Cryptographic Hash Functions

Reading: Chapter 5 of Katz & Lindell

Hash function

- A function mapping from a larger domain to a smaller range (thus not injective).
- Applications:
 - Fast lookup (hash tables)
 - Error detection/correction
 - Cryptography: cryptographic hash functions
 - Others
- Different applications require different properties of hash functions.

Cryptographic hash function (Informal)

- Hash functions: $h: X \to Y$, |X| > |Y|.
- E.g., $h: \{0,1\}^* \to \{0,1\}^n$, $h: \{0,1\}^* \to Z_n$, $h: \{0,1\}^k \to \{0,1\}^l$, with k > l.
- In the last case, *h* is also called a compression function.
- For cryptographic applications, *h*(*m*) is intended to be a fingerprint or digest of *m*.
- A classical application is to store (username, password) as (username, h(password)) to protect the secrecy of passwords.
- For this application, what property is required of *h*?

Security requirements (Informal)

- Pre-image: if h(m) = y, *m* is a pre-image of *y*.
- Each hash value typically has multiple pre-images.
- Collision: a pair (m, m'), $m \neq m'$, s.t. h(m) = h(m').
- (Informal) A hash function *h* is said to be:
 - **Pre-image resistant**: given a hash value *y*, it is computationally infeasible to find a pre-image of *y*.
 - Second pre-image resistant: given a message *m*, it is infeasible to find a second pre-image of y = h(m).
 - Collision resistant: if it is infeasible to find a collision.

• Loosely speaking,

Collision resistant \Rightarrow Second pre-image resistant

 \Rightarrow Pre-image resistant

• For cryptographic applications, a hash function is required to be collision resistant.

Hard to define collision-resistant hash functions

- In practice, a fixed hash function *h* is used.
- However, there is a technical difficulty in defining collision-resistance for a fixed hash function *h*.
- Try this "definition": A hash function h: {0,1}* → {0,1}ⁿ is collision-resistant if for every polynomial-time algorithm A, Pr[A^{h(·)}(1ⁿ) successfully produces a collision for h] ≤ negl(n).
 Problems with this definition:
 - For any x, x' ∈ {0,1}*, x ≠ x', let A_{x,x'} denote the algorithm that simply prints x, x'.
 - For any *h*, ∃ an algorithm that outputs a collision with prob 1.
 Thus, no hash function would be collision resistant.

Hash function (formal definition)

- A hash function (with output length l(n)) is a pair of PPT algorithms (*Gen*, *H*):
 - Gen(1ⁿ) outputs a key s ∈ I_n for some index set I_n.
 (Assume that 1ⁿ is implicit in s.)
 - *H* takes as input a key *s* and a string *x* ∈ {0,1}^{*} and outputs a string *H^s*(*x*) ∈ {0,1}^{*l*(*n*)}.
- If H^s is defined only for x ∈ {0,1}^{l'(n)}, where l'(n) > l(n), then (Gen, H) is a fixed-length hash function (also called a compression function) for input of length l'(n).

Remarks

- *H* is a keyed function with two inputs, and $H^{s}(x) = H(s, x)$.
- The key s is not necessarily a uniform string in {0,1}ⁿ, and is not a secret; it is more like an index than a key. To emphasis this, we write H^s instead of H_s.
- For convenience, we often also refer to H^s as a hash function.
- An example compression function *H* : (may skip)

$$H^{(p,q,g,h)}(x,y) = g^{x}h^{y} \mod p, \ (x,y) \in Z_{q} \times Z_{q}, \text{ where}$$

$$I_n = \begin{cases} (p,q,g,h) : p, q \text{ primes, } p = 2q+1, |q| = n \\ g, h \text{ generators of } Z_q^* \end{cases}$$

Collision-resistant hash function

- Let $\Pi = (Gen, H)$ be a hash function.
- Collision-finding experiment $\operatorname{Hash-coll}_{A,\Pi}(n)$:
 - A key is generated, $s \leftarrow Gen(1^n)$.
 - The adversary A is given s and outputs x, x' ∈ {0,1}*
 (or x, x' ∈ {0,1}^{l'(n)} if Π is fixed-length).
 - The output of the experiment is 1 if and only if $x \neq x'$ and $H^{s}(x) = H^{s}(x')$. //A finds a collision//
- Definition: A hash function $\Pi = (Gen, H)$ is collision-resistant if for all PPT adversaries *A*, there is a negl(n) such that

$$\Pr\left[\operatorname{Hash-coll}_{A,\Pi}(n)=1\right] \le negl(n).$$

Remarks

- $\Pr\left[\operatorname{Hash-coll}_{A,\Pi}(n) = 1\right]$
 - $= \Pr \Big[A \text{ finds a collision for } H^{s} : s \leftarrow Gen(1^{n}) \Big]$ $= \sum_{s \in I_{n}} \Pr[s] \cdot \Pr \Big[A \text{ finds a collision for } H^{s} \Big]$
 - = the probability that A finds a collision for a randomly picked hash function H^s .
- For different H^s , A may succeed with different probabilities.

How to construct a collision-resistant hash function

 $H^{s}: \{0,1\}^{*} \to \{0,1\}^{n}$?

- Provably collision-resistant hash functions can be constructed from claw-free pairs of one-way permutations. (Section 10.2 of Delfs & Knebl)
- In practice, hash functions are constructed from compression functions

$$h^{s}: \{0,1\}^{n+r} \to \{0,1\}^{n}$$

by a process called Merkle-Damgard's construction.

Merkle-Damgard construction

Construct a hash function $H^s : \{0,1\}^* \to \{0,1\}^n$ from a compression function $h^s : \{0,1\}^{n+r} \to \{0,1\}^n$. // r = r(n) //

- 1. For $m \in \{0,1\}^*$ of length less than 2^r , add a padding so that the length of the result is a multiple of *r*.
 - padding = 10...0 |m|, where |m| is the original length of *m*.
- 2. Let padded $m = m_1 m_2 \dots m_q$, where $|m_i| = r$. 3. Let $z_0 = 0^n$ and $z_i = h^s(z_{i-1} || m_i)$ for $1 \le i \le q$. // z_0 is the IV // 4. The hash value is $H^s(m) = z_q$.

Theorem: If (Gen, h) is collision resistant, then so is (Gen, H).

Proof. We will show that if *H* is not collision resistant, then *h* is not collision resistant. Specifically, whenever the adversary can find a collision (m, m') for H^s , then it can find a collision for h^s . Consider two cases:

- $|m| \neq |m'|$. In this case, $m_q \neq m_{q'}$, and so $(m_q, z_{q-1}) \neq (m'_{q'}, z'_{q'-1})$. But $h^s(m_q, z_{q-1}) = H^s(m) = H^s(m') = h^s(m'_{q'}, z'_{q'-1})$, a collision for h^s .
- |m| = |m'|. In this case, q = q'. Since $H^s(m) = H^s(m')$, there exists an *i* such that $(m_i, z_{i-1}) \neq (m'_i, z'_{i-1})$ but $h^s(m_i, z_{i-1}) = h^s(m'_i, z'_{i-1})$, which is a collision for h^s .

If the adversary can find a collision (m,m') for H^s , then it can find a collision for h^s .

- We have shown that for every key s,
 Whenever A can find a collision for H^s, it can find a collision for h^s.
- So, for every key *s*,

 $\Pr[A \text{ finds a collision for } h^s] \ge \Pr[A \text{ finds a collision for } H^s]$ • So,

 $\Pr\left[A \text{ finds a collision for } h^{s} : s \leftarrow Gen(1^{n})\right]$ $\geq \qquad \Pr\left[A \text{ finds a collision for } H^{s} : s \leftarrow Gen(1^{n})\right]$

How large should ℓ be? $H^s: \{0,1\}^* \rightarrow \{0,1\}^{\ell}$

- Minimum requirement: ℓ must be large enough for H^s to resist the birthday attack.
- Birthday attack: randomly generate a set of messages $\{m_1, m_2, ..., m_k\}$, and check if $H^s(m_i) = H^s(m_j)$ for some $i \neq j$.
- Why is it called a birthday attack?
- Birthday problem: In a group of *k* people, what is the probability that at least two of them have a same birthday?
 - Having a same birthday = a collision.

Birthday attack's success rate

If k objects are each assigned a random value in {1, 2, ..., N},
 the probability of a collision is

$$p = 1 - 1 \cdot \frac{N - 1}{N} \cdot \frac{N - 2}{N} \cdots \frac{N - k + 1}{N} \quad (\text{i.e., } 1 - \Pr[\text{no collision}])$$
$$= 1 - \prod_{i=1}^{k-1} \left(1 - \frac{i}{N}\right) \quad (\text{note: } 1 - x \le e^{-x} \text{ if } 0 < x < 1)$$
$$\ge 1 - \prod_{i=1}^{k-1} e^{-i/N} = 1 - e^{-\sum_{1 \le i \le k-1} i/N} = 1 - e^{-k(k-1)/2N}$$

• $p \ge 1/2$ if $k \ge 1.17\sqrt{N}$.

• Birthday paradox: with N = 365, $p \ge 1/2$ for k as small as 23.

- Define $\Pr[C_i] = \Pr[\text{object } i \text{ collides with some object } j < i].$
- The birthday attack's success probability *p* satisfies:

$$p = \Pr[C_1 \lor C_2 \lor \cdots \lor C_k]$$

$$\leq \Pr[C_1] + \Pr[C_2] + \cdots + \Pr[C_k]$$

$$\leq \frac{0}{N} + \frac{1}{N} + \frac{2}{N} + \cdots + \frac{k-1}{N}$$

$$= \frac{k(k-1)}{2N} \implies k \ge \sqrt{2pN}$$

- For a hash function $H: \{0,1\}^* \rightarrow \{0,1\}^\ell$, $N = 2^\ell$.
- To resist the birthday attack, N should be large enough that generating $k \ge \sqrt{2pN}$ messages is practically infeasible.
- Currently, a minimum of $\ell \ge 128$ is recommended.
- For $\ell = 128$, it will take $k \ge 2^{50}$ to have a successful rate of $p = 2^{-29}$.

The Secure Hash Algorithm (SHA-1)

- an NIST standard.
- using Merkle-Damgard construction.
- input message *m* is divided into blocks with padding.
- padding = 10...0 | m |, where $|m| \in \{0,1\}^{64}$.
- thus, message length is limited to $|m| \leq 2^{64} 1$.
- block = 512 bits = 16 words = $W_0 || ... || W_{15}$.
- IV = a constant of 160 bits = 5 words = $H_0 \parallel \ldots \parallel H_4$.
- resulting hash value: 160 bits.
- underlying compression function $h: \{0,1\}^{160+512} \rightarrow \{0,1\}^{160}$, a series (80 rounds) of \land , \lor , \oplus , \neg , +, and Rotate on words W_i 's & H_i 's.

Is SHA-1 secure?

- $\ell = 160$ is big enough to resist birthday attacks for now.
- There is no mathematical proof for its collision resistance.
- In 2004, a collision for a 58-round SHA-1 was found.
- Newer SHA's have been included in the standard:
 - SHA-256, SHA-384, SHA-512.
 - These are called the SHA-2 family.
- SHA-3 is currently undergoing standardization.
- On 2/23/2017, Google researchers announced the first SHA-1 collision. <u>News article</u>

https://security.googleblog.com/2017/02/announcing-firstsha1-collision.html?m=1

Application of hash functions to MACs

K&L Section 5.3

Hash-then-MAC: basic idea

- A general MAC scheme with M = {0,1}^{*} can be constructed using the hash-then-MAC paradigm. To compute a tag t for m ∈ {0,1}^{*},
 - We first hash *m* to a block *m* ∈ {0,1}^{*l*(*n*)}, using a collision-resistant hash function.
 - Then compute a tag *t* from \tilde{m} , using a secure l(n)-bit fixed-length MAC scheme.

$$m \in \{0,1\}^* \xrightarrow{\text{hash } H^s} \tilde{m} \in \{0,1\}^{l(n)} \xrightarrow{l(n)-\text{bit MAC}_k} t$$

Hash-then-MAC: Formal Definition

- (Gen_H, H) : a collision-resistant hash function with output length l(n).
- $(Gen_M, Mac, Vrfy)$: a fixed-length MAC for messages of length l(n).
- Construct a general MAC scheme $\Pi' = (Gen', Mac', Vrfy')$:
 - *Gen'*: On input 1^{*n*}, output a hash key $s \leftarrow Gen_H(1^n)$ and a MAC key $k \leftarrow_u \{0,1\}^n$. The key is k' = (k,s)
 - *Mac'*: On input a key (k, s) and a message $m \in \{0, 1\}^*$, output $t \leftarrow Mac_k(H^s(m))$.
 - *Vrfy'*: On input a key (k, s), a message $m \in \{0, 1\}^*$, a tag t, output $Vrfy_k(H^s(m), t)$.

Hash-then-MAC: Security

- Theorem: If (Gen_H, H) is a collision resistant and $(Gen_M, Mac, Vrfy)$ is secure, then the MAC scheme $\Pi' = (Gen', Mac', Vrfy')$ constructed above is secure.
- Remarks:
 - The MAC scheme Π' is secure, even if the hash key s is known to the adversary.
 - The MAC key k must be kept secret.

$$m \in \{0,1\}^* \xrightarrow{\text{hash } H^s} \tilde{m} \in \{0,1\}^{l(n)} \xrightarrow{l(n)-\text{bit MAC}_k} t$$

MACs in practice

• In the hash-then-MAC paradigm, we need a collision-resistant hash function and a fixed-length MAC/pseudorandom function.

$$m \in \{0,1\}^* \xrightarrow{\text{hash } H^s} \tilde{m} \in \{0,1\}^{l(n)} \xrightarrow{l(n)-\text{bit MAC}_k} t$$

- In practice, people like to use just a hash function or just a pseudorandom function:
 - HMAC (hash-based MAC)
 - CBC-MAC (pseudorandom function based MAC)

HMAC: basic idea

• HMAC is based on the idea:

$$m \in \{0,1\}^* \xrightarrow{H_{k_1}^s} H_{k_{in}}^s(m) \xrightarrow{h_{k_2}^s} t := h_{k_2}^s \left(H_{k_1}^s(m) \parallel \text{padding} \right)$$

- Two keys are used as IVs: k_1 and k_2 , each of length *n*.
- Unfortunately, a standard hash function (e.g., SHA-1) usually has a fixed IV, say IV₀, which cannot be changed by users.

• Then we have HMAC with keys (k_{in}, k_{out}) : $t := H^{s} \left(k_{out} || H^{s} (k_{in} || m) \right)$

HMAC

A FIPS standard for constructing MAC from a hash function *H^s*. Conceptually,

 $\mathrm{HMAC}_{k}(m) = \mathbf{H}^{s}\left(k_{\mathrm{out}} \parallel \mathbf{H}^{s}(k_{\mathrm{in}} \parallel m)\right)$

where k_{in} and k_{out} are two keys generated from a main key k.

- Various hash functions (e.g., SHA-1, MD5) may be used for H^s .
- If we use SHA-1, then HMAC is as follows: $HMAC_k(m) = SHA-1(k \oplus opad || SHA-1(k \oplus ipad || m))$

where

- k is padded with 0's to 512 bits
- $ipad = 3636 \cdots 36$ (x036 repeated 64 times)
- $opad = 5c5c \cdots 5c$ (x05c repeated 64 times)

Security of HMAC

- Loosely speaking, HMAC is secure if
 - the underlying compression function *h* is collision-resistant (and hence the hash function *H* is collision-resitant)
 - and h^s behaves like a pseudorandom function.
- In the hash-then-MAC paradigm, the hash H^s does not need a secret key. In HMAC, the key k_{in} is introduced to enhance the security.

Toss a coin by email

- Problem: Alice and Bob want to toss a coin by email to decide who is going to pay for dinner.
- A proposed solution:
 - Use a collision resistant hash function *h*.
 - Alice chooses a string x_1 and compute $y_1 := h(x_1)$.
 - Bob chooses a string x_2 and compute $y_2 := h(x_2)$.
 - Alice and Bob exchange y_1 and y_2 . //commit but hide x_1 and $x_2//$
 - Alice and Bob exchange x_1 and x_2 . //reveal x_1 and $x_2//$
 - Alice and Bob check if $y_2 := h(x_2), y_1 := h(x_1)$, respectively.
 - Alice and Bob compute a boolean value from x₁ and x₂
 (e.g., take the XOR of the last bits).
- Is the proposed scheme "secure/fair"?