to encourage research on factorization.

p60.



RSA Numbers

Each RSA number is a semiprime. (A number is
semiprime if it is the product of two primes.)
There are two labeling schemes.
o by the number of decimal digits:

RSA-100, ..., RSA-500, RSA-617.
« by the number of bits:

RSA-576, 640, 704, 768, 896, 1024, 1536, 2048.

p61.



RSA Numbers which have been factored
RSA-100 (332 bits), 1991, 7 MIPS-year, Quadratic Sieve.
RSA-110 (365 bits), 1992, 75 MIPS-year, QS.
RSA-120 (398 bits), 1993, 830 MIPS-year, QS.
RSA-129 (428 bits), 1994, 5000 MIPS-year, QS.
RSA-130 (431 bits), 1996, 1000 MIPS-year, GNFS.
RSA-140 (465 bits), 1999, 2000 MIPS-year, GNFS.
RSA-155 (512 bits), 1999, 8000 MIPS-year, GNFS.
RSA-160 (530 bits), 2003, Lattice Sieve.

RSA-576 (174 digits), 2003, Lattice Sieve.
RSA-640 (193 digits), 2005, Lattice Sieve.
RSA-200 (663 bits), 2005, Lattice Sieve.

p62.



RSA-200 =
27,997,833,911,221,327,870,829,467,638,
722,601,621,070,446,786,955,428,537,560,
009,929,326,128,400,107,609,345,671,052,
955,360,856,061,822,351,910,951,365, 788,
637,105,954,482,006,576,775,098,580,557,
613,579,098,734,950,144,178,863,178,946,
295,187,237,869,221,823,983.

p63.



Remarks

In light of current factorization technologies,
RSA recommends ||N | =1024 to 2048 bits.

If a message me Z \Z,,

« RSA works, but
 Since gcd(m, N) >1, the sender can factor N.

. Since gcd(m®, N) >1, the adversary can factor N, too.

Question: how likelyis meZ \Z?

p64.



Miscellaneous attacks against RSA

e Common modulus:

o If two users use the same modulus N and their
encryption exponents e, and e, are coprime, then

a message m sent to them, encrypted as ¢, := m®* mod N
and ¢, :=m™ mod N, is not protected by RSA.

- For e, e, coprime

= re, +se, =1forsomer, s

re, +se,

= m=m =m™"™2 modN =c,'c,” mod N.

p65.



Another problem with common moco

ulus:

« Owners of keys (N,e,d) usually do not

high probability of success.

<now N = pq.

But, actually, given (N,e,d), one can factor N with

Thus, If two RSA users share the same N, they can

figure out each other's secret key (d value).

So, do not use a common N.

Also, If your d 1s compromised, do not just

change e and d. You should also change N.

p66.



e If d is known, we can factor N: (may skip)

« X* =1modN has four solutions:

+1, +a for some a = £1. ﬁ
- Ifa®*=1modN and a = +1
— a’—-1=0modN
— Nl|(a+D(a-1
— gcd(n,a £1) yield the factors of N.

« Factor N by looking for a nontrivial square root of 1
mod N (i.e., an a = %1 such that a> =1mod N).

p67.



ForallweZ,, w** =1 modN.

Write ed —1=r2°, where r is odd. (So, w? =1modN)
PickanyweZ,. (WhatifweZ \Z}?)

Compute w", w2, w2 w2, ... w2, w?,. .., w?

until we find the first w'? =1mod N for some t.

Ift=0, leta=w? modN. Then a?=1modN, and a =1.

If a= N —1, then a is a nontrivial square root of 1 mod N.

Otherwise (i.e.,t=0o0ra =N —1), try another w.

p68.



e | ow encryption exponent attack

A message m sent to e users who employ the same
encryption exponent e Is not protected by RSA.
Say, e = 3, and Bob sends a message m to three
recipients encrypted as:

¢, =m°modn,, ¢, =m°modn,, ¢, =m’modn,.

Eve intercepts the three ciphertexts, and recovers m:

» m’=c, modn, m’°=c,modn,, m°=c, modn,.
3 _
- By CRT, m”=c modn,n,n, for some ¢ < nn,n,.

. Also, m* <nn,n,. So,m*=c, and m=3/c.

p69.



e Wiener's low decryption exponent attack:

Recall RSA decryption: m:=c® mod N.
One may be tempted to use a small d to speed up
decryption. Unfortunately, that may be risky.

The decryption exponent d may be computed from
(N,e) if d <N"*/3 and p<qg<2p.

(Before Wiener's attack, the condition p<q<2p
usually held because p, q were usually chosen to
have the same number of bits.)

p70.



« Continued fraction:

1
q1+ 1 :[ql’qzi""qm]

G, + i
q3_|_..._|__
G

- Any (positive) rational numbera/b can be expressed
as a continued fraction, called its continued fraction

expansion.

° Convergents of [ql’qZ""’qm]: [ql]’ [ql’qZ]’ [ql’qZ’qB]!
[0,,0,,---.0..]- (This sequence converges to [q,,d,,---,q,,].)

p71l.



1
1
1

1O+1
3

-10,2,1,10,3]

- Example: 3—4=O+
99

2+
1+

 Obtained from Euclidean algorithm:
34=0x99+34, 99=2%x34+31 34=1x31+3,
31=10x3+1, 3=3x1

- Convergents of [0,2,1,10, 3]
[0], [O,2], [O,2,1], [O,2,1,10], [O,2,1,10,3]

p72.



a C 1

Theorem. If < ~whereqgcd(c,d) =1,
d| 2d? ged(e,d)

then ¢/d equals one of the convergents of the
continued fraction expansion of a/b.

For RSA, ed =tp(N)+1 for somet. So, PUR N t.
N o(N) d
If d<N"/3andp<q<2p, then 1 P
N d| 2d?

So, t/d equals one of the convergents of ¢/N. Check
the convergents one by one to find the right one.

p73.



e Small message space attack:

o If the message space is small. The adversary can
encrypt all messages and compare them with the
Intercepted ciphertext.

« This attack Is not specific to RSA.

p74.



Timing Attacks

Paul Kocher in mid-1990’s demonstrated that a snooper
can determine a private key by keeping track of how
long a computer takes to decrypt messages.

RSA decryption: ¢ mod N.

Countermeasures:

« Use constant decryption time

 Add a random delay to decryption time

- Blinding: modify the ciphertext ¢ to ¢’ and compute

(c’)OI mod N.

p75.



Blinding in Some of RSA Products

RSA encryption has a homomorphism property:
RSA(M-r) =RSA(mM) - RSA(r).

To decrypt a ciphertext ¢, = RSA(m):

- Generate a random message r.

Encrypt r as ¢, = RSA(r).

Multiply the two ciphertexts: ¢c=c_c, = RSA(mr).

Decrypting c yields a value equal to mr.

Multiplying that value by r™ yields m.

Note: all calculations are done in Z , (i.e., modulo N).

p76.



A chosen-ciphertext attack

Based on RSA's homomorphism property:
RSA(m-r) =RSA(m) - RSA(r)

Assume Eve has acess to a decryption oracle.

The attack:

 Givenc  :=RSA(m), Eve wants to know m =?

. She computes ¢, := RSA(r) for an arbitrary r e Z,

« Now, presentingc, . =RSA(m-r)=c_c,
to the Oracle, Eve obtains m-r, from which she
can compute m=(m-r)-r—.

p7i.



Padded RSA



Security of RSA

We have seen many attacks on RSA.
Also, RSA is deterministic and, therefore, not CPA-secure.

We wish to make RSA secure against CPA and
aforementioned attacks.

The RSA we have described so far is called:
« RSA primitive, plain RSA, or textbook RSA

p79.



Padded RSA
Encryption: E, (m)=RSA(r|m)=(r|lm)"modN,
where r is a random string.
Thus, Padded-RSA(m) = RSA(r || m) for some random r.
Secure against many of aforementioned attacks.

Theorem (informal): Under some assumption, Padded RSA
is CPA-secure if [m|=0(logn), where n=||N|.

Padded RSA was adopted in PKCS #1 v.1.5.

p80.



Padded RSA as iIn PKCS #1 v.1.5

PKCS: Public Key Cryptography Standard.

Let (N,e,d) give a pair of RSA keys.

Let k =|N|| be the length of N in bytes (e.g., k = 216).
To encrypt a message m:

« pad msothatm =00(02(r||00||m (k bytes)

« where r =8 or more random bytes = 00.

« original message m must be <k —11 bytes.

- the ciphertext is ¢ := RSA(m’) =(m’) mod N.
In 1998, Bleichenbacher published a chosen-ciphertext
attack on this padded RSA.

p81.



Bleichenbacher's chosen-ciphertext attack

A (padded) message is called PKCS conforming If it has
the specified format:

00 || 02 || padding string || 00 || original message.
PKCS #1 implementations usually send you (sender)
an error message if RSA™(c) is not PKCS conforming.
It is just like you have an Oracle which, given c, answers

whether or not RSA™(c) is PKCS conforming.
Bleichenbacher's attack takes advange of such an Oracle.

p82.



Given ¢ = RSA(m), Eve tries to find m.
(Assume m is PKCS conforming.)
How can the Oracle help?

« Recall that RSA is homomorphic:
RSA(M-s) = RSA(m)-RSA(s) (computed inZ)

. Given RSA(m), Eve can compute RSA(m-s) for many s e Z,.
« She then asks the Oracle,

Is ms e Z,, PKCS conforming?

(That is, Is msmod N PKCS conforming?)
Why is this information useful?

p83.



Recall PKCS format (k bytes):
00| 02 || padding string || 00 || original message.

Let B=00]| 01| (00)* (hexadecimal) = 2°*~? (binary)
Then 2B =001|02]|(00)“* and 3B =00]| 03| (00)**
If m i1s PKCS conforming = 2B <m<3B.

If msmod N is also PKCS conforming
= 2B<msmodN < 3B

= 2B+tN <ms<3B+tN for somet
= (2B+tN)/s<m<(3B+tN)/s

p84.



If m is PKCS conforming = m is in the blue area.
If msmod N 1s also PKCS conforming

= msmod N 1is in the blue area

= ms IS In the red areas

= m IS In the red lines.

Thus, m iIs In the red lines of the blue area.

N 2N 3N 4N

SN

p85.



Let's focus on the blue area, (2B, 3B).

If m is PKCS conforming = m is in the blue area.
If msmod N is also PKCS conforming

= m Is In red areas/lines

If ms"mod N is also PKCS conforming

= m Is In purple areas/lines

So, m e blue~red mpurple

3B

A | | |

p86.



So, starting with the fact that m is PKCS conforming,
Eve finds a sequence of integers s, S,, S;, ... such that
2s. , <s. and
ms. mod N is PKCS conforming.
To find s;, randomly choose an s> 2s. ., and ask the oracle
whether msmod N iIs PKCS conforming. If not, then
try a different s.
This way, Eve can repeatedly narrow down the area
containing m and eventually find m.
For N having 1024 bits, it takes roughly 1 million accesses
to the oracle in order to find s, s,, S,, ...

p87.



CCA-Secure RSA In the
Random Oracle Model

p88.



Protecting Every Bit

e There are CCAs that only require the oracle to reveal
partial information about the plaintext such as:
— whether the plaintext is PKCS conforming
— whether the plaintext is even or odd
— whether the plaintext x  Z, is in the first half or the
second half of Z, (i.e., x<N/2o0rx>N/27?)

e It is desired to protect every bit (or any partial information)
of the plaintext.

p89.



OAEP: basic i1dea

e Message padding: not simply m||r or r || m,
butm@®r|| r, where r is a random string.

e As such, however, there is a 50% overhead.
So, we wish to use a shorter bit string r.

e Besides, r should be protected, too.

e This leads to a scheme called Optimal Asymmetric
Encryption Padding (OAEP). It can be applied
to RSA and other trapdoor functions.

p90.



OAEP

e Choose k, | (k<) s.t.k+1=|N|] (N, RSA modulus).
e G:{0,1} - {0,1}, a pseudorandom generator.
e h:{0,1}' - {0,1}*, a hash function.

e Encryption. To encrypt a block m of | bits:

1. choose a random bit string r € {0,1}".
2.encodemas Xx:=m®G(r)||r®h(m®G(r))

(If x ¢ Z,,, the message space of RSA, return to step 1).
3. compute the ciphertexty := Enc , (X).

e Decryption: x:=Decy,(y)=allb. m=a®G(b®h(a)).

p91.



Remarks on OAEP

e OAEP is adopted in current version of RSA PKCS #1 (v. 2.1).
e Itisa padding/encoding scheme.

o Intuitively, with OAEP, the ciphertext would not reveal any
Information about the plaintext if RSA is one-way and
h and G are truely random (random oracles).
e A slightly more complicated version of OAEP, in which
x =(m0“ ®@G(r)| r®h(m0* @&G(r))),
has been proved CCA-secure in the random oracle model
(1.e., If G, h are random oracles.)

In practice, hash functions such as SHA-1 are used for G, h.

p92.



Generating large primes

To set up an RSA cryptosystem,

we need two large primes p and g.

p93.



How many prime numbers are there?
Infinitely many.

First proved by Euclid:

e Assume only a finite number of primes p,, p,, ..., P,

e LetM = pp,...p, +1.

M isnotaprime, because M = p., 1<i<n.

e S0, M Is composite and has a prime factor p. for some |
= p,|M = p. |1 =<« contradiction.

p94.



Distribution of Prime Numbers

The Prime Number Theorem:
Let #(x) denote the number of primes < X. Then

w(x) = —— for large x.
In x

Bertrand's Theorem: For any n >1, the fraction of n-bit integers
that are prime is at least 1/3n.

p95.



How to generate a large prime number?
Generate a random odd number N of desired length.
Test if N Is prime.

If not, discard it and try a different number.

Q: How many numbers are expected to be tested before
a prime is found?

p96.



Primality test: Is N a prime?

Can it be solved in polynomial time?
A long standing open problem until 2002.

AKS(Agrawal, Kayal, Saxena): O((Iog N)mg).

- Later improved by others to O((Iog N )10'5), and then

to O((Iog N)W).
In practice, Miller-Rabin's probabilistic algorithm is still

the most popular --- much faster, O((Iog N )3)

p97.



Miller-Rabin primality test: Is N a prime?

Looking for a characteristic property of prime numbers:
« N iIsprime < what?

+ N isprime < VaeZ,, P(a)=true

« N isprime = VaeZ,, P(a)=true

N not prime = 3 >k elementsaeZ,, P(a) = false

Algorithm: Check P(a) for t random elementsaeZ,.
If P(a) is true for all of them then return prime

else return composite.
A "prime" answer may be incorrect with probability

<(1-k/p(N))"

p98.



P(a) =true

If N is prime, then for allaeZ, P(a) is true.

p99.



P(a) =true

If N is not prime, then there are elements ae Z |,
called strong witnesses, s.t. P(a) = false.

p100.



Looking for P(a):
+ How about P(a) =| a" ™ =1 mod N |?

« Fermat's little theorem:
If N is prime = VaeZ,, a" =1 modN.

. If N is not prime = possible that VaeZ,, a"* =1 mod N.

(Carmichael numbers: composite numbers N for which
a"t=1modN VaeZ,.)

. Need to strengthen the condition a"* =1 mod N.

pl101.



Fact: If N = 2 Is prime, then 1 has exactly two square
roots in Z,, namely +1. ﬁ
Write N —1=u2", where u is odd.
If N Is prime

= VaeZ,, a"? =1 mod N (Fermat's little theorem)

= VaeZ,, P(a)=true, where

b(a) {a“ izl mod N or
a'> =—1 mod N for somei, 0<i<k-1

Why? Consider the sequence

2 k-1 k
au, auz’ auz R auz ’ au2 1

pl102.



Example: N =41

e N-1=40=2°-5=2"u. (k=3, u=5)

e Fora=2, (a°, a“, a*, a*)=(32, -1 1, 1) mod41
P(2) =true.

e ForeveryaeZ,, P(a) is true.

Example: N =25

e N-1=24=2°.3=2"u. (k=3, u=3)

e Fora=2, a" =2°=8 mod25
(a®, a°, a” a**)=(8, 14, 21, 16) mod 25
P(2) = false.

pl103.



If N not prime = strong witnesses always exist ?

Loosely speaking, yes:
- If N Is an odd composite and not a prime power, then

at least one half of the elements a € Z, are strong
witnesses.
 For such an N, we may check P(a) for t random elements

aeZ,. IfP(a)istrue for all of them then return prime
else return composite.

. A "prime" answer may be incorrect with probability <2

pl04.



A composite number N is a prime power if N = p® for
some prime p and integer e > 2. (It is a perfect power if
N =k*® for some integer k and e >2.)

Theorem: If N iIs an odd composite and not a prime power,

then at least one half of the elements a € Z, are strong
witnesses that N 1s not prime.

Idea of Proof. The set B of all non-strong witnesses
forms a proper subgroup of Z|,. So, ord(B) < ord(Z ) and

ord(B) |ord(Z,). So, ord(B) < %ord(Z*N ).

p105.



Algorithm: Miller-Rabin primality test
o Input: integer N > 2 and parameter t
 Output: a decision as to whether N Is prime or composite
1. iIf N Is even, return "composite"
2. 1f N Is a perfect power, return "composite"
3. fori:=1tot do
choose a random integer a € Z
If gcd(a, N) =1, return "composite"
If a IS a strong witness, return "composite"
4. return ("prime")

p106.



Analysis: Miller-Rabin primality test
If the algorithm answers "composite", it is always correct.

If the algorithm answers "prime", it may be incorrect with
probability at most 2.

Actually, at most 47, by a more sophisticated analysis.

p107.



Monte Carlo algorithms

A Monte Carlo algorithm is a probabilistic algorithm
- which always gives an answer
« but sometimes the answer may be incorrect.

A Monte Carlo algorithm for a decision problem is yes-biased
If its “yes” answer Is always correct but a “no” answer may
be incorrect with some error probability.

A t-iteration Miller-Rabin is a “composite”-biased Monte Carlo
algorithm with error probability at most 1/ 4',

p108.



Las Vegas algorithms

A Las Vegas algorithm is a probabilistic algorithm
 which may sometimes fail to give an answer
« but never gives an incorrect one

A Las Vegas algorithm can be converted into a
Monte Carlo algorithm.

p109.



	Public-Key Encryption
	Public-Key Encryption
	Slide Number 3
	Why Public-Key Cryptography?
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Modular Arithmetic
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	The Chinese Remainder Problem
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Algorithms
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	RSA Encryption
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Attacks on RSA
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Padded RSA
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	CCA-Secure RSA in the  Random Oracle Model
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Generating large primes
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109

