
Cryptographic Hash Functions 

Reading: Chapter 5 of Katz & Lindell 
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   if ( ) ,   is a pre-image of .

  Each hash value typically has multiple pre-images.
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  Loosely speaking,

                Collision resistant  Second pre-image resistant

                                               Pre-image resistant

  For cryptographic applications, a hash functio
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n is required to

    be collision resistant. 
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  In practice, a fixed hash function  is used.

  However, there is a technical difficulty in defining 

    collision-resistance for a  hash funcfixed t

Hard to define collision-resistant hash functions
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  A (with output length ( )) is a pair of PPT 

    al

hash function 
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 is a  function with two inputs, and ( ) ( , ).
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  Let ( , ) be a hash function.

  Collision-finding experiment Hash-coll ( ) :

      A key is generated, (1 ).

      The adversary  is given  an outpd uts 
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,  Pr Hash-coll ( ) 1
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  Provably collision-resistant hash

  :{0,1} {0,1} ?
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    Construct a  function :{0,1} {0,1}  

    from a  function :{0,1} {0,1} .    // ( ) //
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Theor If ( , ) is collision resistant, then so is ( , ).

  We will show that if  is  collision resistant, then  is
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We have shown that for every key ,
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  Minimum requirement:   must be large enough for  to resist

    the birthday a
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Define Pr Pr object  collides with some object  .  
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64

  an NIST standard.

  using Merkle-Damgard construction.

  input message  is divided into blocks with padding.

  padding = 10...0 | | , where | | {0,1} .

  thus, mess

The Secure Hash Algorithm (SHA-1)

m

m m
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
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 64

0 15

0 4

age length is limited to | |  2 1.

  block = 512 bits = 16 words = .

  IV  a constant of 160 bits = 5 words = .

  resulting hash value: 160 bits.

  underlying compression function  

m
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h
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

 160 512 160:{0,1} {0,1} ,

    a series (80 rounds) of , , , , +, and Rotate on

    words '  & 's. i iW s H

 
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  160 is big enough to resist birthday attacks .

  There is no mathematical proof for its collision resistance.

  In 2004, a collision for a 58-round SHA-1 was found.

 

for 

 Newer

now

Is SHA-1 secure?











 SHA's have been included in the standard: 

SHA-256, SHA-384, SHA-512.

These are called the SHA-2 family.

  SHA-3 is currently undergoing standardization. 

  On 2/23/2017, G

      

oogle 

   

res

  

rche

 

ea



 announced the first SHA-1 collisrs ion.
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https://security.googleblog.com/2017/02/announcing-first-

sha1-collision.html?m=1  

News article 

https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html?m=1


Application of hash functions 

 to MACs  

K&L Section 5.3 
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( )

hash-then-MAC

  A general MAC scheme with {0,1} can be constructed using the 

     paradigm.   To compute a tag  for

    

 {0,1} , 

  We first hash  to a block {0,1}

Hash-then-MAC: basic idea

l n

M

t m

m m
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

,  using a collision-resistant

        hash function.

  Then compute a tag  from , using a secure ( )-bit

        fixed-length MAC

    

 scheme. 

t m l n

22 

( )-bit MAChash * ( )

 
{0,1}   {0,1}   

s
kl nH l nm m t   



 

 

 , :  a  hash function with output length ( ).

  , , : a fixed-length MAC for messages of length ( ).

  Construct a general

c

 MAC s

ollision-resista  n

c

t

Hash-then-MAC: Formal Definition
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Gen H l n

Gen Mac Vrfy l n
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



*

heme ( ,  ,  ) :

 :  On input 1 , output a hash key (1 ) and 

        a MAC key {0,1} .  The key is ( ,

     

     

)

 :   On input a key ( , ) and a message {0,1} ,

     

n n
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u
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k k k s

Mac k s m
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  output       ( ) .   

 :   On input a key ( , ),  a message {0,1} , a tag ,

       ou
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 
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   If ,  is a collision resistant and

    ,  ,  is secure , then the MAC scheme

     ( ,

Theorem: 

 ,  ) constructed above is secure.

  Remarks:

      

Hash-then-MAC: Security

H

M

Gen H

Gen Mac Vrfy

Gen Mac Vrfy  


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



( )-bit MAChash * ( )

 

 The MAC scheme  is secure, even if the hash key 

         is known to the adversary.

       The 

        {0,1}  

MAC key  must be kept 

 

secret.

 {0,1}   
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s
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    
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( )-bit MAChash * ( )

(

  In the hash-then-MAC paradigm, we need a collision-resistant

       hash function fixed-length MAC/pseudorandom function

   

an a 

      {0,1}   {0,1}  

d .

MACs in practice

s
kl nl n
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  In practice, people like to use just a hash function

     just a pseudorandom function:

      HMAC (hash-based MAC)

      CBC-MAC (pseudorandom function based M

or

A )

 

C
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t




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 1 2

in 2 1
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1 2

  HMAC is based on the idea:

         {0,1}   ( )  : ( ) padding  

  Two keys are used as IVs:  and ,  each of length .

  Unfortunately, a standard ha

 

HMAC: basic idea 

s s
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H hs s
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sm H m t h H m

k k n
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


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0 fixed

sh function (e.g., SHA-1) usually has a

    IV, say , which cannot be changed by users.IV
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   Then we have HMAC with keys ( , ) :
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 out in

in out

  A FIPS standard for constructing MAC from a hash 

    function .  Conceptually,

                 HMAC ( ) ( )

    where  and  are two keys generated from a main key .

  Vari

HMAC

s

s s

k

H

m k k m

k k k

H H


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

 

ous hash functions (e.g., SHA-1, MD5) may be used for .

  If we use , then HMAC is as follows:SHA-1

SHA-1 SHA                HMAC ( ) ( )

    where

 is padded with 0's to 512 bit

-

      

1

s

k

H

m k opad k ipad m

k


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s

3636 36   (x036 repeated 64 times)

5c5c 5c    (x05c repeated  64 times)
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


28 



  Loosely speaking, HMAC is secure if 

      the underlying compression function  is collision-resistant

       (and hence the hash function  is collision-resitant)

      and   beh

Security of HMAC

s

h

H

h



aves like a pseudorandom function.

  In the hash-then-MAC paradigm, the hash  does not need a

    secret key.   In HMAC, the key  is introduced to enhance the

    security.

s

in

H

k


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  Problem: Alice and Bob want to toss a coin by email to decide

    who is going to pay for dinner.

  A proposed solution:   

      Use a collision resistant hash function .

     

Toss a coin by email

h





1 1 1

2 2 2

1 2 1 2

 Alice chooses a string  and compute : ( ).

      Bob chooses a string  and compute : ( ).

      Alice and Bob exchange  and .   //commit but hide  and //

      Alice and Bob excha

x y h x

x y h x

y y x x





1 2 1 2

2 2 1 1

1 2

nge  and .   //reveal  and //

      Alice and Bob check if : ( ), : ( ),  respectively.

      Alice and Bob compute a boolean value from  and 

       (e.g., take the XOR of the last 

x x x x

y h x y h x

x x

 

bits).

  Is the proposed scheme "secure/fair"?
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