Cryptographic Hash Functions

Reading: Chapter 5 of Katz \& Lindell

Hash function

- A function mapping from a larger domain to a smaller range (thus not injective).
- Applications:
- Fast lookup (hash tables)
- Error detection/correction
- Cryptography: cryptographic hash functions
- Others
- Different applications require different properties of hash functions.

Cryptographic hash function (Informal)

- Hash functions: $h: X \rightarrow Y,|X|>|Y|$.
- E.g., $h:\{0,1\}^{*} \rightarrow\{0,1\}^{n}, h:\{0,1\}^{*} \rightarrow Z_{n}$, $h:\{0,1\}^{k} \rightarrow\{0,1\}^{l}$, with $k>l$.
- In the last case, h is also called a compression function.
- For cryptographic applications, $h(m)$ is intended to be a fingerprint or digest of m.
- A classical application is to store (username, password) as (username, h (password)) to protect the secrecy of passwords.
- For this application, what property is required of h ?

Security requirements (Informal)

- Pre-image: if $h(m)=y, m$ is a pre-image of y.
- Each hash value typically has multiple pre-images.
- Collision: a pair $\left(m, m^{\prime}\right), m \neq m^{\prime}$, s.t. $h(m)=h\left(m^{\prime}\right)$.
- (Informal) A hash function h is said to be:
- Pre-image resistant: given a hash value y, it is computationally infeasible to find a pre-image of y.
- Second pre-image resistant: given a message m, it is infeasible to find a second pre-image of $y=h(m)$.
- Collision resistant: if it is infeasible to find a collision.
- Loosely speaking,

Collision resistant \Rightarrow Second pre-image resistant
 \Rightarrow Pre-image resistant

- For cryptographic applications, a hash function is required to be collision resistant.

Hard to define collision-resistant hash functions

- In practice, a fixed hash function h is used.
- However, there is a technical difficulty in defining collision-resistance for a fixed hash function h.
- Try this "definition": A hash function $h:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ is collision-resistant if for every polynomial-time algorithm A, $\operatorname{Pr}\left[A^{h(\cdot)}\left(1^{n}\right)\right.$ successfully produces a collision for $\left.h\right] \leq \operatorname{negl}(n)$.
- Problems with this definition:
- For any $x, x^{\prime} \in\{0,1\}^{*}, x \neq x^{\prime}$, let $A_{x, x^{\prime}}$ denote the algorithm that simply prints x, x^{\prime}.
- For any h, \exists an algorithm that outputs a collision with prob 1. Thus, no hash function would be collision resistant.

Hash function (formal definition)

- A hash function (with output length $l(n)$) is a pair of PPT algorithms (Gen, H) :
- $\operatorname{Gen}\left(1^{n}\right)$ outputs a key $s \in I_{n}$ for some index set I_{n}. (Assume that 1^{n} is implicit in s.)
- H takes as input a key s and a string $x \in\{0,1\}^{*}$ and outputs a string $H^{s}(x) \in\{0,1\}^{l(n)}$.
- If H^{s} is defined only for $x \in\{0,1\}^{l^{\prime}(n)}$, where $l^{\prime}(n)>l(n)$, then $(G e n, H)$ is a fixed-length hash function (also called a compression function) for input of length $l^{\prime}(n)$.

Remarks

- H is a keyed function with two inputs, and $H^{s}(x)=H(s, x)$.
- The key s is not necessarily a uniform string in $\{0,1\}^{n}$, and is not a secret; it is more like an index than a key.

To emphasis this, we write H^{s} instead of H_{s}.

- For convenience, we often also refer to H^{s} as a hash function.
- An example compression function H : (may skip)

$$
\begin{aligned}
& H^{(p, q, g, h)}(x, y)=g^{x} h^{y} \bmod p, \quad(x, y) \in Z_{q} \times Z_{q}, \text { where } \\
& I_{n}=\left\{\begin{array}{c}
(p, q, g, h): p, q \text { primes, } p=2 q+1,|q|=n \\
g, h \text { generators of } Z_{q}^{*}
\end{array}\right\}
\end{aligned}
$$

Collision-resistant hash function

- Let $\Pi=(G e n, H)$ be a hash function.
- Collision-finding experiment Hash-coll ${ }_{A, \Pi}(n)$:
- A key is generated, $s \leftarrow \operatorname{Gen}\left(1^{n}\right)$.
- The adversary A is given s and outputs $x, x^{\prime} \in\{0,1\}^{*}$ (or $x, x^{\prime} \in\{0,1\}^{\}^{\prime}(n)}$ if Π is fixed-length).
- The output of the experiment is 1 if and only if $x \neq x^{\prime}$ and $H^{s}(x)=H^{s}\left(x^{\prime}\right) . \quad / / A$ finds a collision//
- Definition: A hash function $\Pi=(G e n, H)$ is collision-resistant if for all PPT adversaries A, there is a $n e g l(n)$ such that

$$
\operatorname{Pr}\left[\operatorname{Hash}-\operatorname{coll}_{A, \Pi}(n)=1\right] \leq n e g l(n)
$$

Remarks

- $\operatorname{Pr}\left[\operatorname{Hash}-\operatorname{coll}_{A, \Pi}(n)=1\right]$
$=\operatorname{Pr}\left[A\right.$ finds a collision for $\left.H^{s}: s \leftarrow \operatorname{Gen}\left(1^{n}\right)\right]$
$=\sum_{s \in I_{n}} \operatorname{Pr}[s] \cdot \operatorname{Pr}\left[A\right.$ finds a collision for $\left.H^{s}\right]$
$=$ the probability that A finds a collision for a randomly picked hash function H^{s}.
- For different H^{s}, A may succeed with different probabilities.

How to construct a collision-resistant

 hash function$$
H^{s}:\{0,1\}^{*} \rightarrow\{0,1\}^{n} ?
$$

- Provably collision-resistant hash functions can be constructed from claw-free pairs of one-way permutations. (Section 10.2 of Delfs \& Knebl)
- In practice, hash functions are constructed from compression functions

$$
h^{s}:\{0,1\}^{n+r} \rightarrow\{0,1\}^{n}
$$

by a process called Merkle-Damgard's construction.

Merkle-Damgard construction

Construct a hash function $H^{s}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ from a compression function $h^{s}:\{0,1\}^{n+r} \rightarrow\{0,1\}^{n} . \quad / / r=r(n) / /$

1. For $m \in\{0,1\}^{*}$ of length less than 2^{r}, add a padding so that the length of the result is a multiple of r.

- padding $=10 \ldots 0|m|$, where $|m|$ is the original length of m.

2. Let padded $m=m_{1} m_{2} \ldots m_{q}$, where $\left|m_{i}\right|=r$.
3. Let $z_{0}=0^{n}$ and $z_{i}=h^{s}\left(z_{i-1} \| m_{i}\right)$ for $1 \leq i \leq q . \quad / / z_{0}$ is the IV //
4. The hash value is $H^{s}(m)=z_{q}$.

Theorem: If (Gen, h) is collision resistant, then so is (Gen, H).
Proof. We will show that if H is not collision resistant, then h is not collision resistant. Specifically, whenever the adversary can find a collision (m, m^{\prime}) for H^{s}, then it can find a collision for h^{s}.
Consider two cases:

- $|m| \neq\left|m^{\prime}\right|$. In this case, $m_{q} \neq m_{q^{\prime}}$, and so $\left(m_{q}, z_{q-1}\right) \neq\left(m_{q^{\prime}}^{\prime}, z_{q^{\prime}-1}^{\prime}\right)$. But $h^{s}\left(m_{q}, z_{q-1}\right)=H^{s}(m)=H^{s}\left(m^{\prime}\right)=h^{s}\left(m_{q^{\prime}}^{\prime}, z_{q^{\prime}-1}^{\prime}\right)$, a collision for h^{s}.
- $|m|=\left|m^{\prime}\right|$. In this case, $q=q^{\prime}$. Since $H^{s}(m)=H^{s}\left(m^{\prime}\right)$, there exists an i such that $\left(m_{i}, z_{i-1}\right) \neq\left(m_{i}^{\prime}, z_{i-1}^{\prime}\right)$ but $h^{s}\left(m_{i}, z_{i-1}\right)=h^{s}\left(m_{i}^{\prime}, z_{i-1}^{\prime}\right)$, which is a collision for h^{s}.
padded m :
padded m^{\prime} :

If the adversary can find a collision $\left(m, m^{\prime}\right)$ for H^{s}, then it can find a collision for h^{s}.

- We have shown that for every key s, Whenever A can find a collision for H^{s}, it can find a collision for h^{s}.
- So, for every key s,
$\operatorname{Pr}\left[A\right.$ finds a collision for $\left.h^{s}\right] \geq \operatorname{Pr}\left[A\right.$ finds a collision for $\left.H^{s}\right]$
- So,
$\operatorname{Pr}\left[A\right.$ finds a collision for $\left.h^{s}: s \leftarrow \operatorname{Gen}\left(1^{n}\right)\right]$

$$
\geq \quad \operatorname{Pr}\left[A \text { finds a collision for } H^{s}: s \leftarrow \operatorname{Gen}\left(1^{n}\right)\right]
$$

How large should ℓ be?

$$
H^{s}:\{0,1\}^{*} \rightarrow\{0,1\}^{\ell}
$$

- Minimum requirement: ℓ must be large enough for H^{s} to resist the birthday attack.
- Birthday attack: randomly generate a set of messages
$\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}$, and check if $H^{s}\left(m_{i}\right)=H^{s}\left(m_{j}\right)$ for some $i \neq j$.
- Why is it called a birthday attack?
- Birthday problem: In a group of k people, what is the probability that at least two of them have a same birthday?
- Having a same birthday $=$ a collision.

Birthday attack's success rate

- If k objects are each assigned a random value in $\{1,2, \ldots, N\}$, the probability of a collision is

$$
\begin{aligned}
p & \left.=1-1 \cdot \frac{N-1}{N} \cdot \frac{N-2}{N} \cdots \cdot \frac{N-k+1}{N} \quad \text { (i.e., } 1-\operatorname{Pr}[\text { no collision }]\right) \\
& =1-\prod_{i=1}^{k-1}\left(1-\frac{i}{N}\right) \quad\left(\text { note: } 1-x \leq e^{-x} \text { if } 0<x<1\right) \\
& \geq 1-\prod_{i=1}^{k-1} e^{-i / N}=1-e^{-\sum_{\mid \leq \leq s-1}{ }^{i / N}}=1-e^{-k(k-1) / 2 N} \\
& p \geq 1 / 2 \quad \text { if } k \geq 1.17 \sqrt{N} .
\end{aligned}
$$

- Birthday paradox: with $N=365, p \geq 1 / 2$ for k as small as 23 .
- Define $\operatorname{Pr}\left[C_{i}\right]=\operatorname{Pr}[$ object i collides with some object $j<i]$.
- The birthday attack's success probability p satisfies:

$$
\begin{aligned}
p & =\operatorname{Pr}\left[C_{1} \vee C_{2} \vee \cdots \vee C_{k}\right] \\
& \leq \operatorname{Pr}\left[C_{1}\right]+\operatorname{Pr}\left[C_{2}\right]+\cdots+\operatorname{Pr}\left[C_{k}\right] \\
& \leq \frac{0}{N}+\frac{1}{N}+\frac{2}{N}+\cdots+\frac{k-1}{N} \\
& =\frac{k(k-1)}{2 N} \Rightarrow k \geq \sqrt{2 p N}
\end{aligned}
$$

- For a hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{\ell}, N=2^{\ell}$.
- To resist the birthday attack, N should be large enough that generating $k \geq \sqrt{2 p N}$ messages is practically infeasible.
- Currently, a minimum of $\ell \geq 128$ is recommended.
- For $\ell=128$, it will take $k \geq 2^{50}$ to have a successful rate of $p=2^{-29}$.

The Secure Hash Algorithm (SHA-1)

- an NIST standard.
- using Merkle-Damgard construction.
- input message m is divided into blocks with padding.
- padding $=10 \ldots 0|m|$, where $|m| \in\{0,1\}^{64}$.
- thus, message length is limited to $|m| \leq 2^{64}-1$.
- block $=512$ bits $=16$ words $=W_{0}\|\ldots\| W_{15}$.
- $\mathrm{IV}=$ a constant of 160 bits $=5$ words $=H_{0}\|\ldots\| H_{4}$.
- resulting hash value: 160 bits.
- underlying compression function $h:\{0,1\}^{160+512} \rightarrow\{0,1\}^{160}$, a series (80 rounds) of $\wedge, \vee, \oplus, \neg,+$, and Rotate on words $W_{i}{ }^{\prime} s \& H_{i}$'s.

Is SHA-1 secure?

- $\ell=160$ is big enough to resist birthday attacks for now.
- There is no mathematical proof for its collision resistance.
- In 2004, a collision for a 58-round SHA-1 was found.
- Newer SHA's have been included in the standard:
- SHA-256, SHA-384, SHA-512.
- These are called the SHA-2 family.
- SHA-3 is currently undergoing standardization.
- On 2/23/2017, Google researchers announced the first SHA-1 collision.

News article
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html?m=1

Application of hash functions to MACs

K\&L Section 5.3

Hash-then-MAC: basic idea

- A general MAC scheme with $M=\{0,1\}^{*}$ can be constructed using the hash-then-MAC paradigm. To compute a $\operatorname{tag} t$ for $m \in\{0,1\}^{*}$,
- We first hash m to a block $\tilde{m} \in\{0,1\}^{l(n)}$, using a collision-resistant hash function.
- Then compute a $\operatorname{tag} t$ from \tilde{m}, using a secure $l(n)$-bit fixed-length MAC scheme.

$$
m \in\{0,1\}^{*} \xrightarrow{\text { hash } H^{s}} \tilde{m} \in\{0,1\}^{l(n)} \xrightarrow{l(n) \text {-bit } \mathrm{MAC}_{k}} t
$$

Hash-then-MAC: Formal Definition

- $\left(\right.$ Gen $\left._{H}, H\right):$ a collision-resistant hash function with output length $l(n)$.
- (Gen, Mac, Vrfy): a fixed-length MAC for messages of length $l(n)$.
- Construct a general MAC scheme $\Pi^{\prime}=\left(G e n^{\prime}, M a c^{\prime}, V r f y^{\prime}\right)$:
- Gen': On input 1^{n}, output a hash key $s \leftarrow G e n_{H}\left(1^{n}\right)$ and a MAC key $k \leftarrow_{u}\{0,1\}^{n}$. The key is $k^{\prime}=(k, s)$
- Mac': On input a key (k, s) and a message $m \in\{0,1\}^{*}$, output $\quad t \leftarrow \operatorname{Mac}_{k}\left(H^{s}(m)\right)$.
- Vrfy': On input a key (k, s), a message $m \in\{0,1\}^{*}$, a tag t, output $\quad \operatorname{Vrfy} y_{k}\left(H^{s}(m), t\right)$.

Hash-then-MAC: Security

- Theorem: If $\left(G e n_{H}, H\right)$ is a collision resistant and $\left(G e n_{M}, M a c, V r f y\right)$ is secure, then the MAC scheme $\Pi^{\prime}=\left(G e n^{\prime}, M a c^{\prime}, V r f y^{\prime}\right)$ constructed above is secure.
- Remarks:
- The MAC scheme Π^{\prime} is secure, even if the hash key s is known to the adversary.
- The MAC key k must be kept secret.

$$
m \in\{0,1\}^{*} \xrightarrow{\text { hash } H^{s}} \tilde{m} \in\{0,1\}^{l(n)} \xrightarrow{l(n) \text {-bit } \operatorname{MAC}_{k}} t
$$

MACs in practice

- In the hash-then-MAC paradigm, we need a collision-resistant hash function and a fixed-length MAC/pseudorandom function.

$$
m \in\{0,1\}^{*} \xrightarrow{\text { hash } H^{s}} \tilde{m} \in\{0,1\}^{l(n)} \xrightarrow[l(n) \text {-bit } F_{k}]{l(n) \text {-bit } \mathrm{MAC}_{k}} t
$$

- In practice, people like to use just a hash function or just a pseudorandom function:
- HMAC (hash-based MAC)
- CBC-MAC (pseudorandom function based MAC)

HMAC: basic idea

- HMAC is based on the idea:

$$
m \in\{0,1\}^{*} \xrightarrow{H_{k_{1}}^{s}} H_{k_{\text {in }}}^{s}(m) \xrightarrow{h_{k_{2}}^{s}} t:=h_{k_{2}}^{s}\left(H_{k_{1}}^{s}(m) \| \text { padding }\right)
$$

- Two keys are used as IVs: k_{1} and k_{2}, each of length n.
- Unfortunately, a standard hash function (e.g., SHA-1) usually has a fixed IV, say $I V_{0}$, which cannot be changed by users.

- Then we have HMAC with keys $\left(k_{\text {in }}, k_{\text {out }}\right)$:

$$
t:=H^{s}\left(k_{\text {out }} \| H^{s}\left(k_{\text {in }} \| m\right)\right)
$$

HMAC

- A FIPS standard for constructing MAC from a hash function H^{s}. Conceptually,

$$
\operatorname{HMAC}_{k}(m)=H^{s}\left(k_{\text {out }} \| H^{s}\left(k_{\text {in }} \| m\right)\right)
$$

where $k_{\text {in }}$ and $k_{\text {out }}$ are two keys generated from a main key k.

- Various hash functions (e.g., SHA-1, MD5) may be used for H^{s}.
- If we use SHA-1, then HMAC is as follows:

$$
\operatorname{HMAC}_{k}(m)=\operatorname{SHA}-1(k \oplus \operatorname{opad} \| \text { SHA- } 1(k \oplus i p a d \| m))
$$

where

- k is padded with 0 's to 512 bits
- ipad $=3636 \cdots 36$ (x036 repeated 64 times)
- opad $=5 \mathrm{c} 5 \mathrm{c} \cdots 5 \mathrm{c} \quad$ (x 05 c repeated 64 times)

Security of HMAC

- Loosely speaking, HMAC is secure if
- the underlying compression function h is collision-resistant (and hence the hash function H is collision-resitant)
- and h^{s} behaves like a pseudorandom function.
- In the hash-then-MAC paradigm, the hash H^{s} does not need a secret key. In HMAC, the key $k_{\text {in }}$ is introduced to enhance the security.

Toss a coin by email

- Problem: Alice and Bob want to toss a coin by email to decide who is going to pay for dinner.
- A proposed solution:
- Use a collision resistant hash function h.
- Alice chooses a string x_{1} and compute $y_{1}:=h\left(x_{1}\right)$.
- Bob chooses a string x_{2} and compute $y_{2}:=h\left(x_{2}\right)$.
- Alice and Bob exchange y_{1} and y_{2}. //commit but hide x_{1} and $x_{2} / /$
- Alice and Bob exchange x_{1} and x_{2}. //reveal x_{1} and $x_{2} / /$
- Alice and Bob check if $y_{2}:=h\left(x_{2}\right), y_{1}:=h\left(x_{1}\right)$, respectively.
- Alice and Bob compute a boolean value from x_{1} and x_{2} (e.g., take the XOR of the last bits).
- Is the proposed scheme "secure/fair"?

